1
|
Abushikha MAA, Karagac MS, Yesilkent EN, Ceylan H. Investigation of the effects of monosodium glutamate and tannic acid on the glutathione and thioredoxin systems in the liver of rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04279-5. [PMID: 40397121 DOI: 10.1007/s00210-025-04279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
While there is no conclusive evidence that monosodium glutamate (MSG, a food additive) directly causes liver cancer in humans, certain studies suggest a potential link between MSG-induced liver injury and cancer development. This study aimed to evaluate the protective effect of tannic acid (TA, a natural polyphenol) against MSG-induced hepatotoxicity through the glutathione and thioredoxin systems. Twenty-four rats were randomly divided into control and experimental groups and treated with TA, MSG, and MSG+TA once daily by oral gavage for 21 days. In addition to major oxidative stress indicators (total glutathione; GSH + GSSG and malondialdehyde; MDA), mRNA expression changes and biological activity responses of components of the glutathione and thioredoxin systems were examined in the liver tissues of all animals. The results showed that MSG alone negatively affected both stress indicators and antioxidant system components (glutathione peroxidase; GPx, glutathione reductase; GR, glutathione-S-transferase; GST, and thioredoxin reductase; TrxR) in terms of mRNA expression and biological activity. However, the combination of MSG and TA demonstrated robust antioxidative effects, surpassing the outcomes of MSG treatment. Our results provide new insights into pivotal molecular targets and protective candidates that should be focused on in future in vivo and in vitro HCC research.
Collapse
Affiliation(s)
- Mohammad A A Abushikha
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Medine Sibel Karagac
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Esra Nur Yesilkent
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye.
- East Anatolian High Technology Research and Application Center (DAYTAM), Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
2
|
Nascentes Melo LM, Sabatier M, Ramesh V, Szylo KJ, Fraser CS, Pon A, Mitchell EC, Servage KA, Allies G, Westedt IV, Cansiz F, Krystkiewicz J, Kutritz A, Schadendorf D, Morrison SJ, Ubellacker JM, Sreelatha A, Tasdogan A. Selenoprotein O Promotes Melanoma Metastasis and Regulates Mitochondrial Complex II Activity. Cancer Res 2025; 85:942-955. [PMID: 39700395 PMCID: PMC11873727 DOI: 10.1158/0008-5472.can-23-2194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/12/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Evolutionarily conserved selenoprotein O (SELENOO) catalyzes a posttranslational protein modification known as AMPylation that is essential for the oxidative stress response in bacteria and yeast. Given that oxidative stress experienced in the blood limits survival of metastasizing melanoma cells, SELENOO might be able to affect metastatic potential. However, further work is needed to elucidate the substrates and functional relevance of the mammalian homolog of SELENOO. In this study, we revealed that SELENOO promotes cancer metastasis and identified substrates of SELENOO in mammalian mitochondria. In patients with melanoma, high SELENOO expression was correlated with metastasis and poor overall survival. In a murine model of spontaneous melanoma metastasis, SELENOO deficiency significantly reduced metastasis to distant visceral organs, which could be rescued by treatment with the antioxidant N-acetylcysteine. Mechanistically, SELENOO AMPylated multiple mitochondrial substrates, including succinate dehydrogenase subunit A, one of the four key subunits of mitochondrial complex II. Consistently, SELENOO-deficient cells featured increased mitochondrial complex II activity. Together, these findings demonstrate that SELENOO deficiency limits melanoma metastasis by modulating mitochondrial function and oxidative stress. Significance: SELENOO alters mitochondrial function and supports metastasis in melanoma, highlighting the impact of SELENOO-mediated posttranslational modification of mitochondrial substrates and selenoproteins in cancer progression.
Collapse
Affiliation(s)
| | - Marie Sabatier
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Vijayashree Ramesh
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Krystina J. Szylo
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Cameron S. Fraser
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Alex Pon
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Evann C. Mitchell
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Isa V. Westedt
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Feyza Cansiz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Andrea Kutritz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| | - Sean J. Morrison
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessalyn M. Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Anju Sreelatha
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
- Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Essen, Germany
| |
Collapse
|
3
|
Wang Y, Ma X, Chen X, Wen Z, Bi C, Xu Z, Liu W. Gold(I) complexes bearing EGFR-inhibiting ligands as anti-HCC agents through dual targeting of EGFR and TrxR. Eur J Med Chem 2025; 283:117137. [PMID: 39693862 DOI: 10.1016/j.ejmech.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) and thioredoxin reductase (TrxR) are commonly associated with an adverse prognosis in hepatocellular carcinoma (HCC). This makes them key targets for the treatment of HCC. Studies have shown that the clinical efficacy of the EGFR tyrosine kinase inhibitor gefitinib alone in treating HCC is limited. Herein, we developed a series of novel gold(I) complexes using a "dual-targeting strategy" by combining gold(I) complexes with different gefitinib derivatives. Among them, the best complex 6g exhibits significant antiproliferative activity against Huh7 cells and Huh7R (lenvatinib-resistant) cells. Remarkably, complex 6g inhibits the expression of phosphorylated EGFR while also effectively inhibiting intracellular TrxR activity. In addition, complex 6g causes a significant increase in the accumulation of reactive oxygen species (ROS), disrupts mitochondrial membrane potential (MMP), arrests the cell cycle in the G0/G1 phase, and induces apoptosis. Collectively, our findings demonstrate that complex 6g exhibits potential anti-HCC effects via dual-targeting of EGFR and TrxR.
Collapse
Affiliation(s)
- Yawen Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xuejie Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chunyang Bi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215031, PR China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
4
|
Kansu G, Ozturk N, Karagac MS, Yesilkent EN, Ceylan H. The interplay between doxorubicin chemotherapy, antioxidant system, and cardiotoxicity: Unrevealing of the protective potential of tannic acid. Biotechnol Appl Biochem 2025; 72:75-85. [PMID: 39099314 PMCID: PMC11798539 DOI: 10.1002/bab.2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Cardiotoxicity is the leading side effect of anthracycline-based chemotherapy. Therefore, it has gained importance to reveal chemotherapy-supporting strategies and reliable agents with their mechanisms of action. Tannic acid (TA), a naturally occurring plant polyphenol, has diverse physiological effects, including anti-inflammatory, anticarcinogenic, antioxidant, and radical scavenging properties. Therefore, this study was designed to investigate whether TA exerts a protective effect on mechanisms contributing to anthracycline-induced cardiotoxicity in rat heart tissues exposed to doxorubicin (DOX). Rats were randomly divided into control and experimental groups and treated with (18 mg/kg) DOX, TA (50 mg/kg), and DOX + TA during the 2 weeks. Cardiac gene markers and mitochondrial DNA (mtDNA) content were evaluated in the heart tissues of all animals. In addition to major metabolites, mRNA expression changes and biological activity responses of components of antioxidant metabolism were examined in the heart tissues of all animals. The expression of cardiac gene markers increased by DOX exposure was significantly reduced by TA treatment, whereas mtDNA content, which was decreased by DOX exposure, was significantly increased. TA also improved antioxidant metabolism members' gene expression and enzymatic activity, including glutathione peroxidase, glutathione s-transferase, superoxide dismutase, catalase, and thioredoxin reductase. This study provides a detailed overview of the current understanding of DOX-induced cardiotoxicity and preventive or curative measures involving TA.
Collapse
Affiliation(s)
- Guldemet Kansu
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTürkiye
| | - Neslihan Ozturk
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTürkiye
| | - Medine Sibel Karagac
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTürkiye
| | - Esra Nur Yesilkent
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTürkiye
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTürkiye
| |
Collapse
|
5
|
Flowers B, Rullo A, Zhang A, Chang K, Petukhova VZ, Aboagye SY, Angelucci F, Williams DL, Kregel S, Petukhov PA, Kastrati I. Pleiotropic anti-cancer activities of novel non-covalent thioredoxin reductase inhibitors against triple negative breast cancer. Free Radic Biol Med 2025; 227:201-209. [PMID: 39643141 DOI: 10.1016/j.freeradbiomed.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Mounting evidence shows that tumor growth and progression rely on thioredoxin reductase 1 (TXNRD1)-mediated detoxification of oxidative stress that results from deregulated metabolism and mitogenic signaling in tumors. TXNRD1 levels are significant higher in triple negative breast cancer (TNBC) compared to normal tissue, making TXNRD1 a compelling TNBC therapeutic target. Despite the many attempts to generate TXNRD1 inhibitors, all known and reported compounds inhibiting TXNRD1 are problematic; they interact with TXNRD1 irreversibly and non-specifically resulting in numerous adverse side effects. Recently, a series of breakthrough studies identified a novel regulatory site, the 'doorstop pocket', in Schistosoma mansoni thioredoxin glutathione reductase, a TXNRD-like enzyme and an established drug target for the human parasitic infection, schistosomiasis. This discovery underpins the development of new first-in-class non-covalent inhibitors for this family of enzymes. Our data show that novel non-covalent TXNRD inhibitors (TXNRD(i)s) are potent dose-dependent inhibitors of viability in cellular models of TNBC. TXNRD(i)s attenuate several aggressive cancer phenotypes such as, clonogenic survival, mammosphere forming efficiency, invasion, and TXNRD-related gene expression in TNBC cells. TXNRD(i)s engage and inhibit TXNRD1 in live TNBC cells and xenograft tumors, thus supporting the mechanism of action at a cellular level. More importantly, TXNRD(i)s attenuated tumor growth in a preclinical MDA-MB-231 TNBC xenograft mouse model. Although additional optimization for TXNRD(i)s' potency is warranted, these results may open a new avenue for the development of novel small molecule therapeutics for TNBC.
Collapse
Affiliation(s)
- Brenna Flowers
- Dept. of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Abigail Rullo
- Dept. of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - An Zhang
- Dept. of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Keacha Chang
- Dept. of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Valentina Z Petukhova
- Dept. of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Sammy Y Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - David L Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Steven Kregel
- Dept. of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Pavel A Petukhov
- Dept. of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Irida Kastrati
- Dept. of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
6
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
7
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
8
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
9
|
Chen M, Wang J, Cai F, Guo J, Qin X, Zhang H, Chen T, Ma L. Chirality-driven strong thioredoxin reductase inhibition. Biomaterials 2024; 311:122705. [PMID: 39047537 DOI: 10.1016/j.biomaterials.2024.122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Overexpression of thioredoxin reductase (TXNRD) plays crucial role in tumorigenesis. Therefore, designing TXNRD inhibitors is a promising strategy for targeted anticancer drug development. However, poor selectivity has always been a challenge, resulting in unavoidable toxicity in clinic. Herein we demonstrate a strategy to develop highly selective chiral metal complexes-based TXNRD inhibitors. By manipulating the conformation of two distinct weakly interacting groups, we optimize the compatibility between the drug and the electrophilic group within the active site of TXNRD to enhance their non-covalent interaction, thus effectively avoids the poor selectivity deriving from covalent drug interaction, on the basis of ensuring the strong inhibition. Detailed experimental and computational results demonstrate that the chiral isomeric drugs bind to the active site of TXNRD, and the interaction strength is well modulated by chirality. Especially, the meso-configuration, in which the two large sterically hindered active groups are positioned on opposite sides of the drug, exhibits the highest number of non-covalent interactions and most effective inhibition on TXNRD. Taken together, this work not only provides a novel approach for developing highly selective proteinase inhibitors, but also sheds light on possible underlying mechanisms for future application.
Collapse
Affiliation(s)
- Mingkai Chen
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Junping Wang
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Fei Cai
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Junxian Guo
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Xiaoyu Qin
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Huajie Zhang
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China.
| | - Li Ma
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Ardini M, Aboagye SY, Petukhova VZ, Kastrati I, Ippoliti R, Thatcher GRJ, Petukhov PA, Williams DL, Angelucci F. The "Doorstop Pocket" In Thioredoxin Reductases─An Unexpected Druggable Regulator of the Catalytic Machinery. J Med Chem 2024; 67:15947-15967. [PMID: 39250602 PMCID: PMC12013724 DOI: 10.1021/acs.jmedchem.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pyridine nucleotide-disulfide oxidoreductases are underexplored as drug targets, and thioredoxin reductases (TrxRs) stand out as compelling pharmacological targets. Selective TrxR inhibition is challenging primarily due to the reliance on covalent inhibition strategies. Recent studies identified a regulatory and druggable pocket in Schistosoma mansoni thioredoxin glutathione reductase (TGR), a TrxR-like enzyme, and an established drug target for schistosomiasis. This site is termed the "doorstop pocket" because compounds that bind there impede the movement of an aromatic side-chain necessary for the entry and exit of NADPH and NADP+ during enzymatic turnover. This discovery spearheaded the development of new TGR inhibitors with efficacies surpassing those of current schistosomiasis treatment. Targeting the "doorstop pocket" is a promising strategy, as the pocket is present in all members of the pyridine nucleotide-disulfide oxidoreductase family, opening new avenues for exploring therapeutic approaches in diseases where the importance of these enzymes is established, including cancer and inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Matteo Ardini
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Sammy Y. Aboagye
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, 60612 Chicago, IL USA
| | - Valentina Z. Petukhova
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 60612 Chicago, IL USA
| | - Irida Kastrati
- Department of Cancer Biology, Loyola University Chicago, 60153 Maywood, IL 60153, USA
| | - Rodolfo Ippoliti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Gregory R. J. Thatcher
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, 85721 Tucson, AZ, USA
| | - Pavel A. Petukhov
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 60612 Chicago, IL USA
| | - David L. Williams
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, 60612 Chicago, IL USA
| | - Francesco Angelucci
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
11
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M, Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants (Basel) 2024; 13:1078. [PMID: 39334737 PMCID: PMC11428833 DOI: 10.3390/antiox13091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Cells constantly face the challenge of managing oxidants. In aerobic organisms, oxygen (O2) is used for energy production, generating reactive oxygen species (ROS) as byproducts of enzymatic reactions. To protect against oxidative damage, cells possess an intricate system of redox scavengers and antioxidant enzymes, collectively forming the antioxidant defense system. This system maintains the redox equilibrium and enables the generation of localized oxidative signals that regulate essential cellular functions. One key component of this defense is the thioredoxin (Trx) system, which includes Trx, thioredoxin reductase (TrxR), and NADPH. The Trx system reverses oxidation of macromolecules and indirectly neutralizes ROS via peroxiredoxin (Prx). This dual function protects cells from damage accumulation and supports physiological cell signaling. However, the Trx system also shields tumors from oxidative damage, aiding their survival. Due to elevated ROS levels from their metabolism, tumors often rely on the Trx system. In addition, the Trx system regulates critical pathways such as proliferation and neoangiogenesis, which tumors exploit to enhance growth and optimize nutrient and oxygen supply. Consequently, the Trx system is a potential target for cancer therapy. The challenge lies in selectively targeting malignant cells without disrupting the redox equilibrium in healthy cells. The aim of this review article is threefold: first, to elucidate the function of the Trx system; second, to discuss the Trx system as a potential target for cancer therapies; and third, to present the possibilities for inhibiting key components of the Trx system, along with an overview of the latest clinical studies on these inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (R.S.); (D.T.); (C.K.); (P.H.); (S.S.); (A.K.); (M.M.)
| |
Collapse
|
12
|
Markatos C, Biniari G, Chepurny OG, Karageorgos V, Tsakalakis N, Komontachakis G, Vlata Z, Venihaki M, Holz GG, Tselios T, Liapakis G. Cytotoxic Activity of Novel GnRH Analogs Conjugated with Mitoxantrone in Ovarian Cancer Cells. Molecules 2024; 29:4127. [PMID: 39274973 PMCID: PMC11397358 DOI: 10.3390/molecules29174127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
The gonadotropin-releasing hormone (GnRH) receptor (GnRH-R) is highly expressed in ovarian cancer cells (OCC), and it is an important molecular target for cancer therapeutics. To develop a new class of drugs targeting OCC, we designed and synthesized Con-3 and Con-7 which are novel high-affinity GnRH-R agonists, covalently coupled through a disulfide bond to the DNA synthesis inhibitor mitoxantrone. We hypothesized that Con-3 and Con-7 binding to the GnRH-R of OCC would expose the conjugated mitoxantrone to the cellular thioredoxin, which reduces the disulfide bond of Con-3 and Con-7. The subsequent release of mitoxantrone leads to its intracellular accumulation, thus exerting its cytotoxic effects. To test this hypothesis, we determined the cytotoxic effects of Con-3 and Con-7 using the SKOV-3 human OCC. Treatment with Con-3 and Con-7, but not with their unconjugated GnRH counterparts, resulted in the accumulation of mitoxantrone within the SKOV-3 cells, increased their apoptosis, and reduced their proliferation, in a dose- and time-dependent manner, with half-maximal inhibitory concentrations of 0.6-0.9 µM. It is concluded that Con-3 and Con-7 act as cytotoxic "prodrugs" in which mitoxantrone is delivered in a GnRH-R-specific manner and constitute a new class of lead compounds for use as anticancer drugs targeting ovarian tumors.
Collapse
Affiliation(s)
- Christos Markatos
- Department of Pharmacology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (C.M.); (V.K.); (N.T.); (G.K.)
| | - Georgia Biniari
- Department of Chemistry, University of Patras, 26504 Rion, Greece;
| | - Oleg G. Chepurny
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA;
| | - Vlasios Karageorgos
- Department of Pharmacology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (C.M.); (V.K.); (N.T.); (G.K.)
| | - Nikos Tsakalakis
- Department of Pharmacology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (C.M.); (V.K.); (N.T.); (G.K.)
| | - Georgios Komontachakis
- Department of Pharmacology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (C.M.); (V.K.); (N.T.); (G.K.)
| | - Zacharenia Vlata
- Flow Cytometry Facility, Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), 70013 Heraklion, Greece;
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George G. Holz
- Department of Medicine and Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA;
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Rion, Greece;
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (C.M.); (V.K.); (N.T.); (G.K.)
| |
Collapse
|
13
|
Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal 2024; 22:380. [PMID: 39069612 DOI: 10.1186/s12964-024-01760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| |
Collapse
|
14
|
Molnar C, Heinen JP, Reina J, Llamazares S, Palumbo E, Pollarolo G, Gonzalez C. TrxT and dhd are dispensable for Drosophila brain development but essential for l(3)mbt brain tumour growth. EMBO Rep 2024; 25:2842-2860. [PMID: 38750349 PMCID: PMC11239866 DOI: 10.1038/s44319-024-00154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 07/13/2024] Open
Abstract
Expression of the Drosophila cancer-germline (CG), X-linked, head-to-head gene pair TrxT and dhd is normally germline-specific but becomes upregulated in brain tumours caused by mutation in l(3)mbt. Here, we show that TrxT and dhd play a major synergistic role in the emergence of l(3)mbt tumour-linked transcriptomic signatures and tumour development, which is remarkable, taking into account that these two genes are never expressed together under normal conditions. We also show that TrxT, but not dhd, is crucial for the growth of l(3)mbt allografts, hence suggesting that the initial stages of tumour development and long-term tumour growth may depend on different molecular pathways. In humans, head-to-head inverted gene pairs are abundant among CG genes that map to the X chromosome. Our results identify a first example of an X-linked, head-to-head CG gene pair in Drosophila, underpinning the potential of such CG genes, dispensable for normal development and homoeostasis of somatic tissue, as targets to curtail malignant growth with minimal impact on overall health.
Collapse
Affiliation(s)
- Cristina Molnar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Jan Peter Heinen
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Jose Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Salud Llamazares
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Emilio Palumbo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Giulia Pollarolo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
- ISGlobal, Carrer del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
15
|
Ould Mohamed L, Abtouche S, Ghoualem Z, Assfeld X. Unraveling redox pathways of the disulfide bond in dimethyl disulfide: Ab initio modeling. J Mol Model 2024; 30:180. [PMID: 38780881 DOI: 10.1007/s00894-024-05963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT In cellular environments, the reduction of disulfide bonds is pivotal for protein folding and synthesis. However, the intricate enzymatic mechanisms governing this process remain poorly understood. This study addresses this gap by investigating a disulfide bridge reduction reaction, serving as a model for comprehending electron and proton transfer in biological systems. Six potential mechanisms for reducing the dimethyl disulfide (DMDS) bridge through electron and proton capture were explored. Thermodynamic and kinetic analyses elucidated the sequence of proton and electron addition. MD-PMM, a method that combines molecular dynamics simulations and quantum-chemical calculations, was employed to compute the redox potential of the mechanism. This research provides valuable insights into the mechanisms and redox potentials involved in disulfide bridge reduction within proteins, offering an understanding of phenomena that are challenging to explore experimentally. METHODS All calculations used the Gaussian 09 software package at the MP2/6-311 + g(d,p) theory level. Visualization of the molecular orbitals and electron densities was conducted using Gaussview6. Molecular dynamics simulations were performed using GROMACS with the CHARMM36 force field. The PyMM program (Python Program for QM/MM Simulations Based on the Perturbed Matrix Method) is used to apply the Perturbed Matrix Method to MD simulations.
Collapse
Affiliation(s)
- Lina Ould Mohamed
- Laboratoire de Physico Chimie Théorique Et Chimie Informatique, LPCTCI, Faculté de Chimie, USTHB, 16111, Algiers, Algeria
| | - Soraya Abtouche
- Laboratoire de Physico Chimie Théorique Et Chimie Informatique, LPCTCI, Faculté de Chimie, USTHB, 16111, Algiers, Algeria.
| | - Zeyneb Ghoualem
- Laboratoire de Physico Chimie Théorique Et Chimie Informatique, LPCTCI, Faculté de Chimie, USTHB, 16111, Algiers, Algeria
| | - Xavier Assfeld
- Physique et Chimie Théoriques, UMR 7019, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506, Vandoeuvre Lès Nancy Cedex, France
| |
Collapse
|
16
|
Vilchis-Landeros MM, Vázquez-Meza H, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Antioxidant Enzymes and Their Potential Use in Breast Cancer Treatment. Int J Mol Sci 2024; 25:5675. [PMID: 38891864 PMCID: PMC11171593 DOI: 10.3390/ijms25115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
According to the World Health Organization (WHO), breast cancer (BC) is the deadliest and the most common type of cancer worldwide in women. Several factors associated with BC exert their effects by modulating the state of stress. They can induce genetic mutations or alterations in cell growth, encouraging neoplastic development and the production of reactive oxygen species (ROS). ROS are able to activate many signal transduction pathways, producing an inflammatory environment that leads to the suppression of programmed cell death and the promotion of tumor proliferation, angiogenesis, and metastasis; these effects promote the development and progression of malignant neoplasms. However, cells have both non-enzymatic and enzymatic antioxidant systems that protect them by neutralizing the harmful effects of ROS. In this sense, antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), thioredoxin reductase (TrxR), and peroxiredoxin (Prx) protect the body from diseases caused by oxidative damage. In this review, we will discuss mechanisms through which some enzymatic antioxidants inhibit or promote carcinogenesis, as well as the new therapeutic proposals developed to complement traditional treatments.
Collapse
Affiliation(s)
- María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
17
|
Wu X, Fan Y, Wang K, Miao Y, Chang Y, Ming J, Wang X, Lu S, Liu R, Zhang F, Zhang Y, Qin H, Shi J. NIR-II imaging-guided precise photodynamic therapy for augmenting tumor-starvation therapy by glucose metabolism reprogramming interference. Sci Bull (Beijing) 2024; 69:1263-1274. [PMID: 38418300 DOI: 10.1016/j.scib.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Metabolic reprogramming is a mechanism by which cancer cells alter their metabolic patterns to promote cell proliferation and growth, thereby enabling their resistance to external stress. 2-Deoxy-D-glucose (2DG) can eliminate their energy source by inhibiting glucose glycolysis, leading to cancer cell death through starvation. However, a compensatory increase in mitochondrial metabolism inhibits its efficacy. Herein, we propose a synergistic approach that combines photodynamic therapy (PDT) with starvation therapy to address this challenge. To monitor the nanodrugs and determine the optimal triggering time for precise tumor therapy, a multifunctional nano-platform comprising lanthanide-doped nanoparticle (LnNP) cores was constructed and combined with mesoporous silicon shells loaded with 2DG and photosensitizer chlorin e6 (Ce6) in the mesopore channels. Under 980 nm near-infrared light excitation, the downshifted 1550 nm fluorescence signal in the second near-infrared (NIR-II, 1000-1700 nm) window from the LnNPs was used to monitor the accumulation of nanomaterials in tumors. Furthermore, upconverted 650 nm light excited the Ce6 to generate singlet oxygen for PDT, which damaged mitochondrial function and enhanced the efficacy of 2DG by inhibiting hexokinase 2 and lactate dehydrogenase A expressions. As a result, glucose metabolism reprogramming was inhibited and the efficiency of starvation therapy was significantly enhanced. Overall, the proposed NIR-II bioimaging-guided PDT-augmented starvation therapy, which simultaneously inhibited glycolysis and mitochondria, facilitated the effects of a cancer theranostic system.
Collapse
Affiliation(s)
- Xiawei Wu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yong Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, China
| | - Kairuo Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yunqiu Miao
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yongliang Chang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiang Ming
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, China
| | - Xinyue Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shengwei Lu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ruichi Liu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
18
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
19
|
Arnér ESJ, Schmidt EE. Unresolved questions regarding cellular cysteine sources and their possible relationships to ferroptosis. Adv Cancer Res 2024; 162:1-44. [PMID: 39069366 PMCID: PMC11785257 DOI: 10.1016/bs.acr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cysteine is required for synthesis of glutathione (GSH), coenzyme A, other sulfur-containing metabolites, and most proteins. In most cells, cysteine comes from extracellular disulfide sources including cystine, glutathione-disulfide, and peptides. The thioredoxin reductase-1 (TrxR1)- or glutathione-disulfide reductase (GSR)-driven enzymatic systems can fuel cystine reduction via thioredoxins, glutaredoxins, or other thioredoxin-fold proteins. Free cystine enters cells thorough the cystine-glutamate antiporter, xCT, but systemically, plasma glutathione-disulfide might predominate as a cystine source. Erastin, inhibiting both xCT and voltage-dependent anion channels, induces ferroptotic cell death, so named because this type of cell death is antagonized by iron-chelators. Many cancer cells seem to be predisposed to ferroptosis, which has been proposed as a targetable cancer liability. Ferroptosis is associated with lipid peroxidation and loss of either glutathione peroxidase-4 (GPX4) or ferroptosis suppressor protein-1 (FSP1), which each prevent accumulation of lipid peroxides. It has been suggested that an xCT inhibition-induced cellular cysteine-deficiency lowers GSH levels, starving GPX4 for reducing power and allowing membrane lipid peroxides to accumulate, thereby causing ferroptosis. Aspects of ferroptosis are however not fully understood and need to be further scrutinized, for example that neither disruption of GSH synthesis, loss of GSH, nor disruption of glutathione disulfide reductase (GSR), triggers ferroptosis in animal models. Here we reevaluate the relationships between Erastin, xCT, GPX4, cellular cysteine and GSH, RSL3 or ML162, and ferroptosis. We conclude that, whereas both Cys and ferroptosis are potential liabilities in cancer, their relationship to each other remains insufficiently understood.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institutes of Oncology, Budapest, Hungary
| | - Edward E Schmidt
- Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary; Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
20
|
Cecerska-Heryć E, Wiśniewska Z, Serwin N, Polikowska A, Goszka M, Engwert W, Michałów J, Pękała M, Budkowska M, Michalczyk A, Dołęgowska B. Can Compounds of Natural Origin Be Important in Chemoprevention? Anticancer Properties of Quercetin, Resveratrol, and Curcumin-A Comprehensive Review. Int J Mol Sci 2024; 25:4505. [PMID: 38674092 PMCID: PMC11050349 DOI: 10.3390/ijms25084505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Malignant tumors are the second most common cause of death worldwide. More attention is being paid to the link between the body's impaired oxidoreductive balance and cancer incidence. Much attention is being paid to polyphenols derived from plants, as one of their properties is an antioxidant character: the ability to eliminate reactive oxygen and nitrogen species, chelate specific metal ions, modulate signaling pathways affecting inflammation, and raise the level and activity of antioxidant enzymes while lowering those with oxidative effects. The following three compounds, resveratrol, quercetin, and curcumin, are polyphenols modulating multiple molecular targets, or increasing pro-apoptotic protein expression levels and decreasing anti-apoptotic protein expression levels. Experiments conducted in vitro and in vivo on animals and humans suggest using them as chemopreventive agents based on antioxidant properties. The advantage of these natural polyphenols is low toxicity and weak adverse effects at higher doses. However, the compounds discussed are characterized by low bioavailability and solubility, which may make achieving the blood concentrations needed for the desired effect challenging. The solution may lie in derivatives of naturally occurring polyphenols subjected to structural modifications that enhance their beneficial effects or work on implementing new ways of delivering antioxidants that improve their solubility and bioavailability.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Zofia Wiśniewska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Weronika Engwert
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Jaśmina Michałów
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland;
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| |
Collapse
|
21
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
22
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
23
|
Badalamenti N, Maggio A, Fontana G, Bruno M, Lauricella M, D’Anneo A. Synthetic Derivatives of Natural ent-Kaurane Atractyligenin Disclose Anticancer Properties in Colon Cancer Cells, Triggering Apoptotic Cell Demise. Int J Mol Sci 2024; 25:3925. [PMID: 38612735 PMCID: PMC11011390 DOI: 10.3390/ijms25073925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The antitumor activity of different ent-kaurane diterpenes has been extensively studied. Several investigations have demonstrated the excellent antitumor activity of synthetic derivatives of the diterpene atractyligenin. In this research, a series of new synthetic amides and their 15,19-di-oxo analogues obtained from atractyligenin by modifying the C-2, C-15, and C-19 positions were designed in order to dispose of a set of derivatives with different substitutions at the amidic nitrogen. Using different concentrations of the obtained compounds (10-300 μM) a reduction in cell viability of HCT116 colon cancer cells was observed at 48 h of treatment. All the di-oxidized compounds were more effective than their alcoholic precursors. The di-oxidized compounds had already reduced the viability of two colon cancer cells (HCT116 and Caco-2) at 24 h when used at low doses (2.5-15 μM), while they turned out to be poorly effective in differentiated Caco-2 cells, a model of polarized enterocytes. The data reported here provide evidence that di-oxidized compounds induced apoptotic cell death, as demonstrated by the appearance of condensed and fragmented DNA in treated cells, as well as the activation of caspase-3 and fragmentation of its target PARP-1.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (G.F.); (M.B.); (A.D.)
- NBFC—National Biodiversity Future Center, Piazza Marina 60, 90133 Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (G.F.); (M.B.); (A.D.)
- NBFC—National Biodiversity Future Center, Piazza Marina 60, 90133 Palermo, Italy
| | - Gianfranco Fontana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (G.F.); (M.B.); (A.D.)
- NBFC—National Biodiversity Future Center, Piazza Marina 60, 90133 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (G.F.); (M.B.); (A.D.)
- NBFC—National Biodiversity Future Center, Piazza Marina 60, 90133 Palermo, Italy
- Centro Interdipartimentale di Ricerca “Riutilizzo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy;
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (G.F.); (M.B.); (A.D.)
| |
Collapse
|
24
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
26
|
Li H, Chen Y, Zhu Y, Feng Y, Qian Y, Ye X, Xu J, Yang H, Yu J, Chen J, Chen K. Exploring the immune interactions between Oncomelania hupensis and Schistosoma japonicum, with a cross-comparison of immunological research progress in other intermediate host snails. Parasit Vectors 2023; 16:453. [PMID: 38093363 PMCID: PMC10717515 DOI: 10.1186/s13071-023-06011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 12/17/2023] Open
Abstract
Schistosomiasis, the second largest parasitic disease in the world after malaria, poses a significant threat to human health and causes public health issues. The disease primarily affects populations in economically underdeveloped tropical regions, earning it the title of "neglected tropical disease". Schistosomiasis is difficult to eradicate globally if medication alone is used. One of the essential elements of thorough schistosomiasis prevention and control is the management and disruption of the life cycle of intermediate host snails. The key approach to controlling the transmission of schistosomiasis is to control the intermediate hosts of the schistosome to disrupt its life cycle. We believe that approaching it from the perspective of the intermediate host's immunity could be an environmentally friendly and potentially effective method. Currently, globally significant intermediate host snails for schistosomes include Oncomelania hupensis, Biomphalaria glabrata, and Bulinus truncatus. The immune interaction research between B. glabrata and Schistosoma mansoni has a history of several decades, and the complete genome sequencing of both B. glabrata and B. truncatus has been accomplished. We have summarized the immune-related factors and research progress primarily studied in B. glabrata and B. truncatus and compared them with several humoral immune factors that O. hupensis research focuses on: macrophage migration inhibitory factor (MIF), Toll-like receptors (TLRs), and thioredoxin (Trx). We believe that continued exploration of the immune interactions between O. hupensis and Schistosoma japonicum is valuable. This comparative analysis can provide some direction and clues for further in-depth research. Comparative immunological studies between them not only expand our understanding of the immune defense responses of snails that act as intermediaries for schistosomes but also facilitate the development of more comprehensive and integrated strategies for schistosomiasis prevention and control. Furthermore, it offers an excellent opportunity to study the immune system of gastropods and their co-evolution with pathogenic organisms.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China.
- Ocean College, Beibu Gulf University, Qinzhou, China.
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoyu Ye
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiatong Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hanyu Yang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiawei Yu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingyu Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China.
| |
Collapse
|
27
|
She W, Shi X, Liu T, Liu Y, Liu Y. Discovery of novel organoarsenicals as robust thioredoxin reductase inhibitors for oxidative stress mediated cancer therapy. Biochem Pharmacol 2023; 218:115908. [PMID: 37931662 DOI: 10.1016/j.bcp.2023.115908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Targeting overexpressed thioredoxin reductase (TrxR) in cancer cells to induce oxidative stress has been proved to be an effective strategy for cancer therapy. However, the treatment was hindered by the low efficiency and frequent administration of TrxR inhibitors, and hence more potent TrxR inhibitors were urgently needed. Herein, we designed and synthesized a series of TrxR inhibitors based on arsenicals. Among these, compound 1d inhibited the proliferation of a variety of cancer cells at low micromolar concentrations and exhibited low toxicity to normal cells. Importantly, compound 1d induced the accumulation of reactive oxygen species (ROS) by inhibiting the TrxR activity, further causing the collapse of the redox system, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and DNA damage, followed by oxidative stress-induced cell apoptosis. In vivo data showed that, compared with the clinical TrxR inhibitor auranofin (AUR), compound 1d could more effectively eliminate tumors by 90 % at a dose of 1.5 mg/kg without any obvious side effects. These results indicated that compound 1d was a potent TrxR inhibitor against cancer.
Collapse
Affiliation(s)
- Wenyan She
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, PR China
| | - Xuemin Shi
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, PR China
| | - Tingting Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry & School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yujiao Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry & School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Yi Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, PR China; State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry & School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
28
|
Khuanjing T, Maneechote C, Ongnok B, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC, Chattipakorn N. Vagus nerve stimulation and acetylcholinesterase inhibitor donepezil provide cardioprotection against trastuzumab-induced cardiotoxicity in rats by attenuating mitochondrial dysfunction. Biochem Pharmacol 2023; 217:115836. [PMID: 37816466 DOI: 10.1016/j.bcp.2023.115836] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Trastuzumab (Trz) is a targeted anticancer drug for human epidermal growth factor receptor 2 (HER2)-positive tumors, as Trz-induced cardiotoxicity (TIC) is commonly observed in Trz-treated patients. Since cardiac autonomic modulation with electrical vagus nerve stimulation (VNS) and acetylcholinesterase (AChE) inhibitors exerts cardioprotection against various heart diseases, the comparative effects of electrical VNS and an AChE inhibitor (donepezil) on cardiac and mitochondrial functions and programmed cell death pathways in TIC are not known. VNS devices were implanted in thirty-two male Wistar rats and were divided into 4 groups: (i) Control-Sham (CSham), (ii) Trz-Sham (TSham), (iii) Trz-VNS (TVNS), and (iv) Trz-donepezil (TDPZ). Rats in the Trz-treated groups were intraperitoneally injected with Trz (4 mg/kg/day) for 7 days, while CSham rats were injected with NSS. VNS devices were activated in the TVNS rats during the 7-day Trz treatment, but not in the sham rats. Rats in the TDPZ group received donepezil orally (5 mg/kg/day) for 7 days. At the end, left ventricular (LV) function and heart rate variability were evaluated, and heart tissue was collected for biochemical and histological analysis. Trz rats showed LV dysfunction and cardiac sympathovagal imbalance. In addition, mitochondrial function and dynamics were impaired in TIC rats. Trz also increased cardiomyocyte death by inducing apoptosis, pyroptosis, and ferroptosis. Electrical VNS and donepezil had similar efficacy in alleviating cardiac mitochondrial dysfunction, dynamic imbalances, and cardiomyocyte death, leading to improved LV function. These findings suggested that parasympathetic activation via either VNS or an AChE inhibitor could be a promising therapeutic intervention against TIC.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
29
|
Erdal H, Demirtas MS, Kılıcbay F, Tunc G. Evaluation of Oxidative Stress Levels and Dynamic Thiol-disulfide Balance in Patients with Retinopathy of Prematurity. Curr Eye Res 2023; 48:1026-1033. [PMID: 36912268 DOI: 10.1080/02713683.2023.2185569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE The aim of this study is to evaluate both dynamic thiol-disulfide homeostasis and oxidative stress (OS) levels in patients with retinopathy of prematurity (ROP). METHODS A total of 129 infants of <34 weeks gestational age were enrolled in the present study. The thiol-disulfide homeostasis was determined by using the new, cost-effective and fully automated colorimetric method. Total antioxidant status (TAS), Total oxidant status (TOS) and Oxidative stress index (OSI) levels were evaluated. RESULTS We found serum TAS levels were lower while serum TOS and OSI levels were significantly higher in patients with ROP compare to the without ROP group (p < .05). However, native, total and disulfide values were not statistically significant between the groups (p > .05). In addition, we also evaluated the native, total and disulfide levels in patients with ROP according to grades and no statistically significant results were found (p > .05). Low birth weight (p = .001), gestational age (p = .001) and 5-min Apgar score were significantly lower in the ROP group. CONCLUSION This study revealed that dynamic thiol-disulfide homeostasis was changed in patients with ROP. Increased TOS and decreased TAS levels may be associated with functional reduction of the antioxidant system due to increased OS. This indicate that ROP patients are highly sensitive to OS. The dynamic thiol-disulfide homeostasis may conduce to the pathophysiological mechanism and disease follow-up in patients with ROP. The results of this study show that ROP patients are highly sensitive to oxidative stress.
Collapse
Affiliation(s)
- Huseyin Erdal
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | | | - Fatih Kılıcbay
- Division of Neonatology, Department of Pediatrics, Sivas Cumhuriyet University, Faculty of Medicine, Sivas, Turkey
| | - Gaffari Tunc
- Division of Neonatology, Department of Pediatrics, Sivas Cumhuriyet University, Faculty of Medicine, Sivas, Turkey
| |
Collapse
|
30
|
Wong Y, Pearson MS, Fedorova O, Ivanov V, Khmelevskaya E, Tedla B, Arachchige BJ, Reed S, Field M, Laha T, Loukas A, Sotillo J. Secreted and surface proteome and transcriptome of Opisthorchis felineus. FRONTIERS IN PARASITOLOGY 2023; 2:1195457. [PMID: 39816815 PMCID: PMC11732047 DOI: 10.3389/fpara.2023.1195457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/25/2023] [Indexed: 01/18/2025]
Abstract
Introduction Opisthorchis felineus, Opisthorchis viverrini, and Clonorchis sinensis are the most medically important species of fish-borne zoonotic trematodes. O. felineus is endemic to the river plains of Western Siberia and Eastern Europe, and it is estimated that more than 1.6 million people could be infected with this parasite. Chronic opisthorchiasis may lead to significant gastrointestinal and hepatobiliary pathology. This study aimed to identify and characterize proteins from the secreted and tegumental proteomes of O. felineus. Methods Adult flukes were collected from experimentally infected hamsters and cultured in vitro in serum-free media. We extracted proteins from different compartments of the O. felineus secretome, including (i) soluble excretory/secretory (ES) products; (ii) secreted 15K-extracellular vesicles (EVs); and (iii) tegument. Results We also generated a transcriptome using long-read sequencing, and when this was combined with high-resolution mass spectrometry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation, and protein digestion, we identified 686, 894, 389, 324, and 165 proteins from the ES, 15K-EV, and the three sequentially extracted tegument (TEG) protein fractions, respectively. We conducted in-depth gene ontology and protein family analyses on the identified proteins and discussed comparisons against similar proteome data sets acquired for the Southeast Asian liver fluke O. viverrini and the Chinese liver fluke C. sinensis. Discussion The information from this study will form a biologically relevant data set of O. felineus proteins that could be used to develop diagnostic and therapeutic tools to manage the human cost of O. felineus infection and its associated comorbidities.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Mark S. Pearson
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Olga Fedorova
- Department of Faculty Pediatrics, Federal State Budget Educational Institution of Higher Education, Siberian State Medical University, Ministry of Healthcare of Russian Federation, Tomsk, Russia
| | - Vladimir Ivanov
- Laboratory of Biological Models, Federal State Budget Educational Institution of Higher Education, Siberian State Medical University, Ministry of Healthcare of Russian Federation, Tomsk, Russia
| | - Ekaterina Khmelevskaya
- Central Research Laboratory, Federal State Budget Educational Institution of Higher Education, Siberian State Medical University, Ministry of Healthcare of Russian Federation, Tomsk, Tomsk, Russia
| | - Bemnet Tedla
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | | | - Sarah Reed
- Mass Spectrometry Facility, Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Matt Field
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Thailand
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen Universit, Khon Kaen, Thailand
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
31
|
Temel Y. Effects of Arbutin on Potassium Bromate-Induced Erythrocyte Toxicity in Rats: Biochemical Evaluation of Some Metabolic Enzyme Activities In Vivo and In Vitro. ACS OMEGA 2023; 8:36581-36587. [PMID: 37810665 PMCID: PMC10552105 DOI: 10.1021/acsomega.3c06101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
In the present study, the inhibitory effect of potassium bromate on the pentose phosphate pathway and intracellular antioxidant systems enzymes (glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione S-transferase (GST), and thioredoxin reductase (TrxR)) and the role of arbutin in ameliorating this inhibition were investigated. In the in vivo phase of the study, Wistar Albino rats (28 male adults) were randomly divided into four groups. Control (n = 7): isotonic serum (0.5 mL, i.p), potassium bromate group (n = 7): potassium bromate (100 mg/kg), arbutin group (n = 7): arbutin (i.p.) (50 mg/kg/day), potassium bromate + arbutin, and Group (n = 7): potassium bromate (100 mg/kg) + arbutin (50 mg/kg/day) (i.p). The results of in vivo study showed that the activities of G6PD, 6PGD, GR, and TrxR enzymes were strongly inhibited in potassium bromate groups (p < 0.05). It was determined that GST enzyme activity decreased in the potassium bromate group, but this decrease was not statistically significant compared to the control group (p ⩾ 0.05). A statistically significant increase was found in G6PD, 6PGD, GST, and TrxR enzyme activities in the arbutin group compared to the control group (p < 0.05). The increase in GR enzyme activity was not statistically significant (p ⩾ 0.05). The potassium bromate + arbutin group's enzyme activity increased in comparison to the potassium bromate group and was discovered to be closer to the control group. It was found that potassium bromate inhibited the 6PGD enzyme obtained from rat erythrocyte tissues with IC50 = 346 μM value and Ki = 434.4 μM ± 6.1 value, and the inhibition was noncompetitive.
Collapse
Affiliation(s)
- Yusuf Temel
- Solhan
Health Services Vocational School, Bingöl
University, Bingöl12000, Turkey
- Faculty
of Arts and Sciences, Bingol University, Bingol12000, Turkiye
| |
Collapse
|
32
|
Zhong M, Chen L, Tao Y, Zhao J, Chang B, Zhang F, Tu J, Cai W, Zhang B. Synthesis and evaluation of Piperine analogs as thioredoxin reductase inhibitors to cause oxidative stress-induced cancer cell apoptosis. Bioorg Chem 2023; 138:106589. [PMID: 37320912 DOI: 10.1016/j.bioorg.2023.106589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/17/2023]
Abstract
Inhibiting thioredoxin reductase (TrxR) to disrupt the redox equilibrium and induce tumor cell apoptosis is a significant tumor therapeutic strategy. Piperine, a natural product from black pepper, has been demonstrated to suppress tumor cell proliferation by enhancing reactive oxygen species (ROS), subsequently leading to cell death. However, the development of Piperine as an active molecule is hampered by its weak cytotoxicity. To develop a compound with higher activity, we synthesized 22 Piperine analogs and evaluated their pharmacological properties. Ultimately, B5 was screened by the results of cytotoxicity and inhibition of TrxR activity. In contrast to Piperine, B5 had significant cytotoxicity with a 4-fold increase. The structure-activity relationship demonstrated that the introduction of an electron-withdrawing group into the benzene ring adjacent to the amino group, particularly in the meta-position, was positive and that shortening the olefin double bond had no appreciable impact on cytotoxicity. Further investigating the physiological activity of B5 in HeLa cells, we found that B5 selectively inhibits the activity of TrxR by binding to Sec residues on TrxR. B5 then induces cellular oxidative stress and finally leads to apoptosis. As a result, the study of B5 paved the way for further investigation into the modification and function of Piperine analogs as TrxR inhibitors.
Collapse
Affiliation(s)
- Miao Zhong
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lingzhen Chen
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yue Tao
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jintao Zhao
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bingbing Chang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fang Zhang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Tu
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenqing Cai
- Regor Therapeutics Inc, 1206 Zhangjiang Road, Building C, Pu Dong New District, Shanghai 201210, China.
| | - Baoxin Zhang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
33
|
Xu X, Wang C, Guan W, Wang F, Li X, Yuan J, Xu G. Protoporphyrin IX-loaded albumin nanoparticles reverse cancer chemoresistance by enhancing intracellular reactive oxygen species. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 51:102688. [PMID: 37121460 DOI: 10.1016/j.nano.2023.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
Chemoresistance is the main cause of chemotherapy failure in ovarian cancer (OC). The enhanced scavenging of reactive oxygen species (ROS) by the thioredoxin system resulted in insufficient intracellular concentrations of effective ROS, leading to chemoresistance. To induce OC cell apoptosis by enhancing intracellular ROS levels, protoporphyrin IX (PpIX) and albumin-bound PTX nanoparticles (APNP) were utilized to fabricate APNP-PpIX nanoparticles. APNP-PpIX effectively generated ROS and increased the effective ROS concentration in chemoresistant cancer cells. The in vitro and in vivo experiments confirmed the effective inhibition of APNP-PpIX on chemoresistant OC cell proliferation and tumor formation. APNP-PpIX significantly improved the effectiveness of chemotherapy and photodynamic therapy, thus providing a new approach for the clinical treatment of chemoresistant OC.
Collapse
Affiliation(s)
- Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chenglong Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
34
|
Goerdeler F, Reuber EE, Lühle J, Leichnitz S, Freitag A, Nedielkov R, Groza R, Ewers H, Möller HM, Seeberger PH, Moscovitz O. Thiol-Mediated Uptake of a Cysteine-Containing Nanobody for Anticancer Drug Delivery. ACS CENTRAL SCIENCE 2023; 9:1111-1118. [PMID: 37396861 PMCID: PMC10311659 DOI: 10.1021/acscentsci.3c00177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Indexed: 07/04/2023]
Abstract
The identification of tumor-specific biomarkers is one of the bottlenecks in the development of cancer therapies. Previous work revealed altered surface levels of reduced/oxidized cysteines in many cancers due to overexpression of redox-controlling proteins such as protein disulfide isomerases on the cell surface. Alterations in surface thiols can promote cell adhesion and metastasis, making thiols attractive targets for treatment. Few tools are available to study surface thiols on cancer cells and exploit them for theranostics. Here, we describe a nanobody (CB2) that specifically recognizes B cell lymphoma and breast cancer in a thiol-dependent manner. CB2 binding strictly requires the presence of a nonconserved cysteine in the antigen-binding region and correlates with elevated surface levels of free thiols on B cell lymphoma compared to healthy lymphocytes. Nanobody CB2 can induce complement-dependent cytotoxicity against lymphoma cells when functionalized with synthetic rhamnose trimers. Lymphoma cells internalize CB2 via thiol-mediated endocytosis which can be exploited to deliver cytotoxic agents. CB2 internalization combined with functionalization forms the basis for a wide range of diagnostic and therapeutic applications, rendering thiol-reactive nanobodies promising tools for targeting cancer.
Collapse
Affiliation(s)
- Felix Goerdeler
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Emelie E. Reuber
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Jost Lühle
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Sabrina Leichnitz
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Anika Freitag
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Ruslan Nedielkov
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Raluca Groza
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Helge Ewers
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Heiko M. Möller
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Oren Moscovitz
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
35
|
Asif Ali M, Khan N, Kaleem N, Ahmad W, Alharethi SH, Alharbi B, Alhassan HH, Al-Enazi MM, Razis AFA, Modu B, Calina D, Sharifi-Rad J. Anticancer properties of sulforaphane: current insights at the molecular level. Front Oncol 2023; 13:1168321. [PMID: 37397365 PMCID: PMC10313060 DOI: 10.3389/fonc.2023.1168321] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Sulforaphane (SFN) is an isothiocyanate with multiple biomedical applications. Sulforaphane can be extracted from the plants of the genus Brassica. However, broccoli sprouts are the chief source of sulforaphane and are 20 to 50 times richer than mature broccoli as they contain 1,153 mg/100 g. SFN is a secondary metabolite that is produced as a result of the hydrolysis of glucoraphanin (a glucosinolate) by the enzyme myrosinase. This review paper aims to summarize and understand the mechanisms behind the anticancer potential of sulforaphane. The data was collected by searching PubMed/MedLine, Scopus, Web of Science, and Google Scholar. This paper concludes that sulforaphane provides cancer protection through the alteration of various epigenetic and non-epigenetic pathways. It is a potent anticancer phytochemical that is safe to consume with minimal side effects. However, there is still a need for further research regarding SFN and the development of a standard dose.
Collapse
Affiliation(s)
- Muhammad Asif Ali
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Noohela Khan
- Department of Nutrition Sciences, Rashid Latif Medical College, Lahore, Pakistan
| | - Nabeeha Kaleem
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Waqas Ahmad
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail, Saudi Arabia
| | - Hassan H. Alhassan
- Department of Clinical Laboratory Science, College of Applied medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Maher M. Al-Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
36
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
37
|
Liu Z, Ye Q, Jiang Y. Transcriptomic analysis: the protection of over-expression thioredoxin reductase 1 in Parkinson's disease. Chin Neurosurg J 2023; 9:9. [PMID: 37013627 PMCID: PMC10069118 DOI: 10.1186/s41016-023-00319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/20/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease. The pathologic characteristic feature is the loss of dopaminergic neurons in the substantia nigra (SN). However, the biochemical mechanisms are unclear. A large number of studies have shown that oxidative damage is the primary cause of PD. Hence, antioxidants could become a suitable option to treat PD. The thioredoxin (Trx) system represents a useful, potentially disease-relevant oxidation-reduction system. Thioredoxin reductase 1 (TR1) is a significant component of the Trx system. METHODS The overexpression lentivirus (LV) or LV-TR1 in the TR1-A53T model of PD by the stereotactic brain, and successful overexpression of LV or LV-TR1 in the MPP+-induced cellular model by LV or LV-TR1 transfection. RESULTS We confirmed that interleukin-7 mRNA levels increased in MPP+ compared to that in the control and MPP+-TR1 groups using quantitative polymerase chain reaction. The γ-H2AX level was increased in the Tg-A53T group compared to that in the TR1-A53T group by western blotting. The expression of Na+-K+-ATP was decreased in the MPP+ group compared to that in the control and MPP+-TR1 groups by high content screening. Tg-A53T(the C57BL/6 mice transferred with mutant human a-syn); TR1-A53T(A53T mice which were injected TR1-LV 2 µl in SNc on two sides with minipump).The mice were fed for 10 months. control (the N2a cells cultivated with DMEM); MPP+(the N2a cells dealt with MPP+(1 mM) 48 h), MPP+-LV (the N2a cells over-expressed LV for 24 h then dealt with MPP+(1 mM) 48 h). MPP+-TR1(the N2a cell over-expressed TR1-LV for 24 h then dealt with MPP+(1 mM) 48 h). From the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we confirmed that the overexpression of TR1 in SN pars compacta cells decreased oxidative stress, apoptosis, DNA damage, and inflammatory response and increased NADPH, Na+-K+-ATP, and immune response in this PD model. CONCLUSIONS Our study shows that overexpressed TR1 can be developed as a neuroprotective agent for PD. Therefore, our findings demonstrate a new targeted protein for the treatment of PD.
Collapse
Affiliation(s)
- Zihua Liu
- Department of Blood Transfusion Service, the Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, Gansu Province, China.
| | - Qiang Ye
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ying Jiang
- Intensive Care Center of Gynecology and Obstetrics, Gansu Provincial Maternity and Childcare Hospital, Lanzhou, 730050, Gansu, China
| |
Collapse
|
38
|
Ni Y, Luo Z, Lv Y, Ma S, Luo C, Du D. Thimerosal, a competitive thioredoxin reductase 1 (TrxR1) inhibitor discovered via high-throughput screening. Biochem Biophys Res Commun 2023; 650:117-122. [PMID: 36780763 DOI: 10.1016/j.bbrc.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Thioredoxin reductase 1 (TrxR1) is considered as an important anti-cancer drug target, inhibition of which can induce reactive oxygen species (ROS)-mediated apoptosis of human cancer cells. Here, we developed and optimized a high-throughput screening (HTS) assay based on enzyme kinetics for the discovery of TrxR1 inhibitors. By utilizing this assay, we performed a HTS for 2500 compounds from an in-house library against TrxR1. We found that a vaccine preservative, thimerosal, strongly inhibited TrxR1 in a competitive and reversible manner with an IC50 of 24.08 ± 0.86 nM. In addition, we determined that thiomersal has an inhibitory effect on the proliferation of A549 lung cancer cell line, with a GI50 of 6.81 ± 0.09 μM, slightly more potent than auranofin (GI50 = 11.85 ± 0.56 μM). Furthermore, we showed by flow cytometer that thimerosal effectively increased the content of ROS in A549 cells. Therefore, our work provided a high-throughput screening assay to quickly and effectively discover TrxR1 inhibitors, identifying thiomersal as a novel TrxR1 inhibitor and chemical probe.
Collapse
Affiliation(s)
- Yicheng Ni
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhongyuan Luo
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yixin Lv
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shuyuan Ma
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Daohai Du
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
39
|
Zhu D, Zhong Q, Lin T, Song T. Higher serum selenium concentration is associated with lower risk of all-cause and cardiovascular mortality among individuals with chronic kidney disease: A population-based cohort study of NHANES. Front Nutr 2023; 10:1127188. [PMID: 37063340 PMCID: PMC10102510 DOI: 10.3389/fnut.2023.1127188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundSelenium is an essential nutrient and trace element required for human health and plays an important role in antioxidative and anti-inflammatory processes. However, the long-term impact of selenium levels on the health of patients with chronic kidney disease remains unclear.MethodParticipants in this study were 3,063 CKD adults from the Third National Health and Nutrition Examination Survey (NHANES 1999–2000, 2003–2004, and 2011–2018). The mortality status and the cause of death of the study participants were obtained from the National Death Index records. For all-cause and cardiovascular disease (CVD) mortality, the models employed to estimate hazard ratios (HRs) and 95% CI were Cox proportional hazard models and competing risk models, respectively.ResultDuring the follow-up period, 884 deaths occurred, including 336 heart-disease-associated deaths. The median (IQR) concentration of serum selenium was 181.7 (156.1, 201.5) μg/L. After full adjustment, serum selenium levels were associated with a decreased risk of mortality in patients with CKD, including all-cause and CVD mortality (P < 0.001). The multivariate-adjusted HRs (95%CI) were 0.684 (0.549–0.852) for all-cause mortality (Ptrend < 0.001) and 0.513 (0.356–0.739) for CVD mortality (Ptrend < 0.001) when selenium concentrations were compared according to the extreme quartiles. Selenium levels are inversely associated with an increased risk of all-cause mortality and CVD mortality. Similar results were observed in subgroup and sensitivity analyses.ConclusionHigher serum selenium concentration was independently associated with a decreased risk of all-cause and CVD mortality in patients with CKD.
Collapse
Affiliation(s)
- Daiwen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Zhong
- Organ Transplantation Center, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Tao Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Tao Lin
| | - Turun Song
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Turun Song
| |
Collapse
|
40
|
Rua RM, Nogales F, Carreras O, Ojeda ML. Selenium, selenoproteins and cancer of the thyroid. J Trace Elem Med Biol 2023; 76:127115. [PMID: 36481604 DOI: 10.1016/j.jtemb.2022.127115] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/03/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Selenium is an essential mineral element with important biological functions for the whole body through incorporation into selenoproteins. This element is highly concentrated in the thyroid gland. Selenoproteins provide antioxidant protection for this tissue against the oxidative stress caused by free radicals and contribute, via iodothyronine deiodinases, to the metabolism of thyroid hormones. It is known that oxidative stress plays a major role in carcinogenesis and that in recent decades there has been an increase in the incidence of thyroid cancer. The anti-carcinogenic action of selenium, although not fully understood, is mainly attributable to selenoproteins antioxidant properties, and to the ability to modulate cell proliferation (cell cycle and apoptosis), energy metabolism, and cellular immune response, significantly altered during tumorigenesis. Researchers have suggested that different forms of selenium supplementation may be beneficial in the prevention and treatment of thyroid cancer; however, the studies have several methodological limitations. This review is a summary of the current knowledge on how selenium and selenoproteins related to thyroid cancer.
Collapse
Affiliation(s)
- Rui Manuel Rua
- Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal.
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| |
Collapse
|
41
|
Hukkamlı B, Dağdelen B, Sönmez Aydın F, Budak H. Comparison of the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress. Cell Biochem Biophys 2023:10.1007/s12013-023-01126-3. [PMID: 36773183 DOI: 10.1007/s12013-023-01126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
This study was conducted to compare the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress. Increased Il-1 and Il-6 expressions, markers of inflammation, were represented by inflammation models in mouse liver and kidney tissues injected intraperitoneally with LPS. After establishing the model, the GSH level and the GSH/GSSG ratio, which are oxidative stress markers, were investigated in both tissues treated with LPS and the control group. The expression of Trx1, TrxR, and Txnip genes increased in the liver tissues of LPS-treated mice. In the kidney tissue, while Trx1 expression decreased, no change was observed in TrxR1 expression, and Txnip expression increased. In the kidneys, TRXR1 and GR activities decreased, whereas GPx activity increased. In both tissues, the TRXR1 protein expression decreased significantly, while TXNIP expression increased. In conclusion, different behaviors of antioxidant system members were observed during acute inflammation in both tissues. Additionally, it can be said that the kidney tissue is more sensitive and takes earlier measures than the liver tissue against cellular damage caused by inflammation and inflammation-induced oxidative stress.
Collapse
Affiliation(s)
- Berna Hukkamlı
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye
- Department of Chemical and Chemical Processing Technologies, Boyabat Vocational School, Sinop University, Sinop, 57200, Türkiye
| | - Burak Dağdelen
- Department of Medical Biology, Faculty of Medicine, Selçuk University, Konya, 42250, Türkiye
| | - Feyza Sönmez Aydın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye
- Department of Pathology Laboratory Techniques, Vocational School, Doğuş University, Istanbul, 34775, Türkiye
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye.
| |
Collapse
|
42
|
Zhong M, He J, Zhang B, Liu Q, Fang J. Mitochondria-targeted iridium-based photosensitizers enhancing photodynamic therapy effect by disturbing cellular redox balance. Free Radic Biol Med 2023; 195:121-131. [PMID: 36581057 DOI: 10.1016/j.freeradbiomed.2022.12.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
Photodynamic therapy (PDT) is a non-invasive, light-activated treatment approach that has been broadly employed in cancer. Cyclometallic iridium (Ш) complexes are candidates for ideal photosensitizers due to their unique photophysical and photochemical features, such as high quantum yield, large Stokes shift, strong resistance to photobleaching, and high cellular permeability. We evaluated a panel of iridium complexes and identified PC9 as a powerful photosensitizer to kill cancer cells. PC9 shows an 8-fold increase of cytotoxicity to HeLa cells under light irradiation. Further investigation discloses that PC9 has a strong mitochondrial-targeting ability and can inhibit the antioxidant enzyme thioredoxin reductase, which contributes to improving PDT efficacy. Our data indicate that iridium complexes are efficient photosensitizers with distinct physicochemical properties and cellular actions, and deserve further development as promising agents for PDT.
Collapse
Affiliation(s)
- Miao Zhong
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jian He
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; Sichuan Key Laboratory of Medical Imaging, School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Baoxin Zhang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qiang Liu
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Jianguo Fang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
43
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
44
|
Muri J, Kopf M. The thioredoxin system: Balancing redox responses in immune cells and tumors. Eur J Immunol 2023; 53:e2249948. [PMID: 36285367 PMCID: PMC10100330 DOI: 10.1002/eji.202249948] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
The thioredoxin (TRX) system is an important contributor to cellular redox balance and regulates cell growth, apoptosis, gene expression, and antioxidant defense in nearly all living cells. Oxidative stress, the imbalance between reactive oxygen species (ROS) and antioxidants, can lead to cell death and tissue damage, thereby contributing to aging and to the development of several diseases, including cardiovascular and allergic diseases, diabetes, and neurological disorders. Targeting its activity is also considered as a promising strategy in the treatment of cancer. Over the past years, immunologists have established an essential function of TRX for activation, proliferation, and responses in T cells, B cells, and macrophages. Upon activation, immune cells rearrange their redox system and activate the TRX pathway to promote proliferation through sustainment of nucleotide biosynthesis, and to support inflammatory responses in myeloid cells by allowing NF-κB and NLRP3 inflammasome responses. Consequently, targeting the TRX system may therapeutically be exploited to inhibit immune responses in inflammatory conditions. In this review, we summarize recent insights revealing key roles of the TRX pathway in immune cells in health and disease, and lessons learnt for cancer therapy.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
45
|
Erdal H, Ciftciler R, Tuncer SC, Özcan O. Evaluation of dynamic thiol-disulfide homeostasis and ischemia-modified albumin levels in patients with chronic lymphocytic leukemia. J Investig Med 2023; 71:62-66. [PMID: 36038148 DOI: 10.1136/jim-2022-002568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
This is the first study to evaluate both the dynamic thiol-disulfide homeostasis and ischemia-modified albumin (IMA) levels in patients with chronic lymphocytic leukemia (CLL). Twenty-nine patients with CLL and 20 controls were included in the study. The dynamic thiol-disulfide balance was determined by the newly developed colorimetric method by Erel. IMA levels were determined by the cobalt binding test. We found that total antioxidant status levels were lower while total oxidant status (TOS) and oxidative stress index (OSI) levels were significantly higher in patients with CLL than controls. Moreover, native and total thiol levels were found to be statistically significant between the study and control groups (p<0.001), whereas no statistically significant difference was noted for IMA levels (p=0.365). A negative correlation was observed between native and total thiol levels, leukocyte, lymphocyte, and TOS. Total bilirubin showed positive correlation with direct bilirubin and alkaline phosphatase. In addition, IMA levels showed a positive correlation with OSI. This study highlights measurement of native and total thiol and IMA levels in patients with CLL for the first time. Dynamic thiol-disulfide homeostasis may contribute in the pathophysiological mechanism, and follow-up to disease in patients with CLL.
Collapse
Affiliation(s)
- Huseyin Erdal
- Medical Genetics, Aksaray University, Aksaray, Turkey
| | | | | | - Oguzhan Özcan
- Biochemistry, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
46
|
Muangthong T, Chusangnin P, Hassametto A, Tanomrat R, Suwannalert P. Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model. Cancers (Basel) 2022; 15:cancers15010056. [PMID: 36612053 PMCID: PMC9817953 DOI: 10.3390/cancers15010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment, especially that of fibroblasts, strongly promotes colorectal cancer (CRC) progression. Progressive cancers usually accumulate high reactive oxygen species (ROS), leading to oxidative stress. The stress relates to the expression of thioredoxin reductase-1 (TrxR-1), which is an oxidative stress sensitivity molecule. This study aimed to investigate TrxR-1 expression as an indication of colon-fibroblast-inducing colorectal cancer progression and metastasis. We found that the high proliferative fibroblast-cultured media (FCM) contained pro-inflammatory cytokines that have a high ability to influence HCT116 and CRC cell progression, when compared with complete media (CM) as a control in terms of growth (CM = 100.00%, FCM = 165.96%), migration (CM = 32.22%, FCM = 83.07%), invasion (CM = 130 cells/field, FCM = 449 cells/field), and EMT transformation while decreasing E-cadherin expression (CM = 1.00, FCM = 0.69) and shape factor (CM = 0.94, FCM = 0.61). In addition, the overexpression of TrxR-1 is associated with cellular oxidant enchantment in FCM-treated cells. A dot plot analysis showed a strong relation between the EMT process and the overexpression of TrxR-1 in FCM-treated cells (CM = 13/100 cells, FCM = 45/100 cells). The cancer transplantation of the adult zebrafish model illustrated a significantly higher number of microtumors in FCM-treated cells (CM = 4.33 ± 1.51/HPF, FCM = 25.00 ± 13.18/HPF) disseminated in the intraperitoneal cavity with TrxR-1 positive cells. The overexpression of TrxR-1 indicated fibroblast-associated CRC progression in HCT116 cells and the zebrafish model. Therefore, TrxR-1 could be applied as a novel biomarker for colorectal cancer progression and prognostic evaluation.
Collapse
Affiliation(s)
- Tharathip Muangthong
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pornnapat Chusangnin
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Artchaya Hassametto
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rataya Tanomrat
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
47
|
Chen M, Cao W, Wang J, Cai F, Zhu L, Ma L, Chen T. Selenium Atom-Polarization Effect Determines TrxR-Specific Recognition of Metallodrugs. J Am Chem Soc 2022; 144:20825-20833. [DOI: 10.1021/jacs.2c08802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingkai Chen
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Wenqiang Cao
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Junping Wang
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Fei Cai
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Liwen Zhu
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Li Ma
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
48
|
Idlas P, Ladaycia A, Némati F, Lepeltier E, Pigeon P, Jaouen G, Decaudin D, Passirani C. Ferrocifen stealth LNCs and conventional chemotherapy: A promising combination against multidrug-resistant ovarian adenocarcinoma. Int J Pharm 2022; 626:122164. [PMID: 36089209 DOI: 10.1016/j.ijpharm.2022.122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Ovarian cancer is one of the deadliest epithelial malignancies in women, owing to the multidrug resistance that restricts the success of conventional chemotherapy, carboplatin and paclitaxel. High grade serous ovarian carcinoma can be classified into two subtypes, the chemosensitive High OXPHOS and the Low OXPHOS tumour, less sensitive to chemotherapy. This difference of treatment efficacy could be explained by the redox status of these tumours, High OXPHOS exhibiting a chronic oxidative stress and an accumulation of reactive oxygen species. Ferrocifens, bio-organometallic compounds, are believed to be ROS producers with a good cytotoxicity on ovarian cancer cell lines. The aim of this study was to evaluate the in vivo efficacy of ferrocifen stealth lipid nanocapsules on High and Low OXPHOS ovarian Patient-Derived Xenograft models, alone or in combination to standard chemotherapy. Accordingly, two ferrocifens, P53 and P722, were encapsulated in stealth LNCs. The treatment by stealth P722-LNCs in combination with standard chemotherapy induced, with a concentration eight time lower than in stealth P53-LNCs, similar tumour reduction on a Low OXPHOS model, allowing us to conclude that P722 could be a leading ferrocifen to treat ovarian cancer. This combination of treatments may represent a promising synergistic approach to treat resistant ovarian adenocarcinoma.
Collapse
Affiliation(s)
- Pierre Idlas
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France
| | - Abdallah Ladaycia
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France
| | - Fariba Némati
- Translational Research Department, Laboratory of preclinical Investigation, PSL University, Institut Curie, 26 rue d'Ulm, Paris 75248, France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France
| | - Pascal Pigeon
- PSL Chimie Paris Tech, 11 rue P. et M. Curie and Sorbonne Université IPCM, CNRS, UMR 8232, IPCM, Paris 75005, France
| | - Gerard Jaouen
- PSL Chimie Paris Tech, 11 rue P. et M. Curie and Sorbonne Université IPCM, CNRS, UMR 8232, IPCM, Paris 75005, France
| | - Didier Decaudin
- Translational Research Department, Laboratory of preclinical Investigation, PSL University, Institut Curie, 26 rue d'Ulm, Paris 75248, France; Department of Medical Oncology, Institut Curie, 26 rue d'Ulm, Paris 75248, France
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France
| |
Collapse
|
49
|
Duró C, Jernei T, Szekeres KJ, Láng GG, Oláh-Szabó R, Bősze S, Szabó I, Hudecz F, Csámpai A. Synthesis and SAR Analysis of Novel 4-Hydroxytamoxifen Analogues Based on Their Cytotoxic Activity and Electron-Donor Character. Molecules 2022; 27:6758. [PMID: 36235291 PMCID: PMC9573586 DOI: 10.3390/molecules27196758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Utilizing McMurry reactions of 4,4'-dihydroxybenzophenone with appropriate carbonyl compounds, a series of 4-Hydroxytamoxifen analogues were synthesized. Their cytotoxic activity was evaluated in vitro on four human malignant cell lines (MCF-7, MDA-MB 231, A2058, HT-29). It was found that some of these novel Tamoxifen analogues show marked cytotoxicity in a dose-dependent manner. The relative ROS-generating capability of the synthetized analogues was evaluated by cyclic voltammetry (CV) and DFT modeling studies. The results of cell-viability assays, CV measurements and DFT calculations suggest that the cytotoxicity of the majority of the novel compounds is mainly elicited by their interactions with cellular targets including estrogen receptors rather than triggered by redox processes. However, three novel compounds could be involved in ROS-production and subsequent formation of quinone-methide preventing proliferation and disrupting the redox balance of the treated cells. Among the cell lines studied, HT-29 proved to be the most susceptible to the treatment with compounds having ROS-generating potency.
Collapse
Affiliation(s)
- Cintia Duró
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Tamás Jernei
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Krisztina J. Szekeres
- Laboratory of Electrochemistry and Electroanalytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Győző G. Láng
- Laboratory of Electrochemistry and Electroanalytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Rita Oláh-Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Ferenc Hudecz
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Antal Csámpai
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
50
|
Xu Q, Zhang J, Zhao Z, Chu Y, Fang J. Revealing PACMA 31 as a new chemical type TrxR inhibitor to promote cancer cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119323. [PMID: 35793738 DOI: 10.1016/j.bbamcr.2022.119323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Thioredoxin reductase (TrxR) is a pivotal regulator of redox homeostasis, while dysregulation of redox homeostasis is a hallmark for cancer cells. Thus, there is considerable potential to inhibit the aberrantly upregulated TrxR in cancer cells to discover selective cancer therapeutic agents. Nevertheless, the structural types of TrxR inhibitors presented currently are still relatively limited. We herein report that PACMA 31, previously reported to inhibit protein disulfide isomerase (PDI), is a potent TrxR inhibitor. PACMA 31 possesses a pharmacophore scaffold that is structurally different from the announced TrxR inhibitors and exhibits effective cytotoxicity against cervical cancer cells. Our results reveal that PACMA 31 selectively inhibits TrxR over the related glutathione reductase (GR) and in the presence of reduced glutathione (GSH). Further studies with mutant enzyme and molecular docking suggest that the propynamide fragment of PACMA 31 interacts covalently with the selenocysteine residue of TrxR. Moreover, PACMA 31 effectively and selectively curbs TrxR activity in cells and further stimulates the production of reactive oxygen species (ROS) at low micromolar concentrations, which in turn triggers the accumulation of oxidized thioredoxin (Trx) and GSSG in cells. Follow-up studies demonstrate that PACMA 31 targets TrxR in cells to induce oxidative stress-mediated cancer cell apoptosis. Our results provide a new structural type of TrxR inhibitor that may serve as a useful probe for investigating the biology of TrxR-implicated pathways, and uncover a new target of PACMA 31 that contributes to it becoming a candidate for cancer treatment.
Collapse
Affiliation(s)
- Qianhe Xu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China..
| | - Zhengjia Zhao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China..
| |
Collapse
|