1
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 PMCID: PMC11759015 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/23/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S. Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Larasati YA, Solis GP, Koval A, Korff C, Katanaev VL. A Personalized 14-3-3 Disease-Targeting Workflow Yields Repositioning Drug Candidates. Cells 2025; 14:559. [PMID: 40277885 PMCID: PMC12025923 DOI: 10.3390/cells14080559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025] Open
Abstract
Rare diseases typically evade the application of the standard drug discovery and development pipelines due to their understudied molecular etiology and the small market size. Herein, we report a rare disease-directed workflow that rapidly studies the molecular features of the disorder, establishes a high-throughput screening (HTS) platform, and conducts an HTS of thousands of approved drugs to identify and validate repositioning drug candidates. This study examines the pediatric neurological disorder caused by de novo mutations in YWHAG, the gene encoding the scaffolding protein 14-3-3γ, and the workflow discovers nuclear relocalization and a severe drop in 14-3-3γ binding to its phosphorylated protein partners as the key molecular features of the pathogenic hotspot YWHAG mutations. We further established a robust in vitro HTS platform and screened ca. 3000 approved drugs to identify the repositioning drug candidates that restore the deficient 14-3-3γ-phosphotarget interactions. Our workflow can be applied to other 14-3-3-related disorders and upscaled for many other rare diseases.
Collapse
Affiliation(s)
- Yonika A. Larasati
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (Y.A.L.); (G.P.S.); (A.K.)
| | - Gonzalo P. Solis
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (Y.A.L.); (G.P.S.); (A.K.)
| | - Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (Y.A.L.); (G.P.S.); (A.K.)
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals of Geneva, CH-1211 Geneva, Switzerland;
| | - Vladimir L. Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (Y.A.L.); (G.P.S.); (A.K.)
- Translational Oncology Research Center, Qatar Biomedical Research Institute (QBRI), College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
3
|
Delalande F, Østergaard SR, Gogl G, Cousido-Siah A, McEwen AG, Men Y, Salimova F, Rohrbacher A, Kostmann C, Nominé Y, Vincentelli R, Eberling P, Carapito C, Travé G, Monsellier E. Holdup Multiplex Assay for High-Throughput Measurement of Protein-Ligand Affinity Constants Using a Mass Spectrometry Readout. J Am Chem Soc 2025; 147:10886-10902. [PMID: 40129024 DOI: 10.1021/jacs.4c11102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The accurate description and subsequent modeling of protein interactomes require quantification of their affinities at the proteome-wide scale. Here we develop and validate the Holdup Multiplex, a versatile assay with a mass spectrometry (MS) readout for profiling the affinities of a protein for large pools of peptides. The method can precisely quantify, in one single run, thousands of affinity constants over several orders of magnitude. The throughput, dynamic range, and sensitivity can be pushed to the performance limit of the MS readout. We applied the Holdup Multiplex to quantify in a few sample runs the affinities of the 14-3-3s, phosphoreader proteins highly abundant in humans, for 1000 different phosphopeptides. The seven human 14-3-3 isoforms were found to display similar specificities but staggered affinities, with 14-3-3γ being always the best binder and 14-3-3ε and σ being the weakest. Hundreds of new 14-3-3 binding sites were identified. We also identified dozens of 14-3-3 binding sites, some intervening in key signaling pathways, that were either stabilized or destabilized by the phytotoxin Fusicoccin-A. The results were corroborated by X-ray crystallography. Finally, we demonstrated the transferability of the Holdup Multiplex by quantifying the interactions of a PDZ domain for 5400 PBM peptides at once. The approach is applicable to any category of protein-binding ligands that can be quantifiable by mass spectrometry.
Collapse
Affiliation(s)
- François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - So Ren Østergaard
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Research Park, 2760 Maaloev, Denmark
| | - Gergo Gogl
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Alexandra Cousido-Siah
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Yushi Men
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Farida Salimova
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Aurélien Rohrbacher
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Camille Kostmann
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Yves Nominé
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS-Aix-Marseille Université, 13288 Marseille, France
| | - Pascal Eberling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Gilles Travé
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Elodie Monsellier
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| |
Collapse
|
4
|
Barrera EE, Skrabana R, Bustos DM. Deciphering opening mechanisms of 14-3-3 proteins. Protein Sci 2025; 34:e70108. [PMID: 40130781 PMCID: PMC11934215 DOI: 10.1002/pro.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025]
Abstract
The 14-3-3 proteins are a highly conserved family of regulatory molecules that play crucial roles in various cellular processes. They are known for their ability to bind to phosphorylated serine and threonine residues on target proteins, which allows them to modulate their activity, localization, and stability. In mammals, there are seven known paralogs of 14-3-3 proteins, designated as β, ε, ζ, η, σ, τ, and γ. Each paralog has distinct biological functions and tissue distributions, which allow a diverse range of regulatory roles in cellular processes. The conformational plasticity of 14-3-3s regulates their interaction with protein partners but has not yet been thoroughly characterized. We investigated this topic by classical molecular dynamics simulations and observed how the γ, ε, and ζ paralogs exhibit different opening rates. A PCA analysis identified the main modes of these opening-conformational variations. Using correlation-based tools and simulations with single amino acid substitutions, we have recognized how the amphipathic 14-3-3 groove opening is triggered by a distally located aliphatic-π interaction. The identified residues form a partially conserved small cavity between helices H6, H7, and H8, representing a potential paralog-specific drug site.
Collapse
Affiliation(s)
- Exequiel E. Barrera
- Instituto de Histología y Embriología de Mendoza (IHEM)Universidad Nacional de Cuyo, CONICETMendozaArgentina
| | - Rostislav Skrabana
- Institute of NeuroimmunologySlovak Academy of SciencesBratislavaSlovakia
| | - Diego M. Bustos
- Instituto de Histología y Embriología de Mendoza (IHEM)Universidad Nacional de Cuyo, CONICETMendozaArgentina
- Facultad de Ciencias Exactas y NaturalesUNCUYOMendozaArgentina
| |
Collapse
|
5
|
Liu J, Yan M, Chen L, Yu W, Lü Y. Construction and evaluation of a diagnostic model for Alzheimer's disease based on mitophagy-related genes. Sci Rep 2025; 15:10632. [PMID: 40148430 PMCID: PMC11950216 DOI: 10.1038/s41598-025-89980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Mitophagy fulfills crucial functions in neurodegenerative disorders and neuronal survival but the relationship between mitophagy and AD is unclear. Mitophagy correlation scores between AD samples and control samples were calculated using single-sample GSEA (ssGSEA) based on two datasets from gene expression omnibus (GEO) database. Mitophagy-related genes (MRGs) and differentially expressed genes (DEGs) in AD screened by WGCNA and "limma" package were intersected to take common genes. These overlapping genes were further compressed and used for diagnostic modeling by adopting the recursive feature elimination (RFE) and LASSO analysis. The reliability of the diagnostic model was verified based on the receiver operating characteristic (ROC) curve. Then, a transcription factor (TF)-mRNA regulatory network of these key genes was established. Lastly, ssGSEA was employed to examine the relationship between the identified genes and cellular pathways and immune cell infiltration. AD samples had notably lower mitophagy correlation scores than control samples. A total of 12 MRGs in the module with the greatest mitophagy connection with AD patients were identified. Functional enrichment analysis revealed that the DEGs were significantly enriched in synaptic function-related pathways. Based on GSE122063, a diagnostic prediction model was created and validated using two mitophagy-related genes (YWHAZ and NDE1), showing an area under ROC curve (AUC) greater than 0.7. This confirmed that the diagnostic model had a high predictive value. The TF-mRNA network showed that four TFs, namely, FOXC1, FOXL1, HOXA5 and GATA2, were regulated by both YWHAZ and NDE1 genes. Immune infiltration analysis revealed that NDE1 promoted the infiltration of most immune cells, while YWHAZ mainly inhibited the infiltration of most immune cells. The current findings improved our understanding of mitophagy in AD, contributing to future research and treatment development in AD.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Mengyu Yan
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Lihua Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weihua Yu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Sedlov IA, Sluchanko NN. Biochemical signatures strongly demarcate phylogenetic groups of plant 14-3-3 isoforms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70017. [PMID: 40051177 DOI: 10.1111/tpj.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 05/13/2025]
Abstract
Interaction of dimeric 14-3-3 proteins with phosphotargets regulates various physiological processes in plants, from flowering to transpiration and salt tolerance. Several genes express distinct 14-3-3 "isoforms," particularly numerous in plants, but these are unevenly studied even in model species. Here we systematically investigated twelve 14-3-3 isoforms from Arabidopsis thaliana. While all these proteins can homodimerize, four isoforms representing a supposedly more ancestral, epsilon phylogenetic group (iota, mu, omicron, epsilon), but not their eight non-epsilon counterparts (omega, phi, chi, psi, upsilon, nu, kappa, lambda), exhibit concentration-dependent monomerization, and pronounced surface hydrophobicity at physiologically relevant protein concentrations and under crowding conditions typical for the cell. We show that dramatically lowered thermodynamic stabilities entail aggregation of the epsilon group isoforms at near-physiological temperatures and accelerate their proteolytic degradation in vitro and in plant cell lysates. Mutations in 14-3-3 iota, inspired by structural analysis, helped us rescue non-epsilon behavior and pinpoint key positions responsible for the epsilon/non-epsilon demarcation. Combining two major demarcating positions (namely, 27th and 51st in omega) and differences in biochemical properties, we developed an epsilon/non-epsilon demarcation criterion that classified 89% of available 14-3-3 sequences from Dicots, Monocots, Gymnosperms, Ferns, and Lycophytes with 99.7% accuracy, and reliably predicted biochemical properties of a given 14-3-3 isoform, which we experimentally verified for distant 14-3-3 isoforms from Selaginella moellendorffii. The proven occurrence of isoforms of both groups in primitive plants refines the traditional phylogenetic, solely sequence-based analysis and provides intriguing insights into the evolutionary history of the epsilon phylogenetic group.
Collapse
Affiliation(s)
- Ilya A Sedlov
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
- School of Biology, Department of Biochemistry, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
7
|
Tian Y, Li L, Wu L, Xu Q, Li Y, Pan H, Bing T, Bai X, Finko AV, Li Z, Bian J. Recent Developments in 14-3-3 Stabilizers for Regulating Protein-Protein Interactions: An Update. J Med Chem 2025; 68:2124-2146. [PMID: 39902774 DOI: 10.1021/acs.jmedchem.4c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
14-3-3 proteins play a crucial role in the regulation of protein-protein interactions, impacting various cellular processes and disease mechanisms. Recent advancements have led to the development of stabilizers that enhance the binding of 14-3-3 proteins to clients, presenting promising therapeutic potentials. This perspective provides an updated overview of the latest developments in the field of 14-3-3 stabilizers, with a focus on their design, synthesis, and biological evaluation. We discuss the structural basis for the interaction between 14-3-3 proteins and their ligands, highlighting key modifications that enhance binding affinity and selectivity. Additionally, we explore the therapeutic applications of 14-3-3 stabilizers across major therapeutic areas such as cancer, metabolic disorders, and neurodegenerative diseases. By summarizing recent research findings and technological advancements, this perspective aims to shed light on the current state of 14-3-3 stabilizer developments and outline future directions for optimizing these compounds as effective therapeutic agents.
Collapse
Affiliation(s)
- Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Longjing Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liuyi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qianqian Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yaojie Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huawei Pan
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Tiejun Bing
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Xiumei Bai
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Alexander V Finko
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Lonare A, Raychaudhuri K, Shah S, Madhu G, Sachdeva A, Basu S, Thorat R, Gupta S, Dalal SN. 14-3-3σ restricts YY1 to the cytoplasm, promoting therapy resistance, and tumor progression in colorectal cancer. Int J Cancer 2025; 156:623-637. [PMID: 39239852 PMCID: PMC11622004 DOI: 10.1002/ijc.35176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
14-3-3σ functions as an oncogene in colorectal cancer and is associated with therapy resistance. However, the mechanisms underlying these observations are not clear. The results in this report demonstrate that loss of 14-3-3σ in colorectal cancer cells leads to a decrease in tumor formation and increased sensitivity to chemotherapy. The increased sensitivity to chemotherapy is due to a decrease in the expression of UPR pathway genes in the absence of 14-3-3σ. 14-3-3σ promotes expression of the UPR pathway genes by binding to the transcription factor YY1 and preventing the nuclear localization of YY1. YY1, in the absence of 14-3-3σ, shows increased nuclear localization and binds to the promoter of the UPR pathway genes, resulting in decreased gene expression. Similarly, a YY1 mutant that cannot bind to 14-3-3σ also shows increased nuclear localization and is enriched on the promoter of the UPR pathway genes. Finally, inhibition of the UPR pathway with genetic or pharmacological approaches sensitizes colon cancer cells to chemotherapy. Our results identify a novel mechanism by which 14-3-3σ promotes tumor progression and therapy resistance in colorectal cancer by maintaining UPR gene expression.
Collapse
Affiliation(s)
- Amol Lonare
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Kumarkrishna Raychaudhuri
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Sanket Shah
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiIndia
- Present address:
Weill Cornell MedicineNew YorkNew YorkUSA
| | - Gifty Madhu
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
| | - Anoushka Sachdeva
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
| | - Sneha Basu
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
| | - Sanjay Gupta
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiIndia
| | - Sorab N. Dalal
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| |
Collapse
|
9
|
Sedlov IA, Sluchanko NN. The Big, Mysterious World of Plant 14-3-3 Proteins. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S1-S35. [PMID: 40164151 DOI: 10.1134/s0006297924603319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 04/02/2025]
Abstract
14-3-3 is a family of small regulatory proteins found exclusively in eukaryotic organisms. They selectively bind to phosphorylated molecules of partner proteins and regulate their functions. 14-3-3 proteins were first characterized in the mammalian brain approximately 60 years ago and then found in plants, 30 years later. The multifunctionality of 14-3-3 proteins is exemplified by their involvement in coordination of protein kinase cascades in animal brain and regulation of flowering, growth, metabolism, and immunity in plants. Despite extensive studies of this diverse and complex world of plant 14-3-3 proteins, our understanding of functions of these enigmatic molecules is fragmentary and unsystematic. The results of studies are often contradictory and many questions remain unanswered, including biochemical properties of 14-3-3 isoforms, structure of protein-protein complexes, and direct mechanisms by which 14-3-3 proteins influence the functions of their partners in plants. Although many plant genes coding for 14-3-3 proteins have been identified, the isoforms for in vivo and in vitro studies are often selected at random. This rather limited approach is partly due to an exceptionally large number and variety of 14-3-3 homologs in plants and erroneous a priori assumptions on the equivalence of certain isoforms. The accumulated results provide an extensive but rather fragmentary picture, which poses serious challenges for making global generalizations. This review is aimed to demonstrate the diversity and scope of studies of the functions of plant 14-3-3 proteins, as well as to identify areas that require further systematic investigation and close scientific attention.
Collapse
Affiliation(s)
- Ilya A Sedlov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
10
|
Banerjee M, Pandey VP. Diet-induced Obesity: Pathophysiology, Consequences and Target Specific Therapeutic Strategies. Curr Protein Pept Sci 2025; 26:113-124. [PMID: 39225225 DOI: 10.2174/0113892037329528240827180820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Diet has emerged as a pivotal factor in the current time for diet-induced obesity (DIO). A diet overloaded with fats and carbohydrates and unhealthy dietary habits contribute to the development of DIO through several mechanisms. The prominent ones include the transition of normal gut microbiota to obese microbiota, under-expression of AMPK, and abnormally high levels of adipogenesis. DIO is the root of many diseases. The present review deals with various aspects of DIO and its target proteins that can be specifically used for its treatment. Also, the currently available treatment strategies have been explored. It was found that the expression of five proteins, namely, PPARγ, FTO, CDK4, 14-3-3 ζ protein, and Galectin-1, is upregulated in DIO. They can be used as potential targets for drug-designing studies. Thus, with these targets, the treatment strategy for DIO using natural bioactive compounds can be a safer alternative to medications and bariatric surgeries.
Collapse
Affiliation(s)
- Munmun Banerjee
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
- Institute of Food Processing and Technology, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow 226007, India (Pesent Address)
| |
Collapse
|
11
|
Gopaul VL, Winstone L, Gatien BG, Nault BD, Maiti S, Opperman RM, Majumder M. A Prospective Tumour Marker for Breast Cancer: YWHAB and Its Role in Promoting Oncogenic Phenotypes. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:935-956. [PMID: 39703345 PMCID: PMC11656333 DOI: 10.2147/bctt.s479384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Background YWHAB (14-3-3 Beta) was found in the secretome of miR-526b and miR-655 overexpressed breast cancer (BRCA) cell lines. The potential of YWHAB as a therapeutic target or biomarker for BRCA is investigated here. Methods After YWHAB was knocked down with siRNA, BRCA cell lines were used for in vitro assays (proliferation, migration, epithelial-to-mesenchymal transition). In silico analysis and in situ validation with BRCA plasma and biopsy tissues were used to test YWHAB's biomarker potential. Results YWHAB RNA and protein expression are elevated in aggressive BRCA cell lines, and the knockdown of YWHAB inhibited cell migration, proliferation, and EMT in all subtypes of tumour cell lines. YWHAB expression is significantly higher in BRCA biopsy tissue and blood plasma compared to control tissues and benign plasmas. YWHAB is expressed in all hormonal subtypes of BRCA tumours and has shown increased expression in advanced tumour stages. Its high expression is linked to poor patient survival. YWHAB is a sensitivity tumour marker (AUC of 0.7340, p = 0.0012) but is not a promising blood biomarker. Nevertheless, combined with pri-miR-526b, YWHAB mRNA expression shows potential as a BRCA blood biomarker (AUC of 0.711, p = 0.032), which must be validated in a larger sample set. Conclusion We elucidate the novel role of YWHAB as a therapeutic target in BRCA, given that its inhibition mitigated aggressive phenotypes across all tumour subtypes, including triple-negative breast cancer. Furthermore, YWHAB emerges as a potential tumour marker, exhibiting high expression in metastatic BRCA and correlating with poor patient survival; however, it is not a sensitive blood biomarker.
Collapse
Affiliation(s)
| | - Lacey Winstone
- Department of Biology, Brandon University, Brandon, MB, Canada
| | | | - Braydon D Nault
- Department of Biology, Brandon University, Brandon, MB, Canada
| | - Sujit Maiti
- Department of Biology, Brandon University, Brandon, MB, Canada
| | - Reid M Opperman
- Department of Biology, Brandon University, Brandon, MB, Canada
| | | |
Collapse
|
12
|
Tilwani S, Gandhi K, Dalal SN. 14-3-3ε conditional knockout mice exhibit defects in the development of the epidermis. FEBS Lett 2024; 598:3005-3020. [PMID: 39511902 DOI: 10.1002/1873-3468.15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The epidermis is a stratified epithelium that functions as the first line of defense against pathogenic invasion and acts as a barrier preventing water loss. In this study, we aimed to decipher the role of 14-3-3ε in the development of the epidermis. We report that loss of 14-3-3ε in the epidermis of juvenile and adult mice reduces cell division in the basal layer and increases the percentage of cells with multiple centrosomes, leading to a reduction in the thickness of the basal and stratified layers. We also demonstrate a decrease in the expression of differentiation markers, although no gross morphological defects in the skin or adverse effects on the survival of the mice were observed. These results suggest that loss of 14-3-3ε in the epidermis may lead to defects in proliferation and differentiation.
Collapse
Affiliation(s)
- Sarika Tilwani
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Karan Gandhi
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Sorab N Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Pattanayak R, Ekkatine R, Petit CM, Yacoubian TA. 14-3-3 phosphorylation inhibits 14-3-3θ's ability to regulate LRRK2 kinase activity and toxicity. Hum Mol Genet 2024; 33:2071-2083. [PMID: 39324210 DOI: 10.1093/hmg/ddae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains. Here we investigate the impact of 14-3-3θ phosphorylation on its ability to regulate LRRK2 kinase activity. Both wildtype and the non-phosphorylatable S232A 14-3-3θ mutant reduced the kinase activity of wildtype and G2019S LRRK2, whereas the phosphomimetic S232D 14-3-3θ mutant had minimal effects on LRRK2 kinase activity, as determined by measuring autophosphorylation at S1292 and T1503 and Rab10 phosphorylation. However, wildtype and both 14-3-3θ mutants similarly reduced the kinase activity of the R1441G LRRK2 mutant. 14-3-3θ phosphorylation did not promote global dissociation with LRRK2, as determined by co-immunoprecipitation and proximal ligation assays. 14-3-3s interact with LRRK2 at several phosphorylated serine/threonine sites, including T2524 in the C-terminal helix, which can fold back to regulate the kinase domain. Interaction between 14-3-3θ and phosphorylated T2524 LRRK2 was important for 14-3-3θ's ability to regulate kinase activity, as wildtype and S232A 14-3-3θ failed to reduce the kinase activity of G2019S/T2524A LRRK2. Finally, we found that the S232D mutation failed to protect against G2019S LRRK2-induced neurite shortening in primary cultures, while the S232A mutation was protective. We conclude that 14-3-3θ phosphorylation destabilizes the interaction of 14-3-3θ with LRRK2 at T2524, which consequently promotes LRRK2 kinase activity and toxicity.
Collapse
Affiliation(s)
- Rudradip Pattanayak
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| | - Roschongporn Ekkatine
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| | - Chad M Petit
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, 720 20th Street South, Kaul 452, Birmingham, AL 35294, United States
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| |
Collapse
|
14
|
Zhou R, Hu W, Ma PX, Liu CJ. Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases. Bone Res 2024; 12:58. [PMID: 39406741 PMCID: PMC11480210 DOI: 10.1038/s41413-024-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Bone and joint-related diseases, including osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. 14-3-3 proteins, a family of conserved regulatory molecules, play a critical role in the pathology of these diseases. This review discusses the intricate structure and multifunctionality of 14-3-3 proteins, their regulation of signaling pathways, and their interactions with other proteins. We underscore the significance of 14-3-3 proteins in the regulation of osteoblasts, osteoclasts, chondrocytes, and bone remodeling, all key factors in the maintenance and dysfunction of bone and joint systems. Specific focus is directed toward elucidating the contribution of 14-3-3 proteins in the pathology of OA, RA, and bone malignancies, where dysregulated 14-3-3-mediated signaling cascades have been implicated in the disease processes. This review illuminates how the perturbation of 14-3-3 protein interactions can lead to the pathological manifestations observed in these disorders, including joint destruction and osteolytic activity. We highlight cutting-edge research that positions 14-3-3 proteins as potential biomarkers for disease progression and as innovative therapeutic targets, offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Weirong Hu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Wu Y, Li H, Ma S, Ma H, Tan L. Physiological and differential protein expression analyses of the calcium stress response in the Drynaria roosii rhizome. Heliyon 2024; 10:e38260. [PMID: 39386768 PMCID: PMC11462351 DOI: 10.1016/j.heliyon.2024.e38260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
High concentration Ca2+ in karst soil is harmful to agriculture. Some dominant plants can adapt well to karst soil, but how Ca2+ affect plant is unknown. Drynaria roosii is a Ca2+-tolerant fern and its dry rhizome is a common Chinese medicine of Miao nationality in Guizhou, China. This study analyzed the physiological and proteomic characteristics of the rhizome of D. roosii under calcium stress. Physiological results indicated that calcium stress may lead to osmotic stress. Proteomic results showed that 147 differentially expressed proteins (96 increased, 51decreased) were identified under calcium stress, and these proteins mainly involved in signal transduction, protein translation, material transport, antioxidant defense and secondary metabolism. This study will lay a foundation for studying the calcium adaptation mechanism of D. roosii at the molecular level.
Collapse
Affiliation(s)
| | | | - Shanshan Ma
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongna Ma
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Longyan Tan
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
16
|
Wang SH, Hsieh YY, Ong KH, Lai HY, Tsai HH, Sun DP, Huang SKH, Tian YF, Wu HC, Chan TC, Joseph K, Chang IW. The clinicopathological significance and prognostic impact of 14-3-3σ/stratifin expression on patients with surgically resectable intrahepatic cholangiocarcinoma. Asian J Surg 2024:S1015-9584(24)01873-6. [PMID: 39232956 DOI: 10.1016/j.asjsur.2024.08.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer after hepatocellular carcinoma. Through data mining of publicly available iCCA transcriptomic datasets from the Gene Expression Omnibus, we identified SFN as the most significantly up-regulated gene in iCCA compared to normal tissue, focusing on the Gene Ontology term "cell proliferation" (GO:0008283). SFN encodes the 14-3-3σ protein, also known as stratifin, which plays crucial roles in various cellular processes. MATERIALS AND METHODS Immunohistochemistry was used to assess stratifin expression in 182 patients with localized iCCAs undergoing surgical resection. Patients were divided into low and high expression groups, and the association between stratifin expression and clinicopathological features was analyzed. Univariate and multivariate survival analyses were performed to assess overall survival (OS), disease-specific survival (DSS), local recurrence-free survival (LRFS), and metastasis-free survival (MeFS). RESULTS Elevated stratifin expression in iCCAs was significantly associated with the absence of hepatitis, positive surgical margins, advanced primary tumor stages, and higher histological grades (all p ≤ 0.011). Survival analyses demonstrated a significant negative association between stratifin expression and all prognostic indicators, including OS, DSS, LRFS, and MeFS (all p ≤ 0.0004). Multivariate analysis revealed that stratifin overexpression was significantly correlated with poorer outcomes in terms of DSS, LRFS, and MeFS (all p < 0.001). CONCLUSIONS These findings suggest that stratifin may play a crucial role in iCCA oncogenesis and tumor progression, serving as a potential novel prognostic biomarker.
Collapse
Affiliation(s)
- Su-Hong Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Khaa Hoo Ong
- Department of Surgery, Division of Gastroenterology and General Surgery, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsin-Hwa Tsai
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ding-Ping Sun
- Department of Surgery, Division of Gastroenterology and General Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Steven Kuan-Hua Huang
- Department of Surgery, Division of Urology, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Feng Tian
- Department of Surgery, Division of Colon and Rectal Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Chang Wu
- Department of Internal Medicine, Division of Hematology and Oncology, Chi Mei Medical Center, Tainan, Taiwan; College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | | | - I-Wei Chang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Clinical Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
17
|
Obsilova V, Obsil T. Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins. Physiol Res 2024; 73:S401-S412. [PMID: 38647170 PMCID: PMC11412345 DOI: 10.33549/physiolres.935306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Enzyme activity is regulated by several mechanisms, including phosphorylation. Phosphorylation is a key signal transduction process in all eukaryotic cells and is thus crucial for virtually all cellular processes. In addition to its direct effect on protein structure, phosphorylation also affects protein-protein interactions, such as binding to scaffolding 14-3-3 proteins, which selectively recognize phosphorylated motifs. These interactions then modulate the catalytic activity, cellular localisation and interactions of phosphorylated enzymes through different mechanisms. The aim of this mini-review is to highlight several examples of 14-3-3 protein-dependent mechanisms of enzyme regulation previously studied in our laboratory over the past decade. More specifically, we address here the regulation of the human enzymes ubiquitin ligase Nedd4-2, procaspase-2, calcium-calmodulin dependent kinases CaMKK1/2, and death-associated protein kinase 2 (DAPK2) and yeast neutral trehalase Nth1.
Collapse
Affiliation(s)
- V Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czech Republic. or
| | | |
Collapse
|
18
|
Somsen BA, Cossar PJ, Arkin MR, Brunsveld L, Ottmann C. 14-3-3 Protein-Protein Interactions: From Mechanistic Understanding to Their Small-Molecule Stabilization. Chembiochem 2024; 25:e202400214. [PMID: 38738787 DOI: 10.1002/cbic.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Protein-protein interactions (PPIs) are of utmost importance for maintenance of cellular homeostasis. Herein, a central role can be found for 14-3-3 proteins. These hub-proteins are known to bind hundreds of interaction partners, thereby regulating their activity, localization, and/or stabilization. Due to their ability to bind a large variety of client proteins, studies of 14-3-3 protein complexes flourished over the last decades, aiming to gain greater molecular understanding of these complexes and their role in health and disease. Because of their crucial role within the cell, 14-3-3 protein complexes are recognized as highly interesting therapeutic targets, encouraging the discovery of small molecule modulators of these PPIs. We discuss various examples of 14-3-3-mediated regulation of its binding partners on a mechanistic level, highlighting the versatile and multi-functional role of 14-3-3 within the cell. Furthermore, an overview is given on the development of stabilizers of 14-3-3 protein complexes, from initially used natural products to fragment-based approaches. These studies show the potential of 14-3-3 PPI stabilizers as novel agents in drug discovery and as tool compounds to gain greater molecular understanding of the role of 14-3-3-based protein regulation.
Collapse
Affiliation(s)
- Bente A Somsen
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Peter J Cossar
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California, 94143, United States
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| |
Collapse
|
19
|
Nishiyama K, Aihara Y, Suzuki T, Takahashi K, Kinoshita T, Dohmae N, Sato A, Hagihara S. Discovery of a Plant 14-3-3 Inhibitor Possessing Isoform Selectivity and In Planta Activity. Angew Chem Int Ed Engl 2024; 63:e202400218. [PMID: 38658314 DOI: 10.1002/anie.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Synthetic modulators of plant 14-3-3s are promising chemical tools both for understanding the 14-3-3-related signaling pathways and controlling plant physiology. Herein, we describe a novel small-molecule inhibitor for 14-3-3 proteins of Arabidopsis thaliana. The inhibitor was identified from unexpected products in a stock solution in dimethyl sulfoxide (DMSO) of an in-house chemical library. Mass spectroscopy, mutant-based analyses, fluorescence polarization assays, and thermal shift assays revealed that the inhibitor covalently binds to an allosteric site of 14-3-3 with isoform selectivity. Moreover, infiltration of the inhibitor to Arabidopsis leaves suppressed the stomatal aperture. The inhibitor should provide new insight into the design of potent and isoform-selective 14-3-3 modulators.
Collapse
Affiliation(s)
- Kotaro Nishiyama
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Takehiro Suzuki
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Naoshi Dohmae
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
20
|
Zhang H, Xie Z, Tu X, Liu A, Chen J, He Y, Wu B, Zhou Z. Morphological and proteomic study of waterlogging tolerance in cotton. Sci Rep 2024; 14:14550. [PMID: 38914604 PMCID: PMC11196664 DOI: 10.1038/s41598-024-64322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
Floating seedling cultivation technique is a novel seedling method in cotton and it provides an ideal model to study cotton growing under waterlogging stress. Morphological character and proteomic profile of the primary root from the seedling cultured by the new technology were evaluated in this study. Compared to seedlings cultured by the traditional method, the diameter of the taproot from floating technology is small at all five seedling stages from one-leaf stage to five-leaf stage. There are similar changes between the thickness of cortex and diameter of stele, which increased from the one- to the two-leaf stage but decreased from the two- to the five-leaf stage. At the one-leaf stage, the number and volume of mitochondria in the primary root-tip cells were less than those in the control. At the two-leaf stage, there was significantly less electron-dense material in the primary root-tip cells than those in the control group. From the one- to the two-leaf stage, the vacuole volume was significantly smaller than that in the control. Total 28 differentially expressed proteins were revealed from aquatic and control group roots of cotton seedlings at the three-leaf stage by two-dimensional electrophoresis, which included 24 up-regulated and four down-regulated proteins. The relative expression of the phosphoglycerate kinase (PGK) gene in aquatic roots increased from the one- to the four-leaf stage but declined rapidly from the four- to the five-leaf stage. The relative expression of the 14-3-3b gene tended to decrease from the one- to the five-leaf stage. The PGK and 14-3-3b genes were specifically expressed in the aquatic roots at the three-leaf stage. In brief, these changes induced waterlogging resistance in the aquatic roots of cotton seedlings in the floating nursery, thereby causing the roots to adapt to the aquatic environment, promoting the growth and development of cotton seedlings.
Collapse
Affiliation(s)
- Hao Zhang
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China
| | - Zhangshu Xie
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China
| | - Xiaoju Tu
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China
| | - Aiyu Liu
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China
| | - Jinxiang Chen
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, 415101, China
| | - Bibo Wu
- Hunan Biological and Electromechanical Polytechmic, Changsha, 410127, China.
| | - Zhonghua Zhou
- Cotton Research Institute, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, 410128, China.
| |
Collapse
|
21
|
Konstantinidou M, Arkin MR. Molecular glues for protein-protein interactions: Progressing toward a new dream. Cell Chem Biol 2024; 31:1064-1088. [PMID: 38701786 PMCID: PMC11193649 DOI: 10.1016/j.chembiol.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
The modulation of protein-protein interactions with small molecules is one of the most rapidly developing areas in drug discovery. In this review, we discuss advances over the past decade (2014-2023) focusing on molecular glues (MGs)-monovalent small molecules that induce proximity, either by stabilizing native interactions or by inducing neomorphic interactions. We include both serendipitous and rational discoveries and describe the different approaches that were used to identify them. We classify the compounds in three main categories: degradative MGs, non-degradative MGs or PPI stabilizers, and MGs that induce self-association. Diverse, illustrative examples with structural data are described in detail, emphasizing the elements of molecular recognition and cooperative binding at the interface that are fundamental for a MG mechanism of action.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation Code of Human Nucleophosmin Includes Four Cryptic Sites for Hierarchical Binding of 14-3-3 Proteins. J Mol Biol 2024; 436:168592. [PMID: 38702038 DOI: 10.1016/j.jmb.2024.168592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phosphosites in NPM1 reside within signal sequences, this work suggests a mechanism of NPM1 regulation by which NPM1 phosphorylation can promote 14-3-3 binding to affect NPM1 shuttling between cell compartments. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
| |
Collapse
|
23
|
Saka N, Nishio M, Ohta K. Human parainfluenza virus type 2 V protein inhibits mitochondrial apoptosis pathway through two ways. Virology 2024; 594:110053. [PMID: 38492518 DOI: 10.1016/j.virol.2024.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Paramyxoviruses are reported to block apoptosis for their replication, but the mechanisms remain unclear. Furthermore, regulation of mitochondrial apoptosis by paramyxoviruses has been hardly reported. We investigated whether and how human parainfluenza virus type 2 (hPIV-2) counteracts apoptosis. Infection of recombinant hPIV-2 carrying mutated V protein showed higher caspase 3/7 activity and higher cytochrome c release from mitochondria than wild type hPIV-2 infection. This indicates that V protein controls mitochondrial apoptosis pathway. hPIV-2 V protein interacted with Bad, an apoptotic promoting protein, and this interaction inhibited the binding of Bad to Bcl-XL. V protein also bound to 14-3-3ε, which was essential for inhibition of 14-3-3ε cleavage. Our data collectively suggest that hPIV-2 V protein has two means of preventing mitochondrial apoptosis pathway: the inhibition of Bad-Bcl-XL interaction and the suppression of 14-3-3ε cleavage. This is the first report of the mechanisms behind how paramyxoviruses modulate mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Naoki Saka
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
24
|
Wu G, Wang W. Recent advances in understanding the role of two mitogen-activated protein kinase cascades in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2256-2265. [PMID: 38241698 DOI: 10.1093/jxb/erae020] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The mitogen-activated protein kinase (MAPK/MPK) cascade is an important intercellular signaling module that regulates plant growth, development, reproduction, and responses to biotic and abiotic stresses. A MAPK cascade usually consists of a MAPK kinase kinase (MAPKKK/MEKK), a MAPK kinase (MAPKK/MKK/MEK), and a MAPK. The well-characterized MAPK cascades in plant immunity to date are the MEKK1-MKK1/2-MPK4 cascade and the MAPKKK3/4/5-MKK4/5-MPK3/6 cascade. Recently, major breakthroughs have been made in understanding the molecular mechanisms associated with the regulation of immune signaling by both of these MAPK cascades. In this review, we highlight the most recent advances in understanding the role of both MAPK cascades in activating plant defense and in suppressing or fine-tuning immune signaling. We also discuss the molecular mechanisms by which plants stabilize and maintain the activation of MAPK cascades during immune signaling. Based on this review, we reveal the complexity and importance of the MEKK1-MKK1/2-MPK4 cascade and the MAPKKK3/4/5-MKK4/5-MPK3/6 cascade, which are tightly controlled by their interacting partners or substrates, in plant immunity.
Collapse
Affiliation(s)
- Guangheng Wu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Tang Z, Lin F, Chen Z, Yu B, Liu JH, Liu X. 4'- O-MethylbavachalconeB Targeted 14-3-3ζ Blocking the Integrin β3 Early Outside-In Signal to Inhibit Platelet Aggregation and Thrombosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7043-7054. [PMID: 38509000 DOI: 10.1021/acs.jafc.3c05211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
14-3-3ζ protein, the key target in the regulation and control of integrin β3 outside-in signaling, is an attractive new strategy to inhibit thrombosis without affecting hemostasis. In this study, 4'-O-methylbavachalconeB (4-O-MB) in Psoraleae Fructus was identified as a 14-3-3ζ ligand with antithrombosis activity by target fishing combined with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis. The competitive inhibition analysis showed that 4-O-MB targeted 14-3-3ζ and blocked the 14-3-3ζ/integrin β3 interaction with inhibition constant (Ki) values of 9.98 ± 0.22 μM. Molecular docking and amino acid mutation experiments confirmed that 4-O-MB specifically bound to 14-3-3ζ through LSY9 and SER28 to regulate the 14-3-3ζ/integrin β3 interaction. Besides, 4-O-MB affected the integrin β3 early outside-in signal by inhibiting AKT and c-Src phosphorylation. Meanwhile, 4-O-MB could inhibit ADP-, collagen-, or thrombin-induced platelet aggregation function but had no effect on platelet adhesion to collagen-coated surfaces in vivo. Administration of 4-O-MB could significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings provide new prospects for the antithrombotic effects of Psoraleae Fructus and the potential application of 4-O-MB as lead compounds in the therapy of thrombosis by targeting 14-3-3ζ.
Collapse
Affiliation(s)
- Ziqi Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Fanqi Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhiwen Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ji-Hua Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
26
|
Ye N, Shi X, Gao J, Dong R, Wang G, Wang J, Luo L, Zhang T. Exosomes from Intrahepatic Cholestasis of Pregnancy Induce Cell Apoptosis Through the miRNA-6891-5p/YWHAE Pathway. Dig Dis Sci 2024; 69:1253-1262. [PMID: 38361148 DOI: 10.1007/s10620-023-08265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse pregnancy outcomes; however, the underlying mechanisms are not fully understood. AIMS This study aimed to determine the role of exosomal miR-6891-5p in placental trophoblast dysfunction in ICP and identify new biomarkers for ICP diagnosis. METHODS Serum samples were collected from ICP patients and healthy pregnant women, and serum exosomes were extracted and identified. Fluorescent dye labeling of exosomes and cell-verified cell phagocytosis were performed. In vitro experiments were conducted by adding taurocholic acid to simulate the ICP environment. Cell proliferation and apoptosis levels were detected using flow cytometry and the cell counting kit-8 assay. Mimics were constructed to overexpress miR-6891-5p in cells, and the binding site between miR-6891-5p and YWHAE was verified using luciferase reporter genes. RESULTS miR-6891-5p expression was significantly decreased in serum exosomes of ICP patients. Co-culturing with exosomes derived from ICP patients' serum (ICP-Exos) decreased HTR-8/SVeno cell proliferation and increased apoptosis levels. miR-6891-5p upregulation in HTR-8/SVeno cells significantly increased cell viability and reduced cell apoptosis levels, as determined by the cell counting kit-8 assay and flow cytometry. A double luciferase assay confirmed that miR-6891-5p affected the expression of the downstream YWHAE protein. CONCLUSIONS This study indicates that serum exosomes from ICP patients can impact the apoptosis of placental trophoblast HTR-8/SVeno cells through the miR-6891-5P/YWHAE pathway and can serve as specific molecular markers for ICP diagnosis.
Collapse
Affiliation(s)
- Ningzhen Ye
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Xinrui Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jianyi Gao
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Ruirui Dong
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Gaoying Wang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jing Wang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Liang Luo
- Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Jiangnan University, Wuxi, 214001, China
| | - Ting Zhang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
| |
Collapse
|
27
|
Bertrams W, Wilhelm J, Veeger PM, Hanko C, Brinke KAD, Klabunde B, Pott H, Weckler B, Greulich T, Vogelmeier CF, Schmeck B. A mRNA panel for differentiation between acute exacerbation or pneumonia in COPD patients. Front Med (Lausanne) 2024; 11:1234068. [PMID: 38585145 PMCID: PMC10995291 DOI: 10.3389/fmed.2024.1234068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Patients suffering from chronic obstructive pulmonary disease (COPD) are prone to acute exacerbations (AECOPD) or community acquired pneumonia (CAP), both posing severe risk of morbidity and mortality. There is no available biomarker that correctly separates AECOPD from COPD. However, because CAP and AECOPD differ in aetiology, treatment and prognosis, their discrimination would be important. Methods This study analysed the ability of selected candidate transcripts from peripheral blood mononuclear cells (PBMCs) to differentiate between patients with AECOPD, COPD & CAP, and CAP without pre-existing COPD. Results In a previous study, we identified differentially regulated genes between CAP and AECOPD in PBMCs. In the present new cohort, we tested the potential of selected candidate PBMC transcripts to differentiate at early time points AECOPD, CAP+COPD, and CAP without pre-existing COPD. Expression of YWHAG, E2F1 and TDRD9 held predictive power: This gene set predicted diseases markedly better (model accuracy up to 100%) than classical clinical markers like CRP, lymphocyte count and neutrophil count (model accuracy up to 82%). Discussion In summary, in our cohort expression levels of YWHAG, E2F1 and TDRD9 differentiated with high accuracy between COPD patients suffering from acute exacerbation or CAP.
Collapse
Affiliation(s)
- Wilhelm Bertrams
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Jochen Wilhelm
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Pia-Marie Veeger
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Carolina Hanko
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Kristina auf dem Brinke
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Björn Klabunde
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Hendrik Pott
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University, Marburg, Germany
| | - Barbara Weckler
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University, Marburg, Germany
| | - Timm Greulich
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University, Marburg, Germany
| | - Claus F. Vogelmeier
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO) and German Center for Infectious Disease Research (DZIF), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
28
|
Dedden D, Nitsche J, Schneider EV, Thomsen M, Schwarz D, Leuthner B, Grädler U. Cryo-EM Structures of CRAF 2/14-3-3 2 and CRAF 2/14-3-3 2/MEK1 2 Complexes. J Mol Biol 2024; 436:168483. [PMID: 38331211 DOI: 10.1016/j.jmb.2024.168483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
RAF protein kinases are essential effectors in the MAPK pathway and are important cancer drug targets. Structural understanding of RAF activation is so far based on cryo-electron microscopy (cryo-EM) and X-ray structures of BRAF in different conformational states as inactive or active complexes with KRAS, 14-3-3 and MEK1. In this study, we have solved the first cryo-EM structures of CRAF2/14-3-32 at 3.4 Å resolution and CRAF2/14-3-32/MEK12 at 4.2 Å resolution using CRAF kinase domain expressed as constitutively active Y340D/Y341D mutant in insect cells. The overall architecture of our CRAF2/14-3-32 and CRAF2/14-3-32/MEK12 cryo-EM structures is highly similar to corresponding BRAF structures in complex with 14-3-3 or 14-3-3/MEK1 and represent the activated dimeric RAF conformation. Our CRAF cryo-EM structures provide additional insights into structural understanding of the activated CRAF2/14-3-32/MEK12 complex.
Collapse
Affiliation(s)
- Dirk Dedden
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Julius Nitsche
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | | | - Maren Thomsen
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Daniel Schwarz
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Birgitta Leuthner
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ulrich Grädler
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| |
Collapse
|
29
|
Fan Z, Zhu Y, Kuang W, Leng J, Wang X, Qiu L, Nie J, Yuan Y, Zhang RF, Wang Y, Zhao Q. The 14-3-3 protein GRF8 modulates salt stress tolerance in apple via the WRKY18-SOS pathway. PLANT PHYSIOLOGY 2024; 194:1906-1922. [PMID: 37987562 DOI: 10.1093/plphys/kiad621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Salinity is a severe abiotic stress that limits plant survival, growth, and development. 14-3-3 proteins are phosphopeptide-binding proteins that are involved in numerous signaling pathways, such as metabolism, development, and stress responses. However, their roles in salt tolerance are unclear in woody plants. Here, we characterized an apple (Malus domestica) 14-3-3 gene, GENERAL REGULATORY FACTOR 8 (MdGRF8), the product of which promotes salinity tolerance. MdGRF8 overexpression improved salt tolerance in apple plants, whereas MdGRF8-RNA interference (RNAi) weakened it. Yeast 2-hybrid, bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays revealed that MdGRF8 interacts with the transcription factor MdWRKY18. As with MdGRF8, overexpressing MdWRKY18 enhanced salt tolerance in apple plants, whereas silencing MdWRKY18 had the opposite effect. We also determined that MdWRKY18 binds to the promoters of the salt-related genes SALT OVERLY SENSITIVE 2 (MdSOS2) and MdSOS3. Moreover, we showed that the 14-3-3 protein MdGRF8 binds to the phosphorylated form of MdWRKY18, enhancing its stability and transcriptional activation activity. Our findings reveal a regulatory mechanism by the MdGRF8-MdWRKY18 module for promoting the salinity stress response in apple.
Collapse
Affiliation(s)
- Zihao Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yuqing Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Wei Kuang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jun Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xue Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Linlin Qiu
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Rui-Fen Zhang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China
| | - Yongzhang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
30
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation code of human nucleophosmin includes four cryptic sites for hierarchical binding of 14-3-3 proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580064. [PMID: 38405961 PMCID: PMC10888825 DOI: 10.1101/2024.02.13.580064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phospho-sites in NPM1 reside within signal sequences, this work highlights a key mechanism of NPM1 regulation by which NPM1 phosphorylation promotes 14-3-3 binding to control nucleocytoplasmic shuttling. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A. Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V. Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B. Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
31
|
Scheible N, Henning PM, McCubbin AG. Calmodulin-Domain Protein Kinase PiCDPK1 Interacts with the 14-3-3-like Protein NtGF14 to Modulate Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:451. [PMID: 38337984 PMCID: PMC10857193 DOI: 10.3390/plants13030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Calcium-mediated signaling pathways are known to play important roles in the polar growth of pollen tubes. The calcium-dependent protein kinase, PiCDPK1, has been shown to be involved in regulating this process through interaction with a guanine dissociation inhibitor, PiRhoGDI1. To more fully understand the role of PiCDPK1 in pollen tube extension, we designed a pull-down study to identify additional substrates of this kinase. These experiments identified 123 putative interactors. Two of the identified proteins were predicted to directly interact with PiCDPK1, and this possibility was investigated in planta. The first, NtGF14, a 14-3-3-like protein, did not produce a noticeable phenotype when overexpressed in pollen alone but partially rescued the spherical tube phenotype caused by PiCDPK1 over-expression when co-over-expressed with the kinase. The second, NtREN1, a GTPase activating protein (GAP), severely inhibited pollen tube germination when over-expressed, and its co-over-expression with PiCDPK1 did not substantially affect this phenotype. These results suggest a novel in vivo interaction between NtGF14 and PiCDPK1 but do not support the direct interaction between PiCDPK1 and NtREN1. We demonstrate the utility of the methodology used to identify potential protein interactions while confirming the necessity of additional studies to confirm their validity. Finally, additional support was found for intersection between PiCDPK1 and RopGTPase pathways to control polar growth at the pollen tube tip.
Collapse
Affiliation(s)
| | | | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (N.S.); (P.M.H.)
| |
Collapse
|
32
|
Fu Q, Zhang B, Chen X, Chu L. Liquid-liquid phase separation in Alzheimer's disease. J Mol Med (Berl) 2024; 102:167-181. [PMID: 38167731 DOI: 10.1007/s00109-023-02407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The pathological aggregation and misfolding of tau and amyloid-β play a key role in Alzheimer's disease (AD). However, the underlying pathological mechanisms remain unclear. Emerging evidences indicate that liquid-liquid phase separation (LLPS) has great impacts on regulating human health and diseases, especially neurodegenerative diseases. A series of studies have revealed the significance of LLPS in AD. In this review, we summarize the latest progress of LLPS in AD, focusing on the impact of metal ions, small-molecule inhibitors, and proteinaceous partners on tau LLPS and aggregation, as well as toxic oligomerization, the role of LLPS on amyloid-β (Aβ) aggregation, and the cross-interactions between amyloidogenic proteins in AD. Eventually, the fundamental methods and techniques used in LLPS study are introduced. We expect to present readers a deeper understanding of the relationship between LLPS and AD.
Collapse
Affiliation(s)
- Qinggang Fu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liang Chu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
33
|
Jiang W, Jiang Y, Luo Y, Qiao W, Yang T. Facilitating the development of molecular glues: Opportunities from serendipity and rational design. Eur J Med Chem 2024; 263:115950. [PMID: 37984298 DOI: 10.1016/j.ejmech.2023.115950] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Molecular glues can specifically induce interactions between two or more proteins to modulate biological functions and have been proven to be a powerful therapeutic modality in drug discovery. It plays a variety of vital roles in several biological processes, such as complex stabilization, interactome modulation and transporter inhibition, thus enabling challenging therapeutic targets to be druggable. Most known molecular glues were identified serendipitously, such as IMiDs, auxin, and rapamycin. In recent years, more rational strategies were explored with the development of chemical biology and a deep understanding of the interaction between molecular glues and proteins, which led to the rational discovery of several molecular glues. Thus, in this review, we aim to highlight the discovery strategies of molecular glues from three aspects: serendipitous discovery, screening methods and rational design principles. We expect that this review will provide a reasonable reference and insights for the discovery of molecular glues.
Collapse
Affiliation(s)
- Weiqing Jiang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
34
|
Davarinejad H, Arvanitis-Vigneault A, Nygard D, Lavallée-Adam M, Couture JF. Modus operandi: Chromatin recognition by α-helical histone readers. Structure 2024; 32:8-17. [PMID: 37922903 DOI: 10.1016/j.str.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Histone reader domains provide a mechanism for sensing states of coordinated nuclear processes marked by histone proteins' post-translational modifications (PTMs). Among a growing number of discovered histone readers, the 14-3-3s, ankyrin repeat domains (ARDs), tetratricopeptide repeats (TPRs), bromodomains (BRDs), and HEAT domains are a group of domains using various mechanisms to recognize unmodified or modified histones, yet they all are composed of an α-helical fold. In this review, we compare how these readers fold to create protein domains that are very diverse in their tertiary structures, giving rise to intriguing peptide binding mechanisms resulting in vastly different footprints of their targets.
Collapse
Affiliation(s)
- Hossein Davarinejad
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Alexis Arvanitis-Vigneault
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Dallas Nygard
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
35
|
Zhang S, Cao P, Xiao Z, Zhang Q, Qiang Y, Meng H, Yang A, An Y, Zhang M. Rastonia solanacearum type Ⅲ effectors target host 14-3-3 proteins to suppress plant immunity. Biochem Biophys Res Commun 2024; 690:149256. [PMID: 37992525 DOI: 10.1016/j.bbrc.2023.149256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
14-3-3 proteins play important roles in plant metabolism and stress response. Tomato 14-3-3 proteins, SlTFT4 and SlTFT7, serve as hubs of plant immunity and are targeted by some pathogen effectors. Ralstonia solanacearum with more than 70 type Ⅲ effectors (T3Es) is one of the most destructive plant pathogens. However, little is known on whether R. solanacearum T3Es target SlTFT4 and SlTFT7 and hence interfere with plant immunity. We first detected the associations of SlTFT4/SlTFT7 with R. solanacearum T3Es by luciferase complementation assay, and then confirmed the interactions by yeast two-hybrid approach. We demonstrated that 22 Ralstonia T3Es were associated with both SlTFT4 and SlTFT7, and five among them suppressed the hypersensitive response induced by MAPKKKα, a protein kinase which associated with SlTFT4/SlTFT7. We further demonstrated that suppression of MAPKKKα-induced HR and plant basal defense by the T3E RipAC depend on its association with 14-3-3 proteins. Our findings firstly demonstrate that R. solanacearum T3Es can manipulate plant immunity by targeting 14-3-3 proteins, SlTFT4 and SlTFT7, providing new insights into plant-R. solanacearum interactions.
Collapse
Affiliation(s)
- Shuangxi Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Cao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhiliang Xiao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qi Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Qiang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - He Meng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yuyan An
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Meixiang Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
36
|
Zhou Z, Jin M, Li B, He Y, Liu L, Ren B, Li J, Li F, Liu J, Chen Y, Wan S, Shen H. Effects of different iodine levels on the DNA methylation of intrinsic apoptosis-associated genes and analysis of gene-environment interactions in patients with autoimmune thyroiditis. Br J Nutr 2023; 130:2039-2052. [PMID: 37183696 DOI: 10.1017/s0007114523001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Iodine is an essential nutrient that may change the occurrence of autoimmune thyroiditis (AIT). Apoptosis and DNA methylation participate in the pathogenesis and destructive mechanism of AIT. We detected the methylation and the expression of mRNA of intrinsic apoptosis-associated genes (YWHAG, ING4, BRSK2 and GJA1) to identify the potential interactions between the levels of methylation in these genes and different levels of iodine. 176 adult patients with AIT in Shandong Province, China, were included. The MethylTargetTM assay was used to verify the levels of methylation. We used PCR to detect the mRNA levels of the candidate genes. Interactions between methylation levels of the candidate genes and iodine levels were evaluated with multiplicative and addictive interaction models and GMDR. In the AIT group, YWHAG_1 and six CpG sites and BRSK2_1 and eight CpG sites were hypermethylated, whereas ING4_1 and one CpG site were hypomethylated. A negative correlation was found between methylation levels of YWHAG and mRNA expression. The combination of iodine fortification, YWHAG_1 hypermethylation and BRSK2_1 hypermethylation was significantly associated with elevated AIT risk. A four-locus model (YWHAG_1 × ING4_1 × BRSK2_1 × iodine level) was found to be the best model of the gene-environment interactions. We identified abnormal changes in the methylation status of YWHAG, ING4 and BRSK2 in patients with AIT in different iodine levels. Iodine fortification not only affected the methylation levels of YWHAG and BRSK2 but also interacted with the methylation levels of these genes and may ultimately increase the risk of AIT.
Collapse
Affiliation(s)
- Zheng Zhou
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Meihui Jin
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Baoxiang Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Yanhong He
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Lixiang Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Bingxuan Ren
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Jianshuang Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Fan Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Jinjin Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Yun Chen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Siyuan Wan
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar City, Heilongjiang Province161006, People's Republic of China
| | - Hongmei Shen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| |
Collapse
|
37
|
Ge G, Wen Y, Li P, Guo Z, Liu Z. Single-Cell Plasmonic Immunosandwich Assay Reveals the Modulation of Nucleocytoplasmic Localization Fluctuation of ABL1 on Cell Migration. Anal Chem 2023; 95:17502-17512. [PMID: 38050674 DOI: 10.1021/acs.analchem.3c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Cell migration is an essential process of cancer metastasis. The spatiotemporal dynamics of signaling molecules influences cellular phenotypic outcomes. It has been increasingly documented that the Abelson (ABL) family kinases play critical roles in solid tumors. However, ABL1's shuttling dynamics in cell migration still remains unexplored. This is mainly because tools permitting the investigation of translocation dynamics of proteins in single living cells are lacking. Herein, to bridge this gap, we developed a unique multifunctional integrated single-cell analysis method that enables long-term observation of cell migration behavior and monitoring of signaling proteins and complexes at the subcellular level. We found that the shuttling of ABL1's to the cytoplasm results in a higher migration speed, while its trafficking back to the nucleus leads to a lower one. Furthermore, our results indicated that fluctuant protein-protein interactions between 14-3-3 and ABL1 modulate ABL1's nucleocytoplasmic fluctuation and eventually affect the cell speed. Importantly, based on these new insights, we demonstrated that disturbing ABL1's nuclear export traffic and 14-3-3-ABL1 complexes formation can effectively suppress cell migration. Thus, our method opens up a new possibility for simultaneous tracking of internal molecular mechanisms and cell behavior, providing a promising tool for the in-depth study of cancer.
Collapse
Affiliation(s)
- Ge Ge
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
38
|
Fan X, Huang T, Wang S, Yang Z, Song W, Zeng Y, Tong Y, Cai Y, Yang D, Zeng B, Zhang M, Ni Q, Li Y, Li D, Yang M. The adaptor protein 14-3-3zeta modulates intestinal immunity and aging in Drosophila. J Biol Chem 2023; 299:105414. [PMID: 37918806 PMCID: PMC10724694 DOI: 10.1016/j.jbc.2023.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
The proteins that coordinate the complex transcriptional networks of aging have not been completely documented. Protein 14-3-3zeta is an adaptor protein that coordinates signaling and transcription factor networks, but its function in aging is not fully understood. Here, we showed that the protein expression of 14-3-3zeta gradually increased during aging. High levels of 14-3-3zeta led to shortened lifespan and imbalance of intestinal immune homeostasis in Drosophila, but the decrease in 14-3-3zeta protein levels by RNAi was able to significantly promote the longevity and intestinal immune homeostasis of fruit flies. Importantly, we demonstrate that adult-onset administration of TIC10, a compound that reduces the aging-related AKT and extracellular signal-regulated kinase (ERK) signaling pathways, rescues the shortened lifespan of 14-3-3zeta-overexpressing flies. This finding suggests that 14-3-3zeta plays a critical role in regulating the aging process. Our study elucidates the role of 14-3-3zeta in natural aging and provides the rationale for subsequent 14-3-3zeta-based antiaging research.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Technology Institute of Silk and Mulberry, Chong Qing Academy of Animal Sciences, Chongqing, P. R. China
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yujuan Cai
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwang Zhang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qingyong Ni
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
39
|
Sluchanko NN, Kapitonova AA, Shulepko MA, Kukushkin ID, Kulbatskii DS, Tugaeva KV, Varfolomeeva LA, Minyaev ME, Boyko KM, Popov VO, Kirpichnikov MP, Lyukmanova EN. Crystal structure reveals canonical recognition of the phosphorylated cytoplasmic loop of human alpha7 nicotinic acetylcholine receptor by 14-3-3 protein. Biochem Biophys Res Commun 2023; 682:91-96. [PMID: 37804592 DOI: 10.1016/j.bbrc.2023.09.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels composed of five homologous subunits. The homopentameric α7-nAChR, abundantly expressed in the brain, is involved in the regulation of the neuronal plasticity and memory and undergoes phosphorylation by protein kinase A (PKA). Here, we extracted native α7-nAChR from murine brain, validated its assembly by cryo-EM and showed that phosphorylation by PKA in vitro enables its interaction with the abundant human brain protein 14-3-3ζ. Bioinformatic analysis narrowed the putative 14-3-3-binding site down to the fragment of the intracellular loop (ICL) containing Ser365 (Q361RRCSLASVEMS372), known to be phosphorylated in vivo. We reconstructed the 14-3-3ζ/ICL peptide complex and determined its structure by X-ray crystallography, which confirmed the Ser365 phosphorylation-dependent canonical recognition of the ICL by 14-3-3. A common mechanism of nAChRs' regulation by ICL phosphorylation and 14-3-3 binding that potentially affects nAChR activity, stoichiometry, and surface expression is suggested.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mikhail A Shulepko
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, 518172, China
| | - Ilya D Kukushkin
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow region, 141701, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia; Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russia
| | - Ekaterina N Lyukmanova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, 518172, China; Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow region, 141701, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia; Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russia.
| |
Collapse
|
40
|
Seregin AA, Smirnova LP, Dmitrieva EM, Zavialova MG, Simutkin GG, Ivanova SA. Differential Expression of Proteins Associated with Bipolar Disorder as Identified Using the PeptideShaker Software. Int J Mol Sci 2023; 24:15250. [PMID: 37894929 PMCID: PMC10607299 DOI: 10.3390/ijms242015250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The prevalence of bipolar disorder (BD) in modern society is growing rapidly, but due to the lack of paraclinical criteria, its differential diagnosis with other mental disorders is somewhat challenging. In this regard, the relevance of proteomic studies is increasing due to the development of methods for processing large data arrays; this contributes to the discovery of protein patterns of pathological processes and the creation of new methods of diagnosis and treatment. It seems promising to search for proteins involved in the pathogenesis of BD in an easily accessible material-blood serum. Sera from BD patients and healthy individuals were purified via affinity chromatography to isolate 14 major proteins and separated using 1D SDS-PAGE. After trypsinolysis, the proteins in the samples were identified via HPLC/mass spectrometry. Mass spectrometric data were processed using the OMSSA and X!Tandem search algorithms using the UniProtKB database, and the results were analyzed using PeptideShaker. Differences in proteomes were assessed via an unlabeled NSAF-based analysis using a two-tailed Bonferroni-adjusted t-test. When comparing the blood serum proteomes of BD patients and healthy individuals, 10 proteins showed significant differences in NSAF values. Of these, four proteins were predominantly present in BD patients with the maximum NSAF value: 14-3-3 protein zeta/delta; ectonucleoside triphosphate diphosphohydrolase 7; transforming growth factor-beta-induced protein ig-h3; and B-cell CLL/lymphoma 9 protein. Further exploration of the role of these proteins in BD is warranted; conducting such studies will help develop new paraclinical criteria and discover new targets for BD drug therapy.
Collapse
Affiliation(s)
- Alexander A. Seregin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | - Liudmila P. Smirnova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | - Elena M. Dmitrieva
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | | | - German G. Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| |
Collapse
|
41
|
Jiang L, Lv J, Li K, Zhai L, Wu Y, Wu T, Zhang X, Han Z, Wang Y. MdGRF11-MdARF19-2 module acts as a positive regulator of drought resistance in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111782. [PMID: 37406680 DOI: 10.1016/j.plantsci.2023.111782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
14-3-3 proteins play an important role in the response of plants to drought resistance. In this study, 14-3-3 protein MdGRF11 was cloned from Malus xiaojinensis, and its positive regulation of drought resistance was verified using Orin calli and M. xiaojinensis plants. The transcription factor MdARF19-2 was further screened for interaction with this protein in vitro and in vivo. We also conducted experiments using Orin calli and found that the overexpression of MdARF19-2 decreased the level of reactive oxygen species (ROS) and increased the activity of enzymes that scavenge ROS in plant materials. This indicates that MdARF19-2 is a positive regulator in the drought resistance of plants. The drought tolerance was further improved by the overexpression of both MdGRF11 and MdARF19-2 in the calli. In addition, we examined several genes related to ROS scavenging with auxin response factor binding elements in their promoters and found that their level of expression was regulated by the MdGRF11-MdARF19-2 module. In conclusion, the enhancement of plant drought resistance by MdGRF11 could be owing to its accumulation at the protein level in response to drought, which then combined with MdARF19-2, affecting the expression of MdARF19-2 downstream genes. Thus, it scavenges ROS, which ultimately improves the resistance of plant to drought stress.
Collapse
Affiliation(s)
- Lizhong Jiang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Keting Li
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
42
|
Yasuda H, Fukusumi Y, Zhang Y, Kawachi H. 14-3-3 Proteins stabilize actin and vimentin filaments to maintain processes in renal glomerular podocyte. FASEB J 2023; 37:e23168. [PMID: 37651095 DOI: 10.1096/fj.202300865r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
14-3-3 proteins are a ubiquitously expressed family of adaptor proteins. Despite exhibiting high sequence homology, several 14-3-3 isoforms have isoform-specific binding partners and roles. We reported that 14-3-3β interacts with FKBP12 and synaptopodin to maintain the structure of actin fibers in podocytes. However, the precise localization and differential role of 14-3-3 isoforms in kidneys are unclear. Herein, we showed that 14-3-3β in glomeruli was restricted in podocytes, and 14-3-3σ in glomeruli was expressed in podocytes and mesangial cells. Although 14-3-3β was dominantly co-localized with FKBP12 in the foot processes, a part of 14-3-3β was co-localized with Par3 at the slit diaphragm. 14-3-3β interacted with Par3, and FKBP12 bound to 14-3-3β competitively with Par3. Deletion of 14-3-3β enhanced the interaction of Par3 with Par6 in podocytes. Gene silencing for 14-3-3β altered the structure of actin fibers and process formation. 14-3-3β and synaptopodin expression was decreased in podocyte injury models. In contrast, 14-3-3σ in podocytes was expressed in the primary processes. 14-3-3σ interacted with vimentin but not with the actin-associated proteins FKBP12 and synaptopodin. Gene silencing for 14-3-3σ altered the structure of vimentin fibers and process formation. 14-3-3σ and vimentin expression was increased in the early phase of podocyte injury models but was decreased in the late stage. Together, the localization of 14-3-3β at actin cytoskeleton plays a role in maintaining the foot processes and the Par complex in podocytes. In contrast, 14-3-3σ at vimentin cytoskeleton is essential for maintaining primary processes.
Collapse
Affiliation(s)
- Hidenori Yasuda
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ying Zhang
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
43
|
Kor A, Yalçın M, Erten Ş, Maraş Y, Oğuz EF, Doğan İ, Atalar E, Başer S, Erel Ö. 14-3-3η Proteins as a Diagnostic Marker, Disease Activation Indicator, and Lymphoma Predictor in Patients with Primary Sjögren Syndrome. ARCHIVES OF IRANIAN MEDICINE 2023; 26:582-591. [PMID: 38310415 PMCID: PMC10862092 DOI: 10.34172/aim.2023.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/03/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Primary Sjögren syndrome (PSS) is a chronic, autoimmune, and lymphoproliferative disease of the connective tissue. In patients with PSS, the risk of developing B-cell non-Hodgkin lymphoma (NHL) increases dramatically, with a prevalence of approximately 5%. The 14-3-3 protein isoforms are phospho-serin/phospho-threonine binding proteins associated with many malignant diseases. This study aimed to evaluate the relationship between disease activity parameters and markers predicting lymphoma development in patients with PSS and 14-3-3η proteins. METHODS This study was designed as an analytical case-control study. A total of 57 PSS patients and 54 healthy volunteers were included in the study. The European League Against Rheumatism (EULAR) Sjögren syndrome disease activity index (ESSDAI) was used to assess systemic disease activity in PSS. Receiver operating characteristic (ROC) analysis was used to test the diagnostic accuracy measures of the analytical results. Multivariable linear regression analysis was used to evaluate the effects of independent variables on the 14-3-3η protein. RESULTS The 14-3-3η protein serum levels were found to be significantly higher in PSS (2.72 [2.04-4.07]) than healthy controls (1.73 [1.41-2.43]) (P<0.0001). A significant relationship was found between 14-3-3η protein levels and ESSDAI group (β=0.385, 95%CI=0.318-1.651, P=0.005), hypocomplementemia (C3 or C4) (β=0.223, 95% CI=0.09-1.983, P=0.048) and purpura (β=0.252, 95% CI=0.335-4.903, P=0.022), which are accepted as lymphoma predictors. A significant correlation was found between PSS disease activity score ESSDAI and 14-33η protein (β=0.496, 95% CI=0.079-0.244, P=0.0002). CONCLUSION 14-3-3η proteins are potential candidates for diagnostic marker, marker of disease activity, and predictor of lymphoma in PSS patients.
Collapse
Affiliation(s)
- Ahmet Kor
- Department of Rheumatology, Aksaray Education and Research Hospital, Aksaray, Turkey
| | - Merve Yalçın
- Department of Internal Medicine, Ankara Bilkent City Hospital, Ministry of Health, Ankara, Turkey
| | - Şükran Erten
- Department of Rheumatology, Faculty of Medicine Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Yüksel Maraş
- Department of Rheumatology, Ankara Bilkent City Hospital, Health Sciences University, Ankara, Turkey
| | - Esra Fırat Oğuz
- Department of Medical Biochemistry, Ankara Bilkent City Hospital, Ministry of Health, Ankara, Turkey
| | - İsmail Doğan
- Department of Rheumatology, Faculty of Medicine Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Ebru Atalar
- Department of Rheumatology, Ankara Bilkent City Hospital, Ministry of Health, Ankara, Turkey
| | - Salih Başer
- Department of Internal Medicine, Faculty of Medicine Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Özcan Erel
- Department of Medical Biochemistry, Faculty of Medicine Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
44
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
45
|
Zhu R, Cao B, Sun M, Wu J, Li J. Genome-Wide Identification and Evolution of the GRF Gene Family and Functional Characterization of PbGRF18 in Pear. Int J Mol Sci 2023; 24:14690. [PMID: 37834136 PMCID: PMC10572701 DOI: 10.3390/ijms241914690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Proteins encoded by the G-box regulating factor (GRF, also called 14-3-3) gene family are involved in protein-protein interactions and mediate signaling transduction, which play important roles in plant growth, development, and stress responses. However, there were no detailed investigations of the GRF gene family in pear at present. In this study, we identified 25 GRF family members in the pear genome. Based on a phylogenetic analysis, the 25 GRF genes were clustered into two groups; the ε group and the non-ε group. Analyses of the exon-intron structures and motifs showed that the gene structures were conserved within each of the ε and non-ε groups. Gene duplication analysis indicated that most of the PbGRF gene expansion that occurred in both groups was due to WGD/segmental duplication. Phosphorylation sites analysis showed that the main phosphorylation sites of PbGRF proteins were serine residues. For gene expression, five PbGRF genes (PbGRF7, PbGRF11, PbGRF16, PbGRF21, and PbGRF23) were highly expressed in fruits, and PbGRF18 was highly expressed in all tissues. Further analysis revealed that eight PbGRF genes were significantly differentially expressed after treatment with different sugars; the expression of PbGRF7, PbGRF8, and PbGRF11 significantly increased, implying the involvement of these genes in sugar signaling. In addition, subcellular localization studies showed that the tested GRF proteins localize to the plasma membrane, and transgenic analysis showed that PbGRF18 can increase the sugar content in tomato leaves and fruit. The results of our research establish a foundation for functional determination of PbGRF proteins, and will help to promote a further understanding of the regulatory network in pear fruit development.
Collapse
Affiliation(s)
- Rongxiang Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (M.S.)
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Beibei Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (M.S.)
| | - Manyi Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (M.S.)
| | - Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (M.S.)
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Jiaming Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (M.S.)
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
46
|
Konstantinidou M, Visser EJ, Vandenboorn E, Chen S, Jaishankar P, Overmans M, Dutta S, Neitz RJ, Renslo AR, Ottmann C, Brunsveld L, Arkin MR. Structure-Based Optimization of Covalent, Small-Molecule Stabilizers of the 14-3-3σ/ERα Protein-Protein Interaction from Nonselective Fragments. J Am Chem Soc 2023; 145:20328-20343. [PMID: 37676236 PMCID: PMC10515640 DOI: 10.1021/jacs.3c05161] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 09/08/2023]
Abstract
The stabilization of protein-protein interactions (PPIs) has emerged as a promising strategy in chemical biology and drug discovery. The identification of suitable starting points for stabilizing native PPIs and their subsequent elaboration into selective and potent molecular glues lacks structure-guided optimization strategies. We have previously identified a disulfide fragment that stabilized the hub protein 14-3-3σ bound to several of its clients, including ERα and C-RAF. Here, we show the structure-based optimization of the nonselective fragment toward selective and highly potent small-molecule stabilizers of the 14-3-3σ/ERα complex. The more elaborated molecular glues, for example, show no stabilization of 14-3-3σ/C-RAF up to 150 μM compound. Orthogonal biophysical assays, including mass spectrometry and fluorescence anisotropy, were used to establish structure-activity relationships. The binding modes of 37 compounds were elucidated with X-ray crystallography, which further assisted the concomitant structure-guided optimization. By targeting specific amino acids in the 14-3-3σ/ERα interface and locking the conformation with a spirocycle, the optimized covalent stabilizer 181 achieved potency, cooperativity, and selectivity similar to the natural product Fusicoccin-A. This case study showcases the value of addressing the structure, kinetics, and cooperativity for molecular glue development.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Emira J. Visser
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Edmee Vandenboorn
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sheng Chen
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Priyadarshini Jaishankar
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Maurits Overmans
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Shubhankar Dutta
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - R. Jeffrey Neitz
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| |
Collapse
|
47
|
Bai B, Wang T, Zhang X, Ba X, Zhang N, Zhao Y, Wang X, Yu Y, Wang B. PTPN22 activates the PI3K pathway via 14-3-3τ in T cells. FEBS J 2023; 290:4562-4576. [PMID: 37255287 DOI: 10.1111/febs.16878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor-mediated signalling pathway, and its negative regulatory function protects organisms from autoimmune disease. 14-3-3τ is an adaptor protein that regulates target protein function through its intracellular localization. In the present study, we determined that PTPN22 binds to 14-3-3τ via the PTPN22-Ser640 phosphorylation side. PTPN22 binding to 14-3-3τ resulted in 14-3-3τ-Tyr179 dephosphorylation, and reduced the association between 14-3-3τ and Shc, which competitively increased 14-3-3ζ binding to Shc and activated phosphoinositide 3-kinase (PI3K) by bringing it to the membrane. In addition, PTPN22 decreased the tyrosine phosphorylation of p110 to activate PI3K. These two pathways cooperatively affect PI3K activity and the expression of PI3K downstream proteins, such as phosphorylated Akt, mammalian target of rapamycin and forkhead box O1, which inhibited the expression of some proinflammatory factors such as interleukin-1β, interleukin-2, interleukin-6, interferon-γ and tumour necrosis factor-α. Our research provides a preliminary theory for PTPN22 regulating T cell activation, development and immune response via the PI3K/Akt/mammalian target of rapamycin pathway and brings new information for clarifying the functions of PTPN22 in autoimmune diseases.
Collapse
Affiliation(s)
- Bin Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiaonan Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xinlei Ba
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Na Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanjiao Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xipeng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Bing Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
48
|
Pan R, Wang Y, An F, Yao Y, Xue J, Zhu W, Luo X, Lai H, Chen S. Genome-wide identification and characterization of 14-3-3 gene family related to negative regulation of starch accumulation in storage root of Manihot esculenta. FRONTIERS IN PLANT SCIENCE 2023; 14:1184903. [PMID: 37711300 PMCID: PMC10497974 DOI: 10.3389/fpls.2023.1184903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/21/2023] [Indexed: 09/16/2023]
Abstract
The 14-3-3 protein family is a highly conservative member of the acid protein family and plays an important role in regulating a series of important biological activities and various signal transduction pathways. The role of 14-3-3 proteins in regulating starch accumulation still remains largely unknown. To investigate the properties of 14-3-3 proteins, the structures and functions involved in starch accumulation in storage roots were analyzed, and consequently, 16 Me14-3-3 genes were identified. Phylogenetic analysis revealed that Me14-3-3 family proteins are split into two groups (ε and non-ε). All Me14-3-3 proteins contain nine antiparallel α-helices. Me14-3-3s-GFP fusion protein was targeted exclusively to the nuclei and cytoplasm. In the early stage of starch accumulation in the storage root, Me14-3-3 genes were highly expressed in high-starch cultivars, while in the late stage of starch accumulation, Me14-3-3 genes were highly expressed in low-starch cultivars. Me14-3-3 I, II, V, and XVI had relatively high expression levels in the storage roots. The transgenic evidence from Me14-3-3II overexpression in Arabidopsis thaliana and the virus-induced gene silencing (VIGS) in cassava leaves and storage roots suggest that Me14-3-3II is involved in the negative regulation of starch accumulation. This study provides a new insight to understand the molecular mechanisms of starch accumulation linked with Me14-3-3 genes during cassava storage root development.
Collapse
Affiliation(s)
- Ranran Pan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yajie Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture of Biology and Genetic Resources of Tropical Crops, Haikou, China
| | - Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture of Biology and Genetic Resources of Tropical Crops, Haikou, China
| | - Jingjing Xue
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Wenli Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Xiuqin Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Hanggui Lai
- College of Tropical Crops, Hainan University, Haikou, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| |
Collapse
|
49
|
Choi E, Murray B, Choi S. Biofilm and Cancer: Interactions and Future Directions for Cancer Therapy. Int J Mol Sci 2023; 24:12836. [PMID: 37629016 PMCID: PMC10454087 DOI: 10.3390/ijms241612836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
There is a growing body of evidence supporting the significant role of bacterial biofilms in the pathogenesis of various human diseases, including cancer. Biofilms are polymicrobial communities enclosed within an extracellular matrix composed of polysaccharides, proteins, extracellular DNA, and lipids. This complex matrix provides protection against antibiotics and host immune responses, enabling the microorganisms to establish persistent infections. Moreover, biofilms induce anti-inflammatory responses and metabolic changes in the host, further facilitating their survival. Many of these changes are comparable to those observed in cancer cells. This review will cover recent research on the role of bacterial biofilms in carcinogenesis, especially in colorectal (CRC) and gastric cancers, emphasizing the shared physical and chemical characteristics of biofilms and cancer. This review will also discuss the interactions between bacteria and the tumor microenvironment, which can facilitate oncogene expression and cancer progression. This information will provide insight into developing new therapies to identify and treat biofilm-associated cancers, such as utilizing bacteria as delivery vectors, using bacteria to upregulate immune function, or more selectively targeting biofilms and cancer for their shared traits.
Collapse
Affiliation(s)
- Euna Choi
- Department of Biology, Union University, Jackson, TN 38305, USA; (E.C.); (B.M.)
| | - Ben Murray
- Department of Biology, Union University, Jackson, TN 38305, USA; (E.C.); (B.M.)
| | - Sunga Choi
- Department of Bioinformatics and Biosystems, Seongnam Campus of Korea Polytechnics, Seongnam-si 13122, Republic of Korea
| |
Collapse
|
50
|
Salikhova DI, Golovicheva VV, Fatkhudinov TK, Shevtsova YA, Soboleva AG, Goryunov KV, Dyakonov AS, Mokroysova VO, Mingaleva NS, Shedenkova MO, Makhnach OV, Kutsev SI, Chekhonin VP, Silachev DN, Goldshtein DV. Therapeutic Efficiency of Proteins Secreted by Glial Progenitor Cells in a Rat Model of Traumatic Brain Injury. Int J Mol Sci 2023; 24:12341. [PMID: 37569717 PMCID: PMC10419112 DOI: 10.3390/ijms241512341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Traumatic brain injuries account for 30-50% of all physical traumas and are the most common pathological diseases of the brain. Mechanical damage of brain tissue leads to the disruption of the blood-brain barrier and the massive death of neuronal, glial, and endothelial cells. These events trigger a neuroinflammatory response and neurodegenerative processes locally and in distant parts of the brain and promote cognitive impairment. Effective instruments to restore neural tissue in traumatic brain injury are lacking. Glial cells are the main auxiliary cells of the nervous system, supporting homeostasis and ensuring the protection of neurons through contact and paracrine mechanisms. The glial cells' secretome may be considered as a means to support the regeneration of nervous tissue. Consequently, this study focused on the therapeutic efficiency of composite proteins with a molecular weight of 5-100 kDa secreted by glial progenitor cells in a rat model of traumatic brain injury. The characterization of proteins below 100 kDa secreted by glial progenitor cells was evaluated by proteomic analysis. Therapeutic effects were assessed by neurological outcomes, measurement of the damage volume by MRI, and an evaluation of the neurodegenerative, apoptotic, and inflammation markers in different areas of the brain. Intranasal infusions of the composite protein product facilitated the functional recovery of the experimental animals by decreasing the inflammation and apoptotic processes, preventing neurodegenerative processes by reducing the amounts of phosphorylated Tau isoforms Ser396 and Thr205. Consistently, our findings support the further consideration of glial secretomes for clinical use in TBI, notably in such aspects as dose-dependent effects and standardization.
Collapse
Affiliation(s)
- Diana I. Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Victoria V. Golovicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Timur Kh. Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Yulia A. Shevtsova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (Y.A.S.); (K.V.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna G. Soboleva
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Kirill V. Goryunov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (Y.A.S.); (K.V.G.)
| | - Alexander S. Dyakonov
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Victoria O. Mokroysova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Natalia S. Mingaleva
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Margarita O. Shedenkova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Oleg V. Makhnach
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Vladimir P. Chekhonin
- Serbsky State Scientific Center for Social and Forensic Psychiatry, 119034 Moscow, Russia;
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Dmitry V. Goldshtein
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| |
Collapse
|