1
|
Zhang X, Zhao Y, Huang L, Luo X, Zhang C, Mao Z, Yang H, Wang X. Zinc oxide nanoparticles alleviated Cd toxicity in Hibiscus syriacus L. by reducing Cd translocation and improving plant growth and root cellular ultrastructure. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137920. [PMID: 40086238 DOI: 10.1016/j.jhazmat.2025.137920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Soil cadmium (Cd) contamination threatens plant growth and agricultural productivity. Hibiscus syriacus L., valued for its ornamental, edible, and medicinal properties, is widely cultivated in Cd-contaminated areas of southern China.This study aimed to evaluate the effectiveness of nano-zinc oxide (nZnO) in alleviating Cd toxicity in H. syriacus, examining plant phenotypes, physiological and biochemical responses, root ultrastructure, and the accumulation and distribution of Cd and Zn within the soil-H. syriacus system. Pot experiments included Cd treatment (100 mg/kg) and combined soil or foliar applications of nZnO (50 and 100 mg/L), with plants harvested after 45 days. Compared to Cd treatment alone, the combined application of nZnO significantly increased biomass in roots, stems, and leaves, improved photosynthetic performance, osmotic regulation, and antioxidant levels, and mitigated root cell damage; Cd concentrated mainly in roots, and nZnO reduced root Cd levels by 0.24 %-9.06 %. SEM-EDS observations revealed that Cd predominantly accumulated in the root epidermis and cortex, with Cd stress leading to increased levels and localized aggregation of Cd in the xylem. By contrast, nZnO treatment alleviated this disruption. Leaf application of 50 mg/L nZnO showed the best results. These findings highlight nZnO as a promising nano fertilizer for alleviating Cd stress in plants.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yazhi Zhao
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Liqun Huang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoning Luo
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chen Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zihao Mao
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongfen Yang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaohong Wang
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China.
| |
Collapse
|
2
|
Ahmad S, Ouyang X, Duan S, Khan Z, Shen H. Co-application of zinc and oligosaccharides enhances zinc bioavailability, yield and nutritional quality of rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109964. [PMID: 40327902 DOI: 10.1016/j.plaphy.2025.109964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
Zinc (Zn) deficiency is a major abiotic factor impacting crop performance and human health. The co-application of oligosaccharides (Olg) and Zn (Olg-Zn) is an effective approach in improving Zn bioavailability, crop yield and nutritional quality. The current findings demonstrate that Olg-Zn application enhances photosynthesis, root-shoot biomass, grain yield, Zn uptake and Zn dissolution in gastric and gastrointestinal juices while reducing phytic acid and increasing Zn bioavailability. We conducted hydroponics and soil culture studies to investigate the synergy of Olg-Zn on rice growth, yield and grain quality. We found that the most effective treatments in hydroponics and soil cultures were Olg-Zn3 and Olg-ZnS2, which improved several morphological indices, such as root-shoot length and root-shoot fresh and dry weight. The findings reveal that higher photosynthesis traits and chlorophyll contents were recorded in Olg-Zn3 and Olg-ZnS2 treatments in hydroponics and soil cultures, respectively. Furthermore, compared to single Zn and Olg treatments, the Olg-Zn combination enhanced the uptake of Zn in roots, shoots and grains, resulting in higher grain yield in hydroponics (6.8 %-11.4 %) and soil culture (4.6 %-9.1 %). The application of Olg-Zn reduced phytic acid concentration by 4.7-15.3 % in hydroponics and 5.6-12.3 % in soil culture, improving Zn bioavailability by 2.2-16.6 % and 11.1-15.8 % by upregulating the expression level of Zn transporter genes, ultimately enhancing the nutritional quality of rice. Additionally, Olg-Zn improved Zn dissolution in gastric juice by 3.1-21.4 % and 3.5-19.6 %, and Zn dissolution in gastrointestinal juice was boosted by 3.7-19.7 % and 5.9-17.2 %, facilitating better Zn absorption and bioavailability in humans. However, treatments like Olg-ZnS4 and Olg-ZnS5 in soil culture slightly reduced rice yield and nutritional quality by hindering Zn bioavailability and increasing phytic acid concentration. In summary, this study highlights that an appropriate Olg-Zn combination enhances Zn uptake, leading to improved rice yield and quality, thus potentially benefitting human health.
Collapse
Affiliation(s)
- Sajjad Ahmad
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China.
| | - Xin Ouyang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China.
| | - Songpo Duan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China.
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China.
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Liu X, Zhu J, Liang J, Li F, Meng R, Ma X, Xiong M. Ecotoxicological effects of individual and combined treatments of chlortetracycline and oxytetracycline on seed germination and seedling growth of wheat (Triticum aestivum L.). JOURNAL OF ENVIRONMENTAL QUALITY 2025. [PMID: 40490847 DOI: 10.1002/jeq2.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/29/2025] [Indexed: 06/11/2025]
Abstract
A significant issue facing the world today is the antibiotics pollution of agroecosystems. Chlortetracycline (CTC) and oxytetracycline (OTC) are frequently detected antibiotics in soil. However, little is known about their ecotoxicological effects on crops. Here, the potential adverse effect of CTC and OTC individually and in combination on germination, growth, antioxidant enzyme, malondialdehyde (MDA), chlorophyll, and soluble protein (SP) in Triticum aestivum L. grown in soil contaminated with 1, 10, and 50 mg (CTC and/or OTC) × kg-1 of soil was tested. The results showed that low concentrations (1 mg·kg-1) of CTC, OTC, and combinations of antibiotics (CA) promoted seeds germination and root elongation, which were inhibited by high concentrations (50 mg·kg-1) of CTC or OTC. CTC and/or OTC-exposure significantly reduced plant heights, with OTC having the most pronounced effects. Biomass accumulation was not evidently influenced by CTC or OTC but was significantly increased by their mixture. Peroxidase, superoxide dismutase, catalase activity, and MDA level increased with elevated CTC and/or OTC concentrations, indicating oxidative damage to wheat. Chlorophyll, carotenoid, and SP were decreased by exposure to low concentration of CTC and/or OTC but were slightly increased with the increase in concentration. Integrated biomarker response (IBR) analysis indicated CA (IBR = 13.00) had the most profound impact, followed by CTC (IBR = 12.49) and OTC (IBR = 11.97) had the least influence at the highest concentration (50 mg·kg-1). These results contribute to a deeper understanding of the physiological toxicity of CTC and oxytetracycline alone and in combination on wheat and provide a basis for further assessment of their potential ecological risks.
Collapse
Affiliation(s)
- Xiaoqian Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
- School of Biology, Hunan University, Changsha, China
| | - Jirong Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jin Liang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Fan Li
- College of Life Sciences, Huaibei Normal University, Huaibei, China
- College of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rui Meng
- College of Life Sciences, Huaibei Normal University, Huaibei, China
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Xuwei Ma
- College of Life Sciences, Huaibei Normal University, Huaibei, China
- College of Biological Science and Technology, Yangzhou University, Yangzhou, China
| | - Minghua Xiong
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
4
|
Wang X, Wang D, Liu X, Zhang H, Chen G, Xu M, Shen X, You C. BEL1-like homeodomain transcription factor SAWTOOTH1 (MdSAW1) in Malus domestica enhances the tolerance of transgenic apple and Arabidopsis to zinc excess stress. Int J Biol Macromol 2025; 307:141948. [PMID: 40074134 DOI: 10.1016/j.ijbiomac.2025.141948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
In recent years, the phenomenon of zinc pollution in orchards has become increasingly serious, and the safety of apple production is facing a major risk. Therefore, exploring excellent genes for zinc tolerance has a positive effect on apples. Up to now, there is still a lack of attention on genes related to zinc stress tolerance in apples. In this study, the apple transcriptome map under zinc stress (1000 μM ZnSO4) was generated based on high-throughput sequencing. Through transcription factor analysis and association network prediction, TALE superfamily SAWTOOTH 1 was found to have an important role in 32 up-regulated core transcription factors. Further, BEL1-like homeodomain MdSAW1 gene from Malus domestica was overexpressed in Arabidopsis seedlings ('Col-0'), apple callus tissues ('Orin'), and apple plants ('GL-3'), and the results showed that the transformed lines carried obvious tolerance to zinc stress, which was reflected in the significant reduction of relative dielectric leakage, malondialdehyde, O2- and H2O2 content. The interaction between protein and DNA confirmed that MdSAW1 binds to natural resistance-associated macrophage protein NRAMP2 promoter to inhibit its transcription and thus regulate zinc ion homeostasis. In addition, overexpression of MdSAW1 increased the activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and caused differences in metabolites in plants. MdSAW1 endows plants with strong tolerance to Zn stress, therefore, this study provides valuable reference for genetic improvement and environmental adaptation of fruit trees.
Collapse
Affiliation(s)
- Xun Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Daru Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xin Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Haiyuan Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Guolin Chen
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Minghui Xu
- College of Agriculture, Yunnan University, Kunming 650091, China
| | - Xiang Shen
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Chunxiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
5
|
Cao F, He T, Yin D, Wu P, Luo G. Organic foliar spraying: A method that synchronously reduces mercury methylation in soil and accumulation in vegetable. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125615. [PMID: 39746637 DOI: 10.1016/j.envpol.2024.125615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Although the use of foliar spraying with organic matter has been extensively studied and applied to reduce heavy metals in plants, research on its application for reducing mercury (Hg) accumulation in plants, particularly the more toxic methylmercury (MeHg), remains scarce. Furthermore, previous researches on the barrier mechanisms of foliar spraying primarily concentrated on the effects of spraying agents on plant physiological and biochemical indicators, with limited focus on their impacts on soil environment. Herein, the dynamic effects and mechanisms of organic foliar spraying materials, including earthworm liquid fertilizer (ELF), Tween 80 (T80), and citric acid (CA), on soil Hg methylation and accumulation in lettuce were investigated using pot experiment. The findings revealed that foliar spraying significantly reduced the total mercury (THg) and MeHg concentrations in mature lettuce stems and leaves, with CA demonstrating the highest efficacy, achieving reduction rates of 24-60% for THg and 64-69% for MeHg. Spraying CA and T80 also simultaneously reduced the dissolved Hg and MeHg in the soil during the lettuce maturity period. The reductions of soil Hg methylation and bioaccumulation in lettuce were related to the increased abundance of Hg-reducing bacteria, decreased tartaric acid content and Hg-methylating bacteria abundance in soils, as well as enhanced nutrient absorption by lettuce. Additionally, foliar spraying lessened Hg toxicity to the plant and facilitated Hg sequestration in cell walls and vacuoles. Thus, foliar organic spraying impacted Hg enrichment in plant through altering plant physiological and biochemical indices, soil environment and Hg methylation processes.
Collapse
Affiliation(s)
- Fangyu Cao
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Guangjun Luo
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Faculty of Architecture and Engineering, Guizhou Polytechnic of Construction, Guiyang, 551400, China
| |
Collapse
|
6
|
Sperdouli I, Giannousi K, Moustaka J, Antonoglou O, Dendrinou-Samara C, Moustakas M. Responses of Tomato Photosystem II Photochemistry to Pegylated Zinc-Doped Ferrite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:288. [PMID: 39997850 PMCID: PMC11858530 DOI: 10.3390/nano15040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Various metal-based nanomaterials have been the focus of research regarding their use in controlling pests and diseases and in improving crop yield and quality. In this study, we synthesized via a solvothermal procedure pegylated zinc-doped ferrite (ZnFer) NPs and characterized their physicochemical properties by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), FT-IR and UV-Vis spectroscopies, as well as transmission electron microscopy (TEM). Subsequently, their impact on tomato photosynthetic efficiency was evaluated by using chlorophyll a fluorescence imaging analysis to estimate the light energy use efficiency of photosystem II (PSII), 30, 60, and 180 min after foliar spray of tomato plants with distilled water (control plants) or 15 mg L-1 and 30 mg L-1 ZnFer NPs. The PSII responses of tomato leaves to foliar spray with ZnFer NPs showed time- and dose-dependent biphasic hormetic responses, characterized by a short-time inhibitory effect by the low dose and stimulatory effect by the high dose, while at a longer exposure period, the reverse phenomenon was recorded by the low and high doses. An inhibitory effect on PSII function was observed after more than ~120 min exposure to both ZnFer NPs concentrations, implying a negative effect on PSII photochemistry. We may conclude that the synthesized ZnFer NPs, despite their ability to induce hormesis of PSII photochemistry, have a negative impact on photosynthetic function.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece
| | - Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Julietta Moustaka
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Crema A, Dinelli E, Fabbri E, Galletti P, Greggio N, Lastella V, Parodi A, Pasteris A, Pedrizzi M, Samorì C. Additives in bioplastics: Chemical characterization, migration in water and effects on photosynthetic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177205. [PMID: 39471952 DOI: 10.1016/j.scitotenv.2024.177205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The potential release in the environment and biological effects of chemicals like additives and non-intentionally added substances present in conventional plastics and bioplastics is an issue that could occur if these materials are not properly disposed of. Herein, seven leachates of biobased and biodegradable plastics made of polylactic acid (PLA), polybutylene succinate (PBS)/PLA blends, and starch-based blends (SB) were characterized and compared for the inorganic and organic additives present in the source materials. The main inorganic elements found in the leachates were Na, Mg, K, and Ca (0.1-100 mg L-1), corresponding to the main elements present in the bioplastics. Also trace elements such as Ba, Zn, Sr, B, Fe, Ti, Al, Mn, Cu, and Sn occurred in leachates with concentrations between 1 and 1000 μg L-1. In contrast, most of the organic additives found in the bioplastics did not migrate in water and the few organic compounds detected and identified were not of concern. The lowest tested concentration of PBS/PLA- and SB-leachates (0.5 % of the corresponding initial leachate) induced a significant algal growth inhibition (corresponding to bioplastic concentrations in water of 0.4 g L-1). Conversely, PLA-based materials were less toxic (LOEC corresponding to 10 % of the leachates or >75 %). No effect on seed germination nor the development of roots and shoots of cress was observed for any leachate prepared from PLA and PBS/PLA materials. Leachates prepared from SB bags inhibited the growth of roots and shoots at the concentrations of 25 and 50 %, while they induced hormesis at 10 % concentration promoting a growth higher than the control.
Collapse
Affiliation(s)
- Alberto Crema
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy
| | - Enrico Dinelli
- Department of Biology, Geology and Environmental Science, University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy; Interdepartmental Centre for Research in Environmental Sciences (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- Department of Biology, Geology and Environmental Science, University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy; Interdepartmental Centre for Research in Environmental Sciences (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy
| | - Paola Galletti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy; Interdepartmental Centre for Research in Environmental Sciences (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy
| | - Nicolas Greggio
- Department of Biology, Geology and Environmental Science, University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy; Interdepartmental Centre for Research in Environmental Sciences (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy
| | - Valentina Lastella
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy
| | - Adriano Parodi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy
| | - Andrea Pasteris
- Department of Biology, Geology and Environmental Science, University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy; Interdepartmental Centre for Research in Environmental Sciences (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy
| | - Marta Pedrizzi
- Department of Biology, Geology and Environmental Science, University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy
| | - Chiara Samorì
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy; Interdepartmental Centre for Research in Environmental Sciences (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy.
| |
Collapse
|
8
|
Koyukan B, Arikan-Abdulveli B, Yildiztugay E, Ozfidan-Konakci C. The regulatory roles of a plant neurotransmitter, acetylcholine, on growth, PSII photochemistry and antioxidant systems in wheat exposed to cadmium and/or mercury stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124978. [PMID: 39303933 DOI: 10.1016/j.envpol.2024.124978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Heavy metals increase in nature due to anthropogenic activities and negatively impact the growth, progress, and efficiency of plants. Among the toxic metal pollutants that can cause dangerous effects when accumulated by plants, mercury (Hg) and cadmium (Cd) were investigated in this study. These metals typically inhibit important enzymes and halt their functioning, thereby adversely affecting the capability of plants to achieve photosynthesis, respiration, and produce quality crops. Acetylcholine (ACh) serves as a potent neurotransmitter present in both primitive and advanced plant species. Its significant involvement in diverse metabolic processes, particularly in regulating growth and adaptation to stress, needs to be further elucidated. For this aim, effects of acetylcholine (ACh1, 10 μM; ACh2, 100 μM) were survey in Triticum aestivum under Hg and/or Cd stress (Hg, 50 μM; Cd, 100 μM). Wheat seedlings exhibited a growth retardation of about 24% under Hg or Cd stress. Combined stress conditions (Cd + Hg) resulted in a decrease in RWC by approximately 16%. Two different doses of ACh treatment to stressed plants positively affected growth parameters and regulated the water relations. Gas exchange was limited in stress groups, and the photochemical quantum competency of PSII (Fv/Fm) was suppressed. Cd + ACh1 and Cd + ACh2 treatments resulted in approximately 2-fold and 1.5-fold improvement in stomatal conductance and carbon assimilation rate, respectively. Similarly, improvement was observed with ACh treatments in wheat seedlings under Hg stress. Under Cd and/or Hg stress, high levels of H2O2 accumulated and lipid peroxidation occurred. According to our results, ACh treatment upon Cd and Hg stresses improved the activities of SOD, POX, and APX, thereby reducing oxidative damage. In conclusion, ACh treatment was found to ensure stress tolerance and limit the adverse effects caused by heavy metals.
Collapse
Affiliation(s)
- Buket Koyukan
- Department of Biotechnology, Selcuk University, Faculty of Science, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan-Abdulveli
- Department of Biotechnology, Selcuk University, Faculty of Science, Selcuklu, 42130, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Selcuk University, Faculty of Science, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| |
Collapse
|
9
|
Zemanová V, Pavlíková D, Novák M, Hnilička F. The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic. PLANTS (BASEL, SWITZERLAND) 2024; 13:3363. [PMID: 39683158 DOI: 10.3390/plants13233363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
The effects of zinc (Zn) on the physiology of spinach (Spinacia oleracea L.) were investigated in a pot experiment with increasing Zn contents in the horticultural substrate (0, 75, 150, and 300 mg Zn kg-1). Interactions among nutrients in the substrate solution affected plant vitality, biomass yield, and nutrient content in plants. The water-soluble Zn fraction increased with the Zn dose, rising from 0.26 mg kg-1 in the Control to 0.98 mg kg-1 in the Zn300 treatment. The most pronounced effects of elevated Zn content were observed for Ca, Mg, and Mn. In spinach, the dual role of Zn was evident through its impact on yield, particularly regarding aboveground biomass. The positive effects of Zn doses up to 150 mg kg-1 were supported by the tolerance index (TI). In contrast, the 300 mg kg-1 Zn dose exhibited toxic effects, resulting in a 33.3% decrease in the yield of aboveground biomass and a TI value of 0.7. The effects of Zn on nutrient content in aboveground biomass varied with the dose, and the relationship between Zn and P, Fe, Mn, Ca, and K content confirmed a correlation. The toxic effect of the Zn300 treatment was evidenced by a decrease in Ca, Cu, and Fe contents. Additionally, the results of the Zn300 treatment indicated a negative effect on the synthesis of photosynthetic pigments and photosynthesis, likely due to induced oxidative stress. The production of oxalic acid also suggested a toxic effect of the highest Zn dose on spinach.
Collapse
Affiliation(s)
- Veronika Zemanová
- Department of Nutrition Management, Crop Research Institute, Drnovská 507, Ruzyně, 16106 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Milan Novák
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| |
Collapse
|
10
|
Ge Y, Liu J, Shi R, Li X, Zeb A, Wang Q, Wang J, Zhao Y, Yu M, Yin C, Xiong H, Liu W. Environmental concentrations of 6PPD and 6PPD-Q cause oxidative damage and alter metabolism in Eichhornia crassipes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175736. [PMID: 39182783 DOI: 10.1016/j.scitotenv.2024.175736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
N-(1,3-dimethylbutyl)-N '-phenyl-p-phenylenediamine (6PPD) and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) are ubiquitous in the environment and can cause toxicity to aquatic animals. However, research on the toxicological effects of 6PPD and 6PPD-Q on aquatic plants remains limited. The present study investigated the physiological, biochemical, and metabolic responses of the floating aquatic plant Eichhornia crassipes (E. crassipes) to environmentally relevant concentrations (0.1, 1, and 10 μg·L-1) of 6PPD and 6PPD-Q. We found that 6PPD and 6PPD-Q elicited minimal effects on plant growth, but 6PPD induced a concentration-dependent decrease in the content of photosynthetic pigments. Low doses (0.1 μg·L-1 and 1 μg·L-1) of 6PPD-Q significantly elevated Reactive Oxygen Species (ROS) content in E. crassipes roots, indicating oxidative damage. Furthermore, 6PPD-Q induced a more pronounced osmotic stress compared to 6PPD. Metabolic analyses revealed that carbohydrates were significantly altered under 6PPD and 6PPD-Q treatments. The findings of this study enhance the understanding of the environmental risks posed by 6PPD and 6PPD-Q to plants and reveal the potential mechanisms of phytotoxicity.
Collapse
Affiliation(s)
- Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuexing Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongxia Xiong
- Tianjin Research Institute for Water Transport Engineering, Laboratory of Environmental Protection in Water Transport Engineering, Tianjin 300456, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
11
|
Jiao Q, Li G, Li L, Lin D, Xu Z, Fan L, Zhang J, Shen F, Liu S, Seth CS, Liu H. Hormetic responses to cadmium exposure in wheat seedlings: insights into morphological, physiological, and biochemical adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57701-57719. [PMID: 39292310 DOI: 10.1007/s11356-024-34915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Cadmium is commonly recognized as toxic to plant growth, low-level Cd has promoting effects on growth performance, which is so-called hormesis. Although Cd toxicity in wheat has been widely investigated, knowledge of growth response to a broad range of Cd concentrations, especially extremely low concentrations, is still unknown. In this study, the morphological, physiological, and biochemical performance of wheat seedlings to a wide range of Cd concentrations (0-100 µΜ) were explored. Low Cd treatment (0.1-0.5 µM) improved wheat biomass and root development by enhancing the photosynthetic system and antioxidant system ability. Photosynthetic rate (Pn) was improved by 5.72% under lower Cd treatment (1 µΜ), but inhibited by 6.05-49.85% from 5 to 100 µΜ. Excessive Cd accumulation induced oxidative injury manifesting higher MDA content, resulting in lower photosynthetic efficiency, stunted growth, and reduction of biomass. Further, the contents of ascorbate, glutathione, non-protein thiols, and phytochelatins were improved under 5-100 µΜ Cd treatment. The ascorbate peroxidase activity in the leaf showed a hormetic dose-response characteristic. Correlation analysis and partial least squares (PLS) results indicated that antioxidant enzymes and metabolites were closely correlated with Cd tolerance and accumulation. The results of the element network, correlation analysis, and PLS showed a crucial role for exogenous Cd levels in K, Fe, Cu, and Mn uptake and accumulation. These results provided a deeper understanding of the hormetic effect of Cd in wheat, which would be beneficial for improving the quality of hazard and risk assessments.
Collapse
Affiliation(s)
- Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Lantao Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Di Lin
- College of Forestry, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Zhengyang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Fengmin Shen
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | | | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
12
|
Shi A, Xu J, Shao Y, Alwathnani H, Rensing C, Zhang J, Xing S, Ni W, Zhang L, Yang W. Salicylic Acid's impact on Sedum alfredii growth and cadmium tolerance: Comparative physiological, transcriptomic, and metabolomic study. ENVIRONMENTAL RESEARCH 2024; 252:119092. [PMID: 38729407 DOI: 10.1016/j.envres.2024.119092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yudie Shao
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Department of Environmental Microbiology, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - JinLin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Cyriac J, Sreejit CM, Yuvaraj M, Joseph S, Priya RS, Saju F, Thomas B. Zinc-exchanged montmorillonite clay: A promising slow-release nanofertilizer for rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108790. [PMID: 38838571 DOI: 10.1016/j.plaphy.2024.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
This study is to examine zinc exchanged montmorillonite (Zn-MMT) as a potential slow release nanofertilizer for rice crop. The effective intercalation of zinc within the montmorillonite inter layers was firmly established via analytical techniques including Zeta potential, FE-SEM (Field Emission Scanning Electron Microscopy) with Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscope (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The efficacy of Zn-MMT was examined by evaluating its ability to facilitate controlled zinc release, as confirmed through an incubation study. Subsequently, the kinetics of zinc release was analyzed by different mathematical models such as Zero-order kinetics, First-order kinetics, the Higuchi model, and the Korsmeyer-Peppas model. From the pot culture study spanning 90 days the results indicated that Zn-MMT had significantly high plant height, Leaf Area Index (LAI), Dry Matter Production (DMP), number of tillers per hill, panicles length, increased grain and straw yield, in comparison with conventional zinc sulphate (ZnSO4). Total phenol, total protein and total chlorophyll content were significantly at higher levels with Zn-MMT treated rice crops as compared to conventional fertilizers and control. A similar trend was seen with phytochemicals such as Indole Acetic Acid (IAA), Superoxide Dismutase (SOD) and Carbonic Anhydrase (CA). Notably, rice grains harvested from Zn-MMTtreated crops exhibited significantly higher zinc content than those using other treatments. This Zn-MMT can be confirmed as a better alternative to conventional zinc sulphate fertilizers owing to its slow-release of nutrient into the soil and thus increased zinc use efficiency.
Collapse
Affiliation(s)
- Jaiby Cyriac
- Department of Botany, Newman College, Thodupuzha, Kerala, India; Mahatma Gandhi University Centre for Research in Botany, Research Department of Botany, SNM College, Maliankara, Kerala, India.
| | - C M Sreejit
- Mahatma Gandhi University Centre for Research in Botany, Research Department of Botany, SNM College, Maliankara, Kerala, India
| | - M Yuvaraj
- Agricultural College and Research Institute, Vazhavachanur, Tiruvannamalai, Tamil Nadu, India
| | - Sindhu Joseph
- Department of Chemistry, Bharata Mata College, Thrikkakara, Kerala, India
| | - R Sathya Priya
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Fels Saju
- Department of pharmaceutical science, Nirmala College of Pharmacy, Muvattupuzha, Kerala, India
| | - Bejoy Thomas
- Mahatma Gandhi University Centre for Research in Chemistry, Department of Chemistry, Newman College, Thodupuzha, Kerala, India.
| |
Collapse
|
14
|
Yu X, Liu Y, Yue L, Zeng X, Huang Y, Xue H, Xu B, Zhang J, Xiao X, Yang L, Lei T, Jiang M, Jiang B, Gao S, Li X. Effects of cadmium and zinc interactions on the physiological biochemistry and enrichment characteristics of Iris pseudacorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116275. [PMID: 38564858 DOI: 10.1016/j.ecoenv.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160 μM) and Zn (800 μM) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160 μM + 200 μM) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160 μM + 800 μM) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.
Collapse
Affiliation(s)
- Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yujia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Yue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hanyue Xue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Junrui Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Xiao
- Triticeae research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Zhou Q, Li X, Zheng X, Zhang X, Jiang Y, Shen H. Metabolomics reveals the phytotoxicity mechanisms of foliar spinach exposed to bulk and nano sizes of PbCO 3. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133097. [PMID: 38113737 DOI: 10.1016/j.jhazmat.2023.133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
PbCO3 is an ancient raw material for Pb minerals and continues to pose potential risks to the environment and human health through mining and industrial processes. However, the specific effects of unintentional PbCO3 discharge on edible plants remain poorly understood. This study unravels how foliar application of PbCO3 induces phytotoxicity by potentially influencing leaf morphology, photosynthetic pigments, oxidative stress, and metabolic pathways related to energy regulation, cell damage, and antioxidant defense in Spinacia oleracea L. Additionally, it quantifies the resultant human health risks. Plants were foliarly exposed to PbCO3 nanoparticles (NPs) and bulk products (BPs), as well as Pb2+ at 0, 5, 10, 25, 50, and 100 mg·L-1 concentrations once a day for three weeks. The presence and localization of PbCO3 NPs inside the plant cells were confirmed by TEM-EDS analysis. The maximum accumulation of total Pb was recorded in the root (2947.77 mg·kg-1 DW for ion exposure), followed by the shoot (942.50 mg·kg-1 DW for NPs exposure). The results revealed that PbCO3 and Pb2+ exposure had size- and dose-dependent inhibitory effects on spinach length, biomass, and photosynthesis attributes, inducing impacts on the antioxidase activity of CAT, membrane permeability, and nutrient elements absorption and translocation. Pb2+ exhibited pronounced toxicity in morphology and chlorophyll; PbCO3 BP exposure accumulated the most lipid peroxidation products of MDA and H2O2; and PbCO3 NPs triggered the largest cell membrane damage. Furthermore, PbCO3 NPs at 10 and 100 mg·L-1 induced dose-dependent metabolic reprogramming in spinach leaves, disturbing the metabolic mechanisms related to amino acids, antioxidant defense, oxidative phosphorylation, fatty acid cycle, and the respiratory chain. The spinach showed a non-carcinogenic health risk hierarchy: Pb2+ > PbCO3 NPs > PbCO3 BPs, with children more vulnerable than adults. These findings enhance our understanding of PbCO3 particle effects on food security, emphasizing the need for further research to minimize their impact on human dietary health.
Collapse
Affiliation(s)
- Qishang Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Xueming Zheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yueheng Jiang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - He Shen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
16
|
Ali M, Sharif M, Ahmed I. Enhancement of Wheat Productivity and Zinc Accumulation Through Integrated Use of Zinc and Beneficial Microbes Under Irrigated and Rainfed Conditions. COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS 2024; 55:517-528. [DOI: 10.1080/00103624.2023.2274034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/11/2023] [Indexed: 02/07/2024]
Affiliation(s)
- Murad Ali
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Sharif
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| |
Collapse
|
17
|
Zhong J, Liu Y, Chen X, Ye Z, Li Y, Li W. The impact of acid rain on cadmium phytoremediation in sunflower (Helianthus annuus L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122778. [PMID: 37863250 DOI: 10.1016/j.envpol.2023.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Sunflower is an ideal crop for phytoremediation of cadmium-contaminated farmland, as it brings economic benefits while conducting soil remediation. Due to industrial emissions and car exhaust, Cd contaminated areas are often accompanied by acid rain. However, the impact of acid rain on the Cd remediation capacity of sunflowers and its potential influencing factors are unclear. An experiment was manipulated to elucidate the effects of Cd concentration (0,10,50,100 μmol/L) and acid rain (pH 4.0) on the phytoremediation ability of sunflowers, in which the properties of them were explored. The results indicated that Cd stress is the main factor affecting the growth of sunflowers. Without AR, Cd treatment decreased sunflower biomass by 67.5-85.6%. Under AR, Cd treatment decreased sunflower biomass 53.9-86.4%. Compared without AR, the relative chlorophyll content with AR increased by 22.3-23.1%, while the YII with AR decreased by 6.5-20.0%. There was an interaction between acid rain and Cd stress on antioxidant enzyme activity. With AR, CAT activity at 0 μmol/L Cd treatment increased by 25.6%, compared without AR. Whether there is acid rain or not, the POD and SOD activities were increased at 10, 50 μmol/L Cd treatment, but they were decreased at 100 μmol/L Cd treatment. Among them, acid rain exacerbated the impact of POD activity (decreased by 31.4%) at 100 μmol/L Cd treatment and SOD activity (decreased by 15.1%) at 50 μmol/L Cd treatment, compared without AR. In this experiment, the phytoremediation capacity of sunflowers mainly depended on the concentration of Ca in the leaves and their antioxidant capacity. Acid rain enhanced 77.5% the total Cd accumulation at 10 μmol/L Cd treatment, compared without AR. Acid rain exacerbated the damage of Cd to the chloroplast structure of sunflowers, and reduced the accumulation of starch particles. The study findings may be useful for improving the phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Jiawen Zhong
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yeqing Liu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Xinheng Chen
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Zihao Ye
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), MOA, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, South China Agricultural University, Guangzhou 510642, China
| | - Wenyan Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), MOA, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Zhao X, Song B, Riaz M, Li M, Lal MK, Adil MF, Huo J, Ishfaq M. Foliar zinc spraying improves assimilative capacity of sugar beet leaves by promoting magnesium and calcium uptake and enhancing photochemical performance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108277. [PMID: 38104397 DOI: 10.1016/j.plaphy.2023.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/25/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Sugar beet, a zinc-loving crop, is increasingly limited by zinc deficiency worldwide. Foliar zinc application is an effective and convenient way to supplement zinc fertilizer. However, the regulatory mechanism of foliar zinc spraying on sugar beet leaf photosynthetic characteristics remains unclear. Therefore, we investigated the effects of foliar ZnSO4·7H2O application (0, 0.1%, 0.2%, and 0.4%) on the photosynthetic performance of sugar beet leaves under controlled hydroponic conditions. The results indicated that a foliar spray of 0.2% Zn fertilizer was optimal for promoting sugar beet leaf growth. This concentration significantly reduced the leaf shape index of sugar beet, notably increasing leaf area, leaf mass ratio, and specific leaf weight. Foliar spraying of Zn (0.2%) substantially elevated the Zn content in sugar beet leaves, along with calcium (Ca) and magnesium (Mg) contents. Consequently, this led to an increase in the potential photochemical activity of PSII (Fv/Fo) (by 6.74%), net photosynthetic rate (Pn) (11.39%), apparent electron transport rate (ETR) (11.43%), actual photochemical efficiency of PSⅡ (Y (Ⅱ)) (11.46%), photochemical quenching coefficient (qP) (15.49%), and total chlorophyll content (25.17%). Ultimately, this increased sugar beet leaf dry matter weight (11.30%). In the cultivation and management of sugar beet, the application of 0.2% Zn fertilizer (2.88 mg plant-1) exhibited the potential to enhance Zn and Mg contents in sugar beet, improve photochemical properties, stimulate leaf growth, and boost light assimilation capacity. Our result suggested the foliar application of Zn might be a useful strategy for sugar beet crop management.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Baiquan Song
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Meiyu Li
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Milan Kumar Lal
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, Odisha, India.
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resources, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Jialu Huo
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Muhammad Ishfaq
- Department of Plant Nutrition, College of Resources and Environmental Sciences, The State Key Laboratory of Nutrient Use and Management (SKL-NUM), Ministry of Education, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
19
|
Liu X, Zhu Q, Liu W, Zhang J. Exogenous Brassinosteroid Enhances Zinc tolerance by activating the Phenylpropanoid Biosynthesis pathway in Citrullus lanatus L. PLANT SIGNALING & BEHAVIOR 2023; 18:2186640. [PMID: 37083111 PMCID: PMC10124981 DOI: 10.1080/15592324.2023.2186640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Zinc (Zn) is an important element in plants, but over-accumulation of Zn is harmful. The phytohormone brassinosteroids (BRs) play a key role in regulating plant growth, development, and response to stress. However, the role of BRs in watermelon (Citrullus lanatus L.) under Zn stress, one of the most important horticultural crops, remains largely unknown. In this study, we revealed that 24-epibrassinolide (EBR), a bioactive BR enhanced Zn tolerance in watermelon plants, which was related to the EBR-induced increase in the fresh weight, chlorophyll content, and net photosynthetic rate (Pn) and decrease in the content of hydrogen peroxide (H2O2), malondialdehyde (MDA), and Zn in watermelon leaves. Through RNA deep sequencing (RNA-seq), 350 different expressed genes (DEG) were found to be involved in the response to Zn stress after EBR treatment, including 175 up-regulated DEGs and 175 down-regulated DEGs. The up-regulated DEGs were significantly enriched in 'phenylpropanoid biosynthesis' pathway (map00940) using KEGG enrichment analysis. The gene expression levels of PAL, 4CL, CCR, and CCoAOMT, key genes involved in phenylpropanoid pathway, were significantly induced after EBR treatment. In addition, compared with Zn stress alone, EBR treatment significantly promoted the activities of PAL, 4CL, and POD by 30.90%, 20.69%, and 47.28%, respectively, and increased the content of total phenolic compounds, total flavonoids, and lignin by 23.02%, 40.37%, and 29.26%, respectively. The present research indicates that EBR plays an active role in strengthening Zn tolerance, thus providing new insights into the mechanism of BRs enhancing heavy metal tolerance.
Collapse
Affiliation(s)
- Xuefang Liu
- College of Resources and Environmental Engineering, Yangzhou Polytechnic College, Yangzhou, China
- Jiangsu Safety & Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou, China
- CONTACT Xuefang Liu College of Resources and Environmental Engineering, Yangzhou Polytechnic College, Yangzhou225009, China
| | - Quanwen Zhu
- College of Resources and Environmental Engineering, Yangzhou Polytechnic College, Yangzhou, China
| | - Wentao Liu
- Jiangsu Safety & Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou, China
| | - Jun Zhang
- College of Resources and Environmental Engineering, Yangzhou Polytechnic College, Yangzhou, China
- Jiangsu Safety & Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou, China
| |
Collapse
|
20
|
Rai PK, Song H, Kim KH. Nanoparticles modulate heavy-metal and arsenic stress in food crops: Hormesis for food security/safety and public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166064. [PMID: 37544460 DOI: 10.1016/j.scitotenv.2023.166064] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Heavy metal and arsenic (HM-As) contamination at the soil-food crop interface is a threat to food security/safety and public health worldwide. The potential ecotoxicological effects of HM-As on food crops can perturb normal physiological, biochemical, and molecular processes. To protect food safety and human health, nanoparticles (NPs) can be applied to seed priming and soil amendment, as 'manifestation of hormesis' to modulate HM-As-induced oxidative stress in edible crops. This review provides a comprehensive overview of NPs-mediated alleviation of HM-As stress in food crops and resulting hormetic effects. The underlying biochemical and molecular mechanisms in the amelioration of HM-As-induced oxidative stress is delineated by covering the various aspects of the interaction of NPs (e.g., magnetic particles, silicon, metal oxides, selenium, and carbon nanotubes) with plant microbes, phytohormone, signaling molecules, and plant-growth bioregulators (e.g., salicylic acid and melatonin). With biotechnical advances (such as clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and omics), the efficacy of NPs and associated hormesis has been augmented to produce "pollution-safe designer cultivars" in HM-As-stressed agriculture systems. Future research into nanoscale technological innovations should thus be directed toward achieving food security, sustainable development goals, and human well-being, with the aid of HM-As stress resilient food crops.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
21
|
Zhang J, Yang T, Zhang C, Zhang T, Pu L, Zhao W. Effects of exogenous zinc on the physiological characteristics and enzyme activities of Passiflora edulis Sims f . edulis seedlings. PeerJ 2023; 11:e16280. [PMID: 37868066 PMCID: PMC10590096 DOI: 10.7717/peerj.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Passionflower (Passiflora edulis Sims) is widely distributed in tropical and subtropical areas for edible, medicinal and skin care product processing, and the market demand is large. Zinc (Zn) is a necessary trace element for plant growth and development. In many countries, the content of Zn in soil is low and/or bioavailability is low. The exogenous application of Zn has become a common agronomic measure in agriculture. However, the effect of Zn on the physiological characteristics and enzyme activity of passionflower seedlings is not clear. In this study, pot experiments were conducted to analyse the effects of different concentrations of Zn (0, 200, 400, 800 mg kg-1) on the plant growth, photosynthetic pigments, osmotic regulators, membrane system and antioxidant enzyme system of purple passionflower (Passiflora edulis Sims f. edulis) seedlings, and Pearson correlation and principal component analyses were performed. The results showed that (1) the 200 mg kg-1 Zn treatment increased the contents of chlorophyll a (37.65%), chlorophyll b (41.22%), chlorophyll a+b (38.59%) and carotenoids (29.74%). The value of chlorophyll a/b changed little and had no effect on leaf growth. (2) The contents of proline (Pro) and malondialdehyde (MDA) in P. edulis Sims f. edulis seedlings treated with 400 mg kg-1 Zn increased significantly by 116.84% and 42.69%, respectively. The activities of catalase (CAT) and peroxidase (POD) increased by 16.82% and 18.70%, respectively. Superoxide dismutase (SOD), leaf area (LA), leaf perimeter (LP) and leaf width (LW) decreased significantly by 47.20%, 19.75%, 8.32% and 11.97%, respectively. (3) 800 mg kg-1 Zn significantly increased the contents of Pro (202.56%) and MDA (26.7%) and the activities of CAT (16.00%) and POD (67.00%), while the soluble sugar (SS), SOD, LA, LP and LW decreased significantly by 36.67%, 32.86%, 23.36%, 8.32% and 11.18%, respectively. (4) There was a significant positive correlation between Pro and photosynthetic pigments and between SOD and leaf growth and a significant negative correlation between POD and SS and between SOD and MDA. (5) A low concentration (200 mg kg-1) of Zn promoted the growth of P. edulis Sims f. edulis seedlings and allowed stress caused by high Zn concentrations to be tolerated. The results of this study can provide a reference for the application of Zn fertilizer to P. edulis Sims f. edulis.
Collapse
Affiliation(s)
- Jianli Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Asia, China
| | - Tao Yang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Asia, China
| | - Chen Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Asia, China
| | - Ting Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Asia, China
| | - Lihua Pu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Asia, China
| | - Weiquan Zhao
- Institute of Mountain Resources of Guizhou Province, Guizhou Academy of Sciences, Guiyang, Asia, China
| |
Collapse
|
22
|
Lian H, Li R, Ma G, Zhao Z, Zhang T, Li M. The effect of Trichoderma harzianum agents on physiological-biochemical characteristics of cucumber and the control effect against Fusarium wilt. Sci Rep 2023; 13:17606. [PMID: 37848461 PMCID: PMC10582011 DOI: 10.1038/s41598-023-44296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
At the seedling and adult plant phases, pot experiments were carried out to enhance the physiological-biochemical characteristics of cucumber, guarantee its high yield, and ensure its cultivation of quality. Trichoderma harzianum conidia agents at 104, 105, 106, and 107 cfu g-1 were applied in accordance with the application of Fusarium oxysporum powder at concentrations of 104 cfu/g on the protective enzyme activity, physiological and biochemical indices, seedling quality, resilience to Fusarium wilt, quality, and yield traits. Fusarium oxysporum powder at 104 cfu g-1 was used to treat CK1, while Fusarium oxysporum powder and T. harzianum conidia agents were not used to treat CK2. The results show that different T. harzianum agents improved the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD) in cucumber seedlings, improved chlorophyll content, root activity, root-shoot ratio, and seedling strength index, and decreased malondialdehyde (MAD) content (P < 0.05). T3, a combination of 104 cfu g-1 Fusarium oxysporum powder and 106 cfu g-1 T. harzianum conidia agents, had the greatest promoting effect. The effects of different T. harzianum conidia agents and their application amounts on the control of cucumber Fusarium wilt were explored. T3 had the best promotion impact, and the control effect of cucumber Fusarium wilt at seedling stage and adult stage reached 83.98% and 70.08%, respectively. The quality index and yield formation of cucumber were also increased by several T. harzianum agents, with T3 having the strongest promotion effects. In comparison to CK1, the soluble sugar, Vc, soluble protein, and soluble solid contents of T3 cucumber fruit were 120.75%, 39.14%, 42.26%, and 11.64% higher (P < 0.05), respectively. In comparison to CK2, the soluble sugar, Vc, soluble protein, and soluble solid contents of T3 cucumber fruit were 66.06%, 24.28%, 36.15%, and 7.95% higher (P < 0.05), respectively. In comparison to CK1 and CK2, the yields of T3 cucumber were 50.19% and 35.86% higher, respectively. As a result, T. harzianum agents can enhance the physiological and biochemical traits of cucumber seedlings, raise the quality of cucumber seedlings, have a controlling impact on Fusarium wilt, and increase the yield and quality of cucumber fruit. The greatest effectiveness of T3 comes from its use. In this study, Trichoderma harzianum conidia agents demonstrated good impacts on cucumber yield formation and plant disease prevention, demonstrating their high potential as biocontrol agents.
Collapse
Affiliation(s)
- Hua Lian
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Runzhe Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Guangshu Ma
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
| | - Zhenghan Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Ting Zhang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Mei Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Key Laboratory of Intergrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| |
Collapse
|
23
|
Tryfon P, Sperdouli I, Adamakis IDS, Mourdikoudis S, Dendrinou-Samara C, Moustakas M. Modification of Tomato Photosystem II Photochemistry with Engineered Zinc Oxide Nanorods. PLANTS (BASEL, SWITZERLAND) 2023; 12:3502. [PMID: 37836242 PMCID: PMC10575289 DOI: 10.3390/plants12193502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
We recently proposed the use of engineered irregularly shaped zinc oxide nanoparticles (ZnO NPs) coated with oleylamine (OAm), as photosynthetic biostimulants, to enhance crop yield. In the current research, we tested newly engineered rod-shaped ZnO nanorods (NRs) coated with oleylamine (ZnO@OAm NRs) regarding their in vivo behavior related to photosynthetic function and reactive oxygen species (ROS) generation in tomato (Lycopersicon esculentum Mill.) plants. ZnO@OAm NRs were produced via solvothermal synthesis. Their physicochemical assessment revealed a crystallite size of 15 nm, an organic coating of 8.7% w/w, a hydrodynamic diameter of 122 nm, and a ζ-potential of -4.8 mV. The chlorophyll content of tomato leaflets after a foliar spray with 15 mg L-1 ZnO@OAm NRs presented a hormetic response, with an increased content 30 min after the spray, which dropped to control levels 90 min after the spray. Simultaneously, 90 min after the spray, the efficiency of the oxygen-evolving complex (OEC) decreased significantly (p < 0.05) compared to control values, with a concomitant increase in ROS generation, a decrease in the maximum efficiency of PSII photochemistry (Fv/Fm), a decrease in the electron transport rate (ETR), and a decrease in the effective quantum yield of PSII photochemistry (ΦPSII), indicating reduced PSII efficiency. The decreased ETR and ΦPSII were due to the reduced efficiency of PSII reaction centers (Fv'/Fm'). There were no alterations in the excess excitation energy at PSII or the fraction of open PSII reaction centers (qp). We discovered that rod-shaped ZnO@OAm NRs reduced PSII photochemistry, in contrast to irregularly shaped ZnO@OAm NPs, which enhanced PSII efficiency. Thus, the shape and organic coating of the nanoparticles play a critical role in the mechanism of their action and their impact on crop yield when they are used in agriculture.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece;
| | | | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
24
|
Jiang Y, Wei C, Jiao Q, Li G, Alyemeni MN, Ahmad P, Shah T, Fahad S, Zhang J, Zhao Y, Liu F, Liu S, Liu H. Interactive effect of silicon and zinc on cadmium toxicity alleviation in wheat plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131933. [PMID: 37421854 DOI: 10.1016/j.jhazmat.2023.131933] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Silicon (Si) and Zinc (Zn) have been frequently used to alleviate cadmium (Cd) toxicity, which are feasible strategies for crop safety production. However, the mechanisms underlying the interaction of Si and Zn on alleviating Cd toxicity are not well understood. A hydroponic system was adopted to evaluate morphological, physiological-biochemical responses, and related gene expression of wheat seedlings to Si (1 mM) and Zn (50 µM) addition under Cd stress (10 µM). Cd induced obvious inhibition of wheat growth by disturbing photosynthesis and chlorophyll synthesis, provoking generation of reactive oxygen species (ROS) and interfering ion homeostasis. Cd concentration was decreased by 68.3%, 43.1% and 73.3% in shoot, and 78.9%, 44.1% and 85.8% in root by Si, Zn, and combination of Si with Zn, relative to Cd only, respectively. Si and Zn effectively ameliorated Cd toxicity and enhanced wheat growth; but single Si or combination of Si with Zn had more efficient ability on alleviating Cd stress than only Zn, indicating Si and Zn have synergistic effect on Cd toxicity; Interaction of them alleviated oxidative stress by reducing ROS content, improving AsA-GSH cycle and antioxidant enzymes activities, and regulating Cd into vacuole through PC-Cd complexes transported by HMA3 transporter. Our results suggest that fertilizers including Si and Zn should be made to reduce Cd content, which will beneficial for food production and safety.
Collapse
Affiliation(s)
- Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chang Wei
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301 Jammu and Kashmir, India
| | - Tariq Shah
- Plant Science Research Unit, United States Department for Agriculture (USDA), ARS, Raleigh, NC, USA
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ying Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
25
|
He X, Liu S, Huang X, Yu F, Li Y, Li F, Liu K. Effects of sulfate on the photosynthetic physiology characteristics of Hydrocotyle vulgaris under zinc stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:724-735. [PMID: 37544656 DOI: 10.1071/fp23054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
The effects of sulfate on the zinc (Zn) bioaccumulation characteristics and photophysiological mechanisms of the ornamental plant Hydrocotyle vulgaris were explored using a hydroponic culture under three Zn concentrations (300, 500 and 700mgL-1 ) with (400μmolL-1 ) or without the addition of sulfate. Results showed that: (1) tissue Zn concentrations and total Zn contents increased with increasing hydroponic culture Zn concentrations; and sulfate addition decreased Zn uptake and translocation from roots to shoots; (2) Zn exposure decreased photosynthetic pigment synthesis, while sulfate changed this phenomenon, especially for chlorophyll a under 300mgL-1 Zn treatment; (3) Zn exposure decreased photosynthetic function, while sulfate had positive effects, especially on the photosynthetic rate (Pn ) and stomatal conductance (Gs ); and (4) chlorophyll fluorescence parameters related to light energy capture, transfer and assimilation were generally downregulated under Zn stress, while sulfate had a positive effect on these processes. Furthermore, compared to photosynthetic pigment synthesis and photosynthesis, chlorophyll fluorescence was more responsive, especially under 300mgL-1 Zn treatment with sulfate addition. In general, Zn stress affected photophysiological processes at different levels, while sulfate decreased Zn uptake, translocation, and bioaccumulation and showed a positive function in alleviating Zn stress, ultimately resulting in plant growth promotion. All of these results provide a theoretical reference for combining H. vulgaris with sulfate application in the bioremediation of Zn-contaminated environments at the photophysiological level.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Shiling Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Xiaoqian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Furong Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| |
Collapse
|
26
|
Liu H, Li J, Zhou D, Cai W, Rehman M, Feng Y, Kong Y, Liu X, Fahad S, Deng G. Impact of dormancy periods on some physiological and biochemical indices of potato tubers. PeerJ 2023; 11:e15923. [PMID: 37663286 PMCID: PMC10470445 DOI: 10.7717/peerj.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Background Storage of potato tubers is an essential stage of the supply chain, from farm to consumer, to efficiently match supply and demand. However, the quality and yield of potatoes are influenced by physiological changes during storage. Methods This study tested the physiological and biochemical indices in three potato varieties (YunSu 108, YunSu 304 and YunSu 306) during their dormancy periods. Results Three potato varieties with different dormancy periods were used to follow changes in starch, protein and several enzymes during storage. The starch and sugar content of the long-dormant variety (YunSu 108, LDV) were stable, whereas those of the short-dormant variety (YunSu 306, SDV) were variable. Starch synthase activity in the three varieties was initially high, then decreased; the starch content of LDV was relatively stable, that of the medium-dormant variety (YunSu 304, MDV) increased with storage time and peaked at sprouting, and that of SDV was low but variable. The sucrose synthase activity of LDV was significantly higher (p < 0.05) than MDV and SDV in the middle storage period. Two spikes were observed in the invertase activity of SDV, whereas those of MDV and LDV were stable. The reducing sugar content of LDV increased significantly before sprouting, that of MDV slowly decreased and that of SDV dropped sharply. During the whole storage period, pectinase activity in LDV did not change significantly, whereas pectinase in MDV and SDV decreased. The cellulase and protein contents initially increased and then decreased in LDV, and steadily decreased in MDV and SDV. Conclusion The metabolic indices related to starch and sugar in the LDV were relatively stable during storage, whereas those of the SDV varied greatly. SDV showed increased sucrose, reducing sugars and cellulose; LDV PCA plots clustered in the positive quadrant of PC1 and the negative quadrant of PC2, with increased protein, sucrose synthase and starch; MDV had increased soluble starch synthase.
Collapse
Affiliation(s)
- Hao Liu
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Junhua Li
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Duanrong Zhou
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Wanhua Cai
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Youhong Feng
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Yunxin Kong
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Xiaopeng Liu
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
27
|
Afzal S, Bakhat HF, Shahid M, Shah GM, Abbas G. Assessment of lithium bioaccumulation by quinoa (Chenopodium quinoa willd.) and its implication for human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6517-6532. [PMID: 37330432 DOI: 10.1007/s10653-023-01659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Lithium (Li) is the lightest alkali metal and 27th most abundant element in the earth crust. In traces, the element has medicinal value for various disorders in humans, however, its higher concentrations may lead to treatment-resistant depression and altered thyroid functioning. Quinoa (Chenopodium quinoa) has gained popularity owing to its halophytic nature and its potential use as an alternative to the traditional staple foods. However, quinoa response to Li-salt in terms of growth, Li accumulation potential and health risks associated with consumption of the quinoa seeds grown on Li-contaminated soils has not been explored yet. During this study, quinoa was exposed to various concentrations of Li (0, 2, 4, 8 and 16 mM) at germination as well as seedling stages. The results showed that seed germination was the highest (64% higher than control) at Li concentration of 8 mM. Similarly, at 8 mM doses of Li shoot length, shoot dry weight, root length, root dry weight and grain yield were increased by 130%, 300%, 244%, 858% and 185% than control. It was also revealed that Li increased the accumulation of calcium and sodium in quinoa shoots. Carotenoids contents were increased, but chlorophyll contents remained un-changed under Li application. The activities of antioxidants viz. Peroxide dismutase, catalase and super oxide dismutase were also increased with an increase in the levels of Li in the soil. Estimated daily intake and hazard quotient of Li in quinoa were less than the threshold level. It was concluded that Li concentration of 8 mM is useful for quinoa growth and it can be successfully grown on Li contaminated soils without causing any human health risks.
Collapse
Affiliation(s)
- Saira Afzal
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Centre for Climate Research and Development, COMSATS University Islamabad, Islamabad, 45550, Pakistan.
| |
Collapse
|
28
|
Ali M, Sharif M, Ahmad W, Ahmed I. Assessing Potent Zinc Solubilizing Bacteria to Augment Wheat Yield and Zinc Biofortification. GESUNDE PFLANZEN 2023; 75:1061-1073. [DOI: 10.1007/s10343-022-00757-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/26/2022] [Indexed: 02/07/2024]
|
29
|
Yu X, Yang L, Fan C, Hu J, Zheng Y, Wang Z, Liu Y, Xiao X, Yang L, Lei T, Jiang M, Jiang B, Pan Y, Li X, Gao S, Zhou Y. Abscisic acid (ABA) alleviates cadmium toxicity by enhancing the adsorption of cadmium to root cell walls and inducing antioxidant defense system of Cosmos bipinnatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115101. [PMID: 37290296 DOI: 10.1016/j.ecoenv.2023.115101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/08/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) pollution is a global problem affecting soil ecology and plant growth. Abscisic acid (ABA) acts as a growth and stress hormone, regulates cell wall synthesis, and plays an important role in plant responses to stress. There are few studies on the mechanisms behind abscisic acid alleviation of cadmium stress in Cosmos bipinnatus, especially in regards to regulation of the root cell wall. This study examined the effects of different concentrations of abscisic acid at different concentrations of cadmium stress. Through adding 5 μmol/L and 30 μmol/L cadmium, followed by spraying 10 μmol/L and 40 μmol/L ABA in a hydroponic experiment, it was found that under two concentrations of cadmium stress, low concentration of ABA improved root cell wall polysaccharide, Cd, and uronic acid content. Especially in pectin, after the application of low concentration ABA, the cadmium concentration was significantly increased by 1.5 times and 1.2 times compared with the Cd concentration under Cd5 and Cd30 treatment alone, respectively. Fourier-Transform Infrared spectroscopy (FTIR) demonstrated that cell wall functional groups such as -OH and -COOH were increased with exposure to ABA. Additionally, the exogenous ABA also increased expression of three kinds of antioxidant enzymes and plant antioxidants. The results of this study suggest that ABA could reduce Cd stress by increasing Cd accumulation, promoting Cd adsorption on the root cell wall, and activating protective mechanisms. This result could help promote application of C. bipinnatus for phytostabilization of cadmium-contaminated soil.
Collapse
Affiliation(s)
- Xiaofang Yu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Liu Yang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chunyu Fan
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiani Hu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yunhao Zheng
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhiwen Wang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yujia Liu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xue Xiao
- Triticeae research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lijuan Yang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ting Lei
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingyan Jiang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Beibei Jiang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanzhi Pan
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xi Li
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Suping Gao
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yonghong Zhou
- Triticeae research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
30
|
Sperdouli I, Ouzounidou G, Moustakas M. Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress. Int J Mol Sci 2023; 24:ijms24119573. [PMID: 37298524 DOI: 10.3390/ijms24119573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Since drought stress is one of the key risks for the future of agriculture, exploring the molecular mechanisms of photosynthetic responses to water deficit stress is, therefore, fundamental. By using chlorophyll fluorescence imaging analysis, we evaluated the responses of photosystem II (PSII) photochemistry in young and mature leaves of Arabidopsis thaliana Col-0 (cv Columbia-0) at the onset of water deficit stress (OnWDS) and under mild water deficit stress (MiWDS) and moderate water deficit stress (MoWDS). Moreover, we tried to illuminate the underlying mechanisms in the differential response of PSII in young and mature leaves to water deficit stress in the model plant A. thaliana. Water deficit stress induced a hormetic dose response of PSII function in both leaf types. A U-shaped biphasic response curve of the effective quantum yield of PSII photochemistry (ΦPSII) in A. thaliana young and mature leaves was observed, with an inhibition at MiWDS that was followed by an increase in ΦPSII at MoWDS. Young leaves exhibited lower oxidative stress, evaluated by malondialdehyde (MDA), and higher levels of anthocyanin content compared to mature leaves under both MiWDS (+16%) and MoWDS (+20%). The higher ΦPSII of young leaves resulted in a decreased quantum yield of non-regulated energy loss in PSII (ΦNO), under both MiWDS (-13%) and MoWDS (-19%), compared to mature leaves. Since ΦNO represents singlet-excited oxygen (1O2) generation, this decrease resulted in lower excess excitation energy at PSII, in young leaves under both MiWDS (-10%) and MoWDS (-23%), compared to mature leaves. The hormetic response of PSII function in both young and mature leaves is suggested to be triggered, under MiWDS, by the intensified reactive oxygen species (ROS) generation, which is considered to be beneficial for activating stress defense responses. This stress defense response that was induced at MiWDS triggered an acclimation response in A. thaliana young leaves and provided tolerance to PSII when water deficit stress became more severe (MoWDS). We concluded that the hormesis responses of PSII in A. thaliana under water deficit stress are regulated by the leaf developmental stage that modulates anthocyanin accumulation in a stress-dependent dose.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, GR-57001 Thessaloniki, Greece
| | - Georgia Ouzounidou
- Institute of Food Technology, Hellenic Agricultural Organization-Dimitra, GR-14123 Lycovrissi, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
31
|
Rai PK, Sonne C, Kim KH. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162327. [PMID: 36813200 DOI: 10.1016/j.scitotenv.2023.162327] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The spread of heavy metal(loid)s at soil-food crop interfaces has become a threat to sustainable agricultural productivity, food security, and human health. The eco-toxic effects of heavy metals on food crops can be manifested through reactive oxygen species that have the potential to disturb seed germination, normal growth, photosynthesis, cellular metabolism, and homeostasis. This review provides a critical overview of stress tolerance mechanisms in food crops/hyperaccumulator plants against heavy metals and arsenic (HM-As). The HM-As antioxidative stress tolerance in food crops is associated with changes in metabolomics (physico-biochemical/lipidomics) and genomics (molecular level). Furthermore, HM-As stress tolerance can occur through plant-microbe, phytohormone, antioxidant, and signal molecule interactions. Information regarding the avoidance, tolerance, and stress resilience of HM-As should help pave the way to minimize food chain contamination, eco-toxicity, and health risks. Advanced biotechnological approaches (e.g., genome modification with CRISPR-Cas9 gene editing) in concert with traditional sustainable biological methods are useful options to develop 'pollution safe designer cultivars' with increased climate change resilience and public health risks mitigation. Further, the usage of HM-As tolerant hyperaccumulator biomass in biorefineries (e.g., environmental remediation, value added chemicals, and bioenergy) is advocated to realize the synergy between biotechnological research and socio-economic policy frameworks, which are inextricably linked with environmental sustainability. The biotechnological innovations, if directed toward 'cleaner climate smart phytotechnologies' and 'HM-As stress resilient food crops', should help open the new path to achieve sustainable development goals (SDGs) and a circular bioeconomy.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
32
|
Ali M, Ahmed I, Tariq H, Abbas S, Zia MH, Mumtaz A, Sharif M. Growth improvement of wheat ( Triticum aestivum) and zinc biofortification using potent zinc-solubilizing bacteria. FRONTIERS IN PLANT SCIENCE 2023; 14:1140454. [PMID: 37251763 PMCID: PMC10213544 DOI: 10.3389/fpls.2023.1140454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Zinc (Zn) is an indispensable element for proper plant growth. A sizeable proportion of the inorganic Zn that is added to soil undergoes a transformation into an insoluble form. Zinc-solubilizing bacteria (ZSB) have the potential to transform the insoluble Zn into plant-accessible forms and are thus promising alternatives for Zn supplementation. The current research was aimed at investigating the Zn solubilization potential of indigenous bacterial strains and to evaluate their impact on wheat growth and Zn biofortification. A number of experiments were conducted at the National Agriculture Research Center (NARC), Islamabad, during 2020-21. A total of 69 strains were assessed for their Zn-solubilizing ability against two insoluble Zn sources (ZnO and ZnCO3) using plate assay techniques. During the qualitative assay, the solubilization index and solubilization efficiency were measured. The qualitatively selected Zn-solubilizing bacterial strains were further tested quantitatively using broth culture for Zn and phosphorus (P) solubility. Tricalcium phosphate was used as insoluble source of P. The results showed that broth culture pH was negatively correlated with Zn solubilization, i.e., ZnO (r2 = 0.88) and ZnCO3 (r2 = 0.96). Ten novel promising strains, i.e., Pantoea sp. NCCP-525, Klebsiella sp. NCCP-607, Brevibacterium sp. NCCP-622, Klebsiella sp. NCCP-623, Acinetobacter sp. NCCP-644, Alcaligenes sp. NCCP-650, Citrobacter sp. NCCP-668, Exiguobacterium sp. NCCP-673, Raoultella sp. NCCP-675, and Acinetobacter sp. NCCP-680, were selected from the ecology of Pakistan for further experimentation on wheat crop based on plant growth-promoting rhizobacteria (PGPR) traits, i.e., solubilization of Zn and P in addition to being positive for nifH and acdS genes. Before evaluating the bacterial strains for plant growth potential, a control experiment was also conducted to determine the highest critical Zn level from ZnO to wheat growth using different Zn levels (0.1, 0.05, 0.01, 0.005, and 0.001% Zn) against two wheat varieties (Wadaan-17 and Zincol-16) in sand culture under glasshouse conditions. Zinc-free Hoagland nutrients solution was used to irrigate the wheat plants. As a result, 50 mg kg-1 of Zn from ZnO was identified as the highest critical level for wheat growth. Using the critical level (50 mg kg-1 of Zn), the selected ZSB strains were inoculated alone and in consortium to the seed of wheat, with and without the use of ZnO, in sterilized sand culture. The ZSB inoculation in consortium without ZnO resulted in improved shoot length (14%), shoot fresh weight (34%), and shoot dry weight (37%); with ZnO root length (116%), it saw root fresh weight (435%), root dry weight (435%), and Zn content in the shoot (1177%) as compared to the control. Wadaan-17 performed better on growth attributes, while Zincol-16 had 5% more shoot Zn concentration. The present study concluded that the selected bacterial strains show the potential to act as ZSB and are highly efficient bio-inoculants to combat Zn deficiency, and the inoculation of these strains in consortium performed better in terms of growth and Zn solubility for wheat as compared to individual inoculation. The study further concluded that 50 mg kg-1 Zn from ZnO had no negative impact on wheat growth; however, higher concentrations hampered wheat growth.
Collapse
Affiliation(s)
- Murad Ali
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan
- Cereal Crops Research Institute (CCRI), Pirsabak, Nowshera, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Hamza Tariq
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Saira Abbas
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Munir Hussain Zia
- Research and Development Department, Fauji Fertilizer Company (FFC) Limited, Rawalpindi, Pakistan
| | - Amer Mumtaz
- Food Sciences Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Sharif
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
33
|
Liu X, Zhu Q, Liu W, Zhang J. 24-Epibrassinolide confers zinc stress tolerance in watermelon seedlings through modulating antioxidative capacities and lignin accumulation. PeerJ 2023; 11:e15330. [PMID: 37187511 PMCID: PMC10178286 DOI: 10.7717/peerj.15330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Zinc (Zn) is an important element in plants, but over-accumulation of Zn is harmful. It is well-known that brassinolide (BR) plays a key role in the regulation of abiotic stress responses in plants. However, the effects of brassinolide on alleviating Zn phytotoxicity in watermelon (Citrullus lanatus L.) seedlings are not clear. The purpose of this study was to study the effect of 24-epibrassinolide (EBR, one of the bioactive BRs) on Zn tolerance of watermelon seedlings and its potential resistance mechanism. Exposure to excessive Zn significantly inhibited shoot and root fresh weight of watermelon, but this could be significantly alleviated by the optimum 0.05 μM EBR. Exogenous spraying EBR increased the pigments and alleviated oxidative damage caused by Zn through reducing Zn accumulation and the levels of reactive oxygen species (ROS) and malonaldehyde (MDA) and increasing the activities of antioxidant enzymes and contents of ascorbic acid (AsA) and glutathione (GSH). Importantly, the relative mRNA levels of antioxidant genesincluding Cu/Zn-superoxidedismutase (Cu-Zn SOD), catalase (CAT), ascorbic acid peroxidase (APX), and glutathione reductase (GR) were significantly induced after EBR treatment. In addition, EBR pre-treatment induced lignin accumulation under Zn stress, and the activity of phenylalanine ammonia-lyase (PAL) and 4-coumaric ligase (4CL), two key enzymes regulating lignin synthesis, also tended to be consistent. Collectively, the present research proves the beneficial effects of EBR in response to Zn stress through enhancing antioxidant defense and lignin accumulation and provides a new insight into the mechanism of BR-enhancing heavy metal tolerance.
Collapse
Affiliation(s)
- Xuefang Liu
- Yangzhou Polytechnic College, Yangzhou, China
- Jiangsu Safety&Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou, China
| | - Quanwen Zhu
- Yangzhou Polytechnic College, Yangzhou, China
| | - Wentao Liu
- Jiangsu Safety&Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou, China
| | - Jun Zhang
- Yangzhou Polytechnic College, Yangzhou, China
- Jiangsu Safety&Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou, China
| |
Collapse
|
34
|
Wang Y, Zhou Y, Guan Y, Zou Z, Qiu Z, Dai Z, Yi L, Zhou W, Li J. Effects of α-Fe 2O 3 nanoparticles and biochar on plant growth and fruit quality of muskmelon under cadmium stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01569-w. [PMID: 37071265 DOI: 10.1007/s10653-023-01569-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Cadmium pollution in farmland has become a global environmental problem, threatening ecological security and human health. Biochar is effective in remediation of soil pollution. However, high concentrations of biochar can inhibit plant growth, and low concentrations of biochar have limited mitigation effect on cadmium toxicity. Therefore, the combination of low-concentration biochar and other amendments is a promising approach to alleviate cadmium toxicity in plants and improve the safety of edible parts. In this study, muskmelon was selected as the research object, and different concentrations of α-Fe2O3 nanoparticles were used alone or combined with biochar to explore the effects of different treatments on muskmelon plants in cadmium-contaminated soil. The results showed that the combined application of 250 mg/kg α-Fe2O3 nanoparticles and biochar had a good effect on the repair of cadmium toxicity in muskmelon plants. Compared with cadmium treatment, its application increased plant height by 32.53%, cadmium transport factor from root to stem decreased by 32.95%, chlorophyll content of muskmelon plants increased by 14.27%, and cadmium content in muskmelon flesh decreased by 18.83%. Moreover, after plant harvest, soil available cadmium content in 250 mg/kg α-Fe2O3 nanoparticles and biochar combined treatment decreased by 31.18% compared with cadmium treatment. The results of this study provide an effective reference for the composite application of different exogenous amendments and a feasible idea for soil heavy metal remediation and mitigation of cadmium pollution in farmland.
Collapse
Affiliation(s)
- Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
| | - Ying Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Yan Guan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zhengming Qiu
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
| | - Licong Yi
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
| | - Wei Zhou
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
35
|
Mushtaq NU, Alghamdi KM, Saleem S, Tahir I, Bahieldin A, Henrissat B, Alghamdi MK, Rehman RU, Hakeem KR. Exogenous zinc mitigates salinity stress by stimulating proline metabolism in proso millet ( Panicum miliaceum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1053869. [PMID: 36968428 PMCID: PMC10036794 DOI: 10.3389/fpls.2023.1053869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Salinity is one of the most concerning ecological restrictions influencing plant growth, which poses a devastating threat to global agriculture. Surplus quantities of ROS generated under stress conditions have negative effects on plants' growth and survival by damaging cellular components, including nucleic acids, lipids, proteins and carbohydrates. However, low levels of ROS are also necessary because of their role as signalling molecules in various development-related pathways. Plants possess sophisticated antioxidant systems for scavenging as well as regulating ROS levels to protect cells from damage. Proline is one such crucial non-enzymatic osmolyte of antioxidant machinery that functions in the reduction of stress. There has been extensive research on improving the tolerance, effectiveness, and protection of plants against stress, and to date, various substances have been used to mitigate the adverse effects of salt. In the present study Zinc (Zn) was applied to elucidate its effect on proline metabolism and stress-responsive mechanisms in proso millet. The results of our study indicate the negative impact on growth and development with increasing treatments of NaCl. However, the low doses of exogenous Zn proved beneficial in mitigating the effects of NaCl by improving morphological and biochemical features. In salt-treated plants, the low doses of Zn (1 mg/L, 2 mg/L) rescued the negative impact of salt (150mM) as evidenced by increase in shoot length (SL) by 7.26% and 25.5%, root length (RL) by 21.84% and 39.07% and membrane stability index (MSI) by 132.57% and 151.58% respectively.The proline content improved at all concentrations with maximum increase of 66.65% at 2 mg/L Zn. Similarly, the low doses of Zn also rescued the salt induced stress at 200mM NaCl. The enzymes related to proline biosynthesis were also improved at lower doses of Zn. In salt treated plants (150mM), Zn (1 mg/L, 2 mg/L) increased the activity of P5CS by 19.344% and 21%. The P5CR and OAT activities were also improved with maximum increase of 21.66% and 21.84% at 2 mg/L Zn respectively. Similarly, the low doses of Zn also increased the activities of P5CS, P5CR and OAT at 200mM NaCl. Whereas P5CDH enzyme activity showed a decrease of 82.5% at 2mg/L Zn+150mM NaCl and 56.7% at 2mg/L Zn+200 mM NaCl. These results strongly imply the modulatory role of Zn in maintaining of proline pool during NaCl stress.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid M. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mohammed Khalid Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
36
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
37
|
Qin L, Sun X, Yu L, Wang J, Modabberi S, Wang M, Chen S. Ecological risk threshold for Pb in Chinese soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130418. [PMID: 36410246 DOI: 10.1016/j.jhazmat.2022.130418] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Derivation of ecological risk threshold (the threshold concentration value that protect a certain proportion of species within the acceptable hazard level) of lead (Pb) is a yardstick and plays a key role in formulating soil protection policies, while the research about deducing soil Pb ecological risk threshold is still limited. In this study, toxicological data of Pb based on 30 different test endpoints was collected from our experiment and literature, and applied into interspecific extrapolation by species sensitivity distribution (SSD) method to derive the hazard concentration for 5% of species (HC5, that can protect 95% of species), the prediction models according to different soil properties were established. The results showed that EC10 (the effective concentrations of Pb that inhibit 10% of endpoint bioactivity) ranged from 205.6 to 1596.3 mg kg1, and hormesis induced by Pb were up to 118%. Toxicity data were corrected by leaching and aging process before SSD curves fitting. HC5 was then derived and prediction model was developed, as LogHC5 = 0.134 pH + 0.315 LogOC + 0.324 LogCEC + 1.077. The prediction model was well verified in the field test, indicating that can correctly estimate Pb ecotoxicity thresholds in different soils. This study provides a scientific frame for deriving the ecological risk threshold of Pb and is of great significance for ecological species protection.
Collapse
Affiliation(s)
- Luyao Qin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences / Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiaoyi Sun
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences / Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Lei Yu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences / Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jing Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences / Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Soroush Modabberi
- School of Geology, University of Tehran, 16th Azar St., Enghelab Avenue, Tehran, Iran
| | - Meng Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences / Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Shibao Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences / Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
38
|
Singh VK, Singh R, Rajput VD, Singh VK. Halophytes for the sustainable remediation of heavy metal-contaminated sites: Recent developments and future perspectives. CHEMOSPHERE 2023; 313:137524. [PMID: 36509191 DOI: 10.1016/j.chemosphere.2022.137524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Increasing land degradation by high level of metal wastes is of prime concern for the global research communities. In this respect, halophytes having specific features like salt glands, exclusion of excess ions, heavy metals (HMs) compartmentalization, large pool of antioxidants, and associations with metal-tolerant microbes are of great promise in the sustainable clean-up of contaminated sites. However, sustainable clean-up of HMs by a particular halophyte plant species is governed considerably by physico-chemical characteristics of soil and associated microbial communities. The present review has shed light on the superiority of halophytes over non-halophytes, mechanisms of metal-remediation, recent developments and future perspectives pertaining to the utilization of halophytes in management of HM-contaminated sites with the aid of bibliometric analysis. The results revealed that the research field is receiving considerable attention in the last 5-10 years by publishing ∼50-90% documents with an annual growth rate of 15.41% and citations per document of 29.72. Asian (viz., China, India, and Pakistan) and European (viz., Spain, Portugal, Belgium, Argentina) countries have been emerged as the major regions conducting and publishing extensive research on this topic. The investigations conducted both under in vitro and field conditions have reflected the inherent potential of halophyte as sustainable research tool for successfully restoring the HM-contaminated sites. The findings revealed that the microbial association with halophytes under different challenging conditions is a win-win approach for metal remediation. Therefore, exploration of new halophyte species and associated microorganisms (endophytic and rhizospheric) from different geographical locations, and identification of genes conferring tolerance and phytoremediation of metal contaminants would further advance the intervention of halophytes for sustainable ecological restoration.
Collapse
Affiliation(s)
- Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, (Affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya), Ayodhya, 224123, India.
| | - Rishikesh Singh
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia.
| | - Vivek Kumar Singh
- University Department of Botany, Tilka Manjhi Bhagalpur University, Bhagalpur, 812007, Bihar, India.
| |
Collapse
|
39
|
Repkina N, Nilova I, Kaznina N. Effect of Zinc Excess in Substrate on Physiological Responses of Sinapis alba L. PLANTS (BASEL, SWITZERLAND) 2023; 12:211. [PMID: 36616339 PMCID: PMC9823938 DOI: 10.3390/plants12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Zinc (Zn) is a fundamental micronutrient for plants' metabolism, but in high concentrations, it is toxic. In this study, we investigated the physiological response of white mustard (Sinapis alba L. cv. Belgia) plants to the Zn excess concentrations (50, 100, and 150 mg kg-1) in the substrate. The results showed that sand Zn concentration of 50 mg kg-1 did not affect the physiological parameters of plants, despite to the high Zn accumulation in shoots. The growth, biomass accumulation, photosynthesis rate, and pigment amount were inhibited at Zn concentrations of 100 and 150 mg kg-1 in substrate. A slight increase in malondialdehyde (MDA) was also observed at zinc concentrations (100 and 150 mg kg-1) without changes in membrane permeability, which is partly connectedtoan increase in the proline content. The results suggested that white mustard tolerates Zn excess impact. S. alba is able to grow on Zn-contaminated substrates along with significant Zn accumulation in shoots, which supports its high potential for phytoremediation of Zn-polluted agricultural soils. It is also possible to propose the following recycling of white mustard plants for Zn fortification feedstuff.
Collapse
|
40
|
Gao F, Zhang X, Zhang J, Li J, Niu T, Tang C, Wang C, Xie J. Zinc oxide nanoparticles improve lettuce ( Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. FRONTIERS IN PLANT SCIENCE 2022; 13:1015745. [PMID: 36388475 PMCID: PMC9647129 DOI: 10.3389/fpls.2022.1015745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) contamination is a serious global concern that warrants constant attention. Therefore, a hydroponic study was conducted to evaluate the effect of different concentrations (0, 1, 2.5, 5, 10, 15 mg/l) of zinc oxide nanoparticles (ZnONPs) on the Cd content in lettuce (Lactuca sativa L.) under Cd stress conditions. The results showed that Cd stress triggered a decrease in plant biomass, an increase in relative electrolyte conductivity (REC), a decrease in root activity, accumulation of reactive oxygen species (ROS) accumulation, and nutrient imbalance. The application of ZnONPs reduced the toxicity symptoms of lettuce seedlings under Cd stress, with the most pronounced effect being observed 2.5 mg/l. ZnONPs promoted the growth of lettuce under Cd stress, mainly in terms of increase in biomass, chlorophyll content, antioxidant enzyme activity, and proline content, as well as reduction in Cd content, malondialdehyde, and reactive oxygen species (ROS) in plant tissues. ZnONPs also enhanced the uptake of ions associated with photosynthesis, such as iron, manganese, magnesium, and zinc. In addition, ZnONPs increase the amount of lignin in the roots, which blocks or reduces the entry of Cd into plant tissues.
Collapse
Affiliation(s)
- Feng Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Chaonan Tang
- Institute of Vegetables, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
41
|
Moustakas M, Dobrikova A, Sperdouli I, Hanć A, Adamakis IDS, Moustaka J, Apostolova E. A Hormetic Spatiotemporal Photosystem II Response Mechanism of Salvia to Excess Zinc Exposure. Int J Mol Sci 2022; 23:11232. [PMID: 36232535 PMCID: PMC9569477 DOI: 10.3390/ijms231911232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thermi, Greece
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
42
|
Dobrikova A, Apostolova E, Adamakis IDS, Hanć A, Sperdouli I, Moustakas M. Combined Impact of Excess Zinc and Cadmium on Elemental Uptake, Leaf Anatomy and Pigments, Antioxidant Capacity, and Function of Photosynthetic Apparatus in Clary Sage ( Salvia sclarea L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182407. [PMID: 36145808 PMCID: PMC9500708 DOI: 10.3390/plants11182407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 05/12/2023]
Abstract
Clary sage (Salvia sclarea L.) is a medicinal plant that has the potential to be used for phytoextraction of zinc (Zn) and cadmium (Cd) from contaminated soils by accumulating these metals in its tissues. Additionally, it has been found to be more tolerant to excess Zn than to Cd stress alone; however, the interactive effects of the combined treatment with Zn and Cd on this medicinal herb, and the protective strategies of Zn to alleviate Cd toxicity have not yet been established in detail. In this study, clary sage plants grown hydroponically were simultaneously exposed to Zn (900 µM) and Cd (100 μM) for 8 days to obtain more detailed information about the plant responses and the role of excess Zn in mitigating Cd toxicity symptoms. The leaf anatomy, photosynthetic pigments, total phenolic and anthocyanin contents, antioxidant capacity (by DPPH and FRAP analyses), and the uptake and distribution of essential elements were investigated. The results showed that co-exposure to Zn and Cd leads to an increased leaf content of Fe and Mg compared to the control, and to increased leaf Ca, Mn, and Cu contents compared to plants treated with Cd only. This is most likely involved in the defense mechanisms of excess Zn against Cd toxicity to protect the chlorophyll content and the functions of both photosystems and the oxygen-evolving complex. The data also revealed that the leaves of clary sage plants subjected to the combined treatment have an increased antioxidant capacity attributed to the higher content of polyphenolic compounds. Furthermore, light microscopy indicated more alterations in the leaf morphology after Cd-only treatment than after the combined treatment. The present study shows that excess Zn could mitigate Cd toxicity in clary sage plants.
Collapse
Affiliation(s)
- Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter, Thermi, 57001 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
43
|
Zhao S, Qin L, Wang L, Sun X, Yu L, Wang M, Chen S. Ecological risk thresholds for Zn in Chinese soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155182. [PMID: 35417729 DOI: 10.1016/j.scitotenv.2022.155182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The environmental risk threshold of a pollutant is a yardstick to measure soil environmental quality. The derivation of ecological risk thresholds of the heavy metal zinc (Zn) in soil environments based on up-to-date ecological risk assessments plays an important role in soil protection policy. According to regional soil classification, different representative soils with various degrees of acidity and alkalinity were selected, and a data set comprising ecotoxicities of Zn to 21 different test endpoints (plants, soil fauna, microorganisms, etc.) found in representative farmland soils of China was compiled based on new and published data to determine toxicological limits of Zn effects on endpoints. These limits were derived from fitted dose-response model parameters and indicated by EC10 values (the effective concentrations of Zn that inhibit 10% of endpoint bioactivity and also represents the toxicity threshold of Zn in this study) ranging from 36 mg·kg-1 to 682 mg·kg-1. The hormesis effect appeared in the dose-response curve of Zn, for example, the relative Chinese cabbage growth reached more than 120% at most. Zn concentrations added in toxicity tests were also corrected for aging and leaching effects in order to more accurately reflect field conditions. The hazardous concentrations for 5% of the species affected (HC5) were derived by the species sensitivity distribution (SSD) approach for four major types of Chinese soils: acidic (38 mg·kg-1), neutral (106 mg·kg-1), alkaline (217 mg·kg-1), and alkaline calcareous soils (155 mg·kg-1). Prediction models of ecological risk thresholds for Zn based on soil properties were generated, such as logHC5 = 0.564 + 0.218pH + 0.097OC (R2 = 0.790,p < 0.001). The predicted models based on lab test data were verified in the field, and the measured field data fell within two-fold of the prediction intervals. This work provides a scientific framework for developing soil-specific guidance on Zn toxicity thresholds.
Collapse
Affiliation(s)
- Shuwen Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Luyao Qin
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lifu Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoyi Sun
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lei Yu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
44
|
Liao J, Li N, Yang Y, Yang J, Tian Y, Luo Z, Jiang M. Tolerance and Heavy Metal Accumulation Characteristics of Sasa argenteostriata (Regel) E.G. Camus under Zinc Single Stress and Combined Lead–Zinc Stress. TOXICS 2022; 10:toxics10080450. [PMID: 36006129 PMCID: PMC9415762 DOI: 10.3390/toxics10080450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023]
Abstract
Sasa argenteostriata (Regel) E.G. Camus is a gramineous plant with the potential for phytoremediation. In this study, we aimed to determine its tolerance to zinc stress and combined lead–zinc stress and the effect of zinc on its absorption and accumulation characteristics of lead. The results showed that S. argenteostriata had good tolerance to zinc stress, and S. argenteostriata was not significantly damaged when the zinc stress concentration was 600 mg/L. Under both zinc stress and combined lead–zinc stress, the root was the main organ that accumulated heavy metals in S. argenteostriata. The presence of zinc promoted the absorption of lead by the root of S. argenteostriata, and the lead content in the root under PZ1, PZ2, PZ3 and PZ4 treatments was 2.15, 4.31, 4.47 and 6.01 times that of PZ0 on the 20 days. In the combined lead–zinc stress treatments, the toxicity of heavy metals to S. argenteostriata was mainly caused by lead. Under high concentrations of combined lead–zinc stress (PZ4), the proportion of zinc in the leaf of S. argenteostriata on the 20 days increased, which was used as a tolerance strategy to alleviate the toxicity of lead.
Collapse
|
45
|
Agathokleous E, Moore MN, Calabrese EJ. Environmental hormesis: A tribute to Anthony Stebbing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154996. [PMID: 35417830 DOI: 10.1016/j.scitotenv.2022.154996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Michael N Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, UK; Plymouth Marine Laboratory, Plymouth, Devon, UK; School of Biological & Marine Sciences, University of Plymouth, Plymouth, UK
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
46
|
Ahmed HGMD, Zeng Y, Raza H, Muhammad D, Iqbal M, Uzair M, Khan MA, Iqbal R, EL Sabagh A. Characterization of wheat ( Triticum aestivum L.) accessions using morpho-physiological traits under varying levels of salinity stress at seedling stage. FRONTIERS IN PLANT SCIENCE 2022; 13:953670. [PMID: 35958197 PMCID: PMC9358580 DOI: 10.3389/fpls.2022.953670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 05/24/2023]
Abstract
Abiotic stresses are the major stressors affecting wheat (Triticum aestivum L.) production worldwide. The world population is increasing continuously. It is very difficult to feed the population because one-third world's population consumes wheat as a staple food. Among all abiotic stresses, salinity is one that led to a drastic reduction in wheat crop fitness and productivity. Thus, understanding the effects of salinity stress becomes indispensable for wheat improvement programs which have depended mainly on the genetic variations present in the wheat genome through conventional breeding. Therefore, an experiment was conducted using a complete randomized design with four replications, to determine the selection criteria for salinity-tolerant germplasm based on morphophysiological traits at the seedling stage. Three levels of salt solutions, i.e., 4, 8, and 12 dSm-1 were applied and the performance of different genotypes under these three salinities levels was observed. Results depicted that leaf water content and relative water content were correlated with each other. Notably, selection based on these traits increased the performance of other characters. The genotypes G11, G13, G18, G22, and G36 performed best in the salinity stress. So, these genotypes are considered salinity-tolerant genotypes. The genotypes G4, G17, G19, G30, and G38 performed worst in the stress and these were salinity-susceptible genotypes. From the results of the principal component (PC) analysis, the first five PCs were indicated to have a substantial genetic variation from the total of 14 PCs. These PCs showed 75, 73, 65.324, and 65.162% of total variation under normal, salinity level 4, 8, and 12 dSm-1, respectively. Stomatal conductance, fresh shoot weight and fresh root weight, and dry shoot weight and dry root weight were not significant and negatively associated with all other traits studied, except for relative water and leaf water content. Overall, the results suggested that selection based on leaf water content and relative water content at the seedling stage would genetically improve salinity tolerance. Genotypes with good performance under salt stress conditions may be useful in future breeding programs and will be effective in developing high-yielding salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Humayun Raza
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dur Muhammad
- Department of Botany, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Iqbal
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Mueen Alam Khan
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ayman EL Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
47
|
Zhu Y, Dong Y, Zhu N, Jin H. Foliar application of biosynthetic nano-selenium alleviates the toxicity of Cd, Pb, and Hg in Brassica chinensis by inhibiting heavy metal adsorption and improving antioxidant system in plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113681. [PMID: 35653978 DOI: 10.1016/j.ecoenv.2022.113681] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Biosynthetic nano-selenium (bio-SeNP), as a plant growth regulator, has better bioavailability and lower toxicity than selenite and selenate. This study investigated the beneficial role of bio-SeNP in mitigating the adverse effects of multiple heavy metals (HMs, e.g., Cd, Pb, and Hg) on growth and yield of pak choi (Brassica chinensis) grown in slightly or heavily polluted (SP or HP) soil by regulating metabolic and antioxidant systems. The results revealed that foliar application of bio-SeNP (5, 10, 20 mg L-1 Se) at the 6-leaf stage greatly reduced the levels of Cd, Pb, and Hg in shoots and roots of pak choi. Application of 5 mg L-1 bio-SeNP significantly (p < 0.05) decreased the translocation factor (TF) of Cd, Pb, and Hg from root to shoot by 9.83%, 44.21%, and 46.99% for SP soil, 24.17%, 56.00%, and 39.36% for HP soil, respectively. Meanwhile, all bio-SeNP treatments led to a significant improvement in plants growth by enhancing the antioxidant defense system (e.g., AsA-GSH) and promoting chlorophyll synthesis as well as suppressed the lipid peroxidation products contents (MDA) in shoots. Moreover, the enhanced levels of mineral nutrient elements (e.g., Ca, Mg, Fe, or Zn) and organic selenium (e.g., selenocystine, Se-methylselenocysteine, and selenomethionine) in the edible shoots of bio-SeNP-treated pak choi plant under multiple HMs stress indicated the positive impacts of bio-SeNP on the improvement of shoot quality and nutritional values. Collectively, our results indicated that bio-SeNP play an important role in the management of multiple HMs-induced adverse effects on pak choi. Foliar application of bio-SeNP at appropriate concentration (≤ 5 mg L-1 Se) can be considered as a promising agronomic measure for safety leafy vegetable production in multiple HMs polluted soils when bio-SeNP application.
Collapse
Affiliation(s)
- Yanyun Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Yiwei Dong
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ning Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
48
|
Sperdouli I, Adamakis IDS, Dobrikova A, Apostolova E, Hanć A, Moustakas M. Excess Zinc Supply Reduces Cadmium Uptake and Mitigates Cadmium Toxicity Effects on Chloroplast Structure, Oxidative Stress, and Photosystem II Photochemical Efficiency in Salvia sclarea Plants. TOXICS 2022; 10:36. [PMID: 35051078 PMCID: PMC8778245 DOI: 10.3390/toxics10010036] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
Salvia sclarea L. is a Cd2+ tolerant medicinal herb with antifungal and antimicrobial properties cultivated for its pharmacological properties. However, accumulation of high Cd2+ content in its tissues increases the adverse health effects of Cd2+ in humans. Therefore, there is a serious demand to lower human Cd2+ intake. The purpose of our study was to evaluate the mitigative role of excess Zn2+ supply to Cd2+ uptake/translocation and toxicity in clary sage. Salvia plants were treated with excess Cd2+ (100 μM CdSO4) alone, and in combination with Zn2+ (900 μM ZnSO4), in modified Hoagland nutrient solution. The results demonstrate that S. sclarea plants exposed to Cd2+ toxicity accumulated a significant amount of Cd2+ in their tissues, with higher concentrations in roots than in leaves. Cadmium exposure enhanced total Zn2+ uptake but also decreased its translocation to leaves. The accumulated Cd2+ led to a substantial decrease in photosystem II (PSII) photochemistry and disrupted the chloroplast ultrastructure, which coincided with an increased lipid peroxidation. Zinc application decreased Cd2+ uptake and translocation to leaves, while it mitigated oxidative stress, restoring chloroplast ultrastructure. Excess Zn2+ ameliorated the adverse effects of Cd2+ on PSII photochemistry, increasing the fraction of energy used for photochemistry (ΦPSII) and restoring PSII redox state and maximum PSII efficiency (Fv/Fm), while decreasing excess excitation energy at PSII (EXC). We conclude that excess Zn2+ application eliminated the adverse effects of Cd2+ toxicity, reducing Cd2+ uptake and translocation and restoring chloroplast ultrastructure and PSII photochemical efficiency. Thus, excess Zn2+ application can be used as an important method for low Cd2+-accumulating crops, limiting Cd2+ entry into the food chain.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, 57001 Thessaloniki, Greece
| | | | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland;
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
49
|
Hamzah Saleem M, Usman K, Rizwan M, Al Jabri H, Alsafran M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:1033092. [PMID: 36275511 PMCID: PMC9586378 DOI: 10.3389/fpls.2022.1033092] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 05/13/2023]
Abstract
Zinc (Zn), which is regarded as a crucial micronutrient for plants, and is considered to be a vital micronutrient for plants. Zn has a significant role in the biochemistry and metabolism of plants owing to its significance and toxicity for biological systems at specific Zn concentrations, i.e., insufficient or harmful above the optimal range. It contributes to several cellular and physiological activities of plants and promotes plant growth, development, and yield. Zn is an important structural, enzymatic, and regulatory component of many proteins and enzymes. Consequently, it is essential to understand the interplay and chemistry of Zn in soil, its absorption, transport, and the response of plants to Zn deficiency, as well as to develop sustainable strategies for Zn deficiency in plants. Zn deficiency appears to be a widespread and prevalent issue in crops across the world, resulting in severe production losses that compromise nutritional quality. Considering this, enhancing Zn usage efficiency is the most effective strategy, which entails improving the architecture of the root system, absorption of Zn complexes by organic acids, and Zn uptake and translocation mechanisms in plants. Here, we provide an overview of various biotechnological techniques to improve Zn utilization efficiency and ensure the quality of crop. In light of the current status, an effort has been made to further dissect the absorption, transport, assimilation, function, deficiency, and toxicity symptoms caused by Zn in plants. As a result, we have described the potential information on diverse solutions, such as root structure alteration, the use of biostimulators, and nanomaterials, that may be used efficiently for Zn uptake, thereby assuring sustainable agriculture.
Collapse
Affiliation(s)
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | | | - Hareb Al Jabri
- Center for Sustainable Development (CSD), College of Arts and Sciences, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
- Central Laboratories Unit (CLU), Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
- *Correspondence: Mohammed Alsafran,
| |
Collapse
|