1
|
Oliveira J, Raposo de Magalhães C, Schrama D, Rodrigues PM, Barata M, Soares F, Pousão-Ferreira P, Oliva-Teles A, Couto A. Skin mucus and blood plasma as non-lethal sources of malnutrition protein biomarkers in meagre (Argyrosomus regius). J Proteomics 2025; 316:105432. [PMID: 40089056 DOI: 10.1016/j.jprot.2025.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Developing dietary formulations for aquaculture that meet nutritional requirements is essential to production, as nutrition is key for fish growth and health. However, novel dietary formulations may induce malnutrition, which is complex to evaluate and often requires animal sacrifice. Therefore, finding reliable non-lethal biomarkers to diagnose malnutrition in fish is important. This study aimed to obtain vital information on potential non-lethal biomarkers from blood plasma and skin mucus to assess the fish's nutritional status using meagre (Argyrosomus regius) juveniles. For that purpose, a nutritional challenge was performed with fish fed a fish meal (FM) and fish-oil (FO) based control diet (55.1 % FM; 11 % FO, CTRL), a challenging diet (15 % FM; 7 % FO, CD), and a highly challenging diet (5 % FM; 5 % FO, ED), which, despite being nutritionally complete, may pose digestive and physiological challenges to carnivorous species. Diets significantly affected blood parameters, except for leukocyte counts, peroxidase activity, and immunoglobulin levels. Overall, blood parameters showed potential as non-lethal biomarkers to accurately identify signs of malnutrition. Meagre's plasma and skin mucus proteomes provided crucial information on the species' reaction to malnutrition, and 29 proteins connected to various physiological functions such as metabolism, development and immunity showed potential as non-lethal biomarkers. SIGNIFICANCE: The significance of this study lies in the establishment of potential non-lethal biomarkers for diagnosing malnutrition in fish. The results demonstrate that immunological, haematological, and biochemical parameters measured in fish blood can reveal signs of nutritional deficiencies. The findings further highlight that the proteomes of plasma and skin mucus provide valuable information about the fish's nutritional status. Notably, 29 proteins identified in this study, associated with various physiological functions, exhibit biomarker potential and warrant consideration in future research in the field of aquaculture nutrition. Moreover, the research provides critical insights into the proteome of meagre (Argyrosomus regius), enhancing our understanding of the species and contributing to the future improvement of its aquaculture production.
Collapse
Affiliation(s)
- Joana Oliveira
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal.
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Pedro M Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marisa Barata
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Florbela Soares
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Aires Oliva-Teles
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal
| | - Ana Couto
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Mesalles M, Uroz M, Brandts I, Serrano E, Cuenca R, Pastor J, Teles M. Preliminary Evaluation of an Automated Blood Cell Analyzer for Its Use with Blood Samples from Rainbow Trout Oncorhynchus mykiss. Animals (Basel) 2025; 15:1265. [PMID: 40362079 PMCID: PMC12070899 DOI: 10.3390/ani15091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Hematological studies provide essential information about the health of animals, which is crucial for veterinary medicine, scientific research, and aquaculture. Automatic hematological analyzers are an alternative to manual methods, offering faster and more reliable results. The objective of this study was to validate the Sysmex XN-1000V automatic hematology analyzer for blood samples from rainbow trout (Oncorhynchus mykiss), examine the effects of two anticoagulants (K2EDTA and lithium heparin), and establish normal blood reference values for this fish species. Additionally, comparative studies were conducted between the Sysmex XN-1000V and manual methods (hemocytometer cell count and blood smear estimation), and reference intervals were established. Ninety-nine heparinized blood samples were analyzed for validation and sample stability tests. The results showed extremely good precision, with a coefficient of variation (CV) below 3% for RBCs, HGB, and HCT and less than 5% for non-RBC cells (leukocytes plus thrombocytes). However, heterophils (%) exhibited higher variability, with a CV of 15.08%. Linearity was excellent, and the carry-over was below 1% for all parameters. The sample stability test indicated that samples could be analyzed for up to 48 h when stored at 4 °C and up to 24 h at room temperature. Non-RBC cells were the first to degrade over time. The automated and manual methods demonstrated good correlation and agreement, validating the analyzer's accuracy. The effects of two anticoagulants, K2EDTA and lithium heparin, on the blood samples were also studied. Heparin was the preferred anticoagulant for routine hematological analysis of rainbow trout blood with the Sysmex XN-1000V analyzer. In conclusion, the Sysmex XN-1000V enables complete hemogram analyses to be performed quickly and accurately, standardizing techniques, harmonizing results, and providing reliable reference intervals with O mykiss blood.
Collapse
Affiliation(s)
- Montse Mesalles
- Servei d’Hematologia Clínica Veterinària (SHCV), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain; (M.M.); (R.C.)
| | - Meritxell Uroz
- Departament de Biologia Celular, Fisiologia i Immunologia, Facultat de Biociencies, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain; (M.U.); (I.B.)
| | - Irene Brandts
- Departament de Biologia Celular, Fisiologia i Immunologia, Facultat de Biociencies, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain; (M.U.); (I.B.)
| | - Emmanuel Serrano
- Wildlife Ecology & Health Group (WE&H), Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain;
| | - Rafaela Cuenca
- Servei d’Hematologia Clínica Veterinària (SHCV), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain; (M.M.); (R.C.)
| | - Josep Pastor
- Servei d’Hematologia Clínica Veterinària (SHCV), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain; (M.M.); (R.C.)
| | - Mariana Teles
- Departament de Biologia Celular, Fisiologia i Immunologia, Facultat de Biociencies, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain; (M.U.); (I.B.)
| |
Collapse
|
3
|
Hashtjin YA, Raeeszadeh M, Khanghah AP. Interaction of Heavy Metals (Cadmium and Selenium) in an Experimental Study on Goldfish: Hematobiochemical Changes and Oxidative Stress. J Xenobiot 2025; 15:57. [PMID: 40278162 PMCID: PMC12028637 DOI: 10.3390/jox15020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Heavy metal interactions within aquatic ecosystems significantly affect fish physiology. This study evaluated the protective role of selenium against cadmium-induced hematological, biochemical, and electrophoretic alterations in goldfish. METHODS A total of 120 goldfish individuals were divided into four groups: control, cadmium chloride-treated (2.8 mg/L), sodium selenite-treated (2 mg/L), and a combined cadmium and selenium-treated group. After 14 days, blood samples were collected and analyzed for hematological parameters, biochemical markers, and serum protein electrophoresis. RESULTS Cadmium exposure led to significant reductions in red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin (Hb), and hematocrit (HCT) (p < 0.001). Selenium supplementation alleviated these declines and improved overall hematological function. Additionally, cadmium exposure decreased albumin and total protein levels while elevating aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, indicating liver damage. Selenium co-treatment reduced cadmium accumulation and mitigated liver toxicity. Elevated urea and creatinine levels in cadmium-exposed fish were also significantly lowered in the combined treatment group (p < 0.0001). Furthermore, selenium supplementation enhanced antioxidant defense mechanisms by increasing catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity while reducing malondialdehyde (MDA) levels, effectively counteracting cadmium-induced oxidative stress. CONCLUSION Sodium selenite at a dose of 2 mg/L effectively mitigated the toxic effects of cadmium chloride on hematological, biochemical, and oxidative stress markers in goldfish, demonstrating its protective potential against heavy metal toxicity.
Collapse
Affiliation(s)
- Yasaman Aghaei Hashtjin
- Graduate of Faculty of Veterinary Sciences, Sa.C., Islamic Azad University, Sanandaj 618, Iran;
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sa.C., Islamic Azad University, Sanandaj 618, Iran
| | - Ali Parsa Khanghah
- Department of Aquatic Animal Health and Disease, Sa.C., Islamic Azad University, Sanandaj 618, Iran;
| |
Collapse
|
4
|
Khan I, Islam FU, Khan NU, Ali H, Attaullah M, Khan MI. Cumulative effect of chronic thermal stress and glyphosate based herbicide exposure on blood parameters and cortisol levels of common carp (Cyprinus carpio). ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02875-y. [PMID: 40113651 DOI: 10.1007/s10646-025-02875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Climate change and environmental pollution can alter the composition and productivity of biological communities in aquatic ecosystems. Sensitive species are at more risk due to these stressors, which can affect their physiology with adverse effects on their health and reproduction. Co-exposure to multiple environmental stressors may have synergistic effects on the health of aquatic animals. Therefore, present research was designed to explore the cumulative effect of chronic exposure to thermal stress and glyphosate-based herbicide on the hematological parameters and cortisol level of common carp (Cyprinus carpio). Twenty-eight common carp were exposed to thermal stress (30 and 32 °C temperature) and a sub-lethal concentration of glyphosate for 28 days. A significant increase in white blood cells (WBCs), platelets and cortisol was observed in fish exposed to the sub-lethal concentration of glyphosate, while red blood cells (RBCs) and hemoglobin (Hb) decreased. Cortisol levels of fish exposed to thermal stress (32 °C) increased significantly. RBCs, WBCs, platelets, hemoglobin concentration and cortisol levels increased significantly in fish co-exposed to thermal stress and a sub-lethal concentration of glyphosate. It was concluded that co-exposure to glyphosate and thermal stress causes physiological impairments in common carp.
Collapse
Affiliation(s)
- Imran Khan
- Departmentof Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| | - Fakhr Ul Islam
- Departmentof Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Naimat Ullah Khan
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Hazrat Ali
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | | | - Muhammad Ikram Khan
- Department of Animal Sciences, Quaid -i- Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Lin T, Meegaskumbura M. Fish MicroRNA Responses to Thermal Stress: Insights and Implications for Aquaculture and Conservation Amid Global Warming. Animals (Basel) 2025; 15:624. [PMID: 40075907 PMCID: PMC11898199 DOI: 10.3390/ani15050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In the context of global warming, heat tolerance is becoming a crucial physiological trait influencing fish species' distribution and survival. While our understanding of fish heat tolerance and stress has expanded from behavioral studies to transcriptomic analyses, knowledge at the transcriptomic level is still limited. Recently, the highly conserved microRNAs (miRNAs) have provided new insights into the molecular mechanisms of heat stress in fish. This review systematically examines current research across three main reference databases to elucidate the universal responses and mechanisms of fish miRNAs under heat stress. Our initial screening of 569 articles identified 13 target papers for comprehensive analysis. Among these, at least 214 differentially expressed miRNAs (DEMs) were found, with 15 DEMs appearing in at least two studies (12 were upregulated and 13 were downregulated). The 15 recurrent DEMs were analyzed using DIANA mirPath v.3 and the microT-CDS v5.0 database to identify potential target genes. The results suggest that multiple miRNAs target various genes, forming a complex network that regulates glucose and energy metabolism, maintains homeostasis, and modulates inflammation and immune responses. Significantly, miR-1, miR-122, let-7a, and miR-30b were consistently differentially expressed in multiple studies, indicating their potential relevance in heat stress responses. However, these miRNAs should not be considered definitive biomarkers without further validation. Future research should focus on experimentally confirming their regulatory roles through functional assays, conducting transcriptomic comparisons across different species, and performing target validation studies. These miRNAs, conserved across species, could be valuable for monitoring wild fish health, enhancing aquaculture breeding, and guiding conservation strategies. However, the specific regulatory mechanisms of these miRNAs need clarification to confirm their reliability as biomarkers for thermal stress.
Collapse
Affiliation(s)
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Martins A, Barboza LG, Vieira LR, Botelho MJ, Vale C, Guilhermino L. Relations between microplastic contamination and stress biomarkers under two seasonal conditions in wild carps, mullets and flounders. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106925. [PMID: 39823942 DOI: 10.1016/j.marenvres.2024.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Potential effects of microplastics (MP, plastic particles <5 mm) on the levels of multiple stress biomarkers were investigated in wild fish populations of Cyprinus carpio, Mugil cephalus, Platichthys flesus captured in the Minho River estuary located in the Iberian Peninsula. Specimens were collected in March and September 2018, corresponding to the end of winter and summer, respectively. Based on the concentration of MP determined by FT-IR analysis and morphological inspection, fishes from each species were divided into two groups: ≤0.1 MP g-1 and >0.1 MP g-1. Biomarkers (general condition, neurotoxicity, biotransformation, oxidative stress) and the Integrated Biomarker Response (IBR) indicating fish general stress were determined. Fishes with more than 0.1 MP g-1 showed elevated general stress (1.2- to 1.8-fold) relative to fish with ≤0.1 MP g-1. Founders captured in March were the exception. Mullets were the most susceptible fishes to MP contamination by exhibiting poor physical condition, neurotoxicity, oxidative stress or damage, and carps were the most resilient. Low temperature and less chlorophylls (a proxy of food availability) observed in March appear to enhance the biological effects of MP.
Collapse
Affiliation(s)
- Alexandra Martins
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - L Gabriel Barboza
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Luis R Vieira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Maria João Botelho
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute of Sea and Atmosphere, IP Division of Oceanography and Marine Environment (DIVOA), Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal.
| | - Carlos Vale
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Lúcia Guilhermino
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
7
|
Ma F, Liu Z, Quan J, Yuan Y, Wang J, Zhou X, Wang J, Shen L, Tie D, Yang M, Lin Y, Song G, Wang Y, Shi G. N 6-methyladenosine RNA methylation regulates microplastics-induced cell senescence in the rainbow trout liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178363. [PMID: 39793132 DOI: 10.1016/j.scitotenv.2024.178363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Microplastics are prevalent in aquatic ecosystems, impacting various forms of aquatic life, including fish. In this study, Rainbow trout (Oncorhynchus mykiss) were exposed to two concentrations of microplastics (0 and 500 μg/L) over a 14-day period, during which a comprehensive analysis was conducted to assess the liver accumulation of microplastics and their effects on oxidative stress, the liver response, and transcriptomics. Our findings indicated that microplastics significantly accumulated in the liver and activated the antioxidant system in fish by enhancing the activity of antioxidant enzymes. Histological lesions were also observed in the liver of the fish. Furthermore, microplastics induced alterations in the expression of hepatic N6-methyladenosine readers, specifically downregulating IGF2BP1 (encoding insulin like growth factor 2 mRNA binding protein 1) and upregulating YTHDF2 (encoding YTH N6-methyladenosine RNA binding protein F2), which in turn decreased mRNA stability and reduced the expression of C-myc and other regulatory factors involved in the cell cycle and proliferation. This sequence of events resulted in slowed cell proliferation, the induction of cell cycle arrest, and the promotion of cellular senescence. This study offers valuable insights into the toxicological mechanisms of microplastics and enhances our understanding of the threats that plastic pollution poses to freshwater organisms.
Collapse
Affiliation(s)
- Fang Ma
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China; Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China.
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China
| | - Yijun Yuan
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Jianzhou Wang
- Tianshui Fishery Work Station, Tianshui, Gansu Province, PR China
| | - Xiangjun Zhou
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China; Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China
| | - Jing Wang
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Lei Shen
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Dunting Tie
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Minlan Yang
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Yang Lin
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Guoyu Song
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Yibo Wang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China.
| | - Guoxi Shi
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China.
| |
Collapse
|
8
|
Liu Q, Cao Y, Hu R, Gu L, Yang L, Liu Y, Wang W, Xiao L, Li B. Integrated analysis of biochemical, transcriptomic, and metabolomic response mechanisms in Ussuri catfish (Pseudobagrus ussuriensis) under acute heat stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117563. [PMID: 39708448 DOI: 10.1016/j.ecoenv.2024.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Fish metabolism, growth, development, and physiological conditions are highly sensitive to fluctuations in water temperature. The Ussuri catfish (Pseudobagrus ussuriensis) is an important native economic species in China. However, research on heat stress in P. ussuriensis, particularly concerning gene expression and metabolites, remains limited. In this study, we conducted histological observations, biochemical measurements, transcriptomic analysis, and metabolomic analysis on liver tissue from a control group (22 ℃), an acute heat stress group (34 ℃, with samples taken at 0, 3, 6, 12, and 24 h), and a recovery group (sampled 24 h after recovery to 22 ℃). Histopathological analysis showed that liver damage worsened with the duration of heat stress. Biochemical results indicated that acute heat stress significantly impacted the activities of superoxide dismutase, catalase, and alanine aminotransferase, as well as the levels of glutathione, malondialdehyde, and total antioxidant capacity, with alterations remaining even after temperature recovery. Transcriptomic and metabolomic analyses revealed that compared to the control group, 3482, 800, 980, and 1479 differentially expressed genes (DEGs) were detected at 0, 6, and 24 h of acute heat stress and at 24 h post-recovery, respectively. Similarly, 114, 151, 365, and 326 differentially expressed metabolites (DEMs), respectively, were detected at the same time points. Furthermore, when comparing 24 h of heat stress with 24 h of recovery, 1279 DEGs and 157 DEMs were identified. Functional enrichment analysis revealed that these DEGs and DEMs were significantly enriched in key pathways, such as endoplasmic reticulum protein processing and glutathione metabolism, with significant changes continuing into the recovery phase. Additionally, substantial alterations in the expression levels of amino acids, sugars, and lipids were observed during heat stress. These findings provide valuable insights into the defense mechanisms of fish under high-temperature stress and lay a theoretical foundation for breeding heat-resistant P. ussuriensis strains, as well as improving sustainable aquaculture management.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030800, China.
| | - Yang Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030800, China
| | - Ruyi Hu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030800, China
| | - Libo Gu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030800, China
| | - Lirong Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030800, China
| | - Yu Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030800, China
| | - Weiwei Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030800, China.
| |
Collapse
|
9
|
Yuan F, Wei X, Li D, Jin X, Wang J, Sun Y. Analysis of Immunosuppression and Antioxidant Damage in Diploid and Triploid Crucian Carp ( Carassius auratus) Induced by Saline-Alkaline Environmental Stress: From Metabolomic Insight. Metabolites 2024; 14:721. [PMID: 39728501 DOI: 10.3390/metabo14120721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Objectives: The salinization of the water environment worldwide is increasing, which has brought great challenges to the sustainability of fish farming of aquatic animals. Methods: Three NaHCO3 concentration groups (0 mmol/L, 20 mmol/L, and 60 mmol/L) were set up in this study to investigate growth and metabolic differences between diploid and triploid crucian carp under saline-alkaline stresses. Purpose: This study utilized UPLC-QTOF/MS metabolomics to analyze significant metabolites and metabolic pathways in the serum of diploid and triploid crucian carp, exposing them to different NaHCO3 concentrations in saline-alkaline habitats, elucidating the mechanism of their metabolic differences. Results: Results revealed that in the CA20 group, diploid and triploid crucian carp shared 69 differential metabolites, primarily enriched in pathways such as sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism. In the CA60 group, 46 differentially metabolites (DMs) were identified, mainly enriched in pathways such as linoleic acid metabolism, unsaturated fatty acid biosynthesis and sphingolipid metabolism. Conclusions: The analysis indicated that under different carbonate-saline-alkaline concentrations, diploid and triploid crucian carp primarily enriched in metabolic pathways such as glycerophospholipid metabolism, sphingolipid metabolism, and unsaturated fatty acid biosynthesis. With increasing carbonate-alkaline concentrations, hemolytic phospholipids associated with cell apoptosis were significantly upregulated and sphingolipid metabolism related to inflammation was more significantly enriched in triploid crucian carp, indicating that triploid crucian carp exhibited significant sensitivity to high carbonate-saline-alkaline stress and poorer carbonate-saline-alkaline tolerance. The results of this study provided a scientific theoretical basis for the later cultivation and aquaculture research of saline-alkaline-tolerant fish species.
Collapse
Affiliation(s)
- Fangying Yuan
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Chemical Engineering and Technology, College of Materials and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Xiaofeng Wei
- Department of Food Science and Engineering, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Dongping Li
- Department of Chemical Engineering and Technology, College of Materials and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Xiaofeng Jin
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Chemical Engineering and Technology, College of Materials and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Jing Wang
- Department of Chemical Engineering and Technology, College of Materials and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Yanchun Sun
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Chemical Engineering and Technology, College of Materials and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
- Department of Food Science and Engineering, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
10
|
Zhu C, Yang H, Zhu W, Jiang Q, Dong Z, Wang L. Integrated Analysis of Transcriptome and Metabolome in the Brain After Cold Stress of Red Tilapia During Overwintering. Int J Mol Sci 2024; 25:13372. [PMID: 39769137 PMCID: PMC11676689 DOI: 10.3390/ijms252413372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Cold stress during overwintering is considered a bottleneck problem limiting the development of the red tilapia (Oreochromis spp.) industry, and the regulation mechanism is currently not well understood. In this study, the fish (initial weight: 72.71 ± 1.32 g) were divided into the cold stress group (cold) and the control (normal) group. In the control group, the water temperature was maintained at 20 °C, which is basically consistent with the overwintering water temperature in greenhouses of local areas. In the cold group, the water temperature decreased from 20 °C to 8 °C by 2 °C per day during the experiment. At the end of the experiment, the levels of fish serum urea nitrogen, glucose, norepinephrine, alkaline phosphatase, total bilirubin, and total cholesterol in the cold group changed significantly compared with that in the control group (P < 0.05). Then transcriptome sequencing and LC-MS metabolome of brain tissue were further employed to obtain the mRNA and metabolite datasets. We found that the FoxO signaling pathway and ABC transporters played an important role by transcriptome-metabolome association analysis. In the FoxO signaling pathway, the differentially expressed genes were related to cell cycle regulation, apoptosis and immune-regulation, and oxidative stress resistance and DNA repair. In the ABC transporters pathway, the ATP-binding cassette (ABC) subfamily abca, abcb, and abcc gene expression levels, and the deoxycytidine, L-lysine, L-glutamic acid, L-threonine, ornithine, and uridine metabolite contents changed. Our results suggested that the cold stress may promote apoptosis through regulation of the FoxO signaling pathway. The ABC transporters may respond to cold stress by regulating amino acid metabolism. The results provided a comprehensive understanding of fish cold stress during overwintering, which will facilitate the breeding of new cold-resistant varieties of red tilapia in the future.
Collapse
Affiliation(s)
- Chenxi Zhu
- Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China; (C.Z.); (H.Y.); (W.Z.)
- School of Humanities, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Haoran Yang
- Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China; (C.Z.); (H.Y.); (W.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wenbin Zhu
- Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China; (C.Z.); (H.Y.); (W.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China;
| | - Zaijie Dong
- Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China; (C.Z.); (H.Y.); (W.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Lanmei Wang
- Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China; (C.Z.); (H.Y.); (W.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
11
|
Siddik MAB, Francis P, Foysal MJ, Francis DS. Dietary seaweed extract mitigates oxidative stress in Nile tilapia by modulating inflammatory response and gut microbiota. Front Immunol 2024; 15:1471261. [PMID: 39640260 PMCID: PMC11617724 DOI: 10.3389/fimmu.2024.1471261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Extreme water temperature affects the well-being of all aquatic animals, including fish. Higher temperatures can lead to the generation of reactive oxygen species (ROS), which can induce oxidative stress and negatively impact fish health and well-being. This study investigated the protective effects of seaweed extract on growth, antioxidant status, inflammatory responses, and gut microbiota to gain a better understanding of the acclimatization ability of Nile tilapia, Oreochromis niloticus in response to oxidative stress caused by high water temperatures. Methods Red-seaweed, Gracilaria tenuistipitata rich in polyphenols (i.e., total phenolics and flavonoids content) was considered for the preparation of the Gracilaria extract (GE) for the study. Nile tilapia were fed the GE supplemented diet along with a control diet for 42 days, followed by 14 days of temperature ramping at a rate of 1°C every two days to the desired target (35°C) and 14 days of holding at 32°C for acclimatation. Results Nile tilapia fed the GE had a significantly higher growth performance attributed to increased muscle fiber size compared to control (p < 0.05) after the 70 days of feeding trial. Fish fed the GE diet also showed a significantly lower lipid peroxidation by decreased malondialdehyde level when compared to control (p < 0.05). Furthermore, GE diet exhibited increased red blood cell counts with the decreased number of cellular and nuclear abnormalities. The gene expression of tight junction (i.e., occludin, claudin1, ZO-1) and nrf2 (antioxidant biomarker) were upregulated, while hsp70 (related to stress response) was downregulated in fish fed the GE diet. Additionally, GE supplementation led to an increase in bacterial diversity and the abundance of phylum Firmicutes, order Lactobacillales, and genera Sphingobacterium and Prevotella in the distal gut of Nile tilapia, which are mostly considered as beneficial for fish. Conclusion The findings suggest that GE has the potential to be used as a dietary supplement to improve health, particularly as a stress-resistant supplement in the diet for Nile tilapia. This study may help make more informed decisions for tailoring the nutrient requirements of fish in the face of climate warming.
Collapse
Affiliation(s)
- Muhammad A. B. Siddik
- Nutrition and Seafood Laboratory (NuSea.Lab), School of Life and Environmental Sciences, Deakin University, Queenscliff, VIC, Australia
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Prue Francis
- Nutrition and Seafood Laboratory (NuSea.Lab), School of Life and Environmental Sciences, Deakin University, Queenscliff, VIC, Australia
| | - Md Javed Foysal
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - David S. Francis
- Nutrition and Seafood Laboratory (NuSea.Lab), School of Life and Environmental Sciences, Deakin University, Queenscliff, VIC, Australia
| |
Collapse
|
12
|
Naziat A, Islam SMM, Chakrabarty J, Paray BA, Zahangir MM, Ando H, Shahjahan M. Elevated temperature impairs gonadal development by suppressing the expression of the genes for kisspeptin, GnRH1 and GTH subunits in Nile tilapia Oreochromis niloticus. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111714. [PMID: 39089445 DOI: 10.1016/j.cbpa.2024.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Temperature is a preeminent factor in the regulation of fish reproduction and hinders gonadal development beyond a specific threshold. To comprehend the molecular mechanism responsible for reproductive suppression at different temperature, expression of the genes encoding kisspeptin (kiss2), gonadotropin-releasing hormone (gnrh1) and their receptors (gpr54, gnrh1r) in the brain, and the gonadotropin (GTH) subunits (fshb and lhb) in the pituitary were studied in juvenile Nile tilapia (Oreochromis niloticus) along with gonadal histology. Fish were acclimatized to three distinct temperatures, including 31 °C, 34 °C and 37 °C for 14 days. The mRNA levels of kiss2, gpr54, gnrh1, and gnrh1r were significantly decreased at 37 °C compared to 31 °C and 34 °C in the both sexes. In parallel, the expression level of fshb in the both sexes and lhb in the female were significantly lower at 37 °C in the pituitary. Histologically, the gonads of both sexes had normal growth of gametes at control temperature (31 °C), whereas the spermatogenesis and oocyte maturation were slowed down and atretic oocytes were found in the ovary at 37 °C acclimation temperature. Taken together, the results imply that elevated temperature beyond the specific threshold may have a negative impact on reproduction by suppressing the gene expressions of kisspeptin/GnRH1/GTH system and eventually restrains normal growth and maturation of gametes in the both sexes of Nile tilapia.
Collapse
Affiliation(s)
- Azmaien Naziat
- Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - S M Majharul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Joya Chakrabarty
- Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Md Mahiuddin Zahangir
- Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
13
|
Bacchetta C, Cazenave J, Mora C, Michlig MP, Repetti MR, Rossi AS. Non-lethal biomarkers as promising tools for fish health assessment: In situ exposure to bifenthrin as a case study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107083. [PMID: 39265221 DOI: 10.1016/j.aquatox.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Non-lethal biomonitoring should provide an innovative approach to establish bioethical protocols for the management of both aquaculture and wild fisheries resources. We aimed to assess non-lethal biomarkers in Piaractus mesopotamicus caged in a rice field during a bifenthrin (BF) application. We analyzed parameters related to the immune system, energy metabolism and oxidative stress in fish skin mucus and blood plasma. Fish exposed to BF showed a significant increase in skin mucus glucose levels and the enzymatic activities of protease, alkaline phosphatase and superoxide dismutase. Regarding plasmatic parameters, BF increased the levels of glucose, total protein and albumin, but decreased triglycerides. In addition, increased activities of lysozyme and alkaline phosphatase were found in the blood plasma of exposed fish. Our results indicated an increased energy demand, altered immune function and a mild oxidative stress response in fish exposed in situ to BF. We have shown that skin mucus and blood plasma are very promising matrices for the development of non-lethal biomarkers to assess fish health in a stressed environment.
Collapse
Affiliation(s)
- Carla Bacchetta
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina; Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Celeste Mora
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Melina P Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santiago del Estero 2654, Santa Fe 3000, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santiago del Estero 2654, Santa Fe 3000, Argentina
| | - Andrea S Rossi
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina; Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina.
| |
Collapse
|
14
|
Wu L, Zhao P, Wu P, Jiang W, Liu Y, Ren H, Jin X, Zhou X, Feng L. Curcumin attenuates ochratoxin A and hypoxia co-induced liver injury in grass carp (Ctenopharyngodon idella) by dual targeting endoplasmic reticulum stress and apoptosis via reducing ROS content. J Anim Sci Biotechnol 2024; 15:131. [PMID: 39363374 PMCID: PMC11451059 DOI: 10.1186/s40104-024-01089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/14/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Ochratoxin A (OTA) is a toxin widely found in aquafeed ingredients, and hypoxia is a common problem in fish farming. In practice, aquatic animals tend to be more sensitive to hypoxia while feeds are contaminated with OTA, but no studies exist in this area. This research investigated the multiple biotoxicities of OTA and hypoxia combined on the liver of grass carp and explored the mitigating effect of curcumin (CUR). METHODS A total of 720 healthy juvenile grass carp (11.06 ± 0.05 g) were selected and assigned randomly to 4 experimental groups: control group (without OTA and CUR), 1.2 mg/kg OTA group, 400 mg/kg CUR group, and 1.2 mg/kg OTA + 400 mg/kg CUR group with three replicates each for 60 d. Subsequently, 32 fish were selected, divided into normoxia (18 fish) and hypoxia (18 fish) groups, and subjected to hypoxia stress for 96 h. RESULTS CUR can attenuate histopathological damage caused by coming to OTA and hypoxia by reducing vacuolation and nuclear excursion. The alleviation of this damage was associated with the attenuation of apoptosis in the mitochondrial pathway by decreasing the expression of the pro-apoptotic proteins Caspase 3, 8, 9, Bax, and Apaf1 while increasing the expression of the anti-apoptotic protein Bcl-2, and attenuation of endoplasmic reticulum stress (ERS) by reducing Grp78 expression and chop levels. This may be attributed to the fact that the addition of CUR increased the levels of catalase (CAT) and glutathione reductase (GSH), increased antioxidant capacity, and ensured the proper functioning of respiratory chain complexes I and II, which in turn reduced the high production of reactive oxygen species (ROS), thus alleviating apoptosis and ERS. CONCLUSIONS In conclusion, our data demonstrate the effectiveness of CUR in attenuating liver injury caused by the combination of OTA and hypoxia. This study confirms the feasibility and efficacy of adding natural products to mitigate toxic damage to aquatic animals.
Collapse
Affiliation(s)
- Liangqin Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
15
|
Emon FJ, Hasan J, Shahriar SIM, Islam N, Islam MS, Shahjahan M. Increased ingestion and toxicity of polyamide microplastics in Nile tilapia with increase of salinity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116730. [PMID: 39024944 DOI: 10.1016/j.ecoenv.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Microplastics pollution and salinity intrusion in freshwater ecosystem is one of the worldwide climate change consequences those have negative impacts on the physiology of aquatic organisms. Hence, a 15-day experiment was carried out where Nile tilapia (Oreochromis niloticus) was exposed to different salinity gradients i.e. 0 ‰, 3 ‰, 6 ‰, 9 ‰, and 12 ‰ alone and along with 10 mg/L polyamide microplastics (PA-MP) in order to measure its effects on the hematology, gill, and intestinal morphology. The results exhibited that all the fish treated with PA-MP ingested microplastics and the quantity of accumulation was significantly greater in higher salinity gradients (9 ‰ and 12 ‰). In addition, the PA-MP treated fish showed increased glucose level and at the same time reduced hemoglobin concentration with the increase of salinity. The percentages of abnormalities in erythrocytes both cellular (twin, teardrop and spindle shaped) and nuclear (notched nuclei, nuclear bridge and karyopyknosis) significantly enhanced with PA-MP exposure again in higher salinity treatments (9 ‰ and 12 ‰). The principal component analysis (PCA) exhibited that the addition of 10 mg/L PA-MP negatively affected the hematology of Nile tilapia than that of salinity treatments alone. Besides, the exposure of PA-MP in 9 ‰ and 12 ‰ salinity gradients escalated the severity of histological damages in gills and intestine. Overall, this experiment affirms that the increase of salinity enhanced the microplastics ingestion and toxicity in Nile tilapia, therefore, PA-MP possibly is addressed as additional physiological stressors along with increased salinity gradients in environment.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sheik Istiak Md Shahriar
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Naimul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Sadiqul Islam
- Department of Marine Fisheries Sciences, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
16
|
Shahriar SIM, Islam N, Emon FJ, Ashaf-Ud-Doulah M, Khan S, Shahjahan M. Size dependent ingestion and effects of microplastics on survivability, hematology and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). CHEMOSPHERE 2024; 356:141827. [PMID: 38583529 DOI: 10.1016/j.chemosphere.2024.141827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Microplastic pollution is drastically increasing in aquatic ecosystems and it is assumed that different sizes of microplastics have diverse impacts on the physiology of aquatic organisms. Therefore, this study was intended to examine the ingestion and size specific effects of polyamide microplastic (PA-MP) on different physiological aspects such as growth, feed utilization, survivability, blood parameters and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). In a 28-day exposure, the fish were fed with different sized PA-MP with a concentration of 500 mg per kg of feed in order to simulate highly microplastic contaminated environment. Three different treatments were set for this experiment i.e. T1, 25-50 μm (smaller microplastic); T2, 300 μm-2 mm (larger microplastic); T3, (mixed) including a control (C); each had three replicates. The highest ingestion was recorded in the gastrointestinal tract (GIT) of fish exposed to smaller PA-MP treatments (T1 followed by T3). The results also showed compromised weight gain (WG; g), specific growth rate (SGR; %/day) and feed conversion ratio (FCR) with the exposure of PA-MP. Besides, survivability significantly reduced among treatments with the ingestion of smaller sized microplastic and found lowest in T1 (65.0 ± 5.0). In addition, the presence of PA-MP in feed negatively affected the concentration of hemoglobin and blood glucose. Similarly, smaller PA-MP caused most erythrocytic cellular and nuclear abnormalities; found highest in T1 that significantly different from other treatments (p < 0.05). Various histopathological deformities were observed in fish fed with PA-MP incorporated feed. The principal component analysis (PCA) showed that the toxicity and stress imparted by smaller PA-MP affected the survivability and blood parameters where larger PA-MP caused mild to severe abnormalities. Based on eigenvector values, the major abnormalities in intestine included occurrence of epithelium columnar degeneration (ECD: 0.402; PC1), hyperplasia of internal mucosa (HISM: 0.411; PC1), beheading of villi (BV: 0.323; PC1), atrophy of mucosa (AM: 0.322; PC1), tiny vacuoles in apical villi (TV: 0.438. PC2), crypt degeneration (CD: 0.375: PC2) and atrophy of goblet cell (AGC: 0.375; PC2). Therefore, it has been speculated that the size based PA-MP ingestion in the GIT interfered with the digestion and absorption as well as caused deformities that reflected negatively in survivability and hemato-biochemical parameters of juvenile striped catfish.
Collapse
Affiliation(s)
- Sheik Istiak Md Shahriar
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Naimul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Saleha Khan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
17
|
Vicentini M, Pessatti JBK, Perussolo MC, Lirola JR, Marcondes FR, Nascimento N, Mela M, Cestari MM, Prodocimo V, Simmons D, Silva de Assis HC. Different response of females and males Neotropical catfish (Rhamdia quelen) upon short-term temperature increase. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:477-494. [PMID: 38112904 DOI: 10.1007/s10695-023-01278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Climate change has been one of the most discussed topics in the world. Global warming is characterized by an increase in global temperature, also in aquatic environments. The increased temperature can affect aquatic organisms with lethal and sublethal effects. Thus, it is necessary to understand how different species respond to temperature. This study aimed to evaluate how the Neotropical catfish species Rhamdia quelen responds to temperature increases. The fish were exposed to temperatures of 25 °C (control) and 30 °C after gradual temperature increase for 7 days. After 96 h in each temperature, the fish were anesthetized, blood was collected, and after euthanasia, brain, liver, posterior kidney, gills, muscle, and gonads were collected. The gonads were used for sexing, while other tissues were used for the hematological, biochemical, genotoxic, and histopathological biomarkers analysis. Hepatic proteomic analysis with a focus on energy production was also carried out. Blood parameter changes in both sexes, including an increase in glucose in males, leukopenia in females, and genotoxicity in both sexes. Hepatic proteins related to energy production were altered in both sexes, but mainly in males. Others biomarker alterations, such as histopathological, were not observed in other tissues; however, the antioxidant system was affected differently between sexes. These showed that R. quelen juveniles, at temperatures higher than its optimum temperature such as 30 °C, has several sublethal changes, such as hematological alterations, antioxidant system activation, and energetic metabolism alteration, especially in males. Thus, short-term temperature rise can affect females and males of R. quelen differently.
Collapse
Affiliation(s)
- Maiara Vicentini
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Pharmacology Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | | | - Maiara Carolina Perussolo
- Pharmacology Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Pelé Pequeno Príncipe Research Institute, Curitiba, PR, 80250-200, Brazil
| | - Juliana Roratto Lirola
- Genetics Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | | | - Natalia Nascimento
- Physiology Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Maritana Mela
- Cell Biology Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Marta Margarete Cestari
- Genetics Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Viviane Prodocimo
- Physiology Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Denina Simmons
- Faculty of Science, OntarioTech University, Oshawa, ON, L1G 0C5, Canada
| | | |
Collapse
|
18
|
Jannat R, Zahangir MM, Naziat A, Majharul Islam SM, Abdelazim AM, Mahboub HH, Shahjahan M. Hypoxia alters the upper thermal limits and blood physiology in zebrafish, Danio rerio. J Therm Biol 2024; 121:103837. [PMID: 38552447 DOI: 10.1016/j.jtherbio.2024.103837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 05/26/2024]
Abstract
Hypoxic aquatic environments occur more frequently as a result of climate change, thereby exerting challenges on the physiological and metabolic functions of aquatic animals. In this study, a model fish, zebrafish (Danio rerio) was used to observe the climate-induced hypoxic effect on the upper thermal limit (critical thermal maximum; CTmax), hemoglobin, and blood glucose levels, and abnormalities of erythrocytes at cellular and nuclear level. The value of CTmax decreased significantly under hypoxia (39.10 ± 0.96 °C) compared to normoxia (43.70 ± 0.91 °C). At CTmax, hemoglobin levels were much lower (9.33 ± 0.60 g/dL) and blood glucose levels were significantly higher (194.20 ± 11.33 mg/L) under hypoxia than they were under normoxia and at the beginning of the experiment. Increased frequencies of abnormalities in the erythrocytes at both cellular (fusion, twin, elongated, spindle and tear drop shaped) and nuclear (micronucleus, karyopyknosis, binuclei, nuclear degeneration and notched nuclei) levels were also found under hypoxia compared to normoxia. These results suggest that hypoxic conditions significantly alter the temperature tolerance and subsequent physiology in zebrafish. Our findings will aid in the development of effective management techniques for aquatic environments with minimum oxygen availability.
Collapse
Affiliation(s)
- Rayeda Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymemsingh, 2202, Bangladesh.
| | - Md Mahiuddin Zahangir
- Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh.
| | - Azmaien Naziat
- Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh.
| | - S M Majharul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymemsingh, 2202, Bangladesh.
| | - Aaser M Abdelazim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 67714, P.O. Box 255, Saudi Arabia.
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44519, Zagazig, 4511, Sharkia, Egypt.
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymemsingh, 2202, Bangladesh.
| |
Collapse
|
19
|
Liu Y, Tian C, Yang Z, Huang C, Jiao K, Yang L, Duan C, Zhang Z, Li G. Effects of Chronic Heat Stress on Growth, Apoptosis, Antioxidant Enzymes, Transcriptomic Profiles, and Immune-Related Genes of Hong Kong Catfish ( Clarias fuscus). Animals (Basel) 2024; 14:1006. [PMID: 38612245 PMCID: PMC11010891 DOI: 10.3390/ani14071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic heat stress can have detrimental effects on the survival of fish. This study aimed to investigate the impact of prolonged high temperatures on the growth, antioxidant capacity, apoptosis, and transcriptome analysis of Hong Kong catfish (Clarias fuscus). By analyzing the morphological statistics of C. fuscus subjected to chronic high-temperature stress for 30, 60, and 90 days, it was observed that the growth of C. fuscus was inhibited compared to the control group. The experimental group showed a significant decrease in body weight and body length compared to the control group after 60 and 90 days of high-temperature stress (p < 0.05, p < 0.01). A biochemical analysis revealed significant alterations in the activities of three antioxidant enzymes superoxide dismutase activity (SOD); catalase activity (CAT); glutathione peroxidase activity (GPx), the malondialdehyde content (MDA), and the concentrations of serum alkaline phosphatase (ALP); Aspartate aminotransferase (AST); and alanine transaminase (ALT) in the liver. TUNEL staining indicated stronger apoptotic signals in the high-temperature-stress group compared to the control group, suggesting that chronic high-temperature-induced oxidative stress, leading to liver tissue injury and apoptosis. Transcriptome analysis identified a total of 1330 DEGs, with 835 genes being upregulated and 495 genes being downregulated compared to the control group. These genes may be associated with oxidative stress, apoptosis, and immune response. The findings elucidate the growth changes in C. fuscus under chronic high temperature and provide insights into the underlying response mechanisms to a high-temperature environment.
Collapse
Affiliation(s)
- Yong Liu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Changxu Tian
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Zhihua Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Cailin Huang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (C.H.); (Z.Z.)
| | - Kaizhi Jiao
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Lei Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Cunyu Duan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| | - Zhixin Zhang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (C.H.); (Z.Z.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (C.T.); (Z.Y.); (K.J.); (L.Y.); (C.D.)
| |
Collapse
|
20
|
Luo M, Zhu W, Liang Z, Feng B, Xie X, Li Y, Liu Y, Shi X, Fu J, Miao L, Dong Z. High-temperature stress response: Insights into the molecular regulation of American shad (Alosa sapidissima) using a multi-omics approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170329. [PMID: 38280591 DOI: 10.1016/j.scitotenv.2024.170329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
High temperature is an important abiotic stressor that limits the survival and growth of aquatic organisms. American shad (Alosa sapidissima), a migratory fish suitable for culturing at low temperatures, is known for its delicious taste and thus has high economic value. Studies concerning changes in A. sapidissima under high temperature are limited, especially at the gene expression and protein levels. High-temperature stress significantly reduced the survival rates and increased vacuolar degeneration and inflammatory infiltration in the gills and liver. High temperature increased the activities of SOD, CAT, and cortisol, with a trend of initial increase followed by decreases in MDA, ALP, and LDH, and irregular changes in T-AOC and Na-K-ATPase. Comprehensive analysis of the transcriptome, proteome, and metabolome of gills from fish treated with different culture temperatures (24, 27, and 30 °C) revealed that differentially expressed genes, proteins, and metabolites were highly enriched in pathways involved in protein digestion and absorption, protein processing in endoplasmic reticulum, metabolic pathways, and purine metabolism. Gene expression and protein profiles indicated that genes coding for antioxidants (i.e., cat and alpl) and members of the heat shock protein (i.e., HSP70, HSP90AA1, and HSP5) were significantly upregulated. Additionally, a conjoint analysis revealed that several key enzymes, including nucleoside diphosphate kinase 2, adenosine deaminase, and ectonucleoside triphosphate diphosphohydrolase 5/6 were altered, thereby affecting the metabolism of guanosine, guanine, and inosine. An interaction network further confirmed that levels of the essential amino acids DL-arginine and L-histidine were significantly reduced, and corticosterone levels were significantly increased, suggesting that A. sapidissima may be more dependent on amino acids for energy in vivo. Overall, this work suggests that living in a high-temperature environment leads to differential defense responses in fishes. The results provide novel perspectives for studying the molecular basis of adaptation to climate change in A. sapidissima and for genetic selection.
Collapse
Affiliation(s)
- Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Zhengyuan Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Bingbing Feng
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Xudong Xie
- Zhenjiang Xinrun Agriculture Development Co., Ltd, Zhenjiang, Jiangsu, China
| | - Yulin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Ying Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Xiulan Shi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
| |
Collapse
|
21
|
Temiz Ö, Kargın D. Physiological responses of oxidative damage, genotoxicity and hematological parameters of the toxic effect of neonicotinoid-thiamethoxam in Oreochromis niloticus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104377. [PMID: 38272153 DOI: 10.1016/j.etap.2024.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The purpose of investigation assessed the impacts of neonicotinoid thiamethoxam (TMX) at sublethal concentrations in hematological profile and renal function of Oreochromis niloticus. In the experiment, fish were exposed to TMX in four groups (0, 50, 100 and 150 ppm) for 7 days. At the end of the experiment, biochemical analysis of blood samples showed that the parameters indicating renal function showed a significant increase in serum enzymes ALT, AST, ALP and metabolites (BUN, urea, uric acid, creatinine and cortisol) concentrations, while albumin concentration decreased in a dose-dependent manner compared to the control group. In parallel with the decrease in Na+, K+ and Ca+2 in blood ion levels, there was a significant decrease in the activity of Na+/K+ ATPase, Ca+2 ATPase and AChE enzyme, levels of GSH and HSP70 in kidney tissue in TMX groups compared to the control group. It was determined that the toxic effect of TMX caused a significant increase in TBARS, PC, 8-OHdG levels, respectively. In conclusion, our study shows that TMX causes dose-dependent toxic effects, with knock-on effects on physiological processes regarding the hematological profile and renal function of O. niloticus.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey.
| | - Dicle Kargın
- Faculty of Health Sciences, Marmara University, 34865 Istanbul, Turkey
| |
Collapse
|
22
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
23
|
Dawood MAO, Gewaily M, Sewilam H. Combined effects of water salinity and ammonia exposure on the antioxidative status, serum biochemistry, and immunity of Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1461-1477. [PMID: 37987935 PMCID: PMC10757701 DOI: 10.1007/s10695-023-01267-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Growing Nile tilapia in brackish water showed promising results, but the possibility of ammonia exposure can interrupt health status and productivity. Herein, the study tested the combined effects of water salinity and ammonia exposure on the antioxidative status, serum biochemistry, and immunity of Nile tilapia. Fish were assigned to eight groups where fish were reared in saline water (5, 10, and 15 ppt) with continuous or intermittent (every 3 days) total ammonia (TAN) exposure (5 mg TAN/L) (2 × 4 factorial design). After 30 days, the water salinity, TAN, and their interaction were markedly (P < 0.05), affecting the growth performance (final weight, weight gain, and specific growth rate) and survival rate of Nile tilapia. The growth performance and survival rate were markedly lower in tilapia grown in 15 ppt with continuous TAN exposure than in the remaining groups. The results showed that fish exposed to higher salinity levels (10 and 15 ppt) and continuous TAN exposure had a more robust antioxidative response, as evidenced by higher superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and lower malondialdehyde (MDA) levels in the homogenates of the gills, intestines, and livers. The gills were notably affected, with congestion of primary filaments blood vessels and degeneration or shedding of secondary filaments epithelium, especially at salinity levels of 10 and 15 ppt. Additionally, the intestines displayed hyperplasia and inflammatory cell infiltration of intestinal mucosa at 5-10 ppt salinity, degeneration and sloughing of the intestinal epithelium at 15 ppt saline water, and increased goblet cell number at salinity of 10 ppt. The study found that continuous TAN exposure had a more significant impact on the fish, especially at higher salinity levels. Water salinity, TAN, and their interaction significantly affected all measured blood bio-indicators (total, albumin, globulin, ALT, AST, creatinine, urea, glucose, and cortisol levels). The phagocytic activity and index were markedly lowered in fish reared in 15 ppt with continuous TAN exposure, while the lysozyme activity was decreased in fish grown in 5, 10, and 15 ppt with continuous TAN exposure. In conclusion, Nile tilapia showed the possibility of growth with normal health status in brackish water (5-10 ppt); however, continuous TAN exposure can impair the productivity of tilapia, especially with high salinity (15 ppt).
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, New Cairo, 11835, Cairo, Egypt.
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Mahmoud Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Hani Sewilam
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, New Cairo, 11835, Cairo, Egypt.
- Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
24
|
Kovacik A, Tvrda E, Tomka M, Revesz N, Arvay J, Fik M, Harangozo L, Hleba L, Kovacikova E, Jambor T, Hlebova M, Andreji J, Massanyi P. Seasonal assessment of selected trace elements in grass carp (Ctenopharyngodon idella) blood and their effects on the biochemistry and oxidative stress markers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1522. [PMID: 37995020 PMCID: PMC10667414 DOI: 10.1007/s10661-023-12152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Environmental pollution by anthropogenic activity is still a highly relevant global problem. Aquatic animals are a specifically endangered group of organisms due to their continuous direct contact with the contaminated environment. Concentrations of selected trace elements in the grass carp (Ctenopharyngodon idella) (n = 36) blood serum/clot were monitored. Possible effects of the elements on selected biochemical and oxidative markers were evaluated. The concentrations of trace elements (Al, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, Mn, Mo, Ni, Pb, Sr, Tl, and Zn) were analysed in the fish blood serum and blood clot by inductively coupled plasma optical emission spectrometry (ICP OES). A general scheme of decreasing concentrations of trace elements in the blood serum samples was: Zn ˃ Fe ˃ Sr ˃ Ba ˃ Ni ˃ Al ˃ Cu ˃ Be ˃ Co; < LOQ (below limit of quantification): Bi, Cd, Cr, Ga, Mn, Mo, Pb, Tl; and in the case of the blood clot, the scheme was as follows: Fe ˃ Zn ˃ Sr ˃ Al ˃ Ni ˃ Ba ˃ Cu ˃ Be ˃ Co ˃ Mn; < LOQ (below limit of quantification): Bi, Cd, Cr, Ga, Mo, Pb, Tl. Significant differences among the seasons were detected. The Spearman R correlation coefficients and linear or non-linear regression were used to evaluate direct relationships between trace elements and selected blood biomarkers. The correlation analysis between biochemical parameters (Na, K, P, Mg, AST, ALT, ALP, GGT, TAG, TP, urea, glucose) and trace elements (Al, Ba, Be, Cu, Fe, Ni, Sr, and Zn) concentrations confirmed statistically significant interactions in both seasons (summer and autumn). The regression analysis between oxidative stress markers (ROS, GPx, creatinine, uric acid, and bilirubin) and elements (Al, Ba, Co, Cu, Fe, Ni, and Sr) content confirmed statistically significant interactions. The results point to numerous connections between the observed elements and the physiological parameters of freshwater fish.
Collapse
Affiliation(s)
- Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia.
| | - Eva Tvrda
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marian Tomka
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Norbert Revesz
- DSM Nutritional Products Inc. Hungary Kft, Japán Fasor 4, 2367, Újhartyán, Hungary
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Martin Fik
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Lubos Harangozo
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Lukas Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Eva Kovacikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Miroslava Hlebova
- Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 917 01, Trnava, Slovakia
| | - Jaroslav Andreji
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
25
|
Sagot M, Bou E, Bourrier D, Cerf A, Aubert H, Vieu C. Bio-Impedance Spectroscopy of Retained Cells Using a Micro-Perforated Sensing Membrane Filtrating Whole Blood Samples under High Flowrate. BIOSENSORS 2023; 13:996. [PMID: 38131756 PMCID: PMC10741909 DOI: 10.3390/bios13120996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Blood filtration using micro-fabricated devices is an interdisciplinary topic of research and innovation driven by clinical applications in cytapheresis, cardiovascular disease monitoring, or liquid biopsy. In this paper, we demonstrate that a micro-perforated membrane can be equipped with sensing microelectrodes for detecting, in situ and in real-time, the capture of cellular material during ex vivo filtration of whole blood under high flow rates. This work describes the fabrication process of the sift and detection microdevice. We demonstrate that reliable electrical signals can be measured in whole blood samples flowing inside a fluidic system at typical flow rates, as large as 11.5 mL/min, hence allowing for large-volume sample processing. The in situ monitoring of the electrical impedance of the microelectrodes is shown to characterize the accumulation of living circulating cells retained by the filtrating membrane, opening interesting applications for monitoring blood filtration processes.
Collapse
Affiliation(s)
- Matthieu Sagot
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, INPT, 31400 Toulouse, France
- SmartCatch, 1 Place Pierre Potier, 31100 Toulouse, France
| | - Elise Bou
- SmartCatch, 1 Place Pierre Potier, 31100 Toulouse, France
| | - David Bourrier
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, INPT, 31400 Toulouse, France
| | - Aline Cerf
- SmartCatch, 1 Place Pierre Potier, 31100 Toulouse, France
| | - Hervé Aubert
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, INPT, 31400 Toulouse, France
| | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, INPT, 31400 Toulouse, France
| |
Collapse
|
26
|
Han P, Qiao Y, He J, Wang X. Stress responses to warming in Japanese flounder (Paralichthys olivaceus) from different environmental scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165341. [PMID: 37414161 DOI: 10.1016/j.scitotenv.2023.165341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Japanese flounder (Paralichthys olivaceus) is one of cold-water species widely farmed in Asia. In recent years, the increased frequency of extreme weather events caused by global warming has led to serious impact on Japanese flounder. Therefore, it is crucial to understand the effects of representative coastal economic fish under increasing water temperature. In this study, we investigated the histological and apoptosis responses, oxidative stress and transcriptomic profile in the liver of Japanese flounder exposed to gradual temperature rise (GTR) and abrupt temperature rise (ATR). The histological results showed liver cells in ATR group were the most serious in all three groups including vacuolar degeneration and inflammatory infiltration, and had more apoptosis cells than GTR group detected by TUNEL staining. These further indicated ATR stress caused more severe damage than GTR stress. Compared with control group, the biochemical analysis showed significantly changes in two kinds of heat stress, including GPT, GOT and D-Glc in serum, ATPase, Glycogen, TG, TC, ROS, SOD and CAT in liver. In addition, the RNA-Seq was used to analyze the response mechanism in Japanese flounder liver after heat stress. A total of 313 and 644 differentially expressed genes (DEGs) were identified in GTR and ATR groups, respectively. Further pathway enrichment of these DEGs revealed that heat stress affected cell cycle, protein processing and transportation, DNA replication and other biological processes. Notably, protein processing pathway in the endoplasmic reticulum (ER) was enriched significantly in KEGG and GSEA enrichment analysis, and the expression of ATF4 and JNK was significantly up-regulated in both GTR and ATR groups, while CHOP and TRAF2 were high expressed in GTR and ATR groups, respectively. In conclusion, heat stress could cause tissue damage, inflammation, oxidative stress and ER stress in the liver of Japanese flounder. The present study would provide insight into the reference for the adaptive mechanisms of economic fish in face of increasing water temperature caused by global warming.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
27
|
Salaro AL, Silva SB, Ferraz RB, Salinas Jiménez LG, Carneiro CLS, Quadros ASG, Machado JP, Freitas MB, Oliveira EE. Acute sublethal exposure to ethiprole impairs physiological and oxidative status in the Neotropical fish Astyanax altiparanae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122152. [PMID: 37414119 DOI: 10.1016/j.envpol.2023.122152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Ethiprole, a phenylpyrazole insecticide, has been increasingly used in the Neotropical region to control stink bug pests in soybean and maize fields. However, such abrupt increases in use may have unintended effects on non-target organisms, including those inhabiting freshwater ecosystems. Here, we evaluated the effects of acute (96 h) sublethal exposure to ethiprole (up to 180 μg/L, which is equivalent to 0.013% of the recommended field dose) on biomarkers of stress in the gills, liver, and muscle of the Neotropical fish Astyanax altiparanae. We further recorded potential ethiprole-induced effects on the structural histology of A. altiparanae gills and liver. Our results showed that ethiprole exposure increased glucose and cortisol levels in a concentration-dependent manner. Ethiprole-exposed fish also exhibited higher levels of malondialdehyde and greater activity of antioxidant enzymes, such as glutathione-S-transferase and catalase, in both gills and liver. Furthermore, ethiprole exposure led to increased catalase activity and carbonylated protein levels in muscle. Morphometric and pathological analyses of the gills revealed that increasing ethiprole concentration resulted in hyperemia and loss of integrity of the secondary lamellae. Similarly, histopathological analysis of the liver demonstrated higher prevalence of necrosis and inflammatory infiltrates with increasing ethiprole concentration. Altogether, our findings demonstrated that sublethal exposure to ethiprole can trigger a stress response in non-target fish species, which may lead to potential ecological and economic imbalances in Neotropical freshwater systems.
Collapse
Affiliation(s)
- Ana Lúcia Salaro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Stella B Silva
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Renato B Ferraz
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luis G Salinas Jiménez
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Cristiana L S Carneiro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, 4450-208, Portugal
| | - Alessandro S G Quadros
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - João Paulo Machado
- Departamento de Medicina Veterinaria, Centro Universitário de Viçosa (UNIVIÇOSA), Viçosa, Minas Gerais, 36576-340, Brazil
| | - Mariella B Freitas
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
28
|
Zhang Y, Chen L, Feng H, Xiao X, Nikitina MA, Zhang X. Wearable Bioimpedance-Based Deep Learning Techniques for Live Fish Health Assessment under Waterless and Low-Temperature Conditions. SENSORS (BASEL, SWITZERLAND) 2023; 23:8210. [PMID: 37837040 PMCID: PMC10575099 DOI: 10.3390/s23198210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
(1) Background: At present, physiological stress detection technology is a critical means for precisely evaluating the comprehensive health status of live fish. However, the commonly used biochemical tests are invasive and time-consuming and cannot simultaneously monitor and dynamically evaluate multiple stress levels in fish and accurately classify their health levels. The purpose of this study is to deploy wearable bioelectrical impedance analysis (WBIA) sensors on fish skin to construct a deep learning-based stress dynamic evaluation model for precisely estimating their accurate health status. (2) Methods: The correlation of fish (turbot) muscle nutrients and their stress indicators are calculated using grey relation analysis (GRA) for allocating the weight of the stress factors. Next, WBIA features are sieved using the maximum information coefficient (MIC) in stress trend evaluation modeling, which is closely related to the key stress factors. Afterward, a convolutional neural network (CNN) is utilized to obtain the features of the WBIA signals. Then, the long short-term memory (LSTM) method learns the stress trends with residual rectification using bidirectional gated recurrent units (BiGRUs). Furthermore, the Z-shaped fuzzy function can accurately classify the fish health status by the total evaluated stress values. (3) Results: The proposed CNN-LSTM-BiGRU-based stress evaluation model shows superior accuracy compared to the other machine learning models (CNN-LSTM, CNN-GRU, LSTM, GRU, SVR, and BP) based on the MAPE, MAE, and RMSE. Moreover, the fish health classification under waterless and low-temperature conditions is thoroughly verified. High accuracy is proven by the classification validation criterion (accuracy, F1 score, precision, and recall). (4) Conclusions: the proposed health evaluation technology can precisely monitor and track the health status of live fish and provides an effective technical reference for the field of live fish vital sign detection.
Collapse
Affiliation(s)
- Yongjun Zhang
- School of Information Engineering, Shandong Youth University of Political Science, Jinan 250103, China; (Y.Z.)
- Smart Healthcare Big Data Engineering and Ubiquitous Computing Characteristic Laboratory, Universities of Shandong, Jinan 250103, China
- New Technology Research and Development Center of Intelligent Information Controlling, Universities of Shandong, Jinan 250103, China
| | - Longxi Chen
- School of Information Engineering, Shandong Youth University of Political Science, Jinan 250103, China; (Y.Z.)
- Smart Healthcare Big Data Engineering and Ubiquitous Computing Characteristic Laboratory, Universities of Shandong, Jinan 250103, China
- New Technology Research and Development Center of Intelligent Information Controlling, Universities of Shandong, Jinan 250103, China
| | - Huanhuan Feng
- College of Engineering, Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100107, China
| | - Xinqing Xiao
- College of Engineering, Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100107, China
| | - Marina A. Nikitina
- V.M. Gorbatov Federal Research Center for Foods Systems of RAS, 109316 Moscow, Russia
| | - Xiaoshuan Zhang
- Smart Healthcare Big Data Engineering and Ubiquitous Computing Characteristic Laboratory, Universities of Shandong, Jinan 250103, China
| |
Collapse
|
29
|
Parvin S, Sakib MH, Islam ML, Brown CL, Islam MS, Mahmud Y. Coastal aquaculture in Bangladesh: Sundarbans's role against climate change. MARINE POLLUTION BULLETIN 2023; 194:115431. [PMID: 37647695 DOI: 10.1016/j.marpolbul.2023.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
The Sundarbans, a natural shield on earth, is one and only place that has many noteworthy environmental and geographical values with breathtaking natural beauties. Near the Sundarbans area, proliferation of aquaculture in this delta contributes appreciably to the national economy. Although aquaculture has become a means of daily livelihood, this sector is nevertheless threatened by a complex of climate change impacts. Cyclones, rising temperatures, rising sea levels, coastal flooding, and erosion make coastal farming difficult. As a panacea, the Sundarbans can play a critical role in preserving coastal aquaculture. As noticed, forests have high potential to recover from unusual consequences of climate change. Practicing safe aquaculture should be opted to refrain from endangering the Sundarbans. This review addressed various climate change impacts on coastal farming and identified the capabilities of the Sundarbans to protect coastal aquaculture from calamitous impacts. Findings show clues for researchers to analyze problems, consequences, and mitigations.
Collapse
Affiliation(s)
- Shahanaj Parvin
- Bangladesh Fisheries Research Institute, Brackishwater Station, Paikgacha, Khulna 9280, Bangladesh
| | - Md Hashmi Sakib
- Bangladesh Fisheries Research Institute, Brackishwater Station, Paikgacha, Khulna 9280, Bangladesh
| | - Md Latiful Islam
- Bangladesh Fisheries Research Institute, Brackishwater Station, Paikgacha, Khulna 9280, Bangladesh.
| | - Christopher L Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan 47340, South Korea
| | - Md Saiful Islam
- Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh
| | - Yahia Mahmud
- Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh
| |
Collapse
|
30
|
El-Sayed AFM, Khaled AA, Hamdan AM, Makled SO, Hafez EE, Saleh AA. The role of antifreeze genes in the tolerance of cold stress in the Nile tilapia (Oreochromis niloticus). BMC Genomics 2023; 24:476. [PMID: 37612592 PMCID: PMC10464439 DOI: 10.1186/s12864-023-09569-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Tilapia is one of the most essential farmed fishes in the world. It is a tropical and subtropical freshwater fish well adapted to warm water but sensitive to cold weather. Extreme cold weather could cause severe stress and mass mortalities in tilapia. The present study was carried out to investigate the effects of cold stress on the up-regulation of antifreeze protein (AFP) genes in Nile tilapia (Oreochromis niloticus). Two treatment groups of fish were investigated (5 replicates of 15 fish for each group in fibreglass tanks/70 L each): 1) a control group; the fish were acclimated to lab conditions for two weeks and the water temperature was maintained at 25 °C during the whole experimental period with feeding on a commercial diet (30% crude protein). 2) Cold stress group; the same conditions as the control group except for the temperature. Initially, the temperature was decreased by one degree every 12 h. The fish started showing death symptoms when the water temperature reached 6-8 °C. In this stage the tissue (muscle) samples were taken from both groups. The immune response of fish exposed to cold stress was detected and characterized using Differential Display-PCR (DD-PCR). RESULTS The results indicated that nine different up-regulation genes were detected in the cold-stressed fish compared to the control group. These genes are Integrin-alpha-2 (ITGA-2), Gap junction gamma-1 protein-like (GJC1), WD repeat-containing protein 59 isoform X2 (WDRP59), NUAK family SNF1-like kinase, G-protein coupled receptor-176 (GPR-176), Actin cytoskeleton-regulatory complex protein pan1-like (PAN-1), Whirlin protein (WHRN), Suppressor of tumorigenicity 7 protein isoform X2 (ST7P) and ATP-binding cassette sub-family A member 1-like isoform X2 (ABCA1). The antifreeze gene type-II amplification using a specific PCR product of 600 bp, followed by cloning and sequencing analysis revealed that the identified gene is antifreeze type-II, with similarity ranging from 70 to 95%. The in-vitro transcribed gene induced an antifreeze protein with a molecular size of 22 kDa. The antifreeze gene, ITGA-2 and the WD repeat protein belong to the lectin family (sugar-protein). CONCLUSIONS In conclusion, under cold stress, Nile tilapia express many defence genes, an antifreeze gene consisting of one open reading frame of approximately 0.6 kbp.
Collapse
Affiliation(s)
| | - Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria City, 21531, Egypt
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria City, Egypt
| | - Sara O Makled
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria City, Egypt
| | - Elsayed E Hafez
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria City, 21934, Egypt
| | - Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City, 11865, Egypt.
| |
Collapse
|
31
|
Ennas C, Pasquini V, Abyaba H, Addis P, Sarà G, Pusceddu A. Sea cucumbers bioturbation potential outcomes on marine benthic trophic status under different temperature regimes. Sci Rep 2023; 13:11558. [PMID: 37464005 DOI: 10.1038/s41598-023-38543-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Eutrophication affects coastal oceans worldwide, modifies primary production and sediment biogeochemistry and, overall, is progressively compromising marine ecosystems' integrity. Because of their known bioturbation ability, sea cucumbers are supposed to be candidates for mitigating benthic eutrophication. To provide insights on this, we investigated differences in organic matter quantity and biochemical composition (as proxies of benthic trophic status) of sediments and feces of the sea cucumber Holothuria tubulosa acclimated in mesocosms at temperatures comprised between natural conditions (14-26 °C) and an extreme of 29 °C (representing the highest anomaly under heat waves in the Mediterrranean Sea). Organic matter features differed significantly between sediments characterized by different trophic statuses and the holothuroid's feces, though with some exceptions. Feces resulted almost always organically enriched when compared with the ambient sediments, though with variable differences in composition in sediments characterized by different initial trophic status. Our results point out that sea cucumbers maintain their bioreactor capacity at all experimental temperatures including the (anomalous) highest one, irrespectively of the available food, suggesting that they could be profitably utilized to mitigate benthic eutrophication also in a warmer Mediterranean Sea.
Collapse
Affiliation(s)
- Claudia Ennas
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Degli Studi Di Cagliari, 09126, Cagliari, Italy
| | - Viviana Pasquini
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Degli Studi Di Cagliari, 09126, Cagliari, Italy
| | - Hiba Abyaba
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Degli Studi Di Cagliari, 09126, Cagliari, Italy
- Scuola Universitaria Superiore IUSS Pavia, 27100, Pavia, Italy
| | - Pierantonio Addis
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Degli Studi Di Cagliari, 09126, Cagliari, Italy
| | - Gianluca Sarà
- Dipartimento di Scienze Della Terra e del Mare, Università Degli Studi di Palermo, 90123, Palermo, Italy
| | - Antonio Pusceddu
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Degli Studi Di Cagliari, 09126, Cagliari, Italy.
| |
Collapse
|
32
|
Gaffar MA, Zaman MK, Islam MS, Islam M, Hossain MK, Shahriar SIM, Shahjahan M. Effects of probiotics on growth, survival, and intestinal and liver morphometry of Gangetic mystus ( Mystus cavasius). Saudi J Biol Sci 2023; 30:103683. [PMID: 37252211 PMCID: PMC10220484 DOI: 10.1016/j.sjbs.2023.103683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/15/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
The usage of probiotics proved advantageous in aquaculture due to its positive impact on fish growth, immune response and environment. This study was aimed to assess the effects of probiotics on growth, survival and histometry of intestine and liver in Gangetic mystus (Mystus cavasius) using two separate experiments for a period of 8 weeks (in aquaria) and 16 weeks (in earthen ponds). Three different probiotic treatments were incorporated i.e. commercial probiotic one; CP-1 (T1), commercial probiotic two; CP-2 (T2), Lab developed (Lab dev.) probiotic (T3) including a control. The results indicated that the probiotics usage especially Lab dev. probiotic (T3) significantly improved the growth parameters such as weight gain (g) and specific growth rate (SGR, %/day) as well as ensured better feed conversion efficiency. Zero mortality was observed in aquaria whereas probiotic application enhanced survivability in earthen ponds. Moreover, all probiotic treatment exhibited positive results for different histo-morphometric features of intestine and liver. Mucus secreting goblet cells and fattening of mucosal fold increased significantly with probiotic usage. The amount of regular shaped nucleus was maximum in T3 with least intra cellular distance between liver tissues in earthen ponds. The greatest value for hemoglobin with lowest glucose level was observed in T3 as well. Furthermore, probiotic ensured low concentration of ammonia during culture. Overall, it was anticipated that the application of probiotics in Gangetic mystus culture resulted positive effect on its growth, feed utilization, survivability, histo-morphometry, immunity and hematological parameters.
Collapse
|
33
|
Ramesh M, Bindu CF, Mohanthi S, Hema T, Poopal RK, Ren Z, Bin L. Efficiency of hematological, enzymological and oxidative stress biomarkers of Cyprinus carpio to an emerging organic compound (alphamethrin) toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104186. [PMID: 37331673 DOI: 10.1016/j.etap.2023.104186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Alphamethrin is one of the extensively used pyrethroids. Its non-specific mode-of-action might affect the non-target-organisms. Its toxicity data on aquatic organisms are lacking. We determined the toxicity (35 days) of alphamethrin (0.6µg/L and 1.2µg/L) on non-target-organisms by evaluating the efficiency of hematological, enzymological and antioxidants biomarkers of Cyprinus carpio. Compared with the control group, the efficiency of the biomarkers studied was significantly (p<0.05) impaired in the alphamethrin groups. Alphamethrin-toxicity altered hematology, transaminases and the potency of LDH of fish. ACP and ALP activity and biomarkers of oxidative stress in the gills, liver and muscle tissues were affected. IBRv2 index reveals that the biomarkers were inhibited. The observed impairments were the toxicity effects of alphamethrin with respect to concentration and time. The effectiveness of biomarkers for alphamethrin toxicity was like the toxicity data available on other banned insecticides. Alphamethrin could cause multiorgan toxicity on aquatic organisms at µg/L level.
Collapse
Affiliation(s)
- Mathan Ramesh
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China; Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore - 641 046, TamilNadu, India
| | - Clara F Bindu
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore - 641 046, TamilNadu, India
| | - Sundaram Mohanthi
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore - 641 046, TamilNadu, India
| | - Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore - 641 046, TamilNadu, India
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China; Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore - 641 046, TamilNadu, India.
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Li Bin
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| |
Collapse
|
34
|
Hasan J, Siddik MA, Ghosh AK, Mesbah SB, Sadat MA, Shahjahan M. Increase in temperature increases ingestion and toxicity of polyamide microplastics in Nile tilapia. CHEMOSPHERE 2023; 327:138502. [PMID: 36965532 DOI: 10.1016/j.chemosphere.2023.138502] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MP) pollution and global warming are worldwide concerns, creating various physiological problems for aquatic organisms. This study was carried out to know the effects of different temperature (30, 33 and 36 °C) on ingestion of MP along with the physiological consequences in Nile tilapia (Oreochromis niloticus) exposed to virgin polyamide (PA) (10 mg/L water; 500 μm to 4 mm in size) for 15 days. A significant difference was found in PA ingestion of the fish treated with different temperature. Fish from 36 °C temperature groups ingested highest amount of PA (136 ± 24.40 item/fish) during the exposure period. The hemoglobin (Hb) and red blood cell (RBC) decreased significantly in the highest temperature (36 °C) without PA exposure. At the same time, Hb increased, but RBC significantly reduced in all the temperature conditions with PA exposure. The number of white blood cell (WBC) and glucose level increased significantly in the highest temperature (36 °C) without PA exposure. In contrast, WBC increased and glucose decreased significantly in all the temperature conditions with PA exposure. Frequencies of various nuclear and cellular abnormalities of erythrocytes increased significantly in the fish exposed to all temperature with PA exposure, though severity increased with temperature. Similarly, histological damage of gills (hyperplasia, epithelial necrosis, deformed pillar system, epithelial lifting, telangiectasia) and intestine (epithelium breakage, enterocyte vacuolization and shortening of villi) was found to be mild to severe by the accumulation of PA, increased severity with increase of temperature. This study confirms that global warming as a consequence of climate change might influence MP ingestion hampering physiological state of fish.
Collapse
Affiliation(s)
- Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Abubakkar Siddik
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Ashik Kumar Ghosh
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sumaiya Binte Mesbah
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Ashfaq Sadat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
35
|
Chen Y, Pan Z, Bai Y, Xu S. Redox state and metabolic responses to severe heat stress in lenok Brachymystax lenok (Salmonidae). Front Mol Biosci 2023; 10:1156310. [PMID: 37293553 PMCID: PMC10244579 DOI: 10.3389/fmolb.2023.1156310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023] Open
Abstract
In order to provide new insights into the physiological responses of lenok (Brachymystax lenok: Salmonidae) to acute and severe heat stress (25°C, 48 h), dynamic changes in redox state and metabolic responses are studied combined biochemical index and non-targeted metabolome. Nicotinamide adenine dinucleotide (NAD+) consumption causes significant increases in ratio of reduced NADH to NAD+ and ratio of reduced nicotinamide adenine dinucleotide phosphate (NADPH) to NADP+, which induced the redox imbalance in heat stressed lenok. Lowered reduced glutathione/oxidized glutathione (GSH/GSSG) ratios suggested that more oxidized conditions occurred in heat-stressed lenok, leading to membrane lipid oxidation. The first few hours of heat stress promoted the activity of enzymes involved in anaerobic glycolysis (hexokinase, pyruvate kinase, lactic dehydrogenase) and glutamicpyruvic transaminase and glutamic oxaloacetic transaminase, which might lead to consumption of many carbohydrates and amino acid catabolism. These enzyme activities decreased with time in a possible compensatory strategy to manage anabolic and catabolic metabolism, maintaining the redox homeostasis. After 48 h of recovery, NAD+, carbohydrate levels and enzyme activities had returned to control levels, whereas many amino acids were consumed for repair and new synthesis. GSH remained at levels lower than controls, and the more oxidized conditions had not recovered, aggravating oxidative damage. Glutamic acid, glutamine, lysine and arginine may play important roles in survival of heat-stressed lenok.
Collapse
Affiliation(s)
- Yan Chen
- National Engineering Research Center for Freshwaters (Beijing), Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhe Pan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, China
| | - Yucen Bai
- China Rural Technology Development Center, Beijing, China
| | - Shaogang Xu
- National Engineering Research Center for Freshwaters (Beijing), Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
36
|
Zhao C, Teng X, Yue W, Suo A, Zhou W, Ding D. The effect of acute toxicity from tributyltin on Liza haematocheila liver: Energy metabolic disturbance, oxidative stress, and apoptosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106506. [PMID: 36989927 DOI: 10.1016/j.aquatox.2023.106506] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Tributyltin (TBT), a highly toxic and persistent organic pollutant, is widely distributed in coastal waters. Liza haematocheila (L. haematocheila) is one of bony fish distributing coincident with TBT, and exposure risk of TBT to this fish is unknown. In this study, L. haematocheila was exposed to TBT of 0, 3.4, 6.8, and 17.2 μg/L for 48 h to explore hepatic response mechanism. Our results showed that Sn content in livers increased after 48 h of exposure. HSI and histological changes indicated that TBT suppressed liver development of L. haematocheila. TBT reduced ATPase activities. The increased RB in blood and the reduced TBC were measured after exposure to TBT. T-AOC and antioxidant enzymes SOD, CAT, and GPx activities were inhibited while MDA content was increased. Liver cells showed apoptosis characteristics after TBT exposure. Furthermore, transcriptome analysis of livers was performed and the results showed energy metabolism-related GO term (such as ATPase complex and ATPase dependent transmembrance transport complex), oxidative stress-related GO term (such as Celllular response to oxidative stress and Antioxidant activity), and apoptosis-related GO term (such as Regulation of cysteine-type endopeptidase activity involved in apoptosic signaling pathway). Moreover, we found six energy metabolism-related differentially expressed genes (DEGs) including three up-regulated DEGs (atnb233, cftr, and prkag2) and three down-regulated DEGs (acss1, abcd2, and smarcb1); five oxidative stress-related DEGs including one up-regulated DEG (mmp9) and four down-regulated DEG (prdx5, hsp90, hsp98, and gstf9); as well as six apoptosis-related DEGs including five up-regulated DEGs (casp8, cyc, apaf1, hccs, and dapk3) and one down-regulated DEG (bcl2l1). Our transcriptome data above further confirmed that acute stress of TBT led energy metabolic disturbance, oxidative stress, and apoptosis in L. haematocheila livers.
Collapse
Affiliation(s)
- Changsheng Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Weizhong Yue
- Marine Environmental Engineering Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Anning Suo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Dewen Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
37
|
Poopal RK, Ashwini R, Ramesh M, Li B, Ren Z. Triphenylmethane dye (C 52H 54N 4O 12) is potentially a hazardous substance in edible freshwater fish at trace level: toxicity, hematology, biochemistry, antioxidants, and molecular docking evaluation study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28759-28779. [PMID: 36401692 DOI: 10.1007/s11356-022-24206-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Malachite green (C52H54N4O12) is a synthetic dye that is used in textile industries as a colorant and in aquaculture sectors to contain microbial damage. Aquatic contamination of malachite green (MG) has been reported globally. Fish is the highest trophic organism among aquatic inhabitants, highly sensitive to waterborne contaminants (metals, coloring agents, etc.). Toxicity of waterborne chemicals on nontarget organisms can be determined by assessing biomarkers. Assessing blood parameters and tissue antioxidants (enzymatic and nonenzymatic) is useful to evaluate MG toxicity. To initiate the MG toxicity data for freshwater fish (Cyprinus carpio), the median lethal toxicity was primarily evaluated. Then, hematological, blood biochemical (glucose, protein, and cholesterol) and tissue biochemical (amino acids, lipids), and vital tissue (gills, liver, and kidney) antioxidant capacity (CAT, LPO, GST, GR, POxy, vitamin C, and GSH) of C. carpio were analyzed under acute (LC50-96 h) and sublethal (Treatment I-1/10th and Treatment II-1/5th LC50-96 h) exposure periods (28 days). Molecular docking for MG with hemoglobin was also obtained. Biomarkers examined were affected in the MG-treated groups with respect to the control group. Significant changes (p < 0.05) were observed in hematology (Hb, RBCs, and WBCs), glucose, proteins, lipids and tissue CAT, LPO, and GST activities under acute MG exposure. In sublethal treatment groups, biomarkers studied were significant (p < 0.05) throughout the study period. The potential for MG binding to hemoglobin was tested in this study. MG is potentially a multiorgan toxicant. Literally a chemical that is harmful to the aquatic environment if safety is concerned.
Collapse
Affiliation(s)
- Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Rajan Ashwini
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
38
|
Dai C, Zheng J, Qi L, Deng P, Wu M, Li L, Yuan J. Chronic stress boosts systemic inflammation and compromises antiviral innate immunity in Carassius gibel. Front Immunol 2023; 14:1105156. [PMID: 36814911 PMCID: PMC9939519 DOI: 10.3389/fimmu.2023.1105156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
It is generally considered that stress causes decreased immune function and render fish vulnerable to infection and diseases. However, the molecular mechanisms between stress responses and susceptibility to infections, especially viral diseases, in fish remain unknown. Understanding and monitoring the biological consequences and mechanisms underlying stress responses in fish may contribute to the improvement of animal welfare and production efficiency. In this study, long-term exposure to a variety of stressors, including chasing, overcrowding, restraint stress, and air exposure mimicking chronic stresses, in aquaculture practices was conducted in Carassius gibel to investigate the consequences of chronic stress on inflammation and antiviral capability. With the continuation of stimulation, experimental fish gradually became insensitive to the stress of net chasing and feeding with the accompaniment of upregulated gene expressed in the HPI axis and elevated levels of stress hormones. As expected, stress-induced hyperglycaemia with a decrease in the insulin signaling pathway and altered gene expression in glycolysis and gluconeogenesis, suggesting the disturbance of glycometabolism. Importantly, a link between intestinal homoeostasis and systemic low-grade inflammation in stressed C. gibel was observed, implying crosstalk among the brain, intestine, and other organs. Furthermore, the compromised antiviral capability with impaired antiviral innate immunity in stressed fish was confirmed by RNA sequencing and infection with Cyprinid herpesvirus 2 (CyHV-2), promoting the understanding of enhanced susceptibility to viral infection in stressed fish.
Collapse
Affiliation(s)
- Caijiao Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University (HZUA), Wuhan, China
| | - Jianduo Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| | - Lin Qi
- Department of Consultation, Tianbin Ruicheng Environmental Technology Engineering Co., LTD, Tianjin, China
| | - Ping Deng
- Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Mengke Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University (HZUA), Wuhan, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University (HZUA), Wuhan, China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
39
|
Bagarius bagarius, and Eichhornia crassipes are suitable bioindicators of heavy metal pollution, toxicity, and risk assessment. Sci Rep 2023; 13:1824. [PMID: 36725877 PMCID: PMC9892034 DOI: 10.1038/s41598-023-28313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Water quality index (WQI) of Narora channel and health of endemic fish Bagarius bagarius and plant Eichhornia crassipes, district Bulandshahar, Uttar Pradesh, India were studied. Among the physicochemical properties of water, pH, D.O, Cr, Fe, Ni, and Cd were above the recommended standards. These factors lead to high WQI (4124.83), indicating poor quality and not suitable for drinking and domestic usage. In fish tissues, the highest metal load was reported in the liver (58.29) and the lowest in the kidney (33.73). Heavy metals also cause a lowering of condition indices. As expected, decreased serum protein (- 63.41%) and liver glycogen (- 79.10%) were recorded in the exposed fish. However, blood glucose (47.22%) and serum glycogen (74.69%) showed elevation. In the plant, roots (21.50) contained the highest, and leaves (16.87) had the lowest heavy metal load. Bioaccumulation factor (BAF) > 1, indicates hyperaccumulation of all metals. E. crassipes roots showed the highest translocation factor (TF) > 1 for Ni (1.57) and Zn (1.30). The high mobility factor (MF) reflected the suitability of E. crassipes for phytoextraction of Mn, Cd, Zn, Fe, Ni, and Cu. Moreover, Bagarius sp. consumption could not pose any non-cancer risk. Although, lower cancer risk can be expected from Ni and Cr.
Collapse
|