1
|
Wang Z, Yuan Y, Shi Y, Hong Y. Subtleties of tetracycline removal during growth of microalgae-fungi consortia: Mechanistic insights from perspectives of extra- and intracellular metabolites. BIORESOURCE TECHNOLOGY 2025; 426:132352. [PMID: 40054753 DOI: 10.1016/j.biortech.2025.132352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/12/2025]
Abstract
This study focused on tetracycline (TC) as the target antibiotic and utilized the emerging microbial system microalgae-fungi consortia to treat it. Results indicate that consortia composed of microalgae Chlorella sp. HL and fungi HW12 (Aspergillus caespitosus) (HL-HW12) exhibited the optimum TC removal (93.00 %, residual concentration: 2.73 mg/L) and biomass harvesting efficiency (92.69 %) among the five kinds of constructed microalgae-fungi consortia. Mechanism analysis indicated that outside the cell, microalgae-fungi consortia strengthened TC removal and biomass harvesting by augmenting the contents of proteins, polysaccharides, fulvic acids, and humic acids. While within the cell, microalgae-fungi consortia adjusted the abundance of critical metabolites in the amino acid metabolism, nucleotide metabolism, and other metabolic pathways to cope with the coercion of TC and facilitated its elimination. This study not only provides good TC microbial treatment systems but also comprehensively reveals the TC removal and metabolic response mechanisms by microalgae-fungi consortia.
Collapse
Affiliation(s)
- Zeyuan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yaqian Yuan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Shi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Sun F, Jiao Y, Liang S, Zhuang LL, Zhang J. The effect of sulfamethoxazole on the growth of microalgae biofilms and the internal transportation and transformation of nutrients in the biofilm. ENVIRONMENTAL RESEARCH 2025; 273:121232. [PMID: 40015426 DOI: 10.1016/j.envres.2025.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
The resource recovery of nitrogen and phosphorus in wastewater can be realized based on microalgae biofilm cultivation. Antibiotic from wastewater could potentially transport along the microalgae biofilm and influence microalgae metabolism during the microalgae biofilm-based wastewater treatment technology. Therefore, how one typical antibiotic (sulfamethoxazole, SMX) transport inside algal biofilm was investigated in this study. Furtherly, the effects of SMX on the growth of Chlorella vulgaris and nutrients transfer dynamics along biofilm were studied by microelectrode, Raman spectroscopy and SEM-EDS. The results showed that 5 mg/L SMX could stimulate microalgae photosynthesis and increase the dry weight of microalgae biofilm by 28.56 % on the 30th day. At the same time, the algae density increased by 15.01 %. Sulfur element distribution showed that SMX accumulated 15 % ∼ 25 % more in the middle and bottom layers (40 μm ∼ 140 μm) than in the surface layer of the biofilm. SMX at the deeper layer stimulated the utilization of nitrogen, accelerating the uneven distribution of nitrogen (117 % ∼ 162 % more than the surface layer). 5 mg/L SMX extended the effective photosynthetic region near the surface layer by 40 μm. This change intensified the chemical composition differences between the surface and bottom layers. The correlation analysis showed that nitrogen might be the key factor limiting the growth of microalgae biofilm. This study proved the positive effects of 5 mg/L SMX on microalgae biofilm growth, providing theoretical support for the application of microalgae biofilm technology in antibiotic treatment.
Collapse
Affiliation(s)
- Fengkai Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Yukai Jiao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong, 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong, 250014, China
| |
Collapse
|
3
|
Zhang Y, Shen MZ, Wang JX, Wang JH, Chi ZY. Less toxic combined microplastics exposure towards attached Chlorella sorokiniana in the presence of sulfamethoxazole while massive microalgal nitrous oxide emission under multiple stresses. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137223. [PMID: 39818055 DOI: 10.1016/j.jhazmat.2025.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Microalgae-based wastewater treatment could realize simultaneous nutrients recovery and CO2 sequestration. However, impacts of environmental microplastics (MPs) and antibiotic co-exposure on microalgal growth, nutrients removal, intracellular nitric oxide (NO) accumulation and subsequent nitrous oxide (N2O) emission are unclarified, which could greatly offset the CO2 sequestration benefit. To reveal the potential impacts of environmental concentrations of MPs and antibiotic co-exposure on microalgal greenhouse gas mitigation, this study investigated the effects of representative MPs (PE, PVC, PA), antibiotic sulfamethoxazole (SMX), and nitrite (NO2--N) in various combinations on attached Chlorella sorokiniana growth, nutrients removal, anti-oxidative responses, and N2O emission originated from intracellular NO build-up. Microalgal biofilm growth was more inhibited under 10 μg/L MPs than 100 μg/L SMX, and MPs+SMX co-exposure displayed toxicity antagonism while MPs+MPs co-exposure caused toxicity synergism (up to 66 % growth inhibition). Extracellular polysaccharides content correlated well with microalgal biofilm density under various stresses, while SMX involved stresses displayed chlorophyll a content reduction. Microalgal assimilation and MPs adsorption contributed to nutrients removal, and phosphorus removal displayed less variance among different stresses (residual phosphorus <0.5 mg/L) than nitrogen. Intracellular NO conversion to N2O almost doubled during the co-exposure processes, and N2O emission under NO2--N + PE+PVC co-exposure could offset the contribution of microalgal CO2 sequestration by as high as 176.2 %. Results of this study appealed for urgent concern regarding environmental MPs and antibiotic co-exposure on primary producers' growth characteristics and their greenhouse gas mitigation properties.
Collapse
Affiliation(s)
- Ying Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ming-Zhi Shen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
4
|
Amirian V, Kosari-Nasab M, Movafeghi A. The capacity of the green microalga Chlorella vulgaris in overcoming the detrimental effects of cephalexin contamination. World J Microbiol Biotechnol 2025; 41:109. [PMID: 40148597 DOI: 10.1007/s11274-025-04329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Antibiotics have the potential to affect the health of humans and other living organisms even at slight concentrations. Therefore, there has been a growing global awareness of the environmental impacts associated with antibiotics as emerging pollutants. Cephalexin (CPX) is classified as a first-generation cephalosporin and exhibits a significant efficacy in combating bacterial infections. The current work was conducted to examine the capability of the microalga Chlorella vulgaris to mitigate CPX contamination in aquatic environments. The results indicated that the growth of microalgae diminished in a dose-dependent manner after a 6-day exposure to concentrations of 200-800 mg L- 1 CPX. The analysis conducted through scanning electron microscopy revealed alterations in cell morphology, specifically shrinkage and wrinkling, following the application of CPX. These effects became more significant as the concentration of CPX increased. The results from flow cytometry revealed a notable decrease in cell viability for all concentrations of CPX used, with the highest concentration yielding a viability rate of less than 30%. In addition, CPX caused a decrease in levels of photosynthetic pigments and non-enzymatic antioxidants, including phenols and flavonoids. However, the activity levels of the main antioxidant enzymes considerably increased, achieving their peak at 800 mg L⁻¹. Moreover, the algal cells demonstrated the capability to decrease the concentration of CPX present in the contaminated media, with the most effective reduction observed at 400 mg L- 1. The data obtained confirmed the significant toxicity of CPX on Chlorella vulgaris, while also emphasizing the ability of microalgal cells to withstand antibiotic contamination.
Collapse
Affiliation(s)
- Veghar Amirian
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran
| | - Morteza Kosari-Nasab
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran.
| |
Collapse
|
5
|
Xiao R, Tian C, Wang H, Zhang H, Chen H, Chou HH. Two-stage continuous cultivation of microalgae overexpressing cytochrome P450 improves nitrogen and antibiotics removal from livestock and poultry wastewater. BIORESOURCE TECHNOLOGY 2025; 418:131994. [PMID: 39694106 DOI: 10.1016/j.biortech.2024.131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Improper treatment of livestock and poultry wastewater (LPWW) rich in ammonium nitrogen (NH4-N) and antibiotics leads to eutrophication, and contributes to the risk of creating drug-resistant pathogens. The design-build-test-learn strategy was used to engineer a continuous process using Chlorella vulgaris to remove NH4-N and antibiotics. The optimized system removed NH4-N at a rate of 306 mg/L/d, degraded 99 % of lincomycin, and reduced the hydraulic retention time to 4 days. The physiological, metabolic, and genetic mechanisms used by microalgae to tolerate LPWW, remove NH4-N, and degrade antibiotics were elucidated. A new cytochrome P450 enzyme important for NH4-N and antibiotic removal was identified. Finally, application of synthetic biology improved the NH4-N removal rate to 470 mg/L/d, which is the highest removal rate using microalgae reported to date. This research contributes to the mechanistic understanding of wastewater detoxification by microalgae, and the goal of achieving a circular bioeconomy for nutrient and water recycling.
Collapse
Affiliation(s)
- Rui Xiao
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China; Department of Environmental Engineering and Earth Science, Clemson University, South Carolina 29634, United States
| | - Chang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Haijun Wang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, South Carolina 29634, United States
| | - Howard H Chou
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China.
| |
Collapse
|
6
|
Frascaroli G, Hunter C, Roberts J, Escudero A. Removal of antibiotics and their impact on growth, nutrient uptake, and biomass productivity in semi-continuous cultivation of Auxenochlorella protothecoides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124261. [PMID: 39862832 DOI: 10.1016/j.jenvman.2025.124261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/19/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
The prevalence of antibiotics in wastewater poses risks to human and animal health, contributing to antimicrobial resistance. Although various antibiotic removal methods exist, microalgae-based technology presents a cost-effective and eco-friendly alternative; however, limited research on its long-term integration in semi-continuous wastewater treatment trials hinders our understanding of its potential effectiveness. This investigation explored the antibiotic removal capabilities of the microalga Auxenochlorella protothecoides in photobioreactors with synthetic wastewater under semi-continuous conditions over one month. Additionally, the study assessed the impact of seven commonly used antibiotics (ciprofloxacin, clarithromycin, erythromycin, metronidazole, ofloxacin, sulfamethoxazole, and trimethoprim) on the microalgal system regarding growth, nutrient removal, and biomass productivity. The microalga effectively removed antibiotics, achieving maximum removal efficiencies ranging from 45.8% to 70.1% over 3-4 days of exposure. Remarkably, antibiotics stimulated algal growth, resulting in an 11.0% increase in biomass. Nutrient removal also improved significantly; ammonium removal rose from 78.0% to 86.4%, and phosphate removal increased from 85.1% to 90.3%. Furthermore, the biomass composition showed notable enhancements, with increases in pigments (12.9%), lipids (20.6%), proteins (45.8%), and carbohydrates (50.6%). These findings highlight the potential applicability of A. protothecoides as a valuable addition to conventional wastewater treatment plants. The study emphasises the importance of considering antibiotic presence in microalgae-based wastewater treatment technologies, as these compounds can have a stimulatory effect that enhances both growth and nutrient removal efficiency. Overall, this research contributes to the development of more effective strategies for managing antibiotic pollution in wastewater.
Collapse
Affiliation(s)
- G Frascaroli
- Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK.
| | - C Hunter
- Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK
| | - J Roberts
- Department of Applied Science, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK
| | - A Escudero
- Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK
| |
Collapse
|
7
|
Lin S, Shi C, Wang H, Ma X, Li J, Chen S, Guo N, Zhang Z. Removal of Antibiotics in Breeding Wastewater Tailwater Using Microalgae-Based Process. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:27. [PMID: 39863798 DOI: 10.1007/s00128-024-03971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/15/2024] [Indexed: 01/27/2025]
Abstract
Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics. The results showed that Scenedesmus sp could increase antibiotic tolerance by enhancing antioxidant system activity. Compared to CIP, Scenedesmus sp showed better performance for OTC removal, the removal efficiencies were 100%, 96.87%, 95.75%, 90.18% and 83.91% at 0.1, 0.5, 1, 5, and 10 mg L- 1 OTC, respectively. The removal routes indicated that CIP was mainly removed by biodegradation (38.88%) and photolysis (14.30%) whereas OTC was mainly removed by hydrolysis (43.47%) and biodegradation (33.45%). Product toxicity predictions showed that most of the degradation products of CIP and OTC were less toxic than their parent compounds, confirming the feasibility of microalgae biotreatment for antibiotic removal.
Collapse
Affiliation(s)
- Shutao Lin
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Chunhai Shi
- Northwest China Municipal Engineering Northwest Design and Research Institute, Lanzhou, 730000, China
| | - Haimei Wang
- Northwest China Municipal Engineering Northwest Design and Research Institute, Lanzhou, 730000, China
| | - Xiaoli Ma
- Northwest China Municipal Engineering Northwest Design and Research Institute, Lanzhou, 730000, China
| | - Jian Li
- Northwest China Municipal Engineering Northwest Design and Research Institute, Lanzhou, 730000, China
| | - Siqin Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Niuniu Guo
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
8
|
Zhang Y, Li Y, Wang N, Ma X, Sun J, Wang X, Wang J. Joint action of six-component mixtures based on concentration response curves morphological parameter in acute and long-term toxicity assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104595. [PMID: 39613123 DOI: 10.1016/j.etap.2024.104595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Previous studies found that the multi-component mixtures with hormesis concentration-response curves (CRCs) were divided into three types according to the combined toxicity analysis of the segment-based method and σ2(k∙ECx) (the variance of k∙ECx). In this study, the acute and long-term toxicity of six pollutants and 12 six-component mixtures were assessed using microplate toxicity analyses (MTA). The functional relationship between σ2(k·ECx) and effect ratio (ERx) was determined by means of the independent action (IA) and the ER model to systematically investigate the correlation between mixture types in acute and long-term toxicity. The results indicated that across the entire concentration range, the mixture type of acute toxicity was consistent with short time exposure (0.25 h) measured in the long-term toxicity experiment. In the inhibition effect range, the types of mixtures of acute toxicity remained consistent with the chronic toxicity (exposure for 24 h) in 11 of the 12 mixtures. This study clarified the changes in the joint action of multi-component mixtures on Aliivibrio fischeri in terms of acute and long-term toxicity. The chronic toxicity of the mixtures can be predicted from the acute toxicity results, which provides a theoretical basis for the biological toxicity evaluation of multi-component mixtures.
Collapse
Affiliation(s)
- Yujiao Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Yajiao Li
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Na Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China.
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse; Key Laboratory of Environmental Engineering, Shaanxi Province; Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse; Key Laboratory of Environmental Engineering, Shaanxi Province; Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
9
|
Chu Y, Chen X, Li S, Li X, Xie P, Ho SH. Molecular insights into biological transformation mechanism of sulfathiazole by Chlorella sorokiniana: Deciphering the uptake, translocation, and biotransformation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136228. [PMID: 39461293 DOI: 10.1016/j.jhazmat.2024.136228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
As a sustainable approach to wastewater treatment, microalgae have been extensively used to degrade antibiotics. However, the underlying mechanisms involved in the degradation process remain unclear. Therefore, this study investigated the biotransformation mechanism of sulfathiazole (STZ) by Chlorella sorokiniana (C. sorokiniana) at the molecular level. The results show that C. sorokiniana could efficiently degrade STZ, achieving a maximum degradation rate of 94.74 %, mainly through biodegradation routes. Transcriptome analysis has elucidated the potential biological transformation mechanisms driving the degradation of STZ by microalgae, focusing on the uptake, translocation, and biotransformation as key metabolic processes. In particular, STZ induced the up-regulation of genes associated with cell adhesion, membrane protein, and lipopolysaccharide, suggesting their involvement in the uptake of STZ by microalgae. Furthermore, ABC, MATE, and MFS transporters were identified as crucial for the transmembrane transport of STZ by microalgae. A plausible biotransformation pathway for STZ degradation was proposed, identifying hydroxylation, oxidation, ring cleavage, and formylation as the primary transformation processes. The up-regulation of key enzymes such as monooxygenases, dioxygenases, hydrolases, and transferases suggested their pivotal role in the biodegradation of STZ. This research provides valuable insights into the biotransformation mechanisms of STZ by microalgae, thereby laying a theoretical framework to advance the implementation of microalgae in the treatment of antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
10
|
Rajamanickam R, Selvasembian R. Mechanistic insights into the potential application of Scenedesmus strains towards the elimination of antibiotics from wastewater. BIORESOURCE TECHNOLOGY 2024; 410:131289. [PMID: 39153695 DOI: 10.1016/j.biortech.2024.131289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Scenedesmus strains have been reported to have the potential to tolerate and bioremediate antibiotic pollutants through bioadsorption, bioaccumulation, and biodegradation mechanism from the wastewater medium. Hormesis effects have been observed in the Scenedesmus strains when exposed to different concentrations of antibiotic pollutants. Lower concentrations of antibiotic pollutants are known to trigger growth-stimulating effects by triggering adaptive responses such as increased metabolic activity and activating detoxifying mechanisms leading to the biotransformation pathway. The present review examines the existing body of information pertaining to biotransformation pathways tolerance, hormesis effects, and efficiency of Scenedesmus strains in removing various antibiotic pollutants. This review provides critical information on using Scenedesmus species to treat antibiotic-polluted wastewater by boosting growth and resilience tolerant doses and avoiding toxicity at higher doses.
Collapse
Affiliation(s)
- Ricky Rajamanickam
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
| |
Collapse
|
11
|
Wang K, Tong L, Yu J, Zhou Z, Sheng J, Ji H, Wang Z, Wang H. Supplementation of diethyl aminoethyl hexanoate for enhancing antibiotics removal by different microalgae-based system. BIORESOURCE TECHNOLOGY 2024; 408:131231. [PMID: 39117244 DOI: 10.1016/j.biortech.2024.131231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
With the growth of the aquaculture industry, antibiotic residues in treated wastewater have become a serious ecological threat. The effects of supplementation with diethyl aminoethyl hexanoate (DA-6) on the removal of tetracycline (TC), ciprofloxacin (CPFX), and sulfamonomethoxine (SMM) from aquaculture wastewater by different microalgae-based systems were examined and systematically analyzed. The results demonstrated that C. vulgaris -S395-2-C. rosea symbiont performed best under 0.2 mg L-1 antibiotic treatment for antibiotic removal. At 10-7 M, DA-6 significantly enhanced C. vulgaris-S395-2-C. rosea symbiont removal of CPFX and SMM at 0.20 mg L-1. The removal of TC, CPFX and SMM by this strain under optimal conditions was 99.2 ± 0.4 %, 86.3 ± 6.3 %, and 91.3 ± 5.7 %, respectively. These results suggest that DA-6 may act on microalgae-bacteria-fungi three-phase symbionts for the removal of multiple antibiotics from aquaculture wastewater.
Collapse
Affiliation(s)
- Kun Wang
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Lingling Tong
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Jingyun Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Zhaoru Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Jinjin Sheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Haiwei Ji
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, China
| | - Haotian Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Ma Y, Lin S, Guo T, Guo C, Li Y, Hou Y, Gao Y, Dong R, Liu S. Exploring the influence of sulfadiazine-induced stress on antibiotic removal and transformation pathway using microalgae Chlorella sp. ENVIRONMENTAL RESEARCH 2024; 256:119225. [PMID: 38797461 DOI: 10.1016/j.envres.2024.119225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Sulfadiazine (SDZ) is a kind of anti-degradable antibiotics that is commonly found in wastewater, but its removal mechanism and transformation pathway remain unclear in microalgal systems. This study investigated the effects of initial algae concentration and SDZ-induced stress on microalgal growth metabolism, SDZ removal efficiency, and transformation pathways during Chlorella sp. cultivation. Results showed that SDZ had an inhibitory effect on the growth of microalgae, and increasing the initial algal biomass could alleviate the inhibitory effect of SDZ. When the initial algal biomass of Chlorella sp. was increased to 0.25 g L-1, the SDZ removal rate could reach 53.27%-89.07%. The higher the initial algal biomass, the higher the SOD activity of microalgae, and the better the protective effect on microalgae, which was one of the reasons for the increase in SDZ removal efficiency. Meanwhile, SDZ stress causes changes in photosynthetic pigments, lipids, total sugars and protein content of Chlorella sp. in response to environmental changes. The main degradation mechanisms of SDZ by Chlorella sp. were biodegradation (37.82%) and photodegradation (23%). Most of the degradation products of SDZ were less toxic than the parent compound, and the green algae were highly susceptible to SDZ and its degradation products. The findings from this study offered valuable insights into the tradeoffs between accumulating microalgal biomass and antibiotic toxic risks during wastewater treatment, providing essential direction for the advancement in future research and full-scale application.
Collapse
Affiliation(s)
- Yanfang Ma
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Shupeng Lin
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Ting Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, PR China
| | - Chunchun Guo
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China
| | - Yitao Li
- Department of Civil and Environmental Engineering, Virginia Tech, Arlington, VA, 22202, USA
| | - Yahan Hou
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China
| | - Yongchang Gao
- Shandong High Speed Renewable Energy Group Limited, Jinan, 250000, PR China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Shan Liu
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China.
| |
Collapse
|
13
|
Yu C, Liu Y, Zhang Y, Shen MZ, Wang JH, Chi ZY. Seawater Chlorella sp. biofilm for mariculture effluent polishing under environmental combined antibiotics exposure and ecological risk evaluation based on parent antibiotics and transformation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173643. [PMID: 38821282 DOI: 10.1016/j.scitotenv.2024.173643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Mariculture effluent polishing with microalgal biofilm could realize effective nutrients removal and resolve the microalgae-water separation issue via biofilm scraping or in-situ aquatic animal grazing. Ubiquitous existence of antibiotics in mariculture effluents may affect the remediation performances and arouse ecological risks. The influence of combined antibiotics exposure at environment-relevant concentrations towards attached microalgae suitable for mariculture effluent polishing is currently lack of research. Results from suspended cultures could offer limited guidance since biofilms are richer in extracellular polymeric substances that may protect the cells from antibiotics and alter their transformation pathways. This study, therefore, explored the effects of combined antibiotics exposure at environmental concentrations towards seawater Chlorella sp. biofilm in terms of microalgal growth characteristics, nutrients removal, anti-oxidative responses, and antibiotics removal and transformations. Sulfamethoxazole (SMX), tetracycline (TL), and clarithromycin (CLA) in single, binary, and triple combinations were investigated. SMX + TL displayed toxicity synergism while TL + CLA revealed toxicity antagonism. Phosphorus removal was comparable under all conditions, while nitrogen removal was significantly higher under SMX and TL + CLA exposure. Anti-oxidative responses suggested microalgal acclimation towards SMX, while toxicity antagonism between TL and CLA generated least cellular oxidative damage. Parent antibiotics removal was in the order of TL (74.5-85.2 %) > CLA (60.8-69.5 %) > SMX (13.5-44.1 %), with higher removal efficiencies observed under combined than single antibiotic exposure. Considering the impact of residual parent antibiotics, CLA involved cultures were identified of high ecological risks, while medium risks were indicated in other cultures. Transformation products (TPs) of SMX and CLA displayed negligible aquatic toxicity, the parent antibiotics themselves deserve advanced removal. Four out of eight TPs of TL could generate chronic toxicity, and the elimination of these TPs should be prioritized for TL involved cultures. This study expands the knowledge of combined antibiotics exposure upon microalgal biofilm based mariculture effluent polishing.
Collapse
Affiliation(s)
- Chong Yu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yang Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ying Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ming-Zhi Shen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
14
|
Zhuang LL, Qian W, Wang X, Wang T, Zhang J. General performance, kinetic modification, and key regulating factor recognition of microalgae-based sulfonamide removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134891. [PMID: 38878437 DOI: 10.1016/j.jhazmat.2024.134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Sulfonamides have been widely detected in water treatment plants. Advanced wastewater treatment for sulfonamide removal based on microalgal cultivation can reduce the ecological risk after discharge, achieve carbon fixation, and simultaneously recover bioresource. However, the general removal performance, key factors and their impacts, degradation kinetics, and potential coupling technologies have not been systematically summarized. To guide the construction and enhance the efficient performance of the purification system, this study summarizes the quantified characteristics of sulfonamide removal based on more than 100 groups of data from the literature. The biodegradation potential of sulfonamides from different subclasses and their toxicity to microalgae were statistically analyzed; therefore, a preferred option for further application was proposed. The mechanisms by which the properties of both sulfonamides and microalgae affect sulfonamide removal were comprehensively summarized. Thereafter, multiple principles for choosing optimal microalgae were proposed from the perspective of engineering applications. Considering the microalgal density and growth status, a modified antibiotic removal kinetic model was proposed with significant physical meaning, thereby resulting in an optimal fit. Based on the mechanism and regulating effect of key factors on sulfonamide removal, sensitive and feasible factors (e.g., water quality regulation, other than initial algal density) and system coupling were screened to guide engineering applications. Finally, we suggested studying the long-term removal performance of antibiotics at environmentally relevant concentrations and toxicity interactions for further research.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tong Wang
- School of Ecological & Environmental Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| |
Collapse
|
15
|
Fang Y, Lin G, Liu Y, Zhang J. Contaminant removal performance and lipid productivity of a cyanobacteria-bacteria consortium containing exogenous phytohormones during the treatment of antibiotic-polluted wastewater. CHEMOSPHERE 2024; 361:142473. [PMID: 38810810 DOI: 10.1016/j.chemosphere.2024.142473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
In this study, a cyanobacteria-bacteria consortium containing native wastewater bacteria and immobilized Synechococcus sp. was constructed. The cyanobacterial cellular responses (including growth, biomass and lipid productivity) and contaminant removal ability (for TN, TP, COD and antibiotics) in the consortium were evaluated during the advanced treatment of wastewater containing 10-50 μg/L of mixed antibiotics (amoxicillin, tetracycline, erythromycin, sulfadiazine and ciprofloxacin) with the addition of a certain phytohormone (indole-3-acetic acid, gibberellin A3 or 6-benzylaminopurine) at trace level within a period of four days. Each phytohormone promoted the growth of Synechococcus sp. and increased the tolerance of Synechococcus sp. to mixed antibiotics. Indole-3-acetic acid coupled to moderate antibiotic stress could elevate lipid productivity and lipid content of Synechococcus sp. to 33.50 mg/L/day and 43.75%, respectively. Phytohormones increased the pollutant removal performance of the cyanobacteria-bacteria consortium through the stimulation of cyanobacterial growth and the regulation of cyanobacteria-bacteria interaction, which increased the abundances of microalgae-associated bacteria including Flavobacterium, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Bosea, Sphingomonas and Emticicia. Up to 80.83%, 98.06%, 83.26%, 99.84%, 99.50%, 89.41%, 65.61% and 60.65% of TN, TP, COD, amoxicillin, tetracycline, erythromycin, sulfadiazine and ciprofloxacin were removed by the consortium with the addition of phytohormones. In general, indole-3-acetic acid was the optimal phytohormone for enhancing lipid production and contaminant removal performance of the cyanobacteria-bacteria consortium.
Collapse
Affiliation(s)
- Youshuai Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Guannan Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
16
|
Yu S, Chen Z, Li M, Qiu S, Lv Z, Ge S. Principles, challenges, and optimization of indigenous microalgae-bacteria consortium for sustainable swine wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 406:131055. [PMID: 38944316 DOI: 10.1016/j.biortech.2024.131055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Indigenous microalgae-bacteria consortium (IMBC) offers significant advantages for swine wastewater (SW) treatment including enhanced adaptability and resource recovery. In this review, the approaches for enriching IMBC both in situ and ex situ were comprehensively described, followed by symbiotic mechanisms for IMBC which involve metabolic cross-feeding and signal transmission. Strategies for enhancing treatment efficiencies of SW-originated IMBC were then introduced, including improving SW quality, optimizing system operating conditions, and adjusting microbial activities. Recommendations for maximizing treatment efficiencies were particularly proposed using a decision tree approach. Moreover, removal/recovery mechanisms for typical pollutants in SW using IMBC were critically discussed. Ultimately, a technical route termed SW-IMBC-Crop-Pig was proposed, to achieve a closed-loop economy for pig farms by integrating SW treatment with crop cultivation. This review provides a deeper understanding of the mechanism and strategies for IMBC's resource recovery from SW.
Collapse
Affiliation(s)
- Sheng Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| | - Zhe Lv
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
17
|
Huang J, Wang Z, Zhao C, Yang H, Niu L. Performance of four different microalgae-based technologies in antibiotics removal under multiple concentrations of antibiotics and strigolactone analogue GR24 administration. Sci Rep 2024; 14:16004. [PMID: 38992288 PMCID: PMC11239813 DOI: 10.1038/s41598-024-67156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
The formation of symbionts by using different combinations of endophytic bacteria, microalgae, and fungi to purify antibiotics-containing wastewater is an effective and promising biomaterial technology. As it enhances the mixed antibiotics removal performance of the bio-system, this technology is currently extensively studied. Using exogenous supplementation of various low concentrations of the phytohormone strigolactone analogue GR24, the removal of various antibiotics from simulated wastewater was examined. The performances of Chlorella vulgaris monoculture, activated sludge-C. vulgaris-Clonostachys rosea, Bacillus licheniformis-C. vulgaris-C. rosea, and endophytic bacteria (S395-2)-C. vulgaris-C. rosea co-culture systems were systematically compared. Their removal capacities for tetracycline, oxytetracycline, and chlortetracycline antibiotics from simulated wastewater were assessed. Chlorella vulgaris-endophytic bacteria-C. rosea co-cultures achieved the best performance under 0.25 mg L-1 antibiotics, which could be further enhanced by GR24 supplementation. This result demonstrates that the combination of endophytic bacteria with microalgae and fungi is superior to activated sludge-B. licheniformis-microalgae-fungi systems. Exogenous supplementation of GR24 is an effective strategy to improve the performance of antibiotics removal from wastewater.
Collapse
Affiliation(s)
- Jing Huang
- School of Mathematics and Statistics, Donghua University, Shanghai, 201620, People's Republic of China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou, 215009, People's Republic of China
| | - Chunzhi Zhao
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai, 201400, People's Republic of China
| | - Huayun Yang
- School of Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Lei Niu
- School of Mathematics and Statistics, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
18
|
Ge S, Tian W, Lou Z, Wang X, Zhuang LL, Zhang J. Long-term toxicity assessment of antibiotics against Vibrio fischeri: Test method optimization and mixture toxicity prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133933. [PMID: 38452674 DOI: 10.1016/j.jhazmat.2024.133933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
The current luminescent bacteria test for acute toxicity with short contact time was invalid for antibiotics, and the non-uniformed contact times reported in the literature for long-term toxicity assessment led to incomparable results. Herein, a representative long-term toxicity assessment method was established which unified the contact time of antibiotics and Vibrio fischeri within the bioluminescence increasing period (i.e. 10-100% maximum luminescence) of control samples. The effects of excitation and detoxification of antibiotics such as β-lactams were discovered. Half maximal inhibitory concentration (IC50) of toxic antibiotics (0.00069-0.061 mmol/L) obtained by this method was 2-3 orders of magnitude lower than acute test, quantifying the underestimated toxicity. As antibiotics exist in natural water as mixtures, an equivalent concentration addition (ECA) model was built to predict mixture toxicity based on physical mechanism rather than mathematical method, which showed great fitting results (R2 = 0.94). Furthermore, interaction among antibiotics was investigated. Antibiotics acting during bacterial breeding period had strong synergistic inhibition (IC50 relative deviation from 0.1 to 0.6) such as macrolides and quinolones. Some antibiotics produced increasing synergistic inhibition during concentration accumulation, such as macrolides. The discharge of antibiotics with severe long-term toxicity and strong synergistic inhibition effect should be seriously restricted.
Collapse
Affiliation(s)
- Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Wanqing Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Ziyi Lou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, PR China
| |
Collapse
|
19
|
Li P, Yang Y, Zhuang LL, Hu Z, Zhang L, Ge S, Qian W, Tian W, Wu Y, Hu HY. Effects of chemical oxygen demand and chloramphenicol on attached microalgae growth: Physicochemical properties and microscopic mass transfer in biofilm. BIORESOURCE TECHNOLOGY 2024; 399:130561. [PMID: 38460558 DOI: 10.1016/j.biortech.2024.130561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
During the wastewater treatment and resource recovery process by attached microalgae, the chemical oxygen demand (COD) can cause biotic contamination in algal culture systems, which can be mitigated by adding an appropriate dosage of antibiotics. The transport of COD and additive antibiotic (chloramphenicol, CAP) in algal biofilms and their influence on algal physiology were studied. The results showed that COD (60 mg/L) affected key metabolic pathways, such as photosystem II and oxidative phosphorylation, improved biofilm autotrophic and heterotrophic metabolic intensities, increased nutrient demand, and promoted biomass accumulation by 55.9 %, which was the most suitable COD concentration for attached microalgae. CAP (5-10 mg/L) effectively stimulated photosynthetic pigment accumulation and nutrient utilization in pelagic microalgal cells. In conclusion, controlling the COD concentration (approximately 60 mg/L) in the medium and adding the appropriate CAP concentration (5-10 mg/L) are conducive to improving attached microalgal biomass production and resource recovery potential from wastewater.
Collapse
Affiliation(s)
- Peihua Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Wanqing Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yinhu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215163, China
| |
Collapse
|
20
|
Kumar N, Shukla P. Microalgal multiomics-based approaches in bioremediation of hazardous contaminants. ENVIRONMENTAL RESEARCH 2024; 247:118135. [PMID: 38218523 DOI: 10.1016/j.envres.2024.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
The enhanced industrial growth and higher living standards owing to the incessant population growth have caused heightened production of various chemicals in different manufacturing sectors globally, resulting in pollution of aquatic systems and soil with hazardous chemical contaminants. The bioremediation of such hazardous pollutants through microalgal processes is a viable and sustainable approach. Accomplishing microalgal-based bioremediation of polluted wastewater requires a comprehensive understanding of microalgal metabolic and physiological dynamics. Microalgae-bacterial consortia have emerged as a sustainable agent for synergistic bioremediation and metabolite production. Effective bioremediation involves proper consortium functioning and dynamics. The present review highlights the mechanistic processes employed through microalgae in reducing contaminants present in wastewater. It discusses the multi-omics approaches and their advantages in understanding the biological processes, monitoring, and dynamics among the partners in consortium through metagenomics. Transcriptomics, proteomics, and metabolomics enable an understanding of microalgal cell response toward the contaminants in the wastewater. Finally, the challenges and future research endeavors are summarised to provide an outlook on microalgae-based bioremediation.
Collapse
Affiliation(s)
- Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
21
|
Azuma T, Matsunaga N, Ohmagari N, Kuroda M. Development of a High-Throughput Analytical Method for Antimicrobials in Wastewater Using an Automated Pipetting and Solid-Phase Extraction System. Antibiotics (Basel) 2024; 13:335. [PMID: 38667011 PMCID: PMC11605239 DOI: 10.3390/antibiotics13040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 12/01/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged and spread globally. Recent studies have also reported the presence of antimicrobials in a wide variety of aquatic environments. Conducting a nationwide monitoring survey of AMR in the environment to elucidate its status and to assess its impact on ecosystems and human health is of social importance. In this study, we developed a novel high-throughput analysis (HTA) system based on a 96-well plate solid-phase extraction (SPE), using automated pipetting and an SPE pre-treatment system. The effectiveness of the system as an HTA for antimicrobials in environmental water was verified by comparing it with a conventional manual analytical system in a domestic hospital over a period of two years and four months. The results of the manual analysis and HTA using a combination of automated pipetting and SPE systems were generally consistent, and no statistically significant difference was observed (p > 0.05) between the two systems. The agreement ratios between the measured concentrations based on the conventional and HTA methods were positively correlated with a correlation coefficient of r = 0.99. These results indicate that HTA, which combines automated pipetting and an SPE pre-treatment system for rapid, high-volume analysis, can be used as an effective approach for understanding the environmental contamination of antimicrobials at multiple sites. To the best of our knowledge, this is the first report to present the accuracy and agreement between concentrations based on a manual analysis and those measured using HTA in hospital wastewater. These findings contribute to a comprehensive understanding of antimicrobials in aquatic environments and assess the ecological and human health risks associated with antimicrobials and antimicrobial-resistant bacteria to maintain the safety of aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (N.M.); (N.O.)
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (N.M.); (N.O.)
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
22
|
Guo Y, Peng B, Liao J, Cao W, Liu Y, Nie X, Li Z, Ouyang R. Recent advances in the role of dissolved organic matter during antibiotics photodegradation in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170101. [PMID: 38242474 DOI: 10.1016/j.scitotenv.2024.170101] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The presence of residual antibiotics in the environment is a prominent issue. Photodegradation behavior is an important way of antibiotics reduction, which is closely related to dissolved organic matter (DOM) in water. The review provides an overview of the latest advancements in the field. Classification, characterization of DOM, and the dominant mechanisms for antibiotic photodegradation were discussed. Furthermore, it summarized and compared the effects of DOM on different antibiotics photodegradation. Moreover, the review comprehensively considered the factors influencing the photodegradation of antibiotics in the aquatic environment, including the characteristics of light, temperature, dosage of DOM, concentration of antibiotics, solution pH, and the presence of coexisting ions. Finally, potential directions were proposed for the development of predictive models for the photodegradation of antibiotics. Based on the review of existing literature, this paper also considered several pathways for the future study of antibiotic photodegradation. This study allows for a better understanding of the DOM's environmental role and provides important new insights into the photochemical fate of antibiotics in the aquatic environment.
Collapse
Affiliation(s)
- Yinghui Guo
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Bo Peng
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China.
| | - Jinggan Liao
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Weicheng Cao
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Yaojun Liu
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Xiaodong Nie
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Zhongwu Li
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Rui Ouyang
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
23
|
Li Z, Yu Z, Yin D. Influence of dietary status on the obesogenic effects of erythromycin antibiotic on Caenorhabditis elegans. ENVIRONMENT INTERNATIONAL 2024; 185:108458. [PMID: 38368716 DOI: 10.1016/j.envint.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
As emerging pollutants, antibiotics were widely detected in water bodies and dietary sources. Recently, their obesogenic effects raised serious concerns. So far, it remained unclear whether their obesogenic effects would be influenced by water- and diet-borne exposure routes. In present study, Caenorhabditis elegans, nematodes free-living in air-water interface and feeding on bacteria, were exposed to water- and diet-borne erythromycin antibiotic (ERY). The statuses of the bacterial food, inactivated or alive, were also considered to explore their influences on the effects. Results showed that both water- and diet-borne ERY significantly stimulated body width and triglyceride contents. Moreover, diet-borne ERY's stimulation on the triglyceride levels was greater with alive bacteria than with inactivated bacteria. Biochemical analysis showed that water-borne ERY inhibited the activities of enzymes like adipose triglyceride lipase (ATGL) in fatty acid β-oxidation. Meanwhile, diet-borne ERY inhibited the activities of acyl-CoA synthetase (ACS) and carnitine palmitoyl transferase (CPT) in lipolysis, while it stimulated the activities of fatty acid synthase (FAS) in lipogenesis. Gene expression analysis demonstrated that water-borne ERY with alive bacteria significantly upregulated the expressions of daf-2, daf-16 and nhr-49, without significant influences in other settings. Further investigation demonstrated that ERY interfered with bacterial colonization in the intestine and the permeability of the intestinal barrier. Moreover, ERY decreased total long-chained fatty acids (LCFAs) in bacteria and nematodes, while it decreased total short-chained fatty acids (SCFAs) in bacteria but increased them in nematodes. Collectively, the present study demonstrated the differences between water- and diet-borne ERY's obesogenic effects, and highlighted the involvement of insulin and nhr-49 signaling pathways, SCFAs metabolism and also the interaction between intestinal bacteria and the host.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China. %
| |
Collapse
|
24
|
Xu W, Wang Z, Lu B, Guo G, Zhao C, Zhao Y. Effect of different concentrations of gibberellins on attenuation of nutrient and antibiotics from aquaculture wastewater using microalgae-bacteria-fungi consortia system. BIORESOURCE TECHNOLOGY 2024; 395:130369. [PMID: 38272143 DOI: 10.1016/j.biortech.2024.130369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
This study assessed the effect of gibberellins (GAs) concentrations on antibiotic and nutrient removal using diverse microalgal-bacterial-fungal consortia. Five systems (Chlorella vulgaris, T1; C. vulgaris + S395-2 + Clonostachys rosea, T2; C. vulgaris + S395-2 + Ganoderma lucidum, T3; C. vulgaris + S395-2 + Pleurotus pulmonarius, T4; and C. vulgaris + S395-2, T5) were established, and optimal conditions and effective symbiosis were applied to improve antibiotic and nutrient removal. Consortium growth was T2 > T3 > T5 > T4 > T1, while GA impact ranked 50 mg L-1 > 20 mg L-1 > 80 mg L-1 > 0 mg L-1. After 7 days at 50 mg L-1 GAs, total nitrogen (TN), NH4-N, NO3-N, and total phosphorous (TP) removal reached 85.97 %, 78.08 %, 86.59 %, and 94.39 %, respectively. Florfenicol, oxytetracycline hydrochloride, ofloxacin, and sulfamethoxazole removal efficiencies were 67.77 %, 98.29 %, 90.47 %, and 94.92 %, respectively. These findings highlight GAs' significant role in enhancing antibiotic and nutrient removal.
Collapse
Affiliation(s)
- Wenyan Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, China
| | - Bei Lu
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Guojun Guo
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Caiyuan Zhao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yongjun Zhao
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
25
|
Jiang R, Lu G, Zhang L, Chen Y, Liu J, Yan Z, Xie H. Insight into the effect of microplastics on photocatalytic degradation tetracycline by a dissolvable semiconductor-organic framework. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132887. [PMID: 37918073 DOI: 10.1016/j.jhazmat.2023.132887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
The presence of microplastics (MPs) in large quantities in the aqueous environment significantly affects the degradation process of water pollution. Still, the interaction between MPs and pollutants during photocatalytic degradation has not been studied. Here, a soluble BiOCl-OH semiconductor-organic framework (BOCH-SOF) was prepared from xylitol, and the polystyrene (PS) MPs' effect on the photocatalytic degradation of tetracycline (TC) was investigated. It was found that the appropriate number of PS can promote TC degradation and also change degradation products and pathways. At the same time, the presence of TC can effectively enhance PS aging and reduce the molecular weight of PS. This indicates that BOCH-SOF produces a synergistic effect in treating the combined pollution of TC and PS. Through free radical analysis and density functional theory calculations, it was proposed that PS and TC can complement each other. A certain concentration and size of PS can promote the conversion of Bi(III) to Bi and enhance charge separation and radical generation; the TC can change the interfacial charge distribution and free radical depletion, extend the light absorption in the system, and the PS and TC work together to ultimately achieve the synergistic degradation of the TC and the aging PS. This paper provides an in-depth analysis of the mechanism of the effect of MPs on the photocatalytic degradation of antibiotics, which is significant in controlling the combined pollution of MPs and associated pollutants in the water environment.
Collapse
Affiliation(s)
- Runren Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| |
Collapse
|
26
|
Liu J, Wang Z, Zhao C, Lu B, Zhao Y. Phytohormone gibberellins treatment enhances multiple antibiotics removal efficiency of different bacteria-microalgae-fungi symbionts. BIORESOURCE TECHNOLOGY 2024; 394:130182. [PMID: 38081467 DOI: 10.1016/j.biortech.2023.130182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
To develop and characterize novel antibiotics removal biomaterial technology, we constructed three different bacteria-microalgae-fungi consortiums containing Chlorella vulgaris (C. vulgaris), endophytic bacterium, Clonostachys rosea (C. rosea), Ganoderma lucidum, and Pleurotus pulmonarius. The results showed that under treatment with 50 mg/L of gibberellins (GAs), the three bacteria-microalgae-fungi symbionts had maximal growth rates (0.317 ± 0.030 d-1) and the highest removal efficiency for seven different antibiotics. Among them, C. vulgaris-endophytic bacterium-C. rosea symbiont had the best performance, with antibiotics removal efficiencies of 96.0 ± 1.4 %, 91.1 ± 7.9 %, 48.7 ± 5.1 %, 34.6 ± 2.9 %, 61.0 ± 5.5 %, 63.7 ± 5.6 %, and 54.3 ± 4.9 % for tetracycline hydrochloride, oxytetracycline hydrochloride, ciprofloxacin, norfloxacin, sulfadiazine, sulfamethazine, and sulfamethoxazole, respectively. Overall, the present study demonstrates that 50 mg/L GAs enhances biomass production and antibiotics removal efficiency of bacteria-microalgae-fungi symbionts, providing a framework for future antibiotics-containing wastewater treatment using three-phase symbionts.
Collapse
Affiliation(s)
- Jun Liu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Bei Lu
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Yongjun Zhao
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
27
|
Montone CM, Giannelli Moneta B, Laganà A, Piovesana S, Taglioni E, Cavaliere C. Transformation products of antibacterial drugs in environmental water: Identification approaches based on liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2024; 238:115818. [PMID: 37944459 DOI: 10.1016/j.jpba.2023.115818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
In recent years, the presence of antibiotics in the aquatic environment has caused increasing concern for the possible consequences on human health and ecosystems, including the development of antibiotic-resistant bacteria. However, once antibiotics enter the environment, mainly through hospital and municipal discharges and the effluents of wastewater treatment plants, they can be subject to transformation reactions, driven by both biotic (e.g. microorganism and mammalian metabolisms) and abiotic factors (e.g. oxidation, photodegradation, and hydrolysis). The resulting transformation products (TPs) can be less or more active than their parent compounds, therefore the inclusion of TPs in monitoring programs should be mandatory. However, only the reference standards of a few known TPs are available, whereas many other TPs are still unknown, due to the high diversity of possible transformation reactions in the environment. Modern high-resolution mass spectrometry (HRMS) instrumentation is now ready to tackle this problem through suspect and untargeted screening approaches. However, for handling the large amount of data typically encountered in the analysis of environmental samples, these approaches also require suitable processing workflows and accurate tandem mass spectra interpretation. The compilation of a suspect list containing the possible monoisotopic masses of TPs retrieved from the literature and/or from laboratory simulated degradation experiments showed unique advantages. However, the employment of in silico prediction tools could improve the identification reliability. In this review, the most recent strategies relying on liquid chromatography-HRMS for the analysis of environmental TPs of the main antibiotic classes were examined, whereas TPs formed during water treatments or disinfection were not included.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
28
|
Zhao J, Sun Y, Zhang BT, Sun X. Amoxicillin degradation in the heat, light, or heterogeneous catalyst activated persulfate systems: Comparison of kinetics, mechanisms and toxicities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119386. [PMID: 37879175 DOI: 10.1016/j.jenvman.2023.119386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Various activated persulfate (PS) technologies have been investigated and implemented to eliminate antibiotic contaminants from water. The investigation and evaluation of different activation systems are essential for the application of PS techniques. The degradation of amoxicillin (AMX) by heat, light, or heterogeneous catalyst of Fe-AC composite activated PS was investigated, and the kinetics, mechanisms and toxicities were compared in this work. The apparent activation energy of the Fe-AC system was lower than that of the heat system. Hydroxyl and sulfate radicals were demonstrated by electron paramagnetic resonance (EPR) spectroscopy and quenching tests. There were 22, 21 and 13 types of degradation intermediates detected in heat, light and Fe-AC system, respectively. Six pathways of AMX degradation were proposed and compared in the three activated PS systems. The toxicity prediction of degradation intermediates under different treatment processes was estimated by ecological structure-activity relationship model and toxicity estimation software tool. The genotoxicity of the AMX degradation solution was tested by Acinetobacter baylyi ADP1_recA, which indicated that the AMX solution after treatment in the Fe-AC system had almost no genotoxicity. The Fe-AC/PS system shows apparent advantages over the heat or light activated PS system in most cases, demonstrating that the Fe-AC/PS system is suitable for AMX-contaminated remediation in aqueous solution.
Collapse
Affiliation(s)
- Juanjuan Zhao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Heibei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical Safety, North China Institute of Science and Technology, Langfang, 065201, China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | | |
Collapse
|
29
|
Bai Y, Ji B. Advances in responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater. World J Microbiol Biotechnol 2023; 40:40. [PMID: 38071273 DOI: 10.1007/s11274-023-03819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Nowadays, emerging pollutants are widely used and exist in wastewater, such as antibiotics, heavy metals, nanoparticle and microplastic. As a green alternative for wastewater treatment, microalgal-bacterial symbiosis has been aware of owning multiple merits of low energy consumption and little greenhouse gas emission. Thus, the responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater treatment have become a hotspot in recent years. In this review paper, the removal performance of microalgal-bacterial symbiosis on organics, nitrogen and phosphorus in wastewater containing emerging pollutants has been summarized. The adaptation mechanisms of microalgal-bacterial symbiosis to emerging pollutants have been analyzed. It is found that antibiotics usually have hormesis effects on microalgal-bacterial symbiosis, and that microalgal-bacterial symbiosis appears to show more capacity to remove tetracycline and sulfamethoxazole, rather than oxytetracycline and enrofloxacin. Generally, microalgal-bacterial symbiosis can adapt to heavy metals at a concentration of less than 1 mg/L, but its capabilities to remove contaminants can be significantly affected at 10 mg/L heavy metals. Further research should focus on the influence of mixed emerging pollutants on microalgal-bacterial symbiosis, and the feasibility of using selected emerging pollutants (e.g., antibiotics) as a carbon source for microalgal-bacterial symbiosis should also be explored. This review is expected to deepen our understandings on emerging pollutants removal from wastewater by microalgal-bacterial symbiosis.
Collapse
Affiliation(s)
- Yang Bai
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
30
|
Xu X, Wang X, Song C, Yan B, Zhang R, Li L, Zhou X. The effect of a One Health message intervention on willingness to pay for antibiotic-free animal foods: A randomized controlled trial among Chinese college students. One Health 2023; 17:100612. [PMID: 37588425 PMCID: PMC10425383 DOI: 10.1016/j.onehlt.2023.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Routine use of antibiotics in livestock for prophylactic purposes is a main driver of antimicrobial resistance, posing a significant threat to the health of humans, animals, and the environment. Ways to motivate farmers to voluntarily reduce antibiotics use need to be explored. Promoting antibiotic-free animal foods is one of the promising strategies. A three-arm double-blind randomized controlled trial was conducted online to explore the impact of a One Health message intervention on Chinese college students' willingness to pay for antibiotic-free animal foods. A total of 389 individuals participated in this study and were randomly assigned to one of the One Health message group, the food nutrition and safety message group, and the no message group. Each participant read a message from the corresponding group and answered a self-report questionnaire. Participants' willingness to pay (WTP) and willingness to buy (WTB) for antibiotic-free pork, eggs, and milk were measured before and after viewing the One Health message, and the results were compared to the other two groups using the Kruskal-Wallis rank sum test and the Bonferroni correction. In the One Health message group, 30.2% (39/129) reported improved WTP for all three foods, compared to 6.2% (8/130) and 13.6% (17/125) in the food nutrition and safety message group and the no message group, respectively. The One Health message intervention had a significant effect on increasing participants' WTP (p < 0.001) and WTB (p < 0.05) for antibiotic-free pork, eggs, and milk. The One Health message intervention is effective in raising participants' WTP for antibiotic-free animal foods. It is hopeful to motivate farmers and producers to voluntarily reduce prophylactic antibiotic use through market demand and consumer choice, leading to a potential decrease in total antibiotics use in livestock. Additionally, integrated approaches based on One Health principles need to be found in the future.
Collapse
Affiliation(s)
- Xin Xu
- Institute of Social Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaomin Wang
- Institute of Social Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caoying Song
- Institute of Social Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Yan
- Institute of Social Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ran Zhang
- School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Lu Li
- Institute of Social Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Pollution Exposure & Health Intervention of Zhejiang, Hangzhou, China
| | - Xudong Zhou
- Institute of Social Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Kumar N, Shukla P. Microalgal-based bioremediation of emerging contaminants: Mechanisms and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122591. [PMID: 37739258 DOI: 10.1016/j.envpol.2023.122591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Emerging contaminants (ECs) in different ecosystems have consistently been acknowledged as a global issue due to toxicity, human health implications, and potential role in generating and disseminating antimicrobial resistance. The existing wastewater treatment system is incompetent at eliminating ECs since the effluent water contains significant concentrations of ECs, viz., antibiotics (0.03-13.0 μg L-1), paracetamol (50 μg L-1), and many others in varying concentrations. Microalgae are considered as a prospective and sustainable candidate for mitigating of ECs owing to some peculiar features. In addition, the microalgal-based processes also offer cost and energy-efficient solutions for the bioremediation of ECs than conventional treatment systems. It is pertinent that, microalgal-based processes also provides waste valorization benefits as microalgal biomass obtained after ECs treatment can be potentially applied to generate biofuels. Moreover, microalgae can effectively utilize alternative metabolic (cometabolism) routes for enhanced degradation of ECs. Additionally, the ECs removal via the microalgal biodegradation route is highly promising as it can transform the ECs into less toxic compounds. The present review comprehensively discusses different mechanisms involved in removing ECs and various factors that affect their removal. Also, the technoeconomic feasibility of microalgae than other conventional wastewater treatment methods is summarised. The review also highlighted the different molecular and genetic tools that can augment the activity and robustness of microalgae for better removal of organic contaminants. Finally, we have summarised the challenges and future research required towards microalgal-based bioremediation of emerging contaminants (ECs) as a holistic approach.
Collapse
Affiliation(s)
- Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
32
|
Garcinuño RM, Collado EJ, Paniagua G, Bravo JC, Fernández Hernando P. Assessment of Molecularly Imprinted Polymers as Selective Solid-Phase Extraction Sorbents for the Detection of Cloxacillin in Drinking and River Water. Polymers (Basel) 2023; 15:4314. [PMID: 37959993 PMCID: PMC10648835 DOI: 10.3390/polym15214314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
This paper describes a new methodology for carrying out quantitative extraction of cloxacillin from drinking and river water samples using a molecularly imprinted polymer (MIP) as a selective sorbent for solid-phase extraction (MISPE). Several polymers were synthesized via thermal polymerization using cloxacillin as a template, methacrylic acid (MAA) as a functional monomer, ethyleneglycoldimethacrylate (EGDMA) as a cross-linker and different solvents as porogens. Binding characteristics of the adequate molecularly imprinted and non-imprinted (NIP) polymers were evaluated via batch adsorption assays following the Langmuir and Freundlich isotherms and Scatchard assays. The parameters related to the extraction approach were studied to select the most appropriate polymer for cloxacillin determination. Using the optimized MIP as the SPE sorbent, a simple sample treatment methodology was combined with high-performance liquid chromatography (HPLC) to analyze cloxacillin residues in drinking and river water. Under the optimum experimental conditions, the MISPE methodology was validated using spiked samples. The linearity for cloxacillin was assessed within the limits of 0.05-1.5 µg L-1 and the recovery percentage was higher than 98% (RSD < 4%). The limits of detection and limits of quantification were 0.29 and 0.37 µg L-1 and 0.8 and 0.98 µg L-1 for drinking and river water, respectively. The selectivity of MIP against other ß-lactam antibiotics with similar structures (oxacillin, cefazoline, amoxicillin and penicillin V) was studied, obtaining a good recovery higher than 85% for all except cefazoline. The proposed MISPE-HPLC methodology was successfully applied for the detection of cloxacillin in drinking water from Canal de Isabel II (Madrid) and river water from the Manzanares River (Madrid).
Collapse
Affiliation(s)
- Rosa Mª Garcinuño
- Department of Analytical Science, Faculty of Science, Universidad Nacional de Educación a Distancia, Las Rozas, 28232 Madrid, Spain; (E.J.C.); (G.P.); (J.C.B.); (P.F.H.)
| | | | | | | | | |
Collapse
|
33
|
Wang Z, Zhao C, Lu B, Zhang H, Zhao Y. Attenuation of antibiotics from simulated swine wastewater using different microalgae-based systems. BIORESOURCE TECHNOLOGY 2023; 388:129796. [PMID: 37742816 DOI: 10.1016/j.biortech.2023.129796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Antibiotic misuse are potentially harmful to the environment and human health. Four algal symbionts were constructed using Chlorella vulgaris, endophytic bacterium and Clonostachys rosea (C. rosea) as the biomaterials. The growth, photosynthetic activity, and antibiotic removal efficiency of symbiont under different initial antibiotic concentrations was analyzed. The results showed that the microalgae-bacteria-fungi symbiont had a maximum growth rate of 0.307 ± 0.030 d-1 and achieved 99.35 ± 0.47%, 81.06 ± 7.83%, and 79.15 ± 7.26% removal of oxytetracycline (OTC), sulfadimethazine (SM2), and ciprofloxacin hydrochloride (CPFX), respectively, at an initial antibiotic concentration of 0.25 mg/L. C. rosea has always existed as a biocontrol fungus. In this study, it was innovatively used to construct algal symbionts and used for antibiotic wastewater treatment with a high efficiency. The results contribute to the development of appropriate bioaugmentation strategies and the design of an algal symbiont process for the treatment of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, China
| | - Chunzhi Zhao
- School of engineering, Hangzhou Normal University, Hangzhou 311121, China; School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Bei Lu
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Hui Zhang
- College of data Science, Jiaxing University, Jiaxing 314001, China
| | - Yongjun Zhao
- School of engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
34
|
Zhang M, Ning R, Zheng Q, Gao K. Microalgae-based biotechnology as a promising strategy for removing antibiotics from wastewater: opportunities, challenges and future directions. Front Bioeng Biotechnol 2023; 11:1248765. [PMID: 37691906 PMCID: PMC10485559 DOI: 10.3389/fbioe.2023.1248765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Meng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ruoxu Ning
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qilin Zheng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Kun Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang, China
| |
Collapse
|
35
|
Huang R, Liu W, Su J, Li S, Wang L, Jeppesen E, Zhang W. Keystone microalgae species determine the removal efficiency of sulfamethoxazole: a case study of Chlorella pyrenoidosa and microalgae consortia. FRONTIERS IN PLANT SCIENCE 2023; 14:1193668. [PMID: 37476166 PMCID: PMC10354436 DOI: 10.3389/fpls.2023.1193668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
In recent years, antibiotics pollution has caused serious harm to the aquatic environment, and microalgae mediated degradation of antibiotics has attracted increasing attention. However, the potential toxicity of antibiotics to keystone microalgae species or their microalgae consortia, and the impact of microalgal diversity on antibiotic removal need to be further studied. In this study, we investigated the removal efficiency and tolerance of five freshwater microalgae (Chlorella pyrenoidosa, Scenedesmus quadricauda, Dictyosphaerium sp., Haematoccocus pluvialis, and Botryococcus braunii) and their microalgae consortia to sulfamethoxazole (SMX). We found that the removal efficiency of SMX by C. pyrenoidosa reached 49%, while the other four microalgae ranged between 9% and 16%. In addition, C. pyrenoidosa, S. quadricauda, and Dictyosphaerium sp. had better tolerance to SMX than H. pluvialis, and their growth and photosynthesis were less affected. At 10 and 50 mg/L SMX, the removal capacity of SMX by mixed microalgae consortia was lower than that of C. pyrenoidos except for the consortium with C. pyrenoidos and S. quadricauda. The consortia generally showed higher sensitivity towards SMX than the individual species, and the biochemical characteristics (photosynthetic pigment, chlorophyll fluorescence parameters, superoxide anion (O2 -), superoxide dismutase activity (SOD), malondialdehyde (MDA) and extracellular enzymes) were significantly influenced by SMX stress. Therefore, the removal of antibiotics by microalgae consortia did not increase with the number of microalgae species. Our study provides a new perspective for the selection of microalgal consortia to degrade antibiotics.
Collapse
Affiliation(s)
- Ruohan Huang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Wan Liu
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Jinghua Su
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Shihao Li
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Technology Co., Ltd, Shanghai, China
| | - Liqing Wang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
- Limnology Laboratory and EKOSAM, Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
- Institute of Marine Sciences, Middle East Technical University, Mersin, Türkiye
| | - Wei Zhang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
36
|
Yang J, Ahmed W, Mehmood S, Ou W, Li J, Xu W, Wang L, Mahmood M, Li W. Evaluating the Combined Effects of Erythromycin and Levofloxacin on the Growth of Navicula sp. and Understanding the Underlying Mechanisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:2547. [PMID: 37447108 DOI: 10.3390/plants12132547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Navicula sp., a type of benthic diatom, plays a crucial role in the carbon cycle as a widely distributed algae in water bodies, making it an essential primary producer in the context of global carbon neutrality. However, using erythromycin (ERY) and levofloxacin (LEV) in medicine, livestock, and aquaculture has introduced a new class of pollutants known as antibiotic pollutants, which pose potential threats to human and animal health. This study aimed to investigate the toxic effects of ERY and LEV, individually or in combination, on the growth, antioxidant system, chlorophyll synthesis, and various cell osmotic pressure indexes (such as soluble protein, proline, and betaine) of Navicula sp. The results indicated that ERY (1 mg/L), LEV (320 mg/L), and their combined effects could inhibit the growth of Navicula sp. Interestingly, the combination of these two drugs exhibited a time-dependent effect on the chlorophyll synthesis of Navicula sp., with ERY inhibiting the process while LEV promoted it. Furthermore, after 96 h of exposure to the drugs, the activities of GSH-Px, POD, CAT, and the contents of MDA, proline, and betaine increased. Conversely, the actions of GST and the contents of GSH and soluble protein decreased in the ERY group. In the LEV group, the activities of POD and CAT and the contents of GSH, MDA, proline, and betaine increased, while the contents of soluble protein decreased. Conversely, the mixed group exhibited increased POD activity and contents of GSH, MDA, proline, betaine, and soluble protein. These findings suggest that antibiotics found in pharmaceutical and personal care products (PPCPs) can harm primary marine benthic eukaryotes. The findings from the research on the possible hazards linked to antibiotic medications in aquatic ecosystems offer valuable knowledge for ensuring the safe application of these drugs in environmental contexts.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Wenjie Ou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jiannan Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Wenxin Xu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Lu Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| |
Collapse
|
37
|
Chu Y, Li S, Xie P, Chen X, Li X, Ho SH. New insight into the concentration-dependent removal of multiple antibiotics by Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2023; 385:129409. [PMID: 37392966 DOI: 10.1016/j.biortech.2023.129409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Microalgae have attracted increasing attention as an environmentally friendly treatment for antibiotics. However, the effect of antibiotic concentration on the removal ability of microalgae with the underlying mechanisms remains unclear. Thus, this work investigates the removal of tetracycline (TET), sulfathiazole (STZ), and ciprofloxacin (CIP) at different concentrations using Chlorella sorokiniana. The results indicate that microalgae have a concentration-dependent effect on antibiotic removal; however, the removal trends for the three antibiotics differed significantly. Specifically, TET showed nearly 100% removal efficiency at any concentration. The high concentration of STZ inhibited microalgal photosynthesis and induced the production of ROS, leading to antioxidant damage and inhibiting removal efficiency. Conversely, CIP enhanced the ability of microalgae to remove CIP by inducing a dual peroxidase and cytochrome p450 enzyme response. Furthermore, the economic analysis demonstrated that microalgae treatment antibiotics were calculated to be 4.93€/m3, which becomes cheaper than the other microalgae water treatment process.
Collapse
Affiliation(s)
- Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
38
|
Wang H, Hu C, Wang Y, Zhao Y, Jin C, Guo L. Elucidating microalgae-mediated metabolism for sulfadiazine removal mechanism and transformation pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121598. [PMID: 37031851 DOI: 10.1016/j.envpol.2023.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Sulfadiazine (SDZ) as a typical sulfonamide antibiotic is commonly detected in wastewater, and its removal mechanism and transformation pathways in microalgae-mediated system remain unclear. In this study, the SDZ removal through hydrolysis, photodegradation, and biodegradation by Chlorella pyrenoidosa was investigated. Higher superoxide dismutase activity and biochemical components accumulation were obtained under SDZ stress. The SDZ removal efficiencies at different initial concentrations were 65.9-67.6%, and the removal rate followed pseudo first-order kinetic model. Batch tests and HPLC-MS/MS analyses suggested that biodegradation and photodegradation through the reactions of amine group oxidation, ring opening, hydroxylation, and the cleavage of S-N, C-N, C-S bond were dominant removal mechanisms and pathways. Characteristics of transformation products were evaluated to analyze their environmental impacts. High-value products of lipid, carbohydrate, and protein in microalgae biomass presented economic potential of microalgae-mediated metabolism for SDZ removal. The findings of this study broadened the knowledge for the microalgae self-protection from SDZ stress and provided a deep insight into SDZ removal mechanism and transformation pathways.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
39
|
Xu N, Shen Y, Jiang L, Jiang B, Li Y, Yuan Q, Zhang Y. Occurrence and risk levels of antibiotic pollution in the coastal waters of eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27500-5. [PMID: 37162672 DOI: 10.1007/s11356-023-27500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
In order to preliminarily explore the distribution of antibiotic pollution in the coastal waters of eastern China, the concentrations of 13 antibiotics in 5 representative coastal rivers in Jiangsu and 21 sampling sites in the coastal waters of Jiangsu were analyzed. The total antibiotic concentrations in the 5 rivers ranged from 33.14 to 417.78 ng L-1, and the total antibiotic concentrations in the 21 sampling sites ranged from 0.90 to 86.33 ng L-1. Macrolides exhibited the highest total concentration and the maximum detection frequency in both coastal rivers and the coastal waters. The concentrations of antibiotics in a sampling site decreased as the distance of the sampling site from the coastline increased, indicating that river inputs are important sources of antibiotic pollution in the coastal waters of Jiangsu. The detection frequencies of roxithromycin, lincomycin, azithromycin, and sulfamethoxazole in the rivers and sampling sites were above 70%. Correlation analysis showed that the concentrations of antibiotics were positively correlated with the levels of chemical oxygen demand, total phosphorus, and total nitrogen. Risk assessments revealed that roxithromycin and ofloxacin posed medium ecological and resistance risks, respectively, to the most sensitive aquatic organisms in the coastal waters of Jiangsu. The results of this study highlight the significance of monitoring and controlling the concentrations of antibiotic contaminants in the coastal waters of Jiangsu.
Collapse
Affiliation(s)
- Ning Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yi Shen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lei Jiang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Bin Jiang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ying Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Qingbin Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
40
|
Quan L, Cheng Y, Wang J, Chen Y, Li D, Wang S, Li B, Zhang Z, Yang L, Wu L. Efficient removal of thiamethoxam by freshwater microalgae Scenedesmus sp. TXH: Removal mechanism, metabolic degradation and application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117388. [PMID: 36731413 DOI: 10.1016/j.jenvman.2023.117388] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Neonicotinoids, as the most widely used pesticides in the world, help improve the production of crops. Meanwhile, it also brings potential threats to surrounding environments and other organisms because of its wide use and even abuse. In this study, Scenedesmus sp. TXH isolated from a wastewater treatment plant was used to remove the neonicotinoid pesticide thiamethoxam (THIA). The removal efficiency, degradation pathway, metabolite fate of THIA and physicochemical effects on microalgae cells were studied. Meanwhile, the feasibility of using microalgal technology to remove THIA from municipal wastewater was also explored. The results showed that 5-40 mg/L of THIA slightly promoted the growth of microalgae, while 60 mg/L THIA severely inhibited microalgal growth. It was observed that malondialdehyde content and superoxide dismutase activity in 60 mg/L THIA group increased significantly (p < 0.05) in the early stage of the experiment, indicating that THIA caused oxidative damage to microalgae. Scenedesmus sp. TXH showed high-efficient degradation ability and high resistance to THIA, with 100% removal of THIA at 5, 20 and 40 mg/L groups and 97.5% removal of THIA at 60 mg/L group on day 12. THIA was mainly removed by biodegradation, accounting for 78.18%, 93.50%, 96.81% and 91.35% under 5, 20, 40 and 60 mg/L on day 12, respectively. Six degradation products were identified, and four potential degradation pathways were proposed. In practical wastewater, the removal efficiency of total dissolved nitrogen, total dissolved phosphorus, ammonia nitrogen and THIA reached 85.68%, 90.00%, 98.43% and 100%, respectively, indicating that Scenedesmus sp. TXH was well adapted to the wastewater and effectively removed THIA and conventional pollutants.
Collapse
Affiliation(s)
- Linghui Quan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yongtao Cheng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiping Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Diantong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Shiqi Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bolin Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; The James Hutton Institute, Craigiebuckler, Aberdeen, ABI5 8QH, UK
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
41
|
Fang Y, Liu Y, Zhang J. Mechanisms for the increase in lipid production in cyanobacteria during the degradation of antibiotics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121171. [PMID: 36736559 DOI: 10.1016/j.envpol.2023.121171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the responses of cell density, photosynthesis activity, dry cell weight, lipid productivity, proteome and metabolome in two non-toxic cyanobacterial species (Synechococcus sp. and Chroococcus sp.) exposed to two frequently detected antibiotics (sulfamethoxazole and ofloxacin) at test concentrations of 0.2-20.0 μg L-1 in a 4-day culture period. Upregulated antioxidant enzymes and oxidoreductases contributed to antibiotic biodegradation in Synechococcus sp.; whereas, upregulated carotenoid protein contributed to antibiotic biodegradation in Chroococcus sp. The 4-day removal efficiencies of sulfamethoxazole and ofloxacin by cyanobacteria were 35.98-66.23% and 33.01-61.92%, respectively. In cyanobacteria, each antibiotic induced hormetic responses, such as increase in cell density, dry cell weight, and photosynthetic activity; upregulation of photosynthesis-related proteins; and elevation of lipid expression by up to 2.05-fold. Under antibiotic stress, the two cyanobacterial species preferred to store energy in the form of lipids rather than ATP, with fructose-bisphosphate aldolase playing an essential role in lipid synthesis. The downregulation of lipid transporters also facilitated lipid accumulation in Synechococcus sp. In general, the two non-toxic cyanobacterial species achieved a good combination of lipid deposition and antibiotic treatment performance, especially in Chroococcus sp. exposed to sulfamethoxazole.
Collapse
Affiliation(s)
- Youshuai Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
42
|
Yu C, Li C, Zhang Y, Du X, Wang JH, Chi ZY, Zhang Q. Effects of environment-relevant concentrations of antibiotics on seawater Chlorella sp. biofilm in artificial mariculture effluent. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
43
|
Zhang Y, Wang JH, Zhang JT, Chi ZY, Kong FT, Zhang Q. The long overlooked microalgal nitrous oxide emission: Characteristics, mechanisms, and influencing factors in microalgae-based wastewater treatment scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159153. [PMID: 36195148 DOI: 10.1016/j.scitotenv.2022.159153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microalgae-based wastewater treatment is particularly advantageous in simultaneous CO2 sequestration and nutrients recovery, and has received increasing recognition and attention in the global context of synergistic pollutants and carbon reduction. However, the fact that microalgae themselves can generate the potent greenhouse gas nitrous oxide (N2O) has been long overlooked, most previous research mainly regarded microalgae as labile organic carbon source or oxygenic approach that interfere bacterial nitrification-denitrification and the concomitant N2O production. This study, therefore, summarized the amount and rate of N2O emission in microalgae-based systems, interpreted in-depth the multiple pathways that lead to NO formation as the key precursor of N2O, and the pathways that transform NO into N2O. Reduction of nitrite could take place in either the cytoplasm or the mitochondria to form NO by a series of enzymes, while the NO could be enzymatically reduced to N2O at the chloroplasts or the mitochondria respectively under light and dark conditions. The influences of abiotic factors on microalgal N2O emission were analyzed, including nitrogen types and concentrations that directly affect the nitrogen transformation routes, illumination and oxygen conditions that regulate the enzymatic activities related to N2O generation, and other factors that indirectly interfere N2O emission via NO regulation. The uncertainty of microalgae-based N2O emission in wastewater treatment scenarios were emphasized, which would be particularly impacted by the complex competition between microalgae and ammonia oxidizing bacteria or nitrite oxidizing bacteria over ammonium or inorganic carbon source. Future studies should put more efforts in improving the compatibility of N2O emission results expressions, and adopting consistent NO detection methods for N2O emission prediction. This review will provide much valuable information on the characteristics and mechanisms of microalgal N2O emission, and arouse more attention to the non-negligible N2O emission that may impair overall greenhouse gas reduction efficiency in microalgae-based wastewater treatment systems.
Collapse
Affiliation(s)
- Ying Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
44
|
Zhang Y, Li M, Chang F, Yi M, Ge H, Fu J, Dang C. The distinct resistance mechanisms of cyanobacteria and green algae to sulfamethoxazole and its implications for environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158723. [PMID: 36108830 DOI: 10.1016/j.scitotenv.2022.158723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria and green algae are the OECD recommended test organisms for environmental toxicity assessments of chemicals. Whether the differences in these two species' responses to the identical chemical affect the assessment outcomes is a question worth investigating. Firstly, we investigated the distinct resistance mechanisms of Synechococcus sp. (cyanobacteria) and R. subcapitata (green algae) to sulfamethoxazole (SMX). The antioxidant system analysis demonstrated that R. subcapitata mainly relies on enhancing the activity of first line defense antioxidants, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), which is the most powerful and efficient response to get rid of ROS, whereas Synechococcus sp. depends upon increasing the activity of glutathione-S-transferase (GST) and GPx to resist oxidative stress. Besides, a total 7 transformation products (TPs) of SMX were identified in R. subcapitata culture medium. The analysis of conjectural transformation pathways and the predicted toxicity indicates that R. subcapitata could relieve SMX toxicity by degrading it to low eco-toxic TPs. Additionally, we summarized numerous exposure data and assessed the environmental risk of various antibiotics, revealing an inconsistent result for the same type of antibiotic by using cyanobacteria and green algae, which is most likely due to the different resistance mechanisms. In the future, modified indicators or comprehensive assessment methods should be considered to improve the rationality of environmental toxicity assessments.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ming Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Malan Yi
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Hongmei Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
45
|
Tong F, Liu D, Zhang Z, Chen W, Fan G, Gao Y, Gu X, Gu C. Heavy metal-mediated adsorption of antibiotic tetracycline and ciprofloxacin on two microplastics: Insights into the role of complexation. ENVIRONMENTAL RESEARCH 2023; 216:114716. [PMID: 36336092 DOI: 10.1016/j.envres.2022.114716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) have recently become an emerging environmental concern. Nevertheless, limited information is known about the adsorption of MPs for organic contaminants under combined heavy metals pollution, with an emphasis on the role of complexation. Thus, this study aims to comprehensively compare and investigate the adsorption performance of antibiotic tetracycline (TC) and ciprofloxacin (CIP) on two polar MPs (polyamide (PA) and polyvinyl chloride (PVC)) affected by Cu(II) and Cd(II) with contrasting complexation abilities. Batch adsorption experiments were used in combination with speciation calculation, zeta potential determination, FTIR spectroscopy characterization and investigation of the affinity of MPs for heavy metals. Results showed that the sorption kinetics and isotherms of TC and CIP on PA and PVC could be well fitted to pseudo-second-order and Langmuir models, respectively, both in the absence and presence of Cu and Cd, suggesting that multiple interactions and monolayer adsorption played an important role in the adsorption process. The presence of Cu substantially improved TC and CIP adsorption and obviously changed the pH dependence of their adsorption onto both MPs, which may result from the Cu-induced strong complexation with TC and CIP. The presence of Cd slightly enhanced TC adsorption on both MPs while reduced CIP adsorption especially on PVC, which may be ascribed to the Cd-induced cationic bridging effects in TC adsorption and the competitive adsorption of Cd in CIP adsorption. Therefore, the heavy metal-mediated complexation effects may play a dominant role in antibiotic adsorption by MPs only in the presence of heavy metals with strong complexation ability while the adsorption performance in the presence of heavy metals with negligible complexation capacity may be influenced by effects other than complexation. This study helps further understand the heavy metal-mediated adsorption behavior of organic contaminants on polar MPs and the role of complexation reactions therein.
Collapse
Affiliation(s)
- Fei Tong
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Di Liu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Zhenhua Zhang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Wei Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Guangping Fan
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yan Gao
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
46
|
Ma R, Xue Y, Ma Q, Chen Y, Yuan S, Fan J. Recent Advances in Carbon-Based Materials for Adsorptive and Photocatalytic Antibiotic Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224045. [PMID: 36432330 PMCID: PMC9694191 DOI: 10.3390/nano12224045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics have been a primary environmental concern due to their widespread dispersion, harmful bioaccumulation, and resistance to mineralization. Unfortunately, typical processes in wastewater treatment plants are insufficient for complete antibiotic removal, and their derivatives in effluent can pose a threat to human health and aquatic communities. Adsorption and photocatalysis are proven to be the most commonly used and promising tertiary treatment methods. Carbon-based materials, especially those based on graphene, carbon nanotube, biochar, and hierarchical porous carbon, have attracted much attention in antibiotic removal as green adsorbents and photocatalysts because of their availability, unique pore structures, and superior physicochemical properties. This review provides an overview of the characteristics of the four most commonly used carbonaceous materials and their applications in antibiotic removal via adsorption and photodegradation, and the preparation of carbonaceous materials and remediation properties regarding target contaminants are clarified. Meanwhile, the fundamental adsorption and photodegradation mechanisms and influencing factors are summarized. Finally, existing problems and future research needs are put forward. This work is expected to inspire subsequent research in carbon-based adsorbent and photocatalyst design, particularly for antibiotics removal.
Collapse
|
47
|
Zhou JL, Yang L, Huang KX, Chen DZ, Gao F. Mechanisms and application of microalgae on removing emerging contaminants from wastewater: A review. BIORESOURCE TECHNOLOGY 2022; 364:128049. [PMID: 36191750 DOI: 10.1016/j.biortech.2022.128049] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This study reviews the development of the ability of microalgae to remove emerging contaminants (ECs) from wastewater. Contaminant removal by microalgae-based systems (MBSs) includes biosorption, bioaccumulation, biodegradation, photolysis, hydrolysis, and volatilization. Usually, the existence of ECs can inhibit microalgae growth and reduce their removal ability. Therefore, three methods (acclimation, co-metabolism, and algal-bacterial consortia) are proposed in this paper to improve the removal performance of ECs by microalgae. Finally, due to the high removal performance of contaminants from wastewater by algal-bacterial consortia systems, three kinds of algal-bacterial consortia applications (algal-bacterial activatedsludge, algal-bacterial biofilm reactor, and algal-bacterial constructed wetland system) are recommended in this paper. These applications are promising for ECs removal. But most of them are still in their infancy, and limited research has been conducted on operational mechanisms and removal processes. Extra research is needed to clarify the applicability and cost-effectiveness of hybrid processes.
Collapse
Affiliation(s)
- Jin-Long Zhou
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Kai-Xuan Huang
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
48
|
Wang H, Hu C, Wang Y, Jin C, She Z, Guo L. Mixotrophic cultivation of Chlorella pyrenoidosa under sulfadiazine stress: High-value product recovery and toxicity tolerance evaluation. BIORESOURCE TECHNOLOGY 2022; 363:127987. [PMID: 36126847 DOI: 10.1016/j.biortech.2022.127987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Sulfadiazine (SDZ) as a common sulfonamide antibiotic is frequently detected in wastewater, but there is little information on the high-value product recovery and toxicity tolerance evaluation of mixotrophic microalgae under SDZ stress. In this study, effects of SDZ on growth, photosynthesis, cellular damage, antioxidant capacity and intracellular biochemical components of Chlorella pyrenoidosa were investigated. Results showed that the growth of C. pyrenoidosa was inhibited by about 20% under high SDZ stress, but there was little impact on photosynthesis. Cellular damage and antioxidant capacity were evaluated using malondialdehyde (MDA) content and superoxide dismutase (SOD) activity to further explain the toxicity tolerance of mixotrophic microalgae. The SDZ stress not only increased lipid and carbohydrate content, respectively attaining to the maximum of 390.0 and 65.4 mg/L, but also improved the biodiesel quality of C. pyrenoidosa. The findings show the potential of mixotrophic microalgae for biodiesel production and wastewater treatment.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
49
|
Liang L, Bai X, Hua Z. Enhancement of the immobilization on microalgae protective effects and carbamazepine removal by Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79567-79578. [PMID: 35715671 DOI: 10.1007/s11356-022-21418-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Carbamazepine (CBZ) has drawn extensive attention due to their environmental threats. In this study, polyvinyl alcohol-sodium alginate polymers to immobilize Chlorella vulgaris (FACHB-8) were used to investigate whether immobilization can facilitate microalgae to alleviate the CBZ stress and enhance CBZ removal. The results showed that after immobilized treatment, the biomass of microalgae increased by approximately 20%, the maximum level of malondialdehyde content decreased from 28 to 13 μmol/g, and the photosynthetic capacity of FV/FM recovered to 90% of the control group. The CBZ removal rate increased from 67 to 84% by immobilization at a CBZ concentration of 80 mg·L-1. The results indicated that immobilization technology can effectively protect microalgae from CBZ toxicity and improve the removal of CBZ, especially at high concentrations (> 50 mg/L). Biodegradation was the dominant pathway for microalgae to remove carbamazepine. This study added the understanding of the microalgae responses under immobilization and the interactions between immobilized microalgae and CBZ removal, thereby providing a novel insight into microalgae technology in high concentration wastewater treatments.
Collapse
Affiliation(s)
- Lu Liang
- College of Environment, Hohai University, Xikang road 1#, Gulou District, Nanjing, 210098, China
| | - Xue Bai
- College of Environment, Hohai University, Xikang road 1#, Gulou District, Nanjing, 210098, China
| | - Zulin Hua
- College of Environment, Hohai University, Xikang road 1#, Gulou District, Nanjing, 210098, China.
| |
Collapse
|
50
|
Hu G, Fan S, Wang H, Ji B. Adaptation responses of microalgal-bacterial granular sludge to sulfamethoxazole. BIORESOURCE TECHNOLOGY 2022; 364:128090. [PMID: 36243257 DOI: 10.1016/j.biortech.2022.128090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The presence of widely used sulfamethoxazole (SMX) in wastewater poses a threat to aquatic organisms and humans. Here, the responses of the emerging microalgal-bacterial granular sludge (MBGS) process in treating SMX-containing wastewater were investigated. The results indicated that 1, 5 and 10 mg/L SMX had little effect on the removals of organics and nutrients after an acclimation period of three to five days. SMX reduced intracellular glycogen content of MBGS, while the production of chlorophyll and extracellular polymeric substances tended to be promoted. Furthermore, the potential mechanisms on how MBGS adapted to SMX were deciphered to be the alterations of microbial community structure and function of MBGS. SMX might be degraded intracellularly into a carbon source for microbial metabolism and the SMX degraders were suspected to be Scenedesmaceae, Rhodocyclaceae and Burkholderiaceae. This study suggests that the MBGS process can handle SMX-containing wastewater, advancing knowledge on MBGS for antibiotics degradation.
Collapse
Affiliation(s)
- Guosheng Hu
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Siqi Fan
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|