1
|
Finlay I, Bullard JE, Alvarez-Barrantes L, Davis S. Macroplastic surface characteristics change during wind abrasion. Sci Rep 2025; 15:17630. [PMID: 40399498 PMCID: PMC12095662 DOI: 10.1038/s41598-025-02738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 05/15/2025] [Indexed: 05/23/2025] Open
Abstract
Mechanical abrasion is an important wind driven process which can degrade plastic litter on sandy beaches, desert environments and in agricultural settings. Wind-driven particle impacts can cause surface roughening and chemical changes and eventually complete fragmentation in high stress environments. Aeolian abrasion has been considered in the context of microplastics (< 5 mm) which can be easily mobilised by wind. However, macroplastic (> 5 mm) abrasion has primarily been confined to engineering studies using high air velocities (> 25 m s-1) and large abraders (> 6 mm) which generate greater impact forces than observed in the natural environment. Using laboratory abrasion experiments, we demonstrate that the surface microtextures and surface chemistry of three different types of plastic are substantially altered during the processes of aeolian abrasion at impact particle velocities of 0.6 m s-1. After ten days of continuous abrasion with four different erodents the macroplastic surfaces developed textures resulting from micro-cutting, denting, flaking, micro-pitting and surface flattening. The prevalence of each surface texture was dependent upon the angularity of the erodent and the type of plastic. In all cases, polymer surface chemical compositions became more complex due to embedding of shattered abrasive and the replacment of carbon with oxygen and silica.
Collapse
Affiliation(s)
- Isabelle Finlay
- Geography and Environment, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Joanna E Bullard
- Geography and Environment, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| | | | - Sam Davis
- Loughborough Materials Characterisation Centre, Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
2
|
Contreras-Castillo L, Blázquez-Blázquez E, Cerrada ML, Amariei G, Rosal R. Aquatic toxicity of UV-irradiated commercial polypropylene plastic particles and associated chemicals. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138645. [PMID: 40383040 DOI: 10.1016/j.jhazmat.2025.138645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/30/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Plastics often contain non-polar chemical additives, such as antioxidants, flame retardants, plasticizers, and UV stabilizers, which improve performance but have poorly understood environmental risks. This study assessed the aquatic toxicity of polypropylene (PP) containing the antioxidant Irgafos 168 (IRG) to the crustacean Daphnia magna and the green alga Raphidocelis subcapitata. Commercial PP containing IRG (PPc) and additive- and oligomer-free PP (PPd) were irradiated at 254 nm using germicidal light, both with and without H2O2. The tested particles included microplastics (MPs, 1-50 μm and 50-500 μm) and nanoplastics (NPs, < 1 μm). The results showed that the toxicity was influenced by particle size, concentration, and the presence of the antioxidant additive. Smaller particles, along with the presence of IRG and its degradation products, tris(2,4-di-tert-butylphenyl) phosphate, bis(2,4-di-tert-butylphenyl) phosphate, and 2,4-di-tert-butylphenol, contributed to higher toxicity in both D. magna and R. subcapitata. The highest toxicity was observed for NPs containing IRG (PPc), which resulted in an EC20 for D. magna immobilization of 7.2 ± 0.1 mg/L, compared to the less toxic NPs free of IRG (EC20 28.7 ± 4.2 mg/L). The growth rate of R. subcapitata was also more affected by NPs generated from PPc (EC20 0.2 ± 1.2 mg/L) than by the corresponding NPs free of IRG (LOEC 3 mg/L). Our findings showed that the main toxicity was driver was an increase of intracellular reactive oxygen species, lipid peroxidation (LPO), damage to cell membrane integrity and impairment of esterase activity. The results demonstrated that irradiated plastic particles act as carriers for toxic non-polar compounds, enhancing negative effects on aquatic organisms, with particle size being a key factor. This study highlights the complex toxicological impacts of micro- and nano-plastics containing additives on aquatic biota.
Collapse
Affiliation(s)
- Laura Contreras-Castillo
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - María L Cerrada
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain.
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
3
|
Bhattacharjee S, Ghosh PK, Basu S, Mukherjee T, Mandal B, Sinha P, Mukherjee A. Microplastic contamination in threatened wild felids of India: Understanding environmental uptake, feeding implications, and associated risks. ENVIRONMENTAL RESEARCH 2025; 273:121218. [PMID: 40015425 DOI: 10.1016/j.envres.2025.121218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
While the presence of microplastics (MPs, <5 mm) in various aquatic organisms is well-documented, studies on the accumulation of MPs in terrestrial predators remain limited worldwide, including in India. This study aims to evaluate, for the first time, the occurrence of MPs in the scat of mid-sized felids-fishing cat and jungle cat-from their overlapping habitat in the Gangetic Estuary of India. The risk assessment of MPs and management recommendation for MP mitigation was also discussed in this context. Notably, our study is the first to report the presence of MPs and mesoplastics in fishing cat from India and jungle cat globally. The abundance of MPs was found to be higher in jungle cat (12.6 ± 1.93 MP/g d.w) compared to fishing cat (10.5 ± 2.12 MP/g d.w) in the Gangetic estuary. Furthermore, fiber-shaped (70.37%) and 1-5 mm-sized (47.73%) MPs predominated in both felid species, while fiber bundles were observed only in jungle cat. Red-colored MPs (27.62%) were predominantly found in fishing cat, whereas transparent MPs (33.33%) were more common in jungle cat. Scanning electron microscopy revealed possible environmental and digestive degradation marks on the MPs. A total of seven synthetic and one natural polymer were identified, with Ethylene Vinyl Alcohol (55.56%) being predominant in fishing cat and Polyethylene (33.33%) more common in jungle cat. Polymer risk assessment indicated that the MPs in fishing cat fall into the danger category, Group IV (PHI 100-1000), while jungle cat possess high threat under extreme danger category, Group V (PHI >1000). The observed MPs and mesoplastics in felids probably come from adjacent environmental uptake and/or accumulate through trophic transfer from prey items. The evidence of MPs in felids may pose a threat to the big cat-Royal Bengal tigers in the Sundarbans. Therefore, various landscape-based policy implementations are recommended to mitigate MP pollution.
Collapse
Affiliation(s)
- Shrayan Bhattacharjee
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Pradipta Kumar Ghosh
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Shambadeb Basu
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, 700108, India.
| | - Banani Mandal
- Department of Zoology, Jogesh Chandra Chaudhuri College, Kolkata, 700033, India
| | - Pritam Sinha
- Department of Physical Science, Bose Institute, Kolkata, 700091, India
| | - Arunava Mukherjee
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
4
|
Luo X, Zhang Y, Kang S, Chen R, Gao T, Allen S. Atmospheric emissions of microplastics entrained with dust from potential source regions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137509. [PMID: 39923378 DOI: 10.1016/j.jhazmat.2025.137509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/19/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Atmospheric microplastics play an important role in the microplastic cycle. However, their behaviors in high-altitude remote areas were still poorly constrained. Based on one year of samples from the northeast Tibetan Plateau, we investigated the status of atmospheric microplastics and their relationships with dust. The results indicated that number-based concentrations of atmospheric microplastics were 4.07 ± 2.37 items m-3 with the maximum in spring, while mass-based concentrations were 0.126 ± 0.152 μg m-3 with the maximum in winter. Atmospheric microplastics < 50 μm accounted for 92.9 %, with 95.4 % being fragments, emphasizing the pervasive occurrence of small-sized fragmented microplastics in the northeast Tibetan Plateau. Analysis of Lagrangian particle dispersion model combined with potential source contributions revealed that dust emission in potential source regions significantly impacted atmospheric microplastic concentrations. The threshold shear velocity of microplastics and dust exhibited similar values, supporting their co-emissions from potential source regions. Once microplastics are entrained into the airflow, the lower updraft wind speed required for microplastic suspension facilitates long-range atmospheric transport. This study enhanced our insights into the atmospheric microplastic sources and supported future mitigation strategies for microplastic exposure in the remote ecosystem.
Collapse
Affiliation(s)
- Xi Luo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yulan Zhang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rensheng Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tanguang Gao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Steve Allen
- Healthy Earth, London WC2H 9JQ, United Kingdom
| |
Collapse
|
5
|
Marín A, Feijóo P, Carbonetto B, González-Torres P, Tena-Medialdea J, García-March JR, Gámez-Pérez J, Cabedo L. Long-term monitoring of biofilm succession unveils differences between biodegradable and conventional plastic materials. MARINE POLLUTION BULLETIN 2025; 214:117820. [PMID: 40090043 DOI: 10.1016/j.marpolbul.2025.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
A vast amount of plastic waste enters the ocean every year and the Mediterranean Sea is particularly affected by this issue. Biodegradable polymers like poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), may help mitigate this problem. We investigated bacterial biofilm development and succession on these polymers over one year in the Western Mediterranean Sea. Scanning electron microscopy (SEM) and confocal laser scanning were used to examine microbial colonization and surface erosion, while bacterial community abundance and composition were assessed through culture plate counting and 16S rRNA gene amplicon sequencing. SEM revealed significant surface erosion on PHBV, indicative of microbial degradation, while PLA exhibited minor and irregular erosion. Culture-based quantification showed higher bacterial colonization on PHBV compared to PLA, suggesting that PHBV provides a more favourable surface for bacterial attachment Amplicon sequencing of the 16S rRNA gene revealed high bacterial diversity, with 17,781 operational taxonomic units across all samples. Proteobacteria, Bacteroidota, and Planctomycetota were the dominant phyla, with the Shannon index consistently exceeding 8, corroborating the bacterial diversity across all materials. Temporal shifts in bacterial community composition were significant, with exposure time explaining 29.8 % of the variation, suggesting biofilm succession as a key factor shaping microbial assemblages. While polymer type had a limited impact on bacterial composition, PHBV biofilms exhibited greater bacterial abundance and diversity compared to PLA. This study highlights PHBV's role in shaping biofilms and its relevance in assessing biodegradable plastics in marine environments. Understanding microbial interactions with bioplastics is crucial for evaluating their environmental impact and degradation dynamics.
Collapse
Affiliation(s)
- Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, Castelló 12071, Spain
| | - Patricia Feijóo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, Castelló 12071, Spain
| | - Belén Carbonetto
- Microomics Systems S.L., Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Sant Quintí, 77-79, Horta-Guinardó, Barcelona 08041, Spain
| | - Pedro González-Torres
- Microomics Systems S.L., Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Sant Quintí, 77-79, Horta-Guinardó, Barcelona 08041, Spain
| | - José Tena-Medialdea
- Institute of Environment and Marine Science Research, Universidad Católica de Valencia (IMEDMAR-UCV), Av. del Port, 15, Calpe 03710, Spain
| | - José R García-March
- Institute of Environment and Marine Science Research, Universidad Católica de Valencia (IMEDMAR-UCV), Av. del Port, 15, Calpe 03710, Spain
| | - José Gámez-Pérez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, Castelló 12071, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, Castelló 12071, Spain.
| |
Collapse
|
6
|
Rodríguez-Garraus A, Venäläinen M, Lyyränen J, Pulli H, Salmatonidis A, Lotti D, Domenech J, Fernández JF, Guzmán-Mínguez J, Isasi-Vicente M, Katsumiti A, Rodríguez-Llopis I, Vázquez-Campos S, Carrière M, Catalán J. In vitro cell-transforming capacity of micro- and nanoplastics derived from 3D-printing waste. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118007. [PMID: 40068553 DOI: 10.1016/j.ecoenv.2025.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
The increasing use of plastic polymers in 3D printing applications may lead to human exposure to micro- and nanoplastics (MNPLs), raising concerns regarding adverse health consequences such as cancer induction. Little attention has been given to MNPLs originated at the end of the life cycle of 3D-printed objects because of the mechanical and environmental degradation of plastic waste. This study assessed the carcinogenic potential of secondary MNPLs generated through cryomilling of 3D objects using the validated in vitro Bhas 42 cell transformation assay (CTA). Three-dimensional objects were printed using four types of polycarbonate (PC)- and polypropylene (PP)-modified thermoplastic filaments, undoped and doped with single-walled carbon nanotubes (PC-CNT) and silver nanoparticles (PP-Ag), respectively. MNPLs (< 5 µm) generated following a three-step top-down process were thoroughly characterized. Bhas 42 cells were treated once (initiation assay) or repeatedly (promotion assay) with several concentrations of MNPLs (3.125-100 µg/mL) mimicking realistic exposure conditions, and transformed foci formation was evaluated after 21 days. Furthermore, cellular internalization and the mRNA expression of seven genes previously recognized as part of a predictive early cell transformation signature were also evaluated. Despite being internalized, none of the particles was able to initiate or promote in vitro cell transformation, regardless of doping with nanomaterials. Alternatively, all the particles significantly increased and decreased the mRNA expression of Prl2c3 and Timp4, respectively, under promotion conditions, indicating early changes that occur before the formation of transformed foci. These findings suggest that the test MNPLs could have a tumorigenic potential despite not showing morphological changes in Bhas 42 cells.
Collapse
Affiliation(s)
| | - Mari Venäläinen
- Finnish Institute of Occupational Health, Helsinki 00250, Finland
| | - Jussi Lyyränen
- Finnish Institute of Occupational Health, Helsinki 00250, Finland
| | - Hanna Pulli
- Finnish Institute of Occupational Health, Helsinki 00250, Finland
| | | | - Davide Lotti
- LATI Industria Termoplastici S.p.A., Vedano Olona 21040, Italy
| | - Josefa Domenech
- Finnish Institute of Occupational Health, Helsinki 00250, Finland
| | | | - Jesús Guzmán-Mínguez
- Instituto de Cerámica y Vidrio, ICV-CSIC, Madrid 28049, Spain; Univ. Antonio de Nebrija, Industrial Engineering Department, Campus de Madrid-Princesa, Madrid 28015, Spain
| | - Mikel Isasi-Vicente
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio 48170, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio 48170, Spain
| | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio 48170, Spain
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS,Grenoble-INP, IRIG, SyMMES-CIBEST, Grenoble 38000, France
| | - Julia Catalán
- Finnish Institute of Occupational Health, Helsinki 00250, Finland; Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza 50013, Spain.
| |
Collapse
|
7
|
Girlanda O, Li G, Mitrano DM, Dreimol CH, Kanji ZA. Ice nucleation onto model nanoplastics in the cirrus cloud regime. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2025; 5:378-393. [PMID: 39989668 PMCID: PMC11836774 DOI: 10.1039/d4ea00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
The proportion of ice crystals in clouds can affect cloud albedo and lifetime, impacting the Earth's radiative budget. Ice nucleating particles (INPs) lower the energy barrier of ice nucleation and thus facilitate primary ice formation in the atmosphere. Atmospheric nanoplastics (NPs) have been detected in remote regions far from emission sources, suggesting that they can become airborne and undergo long-range transport in the atmosphere. During the atmospheric residence of NPs, they could catalyse primary ice crystal formation by acting as INPs. In this study, we present results from laboratory experiments in which model NPs composed of polystyrene and polyacrylonitrile were tested for their ice-nucleating ability using the horizontal ice nucleation chamber (HINC) as a function of ice-nucleation temperature and water saturation ratio. The results showed that NPs can be effective INPs under both cirrus and cold mixed-phase cloud conditions. The surface characteristics and wettability of the NPs were analysed via scanning electron images and dynamic vapour sorption measurements, which revealed the freezing mechanism as a combination of deposition nucleation and pore condensation and freezing. The results highlight the need to enumerate and characterise NPs in the atmosphere, given their potential to get scavenged by clouds via primary ice formation in clouds.
Collapse
Affiliation(s)
- Omar Girlanda
- Department of Environmental Systems Sciences, ETH Zurich 8092 Zurich Switzerland
| | - Guangyu Li
- Department of Environmental Systems Sciences, ETH Zurich 8092 Zurich Switzerland
- Laboratory for Microwave Spatial Intelligence and Cloud Platform, Deqing Academy of Satellite Applications Deqing China
| | - Denise M Mitrano
- Department of Environmental Systems Sciences, ETH Zurich 8092 Zurich Switzerland
| | - Christopher H Dreimol
- Wood Materials Science, Institute for Building Materials, ETH Zürich 8093 Zürich Switzerland
- Cellulose & Wood Materials Laboratory, Empa 8600 Dübendorf Switzerland
| | - Zamin A Kanji
- Department of Environmental Systems Sciences, ETH Zurich 8092 Zurich Switzerland
| |
Collapse
|
8
|
Lofty J, Sonnino Sorisio G, Kelleher L, Krause S, Ouro P, Wilson C. Hydrological and hydraulic drivers of microplastics in a rural river sourced from the UK's largest opencast coal mine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125722. [PMID: 39828202 DOI: 10.1016/j.envpol.2025.125722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Microplastics (MPs) are ubiquitous in river and freshwater ecosystems. However, the hydraulic and hydrological mechanisms that regulate the activation and emissions of MPs from both the land surface and subsurface into rivers are not well understood. This study aims to quantify the instream MP concentration and MP load in a remote headwater catchment river (Taff Bargoed, Wales, UK), which drains the UK's largest opencast coal mine (Ffos-y-fran), over a two-year period. Small fibers (< 1 mm) composed of acrylic and polyester dominated the MPs found in the Taff Bargoed, while less commonly observed MP fragments were mostly composed of polysulfone. River MP concentrations ranged from 0.27 to 28.87 MP/m³ (average: 14.60 ± 10.31 MP/m³), and MP load ranged one order of magnitude from 0.08 to 3.04 MP/s (average: 1.42 ± 0.81 MP/s). Statistically significant relationships were found between MP concentration, the number of dry weather hours and river discharge, which indicated rainfall-runoff induced, source limited, dilution effects on instream MP concentration. A negligible relationship between MP load and river discharge was observed, which suggests that MP load variability was independent of flow conditions, dry weather hours, and the MP concentration in the Taff Bargoed. Significant positive relationships between MP concentration and instream total suspended solids were also observed, indicating that this may provide a useful proxy for estimating MP variation in the Taff Bargoed. No longitudinal variation in MP concentration over a 2 km reach was observed, where differences in flow and drainage area were negligible, however, MP concentration increased by a factor of 2-4 downstream of an inflowing tributary, also sourced from the Ffos-y-fran coal mine. Overall, the results of this study provide evidence that mining activities can contribute MPs in rural and remote rivers, with their contribution being regulated by the hydraulic and hydrological processes in the catchment.
Collapse
Affiliation(s)
- James Lofty
- Cardiff University, School of Engineering, Hydro-Environmental Research Centre, Cardiff, Wales, UK.
| | | | - Liam Kelleher
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, England, UK; Birmingham Institute of Sustainability and Climate Action, Birmingham, England, UK
| | - Stefan Krause
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, England, UK; Birmingham Institute of Sustainability and Climate Action, Birmingham, England, UK; LEHNA (Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés), University of Lyon, Villeurbanne, France
| | - Pablo Ouro
- University of Manchester, Department of Civil Engineering and Management, School of Engineering, Manchester, UK
| | - Catherine Wilson
- Cardiff University, School of Engineering, Hydro-Environmental Research Centre, Cardiff, Wales, UK
| |
Collapse
|
9
|
Gonçalves GRL, Koomson A, Aggrey-Fynn J, Nyarko BK, Narayanaswamy BE. Invisible Peril: Assessing microplastic pollution in Ghanaian mangroves. MARINE POLLUTION BULLETIN 2025; 211:117361. [PMID: 39631189 DOI: 10.1016/j.marpolbul.2024.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Mangroves are key providers of crucial ecological services. This study's aim is to investigate the levels of microplastic (MP) contamination in mangroves from Ghana's Western and Central regions. A total of 1303 particles were analysed from sediment and water samples, 65 % comprising MPs. West and Central regions had notable differences in MPs abundance. Sediment had the highest number of MPs (703 MPs), with concentrations ranging from 0.01 to 2.23 MPs/g·dw, whilst concentrations in water ranged from 0.2 to 3.75 MPs/l. Fibre shapes were the most abundant MP (67 %) followed by fragments. Ten different groups of polymers were found, with polyester, polyethylene and polypropylene being the most abundant. Synthetic hair, textile and water sachets/small plastic bags were expected to be the source of most MPs collected. High population abundance was shown to be related to high levels of MPs. Our findings suggest reducing single-use plastics, waste management/treatment, and clean drinking water, could reduce the impact of MPs in Ghana.
Collapse
Affiliation(s)
- Geslaine R L Gonçalves
- The Scottish Association for Marine Science (SAMS), Oban, Argyll, Scotland PA37 1QA, UK.
| | - Albert Koomson
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Joseph Aggrey-Fynn
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Benjamin Kofi Nyarko
- Department of Geography and Regional Planning, University of Cape Coast, Cape Coast, Ghana.
| | | |
Collapse
|
10
|
Liu S, Chen B, Wang K, Wang J, Wang K, Suo Y, Yang X, Zhu Y, Zhang J, Lu M, Liu Y. Unveiling the impact of biodegradable polylactic acid microplastics on meadow soil health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:45. [PMID: 39776269 DOI: 10.1007/s10653-025-02358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Soil microplastics (MPs) pollution has garnered considerable attention in recent years. The use of biodegradable plastics for mulching has led to significant quantities of plastic entering agro-ecosystems. However, the effects of biodegradable polylactic acid (PLA) plastics on meadow soils remain underexplored. This study investigates the impacts of PLA-MPs of varying particle sizes and concentrations on soil physicochemical properties, enzyme activities, and microbial communities through a 60-day incubation experiment. PLA-MPs increased the pH, soil organic matter, total nitrogen (TN) and available potassium (AK) content, as well as enhanced the activities of superoxide dismutase (S-SOD), peroxidase (S-POD), soil catalase (S-CAT), β-glucosidase (S-β-GC) and urease (S-UE) activities. Conversely, a decrease in alkaline phosphatase (S-ALP) activity was observed. The influence of PLA-MPs on soil physicochemical properties was more pronounced with larger particle sizes, whereas smaller particles had a greater effect on enzyme activities. Additionally, PLA-MPs led to an increase in the abundance of Acidobacteriota, Chloroflexi, and Gemmatimonadota, while the abundance of Proteobacteria, Actinobacteriota, and Patescibacteria declined. Mantel test analysis showed that changes in microbial community composition affected soil properties such as pH, AK, S-UE and S-β-GC. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis demonstrated that PLA-MPs modify bacterial metabolic pathways. Our results suggest that particle size and concentration of PLA-MPs differentially affect soil nutrients and microbial community structure and function, with more significant effects observed at larger particle sizes and higher concentrations.
Collapse
Affiliation(s)
- Shuming Liu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
- Institute of Resources and Ecology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yining, 835000, China
| | - Binglin Chen
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Kaili Wang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Jinghuizi Wang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Kaili Wang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Yan Suo
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Xiaoyu Yang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Yaokun Zhu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Jiaxing Zhang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Mengchu Lu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
- Institute of Resources and Ecology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yining, 835000, China
| | - Yunqing Liu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China.
- Institute of Resources and Ecology, Yili Normal University, Yining, 835000, China.
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yining, 835000, China.
| |
Collapse
|
11
|
Hwangbo S, Kim IY, Ko K, Park K, Hong J, Kang G, Wi JS, Kim J, Lee TG. Preparation of fragmented polyethylene nanoplastics using a focused ultrasonic system and assessment of their cytotoxic effects on human cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125009. [PMID: 39326828 DOI: 10.1016/j.envpol.2024.125009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
With the growing prevalence of plastic use, the environmental release of plastic waste is escalating, and fragmented nanoscale plastic particles are emerging as significant environmental threats. This study aimed to evaluate the cytotoxic effects of fragmented polyethylene nanoplastics (PE NPs) manufactured using a focused ultrasonic system. The ultrasonic irradiation process generated fragmented PE NPs with a geometric mean diameter of 85.14 ± 5.37 nm and a size range of 25-350 nm. To assess cytotoxicity, we conducted a series of tests on various human cell lines, including stomach, blood, colon, lung, skin, liver, and brain-derived cells. The testing involved MTS-based cell viability assays to evaluate direct impacts on cell viability, lactate dehydrogenase (LDH) leakage assays to measure membrane damage, and ELISA to quantify TNF-α release as an indicator of inflammation. Although PE-NPs did not immediately induce apoptosis, significant LDH leakage and elevated TNF-α levels were observed across all cell lines, indicating membrane damage and inflammatory responses. Additionally, flow cytometry and TEM analyses revealed the intracellular accumulation of PE-NPs, further supporting their cytotoxic potential. These results demonstrate that fragmented PE-NPs can disrupt cellular membranes and induce inflammatory responses through accumulation within cells. The findings suggest that these NPs pose potential hazards to cell viability and underscore the need for further research into their environmental and health impacts.
Collapse
Affiliation(s)
- Seonae Hwangbo
- Nanobio Measurement Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea; Focused Ultra-Sonic Tech. (FUST) lab, Daejeon, 34015, Republic of Korea
| | - In Young Kim
- Nanobio Measurement Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea; Ministry of Food and Drug Safety (MFDS), Cheongju, 28159, Republic of Korea
| | - Kwanyoung Ko
- Nanobio Measurement Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Kyungtae Park
- School of Chemical & Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- School of Chemical & Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gwansuk Kang
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, CA, 94305, USA
| | - Jung-Sub Wi
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Jaeseok Kim
- Nanobio Measurement Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Tae Geol Lee
- Nanobio Measurement Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
12
|
Vethanayaham J, Partheeban EC, Rajendran R. Ecological risk assessment and characterization of microplastics in the beach sediments of southeast coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1232. [PMID: 39570422 DOI: 10.1007/s10661-024-13379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
This study explores spatiotemporal variations of microplastics (MPs) in beach sediments along India's southeast coast, focusing on Tamil Nadu and Puducherry from 2020 to 2021. The MPs were extracted from the sediments through density separation and wet peroxidation. Following extraction, they were quantified and physically characterized using stereo-microscopy and chemically analyzed using ATR-FTIR. During the monsoon, Chennai (923 ± 380 MPs/kg) exhibited the highest MP abundance, followed by Puducherry (805 ± 222 MPs/kg), Nagapattinam (799 ± 257 MPs/kg), Thoothukudi (653 ± 258 MPs/kg), Rameswaram (585 ± 151 MPs/kg), and Kanyakumari (344 ± 71 MPs/kg). Similarly, in summer, Chennai (719 ± 192 MPs/kg) recorded the highest mean, trailed by Puducherry (645 ± 163 MPs/kg), Rameswaram (529 ± 138 MPs/kg), Nagapattinam (523 ± 95 MPs/kg), Thoothukudi (492 ± 104 MPs/kg), and Kanyakumari (335 ± 72 MPs/kg). Fibers predominated as the most common MP type. FTIR revealed polymers like polystyrene, polyethylene terephthalate, polyethylene, polypropylene, polyurethane, and polyamide. The Polymer Hazard Index indicated high polymer pollution risk, while the Pollution Load Index showed minimal contamination. The Potential Ecological Risk Index revealed low-to-medium MP pollution levels. Tailored strategies addressing plastic usage reduction and mitigation of terrestrial MP sources are imperative for coastal ecosystem resilience.
Collapse
Affiliation(s)
- Jebashalomi Vethanayaham
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | | | - Rajaram Rajendran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
13
|
Auffan M, Lowry GV, Amos JD, Bossa N, Wiesner MR. Leveraging nanoparticle environmental health and safety research in the study of micro- and nano-plastics. NANOIMPACT 2024; 36:100534. [PMID: 39551431 DOI: 10.1016/j.impact.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Lessons learned, methodologies, and application of tools that have been developed within the context of research on the environmental impacts, health, and safety of nanomaterials (nano-EHS) provide a solid foundation for research on nano/microplastics. In this communication, we summarize key discoveries obtained through major research efforts over the last two decades in the area of nano-EHS that are applicable for the study of micro- and nano-plastics (referred to here more generally as particulate plastics). We focus on how non-equilibrium particle transport processes affect: 1) bio-physico-chemical mechanisms of particle toxicity and determining dose-response relationships; 2) the potential for biouptake, bioaccumulation, translocation, trophic transfer and intergenerational effects of particulate contaminants; 3) extrapolations from laboratory experiments to complex systems and the impact of environmental transformations; 4) the formulation of functional assays as a basis for predicting the impacts of particulate contaminants in complex environments; 5) the relative importance of incidental particles compared with engineered particles and, 6) experience with data platforms, curation, and experimental design.
Collapse
Affiliation(s)
- Melanie Auffan
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - Gregory V Lowry
- Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Jaleesia D Amos
- Department of Civil and Environmental Engineering, Duke University, P.O. Box 90287, Durham, NC 27708-0287, USA
| | - Nathan Bossa
- Department of Civil and Environmental Engineering, Duke University, P.O. Box 90287, Durham, NC 27708-0287, USA
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke University, P.O. Box 90287, Durham, NC 27708-0287, USA.
| |
Collapse
|
14
|
Meng L, Liang L, Shi Y, Yin H, Li L, Xiao J, Huang N, Zhao A, Xia Y, Hou J. Biofilms in plastisphere from freshwater wetlands: Biofilm formation, bacterial community assembly, and biogeochemical cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134930. [PMID: 38901258 DOI: 10.1016/j.jhazmat.2024.134930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Microorganisms can colonize to the surface of microplastics (MPs) to form biofilms, termed "plastisphere", which could significantly change their physiochemical properties and ecological roles. However, the biofilm characteristics and the deep mechanisms (interaction, assembly, and biogeochemical cycles) underlying plastisphere in wetlands currently lack a comprehensive perspective. In this study, in situ biofilm formation experiments were performed in a park with different types of wetlands to examine the plastisphere by extrinsic addition of PVC MPs in summer and winter, respectively. Results from the spectroscopic and microscopic analyses revealed that biofilms attached to the MPs in constructed forest wetlands contained the most abundant biomass and extracellular polymeric substances. Meanwhile, data from the high-throughput sequencing showed lower diversity in plastisphere compared with soil bacterial communities. Network analysis suggested a simple and unstable co-occurrence pattern in plastisphere, and the null model indicated increased deterministic process of heterogeneous selection for its community assembly. Based on the quantification of biogeochemical cycling genes by high-throughput qPCR, the relative abundances of genes involving in carbon degradation, carbon fixation, and denitrification were significantly higher in plastisphere than those of soil communities. This study greatly enhanced our understanding of biofilm formation and ecological effects of MPs in freshwater wetlands.
Collapse
Affiliation(s)
- Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Ministry of Education, Hangzhou 310058, China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Longrui Liang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yansong Shi
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Haitao Yin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Li Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiamu Xiao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nannan Huang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Angang Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yangrongchang Xia
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jingwen Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Robertson BP, Miller AJ, Rott GE, Quinn SM, Rahman E, Bachmann HR, Nistler AF, Xiong B, Calabrese MA. A Scalable and Surfactant-Free Emulsion Method for Producing Microbeads from Varied Biomass Feedstocks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17463-17475. [PMID: 39105736 DOI: 10.1021/acs.langmuir.4c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Despite national and international regulations, plastic microbeads are still widely used in personal care and consumer products (PCCPs). These exfoliants and rheological modifiers cause significant microplastic pollution in natural aquatic environments. Microbeads from nonderivatized biomass like cellulose and lignin can offer a sustainable alternative to these nondegradable microplastics, but processing this biomass into microbeads is challenging due to limited viable solvents and high biomass solution viscosities. To produce biomass microbeads of the appropriate size range for PCCPs (ca. 200-800 μm diameter) with shapes and mechanical properties comparable to those of commercial plastic microbeads, we used a surfactant-free emulsion/precipitation method, mixing biomass solutions in 1-ethyl-3-methylimidazolium acetate (EMImAc) with various oils and precipitating with ethanol. While yield of microbeads within the target size range highly depends on purification conditions, optimized protocols led to >90% yield of cellulose microbeads. Kraft lignin was then successfully incorporated into beads at up to 20 wt %; however, higher lignin contents result in emulsion destabilization unless surfactant is added. Finally, the microbead shape and surface morphology can be tuned using oils of varying viscosities and interfacial tensions. Dripping measurements and pendant drop tensiometry confirmed that the higher affinity of cellulose for certain oil/IL interfaces largely controlled the observed surface morphology. This work thus outlines how biomass composition, oil viscosity, and interfacial properties can be altered to produce more sustainable microbeads for use in PCCPs, which have desirable mechanical properties and can be produced over a wide range of shapes and surface morphologies.
Collapse
Affiliation(s)
- Benjamin P Robertson
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Audrey J Miller
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gerald E Rott
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Siena M Quinn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Ehsanur Rahman
- Department of Civil, Environmental, & Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hannah R Bachmann
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abbie F Nistler
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Boya Xiong
- Department of Civil, Environmental, & Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michelle A Calabrese
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Zong L, Wang X, Huo M, Yi F, Huang S, Ling T, Fang Y, Ma F, Zhang X, Guan M. Insights into the synergistic toxicity mechanisms caused by nano- and microplastics with triclosan using a dose-dependent functional genomics approach in Saccharomyces cerevisiae. CHEMOSPHERE 2024; 362:142629. [PMID: 38885766 DOI: 10.1016/j.chemosphere.2024.142629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The emergence of polystyrene (PS) nano- and microplastics (NMPs) and triclosan (TCS) as environmental contaminants has raised concerns about their combined toxicities to organisms, but the complex toxicity arising from their interactions and the underlying molecular mechanisms remain obscure to us. In this study, we comprehensively detected the combined toxicity of PS-NMPs and TCS via the dose-dependent yeast functional genomics profiling. Firstly, our findings demonstrated that the combined exposure to PS-NMPs and TCS elicited a synergistic toxic effect in which the toxicity depended on the size of the PS-NMPs. Secondly, we found that TCS exposure, either alone or in combination with PS-NMPs, influenced lipid biosynthetic processes and ATP export pathways, while the unique responsive genes triggered by combined exposure to TCS and PS-NMPs are significantly enriched in mitochondrial translation, ribosomal small subunit assembly, and tRNA wobble uridine modification. Thirdly, our results demonstrated that point of departure (POD) at the pathway level was positively correlated with IC50, and POD was a more sensitive predictor of toxicity than the apical toxicity endpoints. More importantly, our findings suggested that the combined exposure of PS-NMPs in a size-dependent manner not only alleviated the harmful effects of TCS on glycerophospholipid metabolism, but also exacerbated its negative impact on oxidative phosphorylation. Collectively, our study not only provides new insights into the intricate molecular mechanisms that control the combined toxicity of PS-NMPs and TCS, but also confirms the effectiveness of the dose-dependent functional genomics approach in elucidating the molecular mechanisms of the combined toxicity of pollutants.
Collapse
Affiliation(s)
- Linhao Zong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaoyang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Miaomiao Huo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Fangying Yi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Shan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Tianqi Ling
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yumo Fang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| | - Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
17
|
Barthelemy N, Mermillod-Blondin F, Krause S, Simon L, Mimeau L, Devers A, Vidal JP, Datry T. The Duration of Dry Events Promotes PVC Film Fragmentation in Intermittent Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12621-12632. [PMID: 38954776 DOI: 10.1021/acs.est.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The majority of microplastics (MPs) found in the environment originate from plastic fragmentation occurring in the environment and are influenced by environmental factors such as UV irradiation and biotic interactions. However, the effects of river drying on plastic fragmentation remain unknown, despite the global prevalence of watercourses experiencing flow intermittence. This study investigates, through laboratory experiments, the coupled effects of drying duration and UV irradiation on PVC film fragmentation induced by artificial mechanical abrasion. This study shows that PVC film fragmentation increases with drying duration through an increase in the abundance and size of formed MPs as well as mass loss from the initial plastic item, with significant differences for drying durations >50% of the experiment duration. The average abundance of formed MPs in treatments exposed to severe drying duration was almost two times higher than in treatments nonexposed to drying. Based on these results, we developed as a proof of concept an Intermittence-Based Plastic Fragmentation Index that may provide insights into plastic fragmentation occurring in river catchments experiencing large hydrological variability. The present study suggests that flow intermittence occurring in rivers and streams can lead to increasing plastic fragmentation, unraveling new insights into plastic pollution in freshwater systems.
Collapse
Affiliation(s)
- Nans Barthelemy
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne F-69622, France
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | | | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Laurent Simon
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne F-69622, France
| | - Louise Mimeau
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | - Alexandre Devers
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | - Jean-Philippe Vidal
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | - Thibault Datry
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| |
Collapse
|
18
|
Luo Y, Naidu R, Fang C. Toy building bricks as a potential source of microplastics and nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134424. [PMID: 38678720 DOI: 10.1016/j.jhazmat.2024.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Microplastics and nanoplastics have become noteworthy contaminants, affecting not only outdoor ecosystems but also making a notable impact within indoor environments. The release of microplastics and nanoplastics from commonly used plastic items remains a concern, and the characterisation of these contaminants is still challenging. This study focused on evaluating the microplastics and nanoplastics produced from plastic building bricks. Using Raman spectroscopy and correlation analysis, the plastic material used to manufacture building blocks was determined to be either acrylonitrile butadiene styrene (correlation value of 0.77) or polycarbonate (correlation value of 0.96). A principal component analysis (PCA) algorithm was optimised for improved detection of the debris particles released. Some challenges in microplastic analysis, such as the interference from the colourants in the building block materials, was explored and discussed. Combining Raman results with scanning electron microscopy - energy-dispersive X-ray spectroscopy, we found the scratches on the building blocks to be a significant source of contamination, estimated several thousand microplastics and several hundred thousand nanoplastics were generated per mm2 following simulated play activities. The potential exposure to microplastics and nanoplastics during play poses risks associated with the ingestion and inhalation of these minute plastic particles.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
19
|
Wohlleben W, Bossa N, Mitrano DM, Scott K. Everything falls apart: How solids degrade and release nanomaterials, composite fragments, and microplastics. NANOIMPACT 2024; 34:100510. [PMID: 38759729 DOI: 10.1016/j.impact.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.g., what is released, how does release happen, and how much material is released) depend on the composition and internal (nano)structures of the material as well as the applied stresses during the lifecycle. We consider, in some depth, releases from mechanical, weathering and thermal stresses and specifically address the use cases of fused-filament 3D printing, dermal contact, food contact and textile washing. Solid materials can release embedded nanomaterials, composite fragments, or micro- and nanoplastics, as well as volatile organics, ions and dissolved organics. The identity of the release is often a heterogenous mixture and requires adapted strategies for sampling and analysis, with suitable quality control measures. Control materials enhance robustness by enabling comparative testing, but reference materials are not always available as yet. The quantity of releases is typically described by time-dependent rates that are modulated by the nature and intensity of the applied stress, the chemical identity of the polymer or other solid matrix, and the chemical identity and compatibility of embedded engineered nanomaterials (ENMs) or other additives. Standardization of methods and the documentation of metadata, including all the above descriptors of the tested material, applied stresses, sampling and analytics, are identified as important needs to advance the field and to generate robust, comparable assessments. In this regard, there are strong methodological synergies between the study of all solid materials, including the study of micro- and nanoplastics. From an outlook perspective, we review the hazard of the released entities, and show how this informs risk assessment. We also address the transfer of methods to related issues such as tyre wear, advanced materials and advanced manufacturing, biodegradable polymers, and non-solid matrices. As the consideration of released entities will become more routine in industry via lifecycle assessment in Safe-and-Sustainable-by-Design practices, release assessments will require careful design of the study with quality controls, the use of agreed-on test materials and standardized methods where these exist and the adoption of clearly defined data reporting practices that enable data reuse, meta-analyses, and comparative studies.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Analytical and Materials Science, 67056 Ludwigshafen, Germany.
| | - Nathan Bossa
- TEMAS Solutions GmbH, Lätterweg 5, 5212 Hausen, Switzerland; Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS-8372, Gaithersburg, MD 20899, United States
| |
Collapse
|
20
|
Nohara NML, Ariza-Tarazona MC, Triboni ER, Nohara EL, Villarreal-Chiu JF, Cedillo-González EI. Are you drowned in microplastic pollution? A brief insight on the current knowledge for early career researchers developing novel remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170382. [PMID: 38307272 DOI: 10.1016/j.scitotenv.2024.170382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Microplastics (MPs) composed of different polymers with various shapes, within a vast granulometric distribution (1 μm - 5 mm) and with a wide variety of physicochemical surface and bulk characteristics spiral around the globe, with different atmospheric, oceanic, cryospheric, and terrestrial residence times, while interacting with other pollutants and biota. The challenges of microplastic pollution are related to the complex relationships between the microplastic generation mechanisms (physical, chemical, and biological), their physicochemical properties, their interactions with other pollutants and microorganisms, the changes in their properties with aging, and their small sizes that facilitate their diffusion and transportation between the air, water, land, and biota, thereby promoting their ubiquity. Early career researchers (ERCs) constitute an essential part of the scientific community committed to overcoming the challenges of microplastic pollution with their new ideas and innovative scientific perspectives for the development of remediation technologies. However, because of the enormous amount of scientific information available, it may be difficult for ERCs to determine the complexity of this environmental issue. This mini-review aims to provide a quick and updated overview of the essential insights of microplastic pollution to ERCs to help them acquire the background needed to develop highly innovative physical, chemical, and biological remediation technologies, as well as valorization proposals and environmental education and awareness campaigns. Moreover, the recommendations for the development of holistic microplastic pollution remediation strategies presented here can help ERCs propose technologies considering the environmental, social, and practical dimensions of microplastic pollution while fulfilling the current government policies to manage this plastic waste.
Collapse
Affiliation(s)
- Nicoly Milhardo Lourenço Nohara
- Department of Chemical Engineering, School of Engineering of Lorena, University of São Paulo, Estrada Municipal do Campinho, no number, Lorena, Brazil
| | - Maria Camila Ariza-Tarazona
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
| | - Eduardo Rezende Triboni
- Department of Chemical Engineering, School of Engineering of Lorena, University of São Paulo, Estrada Municipal do Campinho, no number, Lorena, Brazil
| | - Evandro Luís Nohara
- Department of Mechanical Engineering, University of Taubaté, R. Daniel Daneli, no number, Taubaté, Brazil
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66628, Nuevo León, Mexico
| | - Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy.
| |
Collapse
|
21
|
Zheng S, Tang BZ, Wang WX. Microplastics and nanoplastics induced differential respiratory damages in tilapia fish Oreochromis niloticus. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133181. [PMID: 38070268 DOI: 10.1016/j.jhazmat.2023.133181] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 02/08/2024]
Abstract
With the increasing micro(nano)plastics (MNPs) pollution in aquatic environments, fish respiration is encountering a huge threat. Herein, polystyrene (PS) MNPs with three sizes (80 nm, 2 µm, and 20 µm) were exposed to tilapia Oreochromis niloticus at an environmentally relevant concentration of 100 μg/L for 28 days and their impacts on respiratory function were investigated. Based on the results of oxygen consumption and histological analysis, all the three treatments could induce respiratory damages and such impacts were more severe for the 2 µm and 20 µm treatments than for the 80 nm treatment. These results were explained by the more significant upregulation of egln3 and nadk, and the downregulation of isocitrate. Transcriptomics and metabolomics further revealed that TCA cycle played a key role in respiratory dysfunction induced by micro-sized PS particles, and cytokine and chemokine related functions were simultaneously enriched. Although nano-sized PS particles had the potential to penetrate the respiratory epithelium and reached the internal structure of the O. niloticus gills, they were easily expelled through the blood circulation. Our results highlighted the serious threat of MNPs to fish respiration and provided insights into the differential toxicological mechanisms between micro-sized and nano-sized particles, thus assisting in ecological risk assessments.
Collapse
Affiliation(s)
- Siwen Zheng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
22
|
Han L, Chen L, Feng Y, Kuzyakov Y, Chen Q, Zhang S, Chao L, Cai Y, Ma C, Sun K, Rillig MC. Microplastics alter soil structure and microbial community composition. ENVIRONMENT INTERNATIONAL 2024; 185:108508. [PMID: 38377723 DOI: 10.1016/j.envint.2024.108508] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Microplastics (MPs), including conventional hard-to-biodegrade petroleum-based and faster biodegradable plant-based ones, impact soil structure and microbiota in turn affecting the biodiversity and functions of terrestrial ecosystems. Herein, we investigated the effects of conventional and biodegradable MPs on aggregate distribution and microbial community composition in microhabitats at the aggregate scale. Two MP types (polyethylene (PE) and polylactic acid (PLA) with increasing size (50, 150, and 300 μm)) were mixed with a silty loam soil (0-20 cm) at a ratio of 0.5 % (w/w) in a rice-wheat rotation system in a greenhouse under 25 °C for one year. The effects on aggregation, bacterial communities and their co-occurrence networks were investigated as a function of MP aggregate size. Conventional and biodegradable MPs generally had similar effects on soil aggregation and bacterial communities. They increased the proportion of microaggregates from 17 % to 32 %, while reducing the macroaggregates from 84 % to 68 %. The aggregate stability decreased from 1.4 mm to 1.0-1.1 mm independently of MP size due to the decline in the binding agents gluing soil particles (e.g., microbial byproducts and proteinaceous substances). MP type and amount strongly affected the bacterial community structure, accounting for 54 % of the variance. Due to less bioavailable organics, bacterial community composition within microaggregates was more sensitive to MPs addition compared to macroaggregates. Co-occurrence network analysis revealed that MPs exacerbated competition among bacteria and increased the complexity of bacterial networks. Such effects were stronger for PE than PLA MPs due to the higher persistence of PE in soils. Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Gemmatimonadetes were the keystone taxa in macroaggregates, while Actinobacteria and Chloroflexi were the keystone taxa in microaggregates. Proteobacteria, Actinobacteria, and Chloroflexi were the most sensitive bacteria to MPs addition. Overall, both conventional and biodegradable MPs reduced the portion of large and stable aggregates, altering bacterial community structures and keystone taxa, and consequently, the functions.
Collapse
Affiliation(s)
- Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Liying Chen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Qi'ang Chen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sibo Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Liang Chao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Ke Sun
- State Key Laboratory of Water Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
23
|
Pinlova B, Nowack B. From cracks to secondary microplastics - surface characterization of polyethylene terephthalate (PET) during weathering. CHEMOSPHERE 2024; 352:141305. [PMID: 38331266 DOI: 10.1016/j.chemosphere.2024.141305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Secondary microplastics are a product of the fragmentation of plastic debris. Despite concerns regarding the omnipresence of microplastics in the environment, knowledge about the mechanics of their actual formation is still limited. Fragmentation is usually linked to weathering, which alters the properties of the plastic and allows fragmentation to occur. Therefore, in this study, polyethylene terephthalate (PET) samples were exposed to artificial UV light or a combination of UV light and water for a total of three months to simulate natural weathering. The samples included three forms of PET with different production histories: pellets, yarns, and films. The surface alterations to the samples during weathering were characterized using scanning electron microscopy and Raman spectroscopy. Results indicated that the three different types of PET developed markedly different surface defects and also exhibited signs of weathering within different time frames. Differences were also found between samples exposed only to UV and those exposed to UV and submerged in water. In water, the first surface changes were spotted within 30 days of initial submersion and later developed into an organized crack network. Upon the introduction of mild mechanical forces, pieces of the weathered surface started to delaminate. The fragments from films had an elongated shape with a median size of 16.1 × 2.1 × 1.8 μm, resembling a fibre. If the weathered surface of a film were to detach completely, it could create 1.4-7.9 million microplastic fragments/cm2. For pellets, this number would range between 0.4 and 2.2 million microplastics/cm2. In addition to particle formation by surface delamination, particles also emerged on the weathered surfaces of all studied samples, presenting another possible source of micro-sized particles during weathering. Overall, the results of this work show that the weathering of plastics and the formation of microplastics are heavily influenced not only by the weathering mechanism but also by the type and production history of the polymers.
Collapse
Affiliation(s)
- Barbora Pinlova
- Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
24
|
Amos JD, Zhang Z, Tian Y, Lowry GV, Wiesner MR, Hendren CO. Knowledge and Instance Mapping: architecture for premeditated interoperability of disparate data for materials. Sci Data 2024; 11:173. [PMID: 38321063 PMCID: PMC10847415 DOI: 10.1038/s41597-024-03006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
Predicting and elucidating the impacts of materials on human health and the environment is an unending task that has taken on special significance in the context of nanomaterials research over the last two decades. The properties of materials in environmental and physiological media are dynamic, reflecting the complex interactions between materials and these media. This dynamic behavior requires special consideration in the design of databases and data curation that allow for subsequent comparability and interrogation of the data from potentially diverse sources. We present two data processing methods that can be integrated into the experimental process to encourage pre-mediated interoperability of disparate material data: Knowledge Mapping and Instance Mapping. Originally developed as a framework for the NanoInformatics Knowledge Commons (NIKC) database, this architecture and associated methods can be used independently of the NIKC and applied across multiple subfields of nanotechnology and material science.
Collapse
Affiliation(s)
- Jaleesia D Amos
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA
- Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA
| | - Zhao Zhang
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA
- Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA
- Lucideon M+P, Morrisville, North Carolina, 27560, USA
| | - Yuan Tian
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA
- Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA
| | - Gregory V Lowry
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA
- Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Mark R Wiesner
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA.
- Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA.
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA
- Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, North Carolina, 28608, USA
| |
Collapse
|
25
|
Yu Z, Xu X, Guo L, Jin R, Lu Y. Uptake and transport of micro/nanoplastics in terrestrial plants: Detection, mechanisms, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168155. [PMID: 37898208 DOI: 10.1016/j.scitotenv.2023.168155] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pervasive dispersion of micro/nanoplastics in various environmental matrices has raised concerns regarding their potential intrusion into terrestrial ecosystems and, notably, plants. In this comprehensive review, we focus on the interaction between these minute plastic particles and plants. We delve into the current methodologies available for detecting micro/nanoplastics in plant tissues, assess the accumulation and distribution of these particles within roots, stems, and leaves, and elucidate the specific uptake and transport mechanisms, including endocytosis, apoplastic transport, crack-entry mode, and stomatal entry. Moreover, uptake and transport of micro/nanoplastics are complex processes influenced by multiple factors, including particle size, surface charge, mechanical properties, and physiological characteristics of plants, as well as external environmental conditions. In conclusion, this review paper provided valuable insights into the current understanding of these mechanisms, highlighting the complexity of the processes and the multitude of factors that can influence them. Further research in this area is warranted to fully comprehend the fate of micro/nanoplastics in plants and their implications for environmental sustainability.
Collapse
Affiliation(s)
- Zhefu Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaolu Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Liang Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yin Lu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
26
|
Liu Z, Sokratian A, Duda AM, Xu E, Stanhope C, Fu A, Strader S, Li H, Yuan Y, Bobay BG, Sipe J, Bai K, Lundgaard I, Liu N, Hernandez B, Bowes Rickman C, Miller SE, West AB. Anionic nanoplastic contaminants promote Parkinson's disease-associated α-synuclein aggregation. SCIENCE ADVANCES 2023; 9:eadi8716. [PMID: 37976362 PMCID: PMC10656074 DOI: 10.1126/sciadv.adi8716] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Recent studies have identified increasing levels of nanoplastic pollution in the environment. Here, we find that anionic nanoplastic contaminants potently precipitate the formation and propagation of α-synuclein protein fibrils through a high-affinity interaction with the amphipathic and non-amyloid component (NAC) domains in α-synuclein. Nanoplastics can internalize in neurons through clathrin-dependent endocytosis, causing a mild lysosomal impairment that slows the degradation of aggregated α-synuclein. In mice, nanoplastics combine with α-synuclein fibrils to exacerbate the spread of α-synuclein pathology across interconnected vulnerable brain regions, including the strong induction of α-synuclein inclusions in dopaminergic neurons in the substantia nigra. These results highlight a potential link for further exploration between nanoplastic pollution and α-synuclein aggregation associated with Parkinson's disease and related dementias.
Collapse
Affiliation(s)
- Zhiyong Liu
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Arpine Sokratian
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | | | - Enquan Xu
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Christina Stanhope
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Amber Fu
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Samuel Strader
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Huizhong Li
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Yuan Yuan
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | | | - Joana Sipe
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Ketty Bai
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Na Liu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Belinda Hernandez
- Department of Ophthalmology and Cell Biology, Duke University, Durham, NC, USA
| | | | - Sara E. Miller
- Department of Pathology, Duke University, Durham, NC, USA
| | - Andrew B. West
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
27
|
Town RM, van Leeuwen HP, Duval JFL. Effect of Polymer Aging on Uptake/Release Kinetics of Metal Ions and Organic Molecules by Micro- and Nanoplastics: Implications for the Bioavailability of the Associated Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16552-16563. [PMID: 37856883 PMCID: PMC10620988 DOI: 10.1021/acs.est.3c05148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
The main driver of the potential toxicity of micro- and nanoplastics toward biota is often the release of compounds initially present in the plastic, i.e., polymer additives, as well as environmentally acquired metals and/or organic contaminants. Plastic particles degrade in the environment via various mechanisms and at different rates depending on the particle size/geometry, polymer type, and the prevailing physical and chemical conditions. The rate and extent of polymer degradation have obvious consequences for the uptake/release kinetics and, thus, the bioavailability of compounds associated with plastic particles. Herein, we develop a theoretical framework to describe the uptake and release kinetics of metal ions and organic compounds by plastic particles and apply it to the analysis of experimental data for pristine and aged micro- and nanoplastics. In particular, we elucidate the contribution of transient processes to the overall kinetics of plastic reactivity toward aquatic contaminants and demonstrate the paramount importance of intraparticulate contaminant diffusion.
Collapse
Affiliation(s)
- Raewyn M. Town
- ECOSPHERE,
Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Herman P. van Leeuwen
- ECOSPHERE,
Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
- Physical
Chemistry and Soft Matter, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | | |
Collapse
|
28
|
Kim S, Hyeon Y, Park C. Microplastics' Shape and Morphology Analysis in the Presence of Natural Organic Matter Using Flow Imaging Microscopy. Molecules 2023; 28:6913. [PMID: 37836755 PMCID: PMC10574296 DOI: 10.3390/molecules28196913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Ubiquitous microplastics in urban waters have raised substantial public concern due to their high chemical persistence, accumulative effects, and potential adverse effects on human health. Reliable and standardized methods are urgently needed for the identification and quantification of these emerging environmental pollutants in wastewater treatment plants (WWTPs). In this study, we introduce an innovative rapid approach that employs flow imaging microscopy (FlowCam) to simultaneously identify and quantify microplastics by capturing high-resolution digital images. Real-time image acquisition is followed by semi-automated classification using customized libraries for distinct polyethylene (PE) and polystyrene (PS) microplastics. Subsequently, these images are subjected to further analysis to extract precise morphological details of microplastics, providing insights into their behavior during transport and retention within WWTPs. Of particular significance, a systematic investigation was conducted to explore how the presence of natural organic matter (NOM) in WWTPs affects the accuracy of the FlowCam's measurement outputs for microplastics. It was observed that varying concentrations of NOM induced a more curled shape in microplastics, indicating the necessity of employing pre-treatment procedures to ensure accurate microplastic identification when utilizing the FlowCam. These observations offer valuable new perspectives and potential solutions for designing appropriate treatment technologies for removing microplastics within WWTPs.
Collapse
Affiliation(s)
| | | | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
29
|
Caba-Flores MD, Martínez-Valenzuela C, Cárdenas-Tueme M, Camacho-Morales A. Micro problems with macro consequences: accumulation of persistent organic pollutants and microplastics in human breast milk and in human milk substitutes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95139-95154. [PMID: 37597149 DOI: 10.1007/s11356-023-29182-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
Industrial activities provide a modern human lifestyle with advances and comforts in every field. However, such scenario has brought several negative issues. Persistent organic pollutants (POPs) and a growing plastic usage together with the degradation byproducts, namely microplastics (MPs), are current environmental problems present in every ecosystem, disturbing all forms of life. POPs and MPs are also found in human consumption products including animal and vegetal derivatives, human milk substitutes, and in human breast milk. To date, it is currently unknown what are the effects of MPs and POPs when ingested during the first and most important stage for health programming of the offspring, the first 1000 days of life. Here, we add epidemiological and clinical evidence supporting major sources of POPs and MPs in the ecosystem; and we will precisely describe the effect of POP and MP accumulation in animal- or plant-based infant formulas and human breast milk, modulating health outcomes in the newborn. This review provides a rational to incentive the POP and MP identification in human breast milk and human milk substitutes for avoiding susceptibility to negative health outcomes for the newborn.
Collapse
Affiliation(s)
- Mario Daniel Caba-Flores
- College of Medicine, Department of Biochemistry, Universidad Autónoma de Nuevo Leon, Monterrey, NL, Mexico
- Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autónoma de Nuevo Leon, San Nicolas de los Garza, NL, Mexico
| | | | - Marcela Cárdenas-Tueme
- School of Medicine and Health Sciences, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, NL, Mexico
- Centro de Investigación en Nutrición Y Salud Pública, Facultad de Salud Pública Y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Alberto Camacho-Morales
- College of Medicine, Department of Biochemistry, Universidad Autónoma de Nuevo Leon, Monterrey, NL, Mexico.
- Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autónoma de Nuevo Leon, San Nicolas de los Garza, NL, Mexico.
| |
Collapse
|
30
|
Joubert E, Gauff RPM, de Vogüé B, Chavanon F, Ravel C, Bouchoucha M. Artificial fish nurseries can restore certain nursery characteristics in marine urban habitats. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106108. [PMID: 37506652 DOI: 10.1016/j.marenvres.2023.106108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Port areas are subjected to multiple anthropic pressures that directly impact residing marine communities and deprive them of most of their essential ecological functions. Several global projects aim to rehabilitate certain ecosystem functions in port areas, such as a fish nursery function, by installing artificial fish nurseries (AFN). In theory, AFNs increase fish biodiversity and juvenile fish abundance in port areas, but studies on this subject remain scarce. Thus, the present study aimed to examine whether the use of such AFNs could restore part of the nursery function of natural habitats by increasing fish and juvenile abundance, and by decreasing predation intensity compared to bare docks. Two years of monitoring on AFNs showed they hosted 2.1 times more fish than on control docks and up to 2.4 more fish juveniles. Fish community structures were influenced by both treatment (AFN and Control) and year of monitoring. In general, AFNs hosted a greater taxonomic diversity of fish than controls. The predation intensity around these structures was significantly lower in the AFNs than in controls. Part of the definition of a fish nursery was thus verified, indicating that AFNs might be an effective restoration tool. However, we also noted that total fish abundance and Young of the Year (YOY) abundance decreased in controls, possibly due to a concentration effect. Further detailed monitoring is necessary to distinguish between these effects.
Collapse
Affiliation(s)
- Etienne Joubert
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507 La Seyne Sur Mer, France.
| | - Robin P M Gauff
- Chioggia Hydrobiological Station "Umberto D'Ancona", Department of Biology, University of Padova, Chioggia, Italy
| | - Benoist de Vogüé
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507 La Seyne Sur Mer, France
| | - Fabienne Chavanon
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507 La Seyne Sur Mer, France
| | - Christophe Ravel
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507 La Seyne Sur Mer, France
| | - Marc Bouchoucha
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507 La Seyne Sur Mer, France
| |
Collapse
|
31
|
MacLeod M, Domercq P, Harrison S, Praetorius A. Computational models to confront the complex pollution footprint of plastic in the environment. NATURE COMPUTATIONAL SCIENCE 2023; 3:486-494. [PMID: 38177416 DOI: 10.1038/s43588-023-00445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 01/06/2024]
Abstract
The threat posed by plastic in the environment is poorly characterized due to uncertainties and unknowns about sources, transport, transformation and removal processes, and the properties of the plastic pollution itself. Plastic creates a footprint of particulate pollution with a diversity of composition, size and shape, and a halo of chemicals. In this Perspective, we argue that process-based mass-balance models could provide a platform to synthesize knowledge about plastic pollution as a function of its measurable intrinsic properties.
Collapse
Affiliation(s)
- Matthew MacLeod
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| | - Prado Domercq
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Sam Harrison
- UK Centre for Ecology & Hydrology, Lancaster, UK
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Yang S, Li M, Kong RYC, Li L, Li R, Chen J, Lai KP. Reproductive toxicity of micro- and nanoplastics. ENVIRONMENT INTERNATIONAL 2023; 177:108002. [PMID: 37276763 DOI: 10.1016/j.envint.2023.108002] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Large-scale plastic pollution occurs in terrestrial and marine environments and degrades into microparticles (MP) and nanoparticles (NP) of plastic. Micro/nanoplastics (MP/NPs) are found throughout the environment and different kinds of marine organisms and can enter the human body through inhalation or ingestion, particularly through the food chain. MPs/NPs can enter different organisms, and affect different body systems, including the reproductive, digestive, and nervous systems via the induction of different stresses such as oxidative stress and endoplasmic reticulum stress. This paper summarizes the effects of MPs/NPs of different sizes on the reproduction of different organisms including terrestrial and marine invertebrates and vertebrates, the amplification of toxic effects between them through the food chain, the serious threat to biodiversity, and, more importantly, the imminent challenge to human reproductive health. There is a need to strengthen international communication and cooperation on the remediation of plastic pollution and the protection of biodiversity to build a sustainable association between humans and other organisms.
Collapse
Affiliation(s)
- Shaolong Yang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China
| | - Mengzhen Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China.
| | - Jian Chen
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
33
|
Sipe JM, Amos JD, Swarthout RF, Turner A, Wiesner MR, Hendren CO. Bringing sex toys out of the dark: exploring unmitigated risks. MICROPLASTICS AND NANOPLASTICS 2023; 3:6. [PMID: 36974201 PMCID: PMC10034881 DOI: 10.1186/s43591-023-00054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED A majority of American adults report having used sex toys, which, by design, interact with intimate and permeable body parts yet have not been subject to sufficient risk assessment or management. Physical and chemical data are presented examining potential risks associated with four types of currently available sex toys: anal toy, beads, dual vibrator, and external vibrator. A standardized abrasion machine made real-time breakdown of products into microplastics and nanoplastics. The microplastics from the sex toys were then solvent extracted and analyzed using GC-MS. Rates of microplastics and nanoplastics released during abrasion testing from most microplastic release to least was the anal toy, beads, dual vibrator, external vibrator. Both micro- and nanoplastics particles were generated following the abrasion test, with the 50 percentile diameters (D50) ranging from the anal beads at 658.5 μm, dual vibrator at 887.83 μm, anal toy at 950 μm, and external vibrator at 1673.33 μm. The material matrix of each product was analyzed using ATR-FTIR, with results identifying the anal toy as polyethylene terephthalate (PET), the anal beads as polyvinyl chloride (PVC), the external vibrator as a silicone blend (polydimethylsiloxane [PDMS]), and the dual vibrator as a rubber mixture (polyisoprene). After extraction, phthalates known to be endocrine disruptors were present in all tested sex toys at levels exceeding hazard warnings. Analogous findings have been reported for similar materials that, when incorporated into other product categories, are subject to regulatory scrutiny in both the US and EU. This data set is not intended to be representative of sex toys as an entire class of products, nor are the abrasion experiments claiming to simulate exact use conditions. However, these exploratory data frame potential concerns, highlighting research questions and the need for prompt prioritization of protective action. Therefore, future studies and multi-stakeholder action are needed to understand and reduce risk for this class of products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43591-023-00054-6.
Collapse
Affiliation(s)
- Joana Marie Sipe
- Department of Civil & Environmental Engineering, Duke University, Durham, NC USA
| | - Jaleesia D. Amos
- Department of Civil & Environmental Engineering, Duke University, Durham, NC USA
| | - Robert F. Swarthout
- A.R. Smith Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC USA
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC USA
| | - Amalia Turner
- Department of Civil & Environmental Engineering, Duke University, Durham, NC USA
| | - Mark R. Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, NC USA
| | - Christine Ogilvie Hendren
- Department of Civil & Environmental Engineering, Duke University, Durham, NC USA
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC USA
- Research Institute of Environment, Energy and Economics, Appalachian State University, Boone, NC USA
| |
Collapse
|
34
|
Muhib MI, Uddin MK, Rahman MM, Malafaia G. Occurrence of microplastics in tap and bottled water, and food packaging: A narrative review on current knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161274. [PMID: 36587673 DOI: 10.1016/j.scitotenv.2022.161274] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, microplastic has been detected in many environmental samples, including aquatic and terrestrial environments. However, few studies recently have addressed their attention to microplastic contamination in different drinking sources and food packages. This review paper has narrated those few findings in brief. Literature showed that different pieces of microplastic fragments, e.g., polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), etc. are detected in plastic drinking bottle, tap water, and food packaging containers. Microplastic fragmentation may be associated with mechanical stress, UV radiation, low plastic material quality, aging factor, and atmospheric deposition. Besides these, microplastic is a hub of different chemical compounds and can also retain other complex materials from the surroundings. This makes the microplastic contamination even more complicated and difficult to detect them accurately in a single method. Additionally, one of the common practices at the community level is the long-time repeated usage of plastic drinking bottles and food boxes that subsequently cause microplastic leaching and potential health threats to consumers. This narrative study summarizes the current scenario of microplastic contamination from drinking bottles and food containers and emphasizes doing more quality research in this subtle but highly imposed field to understand potential exposure better.
Collapse
Affiliation(s)
- Md Iftakharul Muhib
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
35
|
Terán JE, Pal L, Spontak RJ, Lucia L. Surface Mechanical Properties and Topological Characteristics of Thermoplastic Copolyesters after Precisely Controlled Abrasion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7552-7561. [PMID: 36715689 DOI: 10.1021/acsami.2c19377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to the high probability of surface-to-surface contact of materials during routine applications, surface abrasion remains one of the most challenging factors governing the long-term performance of polymeric materials due to their broad range of tunable mechanical properties, as well as the varied conditions of abrasion (regarding, e.g., rate, load, and contact area). While this concept is empirically mature, a fundamental understanding of mechanical abrasion regarding thermoplastics remains lacking even though polymer abrasion can inadvertently lead to the formation of nano-/microplastics. In the present study, we introduce the concept of precision polymer abrasion (PPA) in conjunction with nanoindentation to elucidate the extent to which controlled wear is experienced by three chemically related thermoplastics under systematically varied abrasion conditions. While depth profiling of one polymer reveals a probe-dependent change in modulus, complementary results from positron annihilation lifetime spectroscopy confirm that the polymer density changes measurably, but not appreciably, with depth over the depth range explored. After a single PPA pass, the surface moduli of the polymers noticeably increase, whereas the corresponding increase in hardness is modest. The dependence of wear volume on the number of PPA passes is observed to reach limiting values for two of the thermoplastics, and application of an empirical model to the data yields estimates of these values for all three thermoplastics. These results suggest that the metrics commonly employed to describe the surface abrasion of polymers requires careful consideration of a host of underlying factors.
Collapse
Affiliation(s)
- Julio E Terán
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Richard J Spontak
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Materials Science & Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lucian Lucia
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
36
|
De K, Sautya S, Dora GU, Gaikwad S, Katke D, Salvi A. Mangroves in the "Plasticene": High exposure of coastal mangroves to anthropogenic litter pollution along the Central-West coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160071. [PMID: 36356762 DOI: 10.1016/j.scitotenv.2022.160071] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic litter is a ubiquitous stressor in the global ocean, and poses ominous threats to oceanic biodiversity and ecosystem functioning. At the terrestrial-ocean interface, tropical mangrove forests are subject to substantial exposure to mismanaged litter from inland and marine sources. While the effects of litter in different marine ecosystems are well-documented, research on the ecological consequences of litter pollution on mangroves remain nascent stage. Here, we investigated anthropogenic litter concentration, composition, probable sources, and impact on coastal mangroves along the Central West coast of India. The mean concentration of trapped litter was measured 8.5 ± 1.9 items/m2 (ranged 1.4 ̶ 26.9 items/m2), and 10.6 ± 0.5 items/tree (ranged 0 ̶ 85 items/tree) on the mangrove floor and mangrove canopy, respectively. Plastic dominated 83.02 % of all litter deposited on the mangrove forest floor and 93.4 % of all entangled litter on mangrove canopy. Most litter comprised single-use plastic products across all surveyed locations. Mangrove floor cleanliness was assessed using several indices, such as Clean Coast Index, General Index, Hazardous Items Index, and Pollution Load Index, reiterating an inferior cleanliness status. The pollution load index indicates "Hazard level I" plastic pollution risk across the mangroves. Litter concentration differed markedly across all sites. However, a significantly higher concentration of stranded litter was detected in the densely populated urban agglomeration and rural areas with inadequate solid waste management. Probable sources of litter indicate land-based (local) and sea-originated (fishing). Supportive information on the transport and accumulation of marine litter is examined based on the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) model version 2 reanalysis of surface wind and current pattern across the Arabian Sea followed by MIKE simulated tide-induced coastal current. Mangrove pneumatophores and branches were found to be damaged by entangled plastics. Hence, determining litter quantum and their probable input source is pivotal in mitigating anthropogenic litter impact on mangrove ecosystems and fostering mangrove conservation. Overall, results envisage that stringent enforcement, implementation of an integrated solid waste management framework, and general behavioral change of the public are crucial to mitigate litter/plastic pollution.
Collapse
Affiliation(s)
- Kalyan De
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India.
| | - Sabyasachi Sautya
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India.
| | - G Udhaba Dora
- Physical Oceanography Division, CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| | - Santosh Gaikwad
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| | - Dinesh Katke
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| | - Aditya Salvi
- Laboratory of Benthic Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra 400053, India
| |
Collapse
|
37
|
Cooke S, Piczak M, Vermaire J, Kirkwood A. On the troubling use of plastic ‘habitat’ structures for fish in freshwater ecosystems – or – when restoration is just littering. Facets (Ott) 2023. [DOI: 10.1139/facets-2022-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The creation and deployment of plastic structures made out of pipes and panels in freshwater ecosystems to enhance fish habitat or restore freshwater systems have become popularized in some regions. Here, we outline concerns with these activities, examine the associated evidence base for using plastic materials for restoration, and provide some suggestions for a path forward. The evidence base supporting the use of plastic structures in freshwater systems is limited in terms of ecological benefit and assurances that the use of plastics does not contribute to pollution via plastic degradation or leaching. Rarely was a cradle-to-grave approach (i.e. the full life cycle of restoration as well as the full suite of environmental consequences arising from plastic creation to disposal) considered nor were decommissioning plans required for deployment of plastic habitats. We suggest that there is a need to embrace natural materials when engaging in habitat restoration and provide more opportunities for relevant actors to have a voice regarding the types of materials used. It is clear that restoration of freshwater ecosystems is critically important, but those efforts need to be guided by science and not result in potential long-term harm. We conclude that based on the current evidence base, the use of plastic for habitat enhancement or restoration in freshwater systems is nothing short of littering.
Collapse
Affiliation(s)
- S.J. Cooke
- Canadian Centre for Evidence-Based Conservation, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Department of Geography and Environmental Studies, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - M.L. Piczak
- Canadian Centre for Evidence-Based Conservation, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - J.C. Vermaire
- Canadian Centre for Evidence-Based Conservation, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Department of Geography and Environmental Studies, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - A.E. Kirkwood
- Faculty of Science, Ontario Tech University, 2000 Simcoe St. N., Oshawa, ON, L1G 0C5, Canada
| |
Collapse
|
38
|
Koutnik VS, Leonard J, El Rassi LA, Choy MM, Brar J, Glasman JB, Cowger W, Mohanty SK. Children's playgrounds contain more microplastics than other areas in urban parks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158866. [PMID: 36126714 DOI: 10.1016/j.scitotenv.2022.158866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Children spend many hours in urban parks and playgrounds, where the tree canopy could filter microplastics released from the surrounding urban hotspots. However, the majority of children's playgrounds also contain plastic structures that could potentially release microplastics. To assess if the children's playgrounds pose a higher exposure risk than other places inside the park, we evaluate the extent of microplastic contamination in the sand, soil, and leaf samples from 19 playgrounds inside urban parks in Los Angeles, CA, USA. The average microplastic concentration in sand samples collected inside the playground was 72 p g-1, and >50 % of identified plastics were either polyethylene or polypropylene. Microplastic concentrations inside the playgrounds were on average >5 times greater than concentrations outside the playgrounds in the park, indicating that children playing within the playground may be exposed to more microplastics than children playing outside the playground in the same park. By comparing the microplastic composition found inside and outside the playgrounds with the plastic composition of the plastic structures in the playground, we show that plastic structures and other products used inside the playgrounds could contribute to elevated microplastic concentration. The population density was slightly correlated with a microplastic concentration in the park soil but did not correlate with microplastic concentration inside the playgrounds. Therefore, playgrounds in urban parks may have microplastic exposure risks via inhalation or ingestion via hand-to-mouth transfer.
Collapse
Affiliation(s)
- Vera S Koutnik
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| | - Jamie Leonard
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Lea A El Rassi
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Michelle M Choy
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Jaslyn Brar
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Joel B Glasman
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Win Cowger
- Moore Institute for Plastic Pollution Research, Long Beach, CA, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| |
Collapse
|
39
|
Gül MR. Short-term tourism alters abundance, size, and composition of microplastics on sandy beaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120561. [PMID: 36328281 DOI: 10.1016/j.envpol.2022.120561] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Microplastics have become a global threat to sandy beach ecosystems. To efficiently manage this threat, potential sources of microplastics should be deeply understood, which requires direct evidence as this is always a challenging task. Previous studies have reported various sources; however, the topic still needs attention to identify other potential sources of microplastics on sandy shores. Therefore, the abundance, size, color, shape, and polymer type of microplastics on nine sandy shores of the Turkish Coast of the Black Sea were examined before and after the regular tourism season to understand whether short-term tourism might be an important source. A total of 3402 microplastic items from 270 sand samples were obtained and examined. Both the abundance and the average size of the microplastics increased after the tourism season associated with the potential number of visitors and beach cleaning efforts. Further, the color, shape, and polymer type of microplastics varied between sampling times. Beach cleaning seemed to be an efficient way to minimize the adverse effect of short-term tourism influence. This study clearly identifies short-term tourism as an important source of microplastics on sandy shores and beach cleaning as an important tool to minimize microplastic abundance. The results of this study are important insights into current literature by identifying another source of microplastics on sandy shores, which should be useful for the potential management actions to reduce the harm of these global pollutants.
Collapse
Affiliation(s)
- Mustafa Remzi Gül
- Fatsa Faculty of Marine Sciences, Ordu University, Ordu, 52400, Turkey.
| |
Collapse
|
40
|
Al Harraq A, Brahana PJ, Arcemont O, Zhang D, Valsaraj KT, Bharti B. Effects of Weathering on Microplastic Dispersibility and Pollutant Uptake Capacity. ACS ENVIRONMENTAL AU 2022; 2:549-555. [PMID: 36411868 PMCID: PMC9673469 DOI: 10.1021/acsenvironau.2c00036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
Microplastics are ubiquitous in the environment, leading to a new form of plastic pollution crisis, which has reached an alarming level worldwide. Micron and nanoscale plastics may get integrated into ecological cycles with detrimental effects on various ecosystems. Commodity plastics are widely considered to be chemically inert, and alterations in their surface properties due to environmental weathering are often overlooked. This lack of knowledge on the dynamic changes in the surface chemistry and properties of (micro)plastics has impeded their life-cycle analysis and prediction of their fate in the environment. Through simulated weathering experiments, we delineate the role of sunlight in modifying the physicochemical properties of microplastics. Within 10 days of accelerated weathering, microplastics become dramatically more dispersible in the water column and can more than double the surface uptake of common chemical pollutants, such as malachite green and lead ions. The study provides the basis for identifying the elusive link between the surface properties of microplastics and their fate in the environment.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Philip J. Brahana
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Olivia Arcemont
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Donghui Zhang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kalliat T. Valsaraj
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
41
|
Sun J, Zheng H, Xiang H, Fan J, Jiang H. The surface degradation and release of microplastics from plastic films studied by UV radiation and mechanical abrasion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156369. [PMID: 35654205 DOI: 10.1016/j.scitotenv.2022.156369] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
During service or on discarding in the environment, solar ultraviolet radiation (UVR) and mechanical abrasion (MA) often act on plastic surface in combination, which cause the surface of plastics deterioration and micro- and nano- plastics release. Here, we examined how the set conditions (UVR, MA and UVR+MA (i.e., UVR combined with MA)) and polymer composition affected plastic degradation and microplastics (MPs) release. The surface degradation process and release of MPs of two types of plastic films (polyethylene (PE) and thermoplastic polyurethane (TPU)) under the action of UVR, MA and UVR+MA were analyzed and compared. The main results are as follow: First, the surface change of PE and TPU films by UVR+MA was observed more prominently than by UVR and MA. UVR+MA resulted in the accelerated surface degradation compared to UVR and MA. A large number of MPs were released from both PE and TPU films and significant differences were observed between UVR, MA and UVR+MA conditions. The UVR+MA treatment led to the generation of the largest amount of MPs with a smallest particle size, followed by MA and UVR. Second, plastics with different compositions exhibited different levels of resistance to UVR and MA. PE films released more MPs than TPU under the three set conditions. Finally, optical microscopy provided a direct and non-invasive method to assess the plastics degradation and the observed change in relative transmittance as a function of exposure time could be fitted linearly in some circumstances, which can be used to quantify the release of MPs. This study provided a basis for better understanding the degradation mechanisms of plastics surface and the relationship with MPs release during use and into the environment.
Collapse
Affiliation(s)
- Jiaoxia Sun
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Hanyue Zheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hong Xiang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jianxin Fan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hui Jiang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
42
|
Pfohl P, Wagner M, Meyer L, Domercq P, Praetorius A, Hüffer T, Hofmann T, Wohlleben W. Environmental Degradation of Microplastics: How to Measure Fragmentation Rates to Secondary Micro- and Nanoplastic Fragments and Dissociation into Dissolved Organics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11323-11334. [PMID: 35902073 PMCID: PMC9387529 DOI: 10.1021/acs.est.2c01228] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Understanding the environmental fate of microplastics is essential for their risk assessment. It is essential to differentiate size classes and degradation states. Still, insights into fragmentation and degradation mechanisms of primary and secondary microplastics into micro- and nanoplastic fragments and other degradation products are limited. Here, we present an adapted NanoRelease protocol for a UV-dose-dependent assessment and size-selective quantification of the release of micro- and nanoplastic fragments down to 10 nm and demonstrate its applicability for polyamide and thermoplastic polyurethanes. The tested cryo-milled polymers do not originate from actual consumer products but are handled in industry and are therefore representative of polydisperse microplastics occurring in the environment. The protocol is suitable for various types of microplastic polymers, and the measured rates can serve to parameterize mechanistic fragmentation models. We also found that primary microplastics matched the same ranking of weathering stability as their corresponding macroplastics and that dissolved organics constitute a major rate of microplastic mass loss. The results imply that previously formed micro- and nanoplastic fragments can further degrade into water-soluble organics with measurable rates that enable modeling approaches for all environmental compartments accessible to UV light.
Collapse
Affiliation(s)
- Patrizia Pfohl
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, Vienna 1030, Austria
| | - Marion Wagner
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
| | - Lars Meyer
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
| | - Prado Domercq
- Department
of Environmental Science, Stockholm University, Stockholm 10691, Sweden
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1090 GE, Netherlands
| | - Thorsten Hüffer
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Research
Platform Plastics in the Environment and Society (PLENTY), University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Thilo Hofmann
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Research
Platform Plastics in the Environment and Society (PLENTY), University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Wendel Wohlleben
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
- . Tel.: +49 621 6095339
| |
Collapse
|