1
|
Fatma M, Parveen S, Mir SS. Unraveling the kinase code: Role of protein kinase in lung cancer pathogenesis and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189309. [PMID: 40169080 DOI: 10.1016/j.bbcan.2025.189309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Lung cancer is a prominent cause of cancer-related deaths globally, prompting exploration into the molecular pathways governing cancer cell signaling. Recent insights highlight the critical role of kinases in carcinogenesis and metastasis, particularly in non-small cell lung cancer (NSCLC), where protein kinases significantly contribute to drug resistance. These diverse enzymes catalyze protein phosphorylation and are implicated in cancer through misregulated expression, amplification, aberrant phosphorylation, mutations, and chromosomal translocations. Amplifications of kinases serve as important diagnostic, prognostic, and predictive biomarkers across various cancers. Notably, the Phosphatidylinositol 3-kinase (PI3K)/AKT pathway is crucial for the survival and proliferation of tumor cells. Novel therapeutic approaches are being explored to precisely target these pathways. Peptide-based therapies offer specificity and reduced toxicity compared to conventional treatments, while gene therapy targets abnormal genetic expressions. Advances in nanotechnology and CRISPR/Cas9 systems enhance gene delivery methods, holding promise for targeting specific molecular pathways in lung cancer treatment and minimizing systemic toxicity.
Collapse
Affiliation(s)
- Mariyam Fatma
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.
| |
Collapse
|
2
|
Liu J, Zhu Z, Dong Y, Shi D, Ding Y, Zheng F. Tilianin regulates the proliferation, invasion and tumor immune microenvironment of thyroid cancer cells through the TLR4/NF-κB axis. Int Immunopharmacol 2025; 158:114783. [PMID: 40349407 DOI: 10.1016/j.intimp.2025.114783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Thyroid cancer is the most prevalent form of endocrine malignancy. Tilianin has demonstrated anti-tumor properties in ovarian cancer and non-small cell lung cancer (NSCLC), while its effects on thyroid cancer progression remain elusive. Hence, this research explored the role of Tilianin in thyroid cancer development and clarified the underlying mechanisms. The findings indicated that Tilianin reduced cell viability of TPC-1 (IC50 = 38.97 μM) and IHH4 (IC50 = 27.69 μM) cells dose-dependently and inhibited the expression of Ki-67. Additionally, Tilianin impaired the invasion capacity of TPC-1 and IHH4 cells, decreased the PD-L1 level, strengthened the CD8+T cell viability, and elevated the secretions of IFN-γ, IL-2, and TNF-α in CD8+T cells. Furthermore, Tilianin could suppress the activation of the TLR4/NF-κB pathway. The inhibitory effects of Tilianin on TPC-1 cell proliferation, invasion, and immune escape were reversed by overexpression of TLR4. In vivo, oral administration of Tilianin restrained thyroid cancer tumor growth, reduced the levels of Ki-67, PD-L1, TLR4, and p-NF-κB, and increased CD8+ T cell levels. In summary, Tilianin effectively restrained thyroid cancer cell proliferation, invasion, and tumor immune microenvironment through inactivating the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jianyu Liu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Zongping Zhu
- Department of Nuclear Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), Qingdao, 266071,Shandong, China
| | - Yuanfei Dong
- Department of Nuclear Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), Qingdao, 266071,Shandong, China
| | - Dedao Shi
- Department of Nuclear Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), Qingdao, 266071,Shandong, China
| | - Yueyun Ding
- Department of Nuclear Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), Qingdao, 266071,Shandong, China
| | - Feibo Zheng
- Department of Nuclear Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), Qingdao, 266071,Shandong, China.
| |
Collapse
|
3
|
Bhattacharya P, Linnenbach A, South AP, Martinez-Outschoorn U, Curry JM, Johnson JM, Harshyne LA, Mahoney MG, Luginbuhl AJ, Vadigepalli R. Tumor microenvironment governs the prognostic landscape of immunotherapy for head and neck squamous cell carcinoma: A computational model-guided analysis. PLoS Comput Biol 2025; 21:e1013127. [PMID: 40460357 DOI: 10.1371/journal.pcbi.1013127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 05/08/2025] [Indexed: 06/11/2025] Open
Abstract
Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. Simulation across the selected parameter space of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8 + killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome.
Collapse
Affiliation(s)
- Priyan Bhattacharya
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Alban Linnenbach
- Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Andrew P South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Joseph M Curry
- Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jennifer M Johnson
- Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Larry A Harshyne
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mỹ G Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Adam J Luginbuhl
- Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Chidambaram K, Rekha A, Goyal A, Rana M. Targeting KRAS-G12C in lung cancer: The emerging role of PROTACs in overcoming resistance. Pathol Res Pract 2025; 270:155954. [PMID: 40233529 DOI: 10.1016/j.prp.2025.155954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
In lung cancer, KRAS mutations, especially the G12C, favor aggressive tumor growth and resistance to standard therapies. Although first-generation inhibitors of KRAS G12C, such as sotorasib and adagrasib, are highly effective in early-phase studies, resistance invariably develops under selective inhibition pressure and rarely leads to sustained long-term treatment benefits. As a novel approach to targeting KRAS mutations in lung cancer, PROTAC (Proteolysis Targeting Chimera) technology is explored in this review. The PROTACs take advantage of the cell's ubiquitin-proteasome system to selectively degrade KRAS proteins, overcoming the dilemma of a lack of traditional binding sites and the means of resistance. We review recent progress with KRAS-specific PROTACs and their mechanisms, clinical application, and effectiveness at targeting primary KRAS oncogenes and secondary drivers and signaling pathways contributing to therapeutic resistance. Also, the synergies between PROTACs and immunotherapies or chemotherapies are further amplified. This review also underscores PROTAC technology's promise to advance precision medicine by providing durable treatment options for KRAS-driven lung cancers. It addresses future directions for optimizing PROTAC efficacy, bioavailability, and patient-specific applications.
Collapse
Affiliation(s)
- Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - A Rekha
- Dr DY Patil Medical college , Hospital and Research Centre, Pimpri , Pune, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
5
|
Cagnin Pereira T, Cardoso LP, da Silva de Paiva W, Santos de Camargos L, Cristina Rodrigues-Lisoni F, Redondo Martins A. Analysis of metabolic compounds and antitumorigenic effects of Albizia niopoides and Senegalia polyphylla leaves. Nat Prod Res 2025; 39:3140-3147. [PMID: 38530002 DOI: 10.1080/14786419.2024.2331603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/10/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
The objective of this study was to quantify metabolic compounds in leaves of A. niopoides and S. polyphylla and to evaluate the antitumor potential of extracts from both species in cervical tumour cells. The physiological analyses performed were quantification of starch, sucrose, phenolic compounds and proteins. An aqueous extract was prepared and added to the SiHa cell line at concentrations of 10, 100 and 1000 μg/mL at 4h, 24h, 48h and 72h. Cell morphology, proliferation and viability were analysed. The species showed a large amount of starch and phenolic compounds. Treatment with the extract of both species caused morphological changes in SiHa cells and exhibited antiproliferative effects at a concentration of 1000 µg/ml. In cell viability test, only A. niopoides showed a significant reduction. The study presented the effects of the species against a cervical cancer cell line, where A. niopoides has already shown to be a promising plant drug.
Collapse
Affiliation(s)
- Thalissa Cagnin Pereira
- Department of Biology and Animal Science, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Engenharia (Feis), Ilha Solteira, SP, Brazil
| | - Luana Pereira Cardoso
- Department of Biological Sciences, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Letras e Ciências Exatas (Ibilce), São José do Rio Preto, SP, Brazil
| | - Wesller da Silva de Paiva
- Department of Biology and Animal Science, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Engenharia (Feis), Ilha Solteira, SP, Brazil
| | - Liliane Santos de Camargos
- Department of Biology and Animal Science, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Engenharia (Feis), Ilha Solteira, SP, Brazil
| | - Flávia Cristina Rodrigues-Lisoni
- Department of Biology and Animal Science, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Engenharia (Feis), Ilha Solteira, SP, Brazil
- Department of Biological Sciences, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Letras e Ciências Exatas (Ibilce), São José do Rio Preto, SP, Brazil
| | - Aline Redondo Martins
- Department of Biology and Animal Science, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Engenharia (Feis), Ilha Solteira, SP, Brazil
| |
Collapse
|
6
|
Aliyari M, Ghoflchi S, Hashemy SI, Hashemi SF, Reihani A, Hosseini H. The PI3K/Akt pathway: a target for curcumin's therapeutic effects. J Diabetes Metab Disord 2025; 24:52. [PMID: 39845908 PMCID: PMC11748622 DOI: 10.1007/s40200-025-01563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025]
Abstract
Purpose The purpose of this review study is to investigate the effect of curcumin on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in various diseases. Curcumin, the main compound found in turmeric, has attracted a lot of attention for its diverse pharmacological properties. These properties have increased the therapeutic potential of curcumin in chronic diseases such as cardiovascular disease, Type 2 diabetes, obesity, non-alcoholic fatty liver disease, kidney disease, and neurodegenerative diseases. One of the main mechanisms of the effect of curcumin on health is its ability to modulate the PI3K/Akt signaling pathway. This pathway plays an important role in regulating vital cellular processes such as growth, cell survival, metabolism, and apoptosis. Disruption of the PI3K/Akt signaling pathway is associated with the incidence of several diseases. Methods Electronic databases including PubMed, Google Scholar, and Scopus were searched with the keywords "phosphoinositide 3-kinase" AND "protein kinase B "AND "curcumin" in the title/abstract. Also, following keywords "non-alcoholic fatty liver disease" AND "diabetes" AND "obesity" AND "kidney disease" and "neurodegenerative diseases" was searched in the whole text. Results Research indicates that curcumin offers potential benefits for several health conditions. Studies have shown it can help regulate blood sugar, reduce inflammation, and protect the heart, kidneys, and brain. Conclusion This protective effect is partially achieved by regulating the PI3K-Akt survival pathway, which helps improve metabolic disorders and oxidative stress. By examining how curcumin affects this vital cell pathway, researchers can discover new treatment strategies for a range of diseases.
Collapse
Affiliation(s)
- Mahdieh Aliyari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ghoflchi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Hashemi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Reihani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Mannan A, Mohan M, Singh TG. Revenge unraveling the fortress: Exploring anticancer drug resistance mechanisms in BC for enhanced therapeutic strategies. Crit Rev Oncol Hematol 2025; 210:104707. [PMID: 40122355 DOI: 10.1016/j.critrevonc.2025.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Breast cancer (BC) is the most prevalent form of cancer in women worldwide and the main cause of cancer-related fatalities in females. BC can be classified into various types based on where cancer has begun to grow or spread, specific characteristics that influence how cancer behaves, and treatment choices. BC is multifaceted, and due to its diverse nature, the mechanisms involved are complex and have not yet been understood. Overexpression and expression of various factors involved in the functioning of mechanisms lead to abnormal changes, providing an environment supporting cancer cell growth. Understanding BC risk factors and early diagnosis through screening techniques like mammography and diagnostic techniques such as imaging and biopsies has advanced significantly. A wide range of treatment options, including surgery, radiation, chemotherapy, targeted treatments, and hormonal therapies, are now available. Daily advancements are being made in the clinical treatment of BC. Still, BC drug resistance cases remain highly prevalent and are currently one of the biggest problems faced by medical science. To increase response rates and possibly lengthen survival, there is a critical requirement for novel medicines with minimal sensitivity to overcome drug resistance. This review classifies different mechanisms that are involved in the development of BC and workable pharmacological targets and explains how they relate to the development of BC drug resistance. By concentrating on the mechanisms covered in this review, we can have a deep understanding of different mechanisms and learn innovative ways to develop novel therapeutics for the disease to combat medication resistance.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
8
|
Kahkesh S, Hedayati N, Rahimzadeh P, Farahani N, Khoozani MF, Abedi M, Nabavi N, Naeimi B, Khoshnazar SM, Alimohammadi M, Alaei E, Mahmoodieh B. The function of circular RNAs in regulating Wnt/β-catenin signaling: An innovative therapeutic strategy for breast and gynecological cancers. Pathol Res Pract 2025; 270:155944. [PMID: 40228402 DOI: 10.1016/j.prp.2025.155944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025]
Abstract
Breast cancer (BC) and gynecological malignancies, including cervical, ovarian, and uterine cancers, are significant global health challenges due to their high prevalence, complex nature, and elevated mortality rates. Dysregulation of the Wnt/β-catenin signaling pathway is a common feature in gynecological malignancies, contributing to cancer cell growth, progression, migration, and metastasis. Recent studies have highlighted the pivotal role of non-coding RNAs (ncRNAs), particularly circular RNAs (circRNAs), in modulating the Wnt/β-catenin signaling pathway. Acting as sponges for microRNAs (miRNAs), circRNAs regulate key oncogenic and tumor-suppressive processes by influencing Wnt-related components. This research explores the role of circRNAs in breast and gynecological malignancies, focusing on their regulatory effects on the Wnt/β-catenin pathway. The findings reveal that circRNAs modulate critical cellular processes such as proliferation, apoptosis, autophagy, and metastasis, with potential implications for therapeutic interventions. Targeting circRNA-mediated dysregulation of Wnt signaling could offer novel strategies for improving diagnostic precision, treatment efficacy, and survival outcomes in breast and gynecological cancers.
Collapse
Affiliation(s)
- Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Farhadi Khoozani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Bita Naeimi
- Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Gao L, Ma S, Yan S, Zhang H, Tian L, Li L, Diao L, Miao L, Yang X, Diao X. Pharmacokinetics, mass balance, and metabolism of [ 14C]FCN-437c, a selective and potent CDK4/6 inhibitor in humans. Cancer Chemother Pharmacol 2025; 95:57. [PMID: 40418395 DOI: 10.1007/s00280-025-04779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/03/2025] [Indexed: 05/27/2025]
Abstract
This study investigated the pharmacokinetics, mass balance, and metabolism of [14C]FCN-437c, a selective and potent CDK4/6 inhibitor, in humans. Six healthy male Chinese subjects were administered a single oral dose of 200 mg [14C]FCN-437c (120 µCi), and plasma, urine, and feces samples were collected up to 456 h post-dose. The geometric mean Cmax of radioactivity in plasma and blood were 706 and 557 ng eq./mL, respectively, with a median Tmax of 5.0 h and a geometric mean t1/2 of 56.5 h in plasma. The primary route of elimination was fecal excretion, accounting for a mean of 77.16% of the dose, whereas urinary excretion constituted a mean of 19.19% of the administered radioactivity. UHPLC-HRMS analysis identified 12 metabolites in human plasma, urine, and feces, with 8 of them being phase I metabolites, and the major metabolic pathways were mono-oxidation and O-dealkylation. Additionally, 4 phase II metabolites were identified, including two glucuronides, one glutathione conjugate, and one cysteine conjugate. The study provides insights into the metabolic stability and clearance mechanisms of FCN-437c in human, which are essential for its further clinical development and dosing regimens.
Collapse
Affiliation(s)
- Lei Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Sheng Ma
- First Affiliated Hospital of Soochow University, Jiangsu, 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Shu Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Hua Zhang
- First Affiliated Hospital of Soochow University, Jiangsu, 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Ling Tian
- Liaoning Avanc Pharmaceutical Co., Ltd., Liaoning, 121013, China
| | - Lize Li
- Liaoning Avanc Pharmaceutical Co., Ltd., Liaoning, 121013, China
| | - Lei Diao
- Shanghai Fosun Pharmaceutical (Group) Co., Ltd, Shanghai, 200233, China
| | - Liyan Miao
- First Affiliated Hospital of Soochow University, Jiangsu, 215006, China.
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China.
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Xiaoran Yang
- Liaoning Avanc Pharmaceutical Co., Ltd., Liaoning, 121013, China.
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
| |
Collapse
|
10
|
Pulat S, Lee EY, Choi G, Jung YH, Nam SJ, Kim H. 7,7-Bis(3-Indolyl)- p-Cresol, a Metabolite from Marine-Derived Bacterium Vibrio spp. DJA11, Suppresses the Proliferation and Motility of Prostate Cancer Cells. J Microbiol Biotechnol 2025; 35:e2502035. [PMID: 40374533 PMCID: PMC12099627 DOI: 10.4014/jmb.2502.02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/17/2025]
Abstract
Bacteria such as Vibrio spp. in the marine environment can produce secondary metabolites which have significant potential applications in pharmaceuticals. In a study to discover bioactive secondary metabolites from marine Vibrio spp., the strain DJA11 was encountered. HPLC/UV-guided isolation of the crude extract from this strain has led to the discovery of compound 1. Prostate cancer (PCa) is one of the biggest worldwide health issues because of its high diagnosis. CWR22Rv1 (22Rv1) is mutated in WT p53 and AR, C4-2 is derived from androgen-dependent human LNCaP and PC-3 is an androgen-independent cancer cell type. It was found that compound 1 exhibited no significant cytotoxicity at concentrations below 50 μM to human PCa cells, including 22Rv1, C4-2, and PC-3, like normal cell HEK293T. In addition, we presented that 1 inhibited the invasiveness and proliferation of 22Rv1, PC-3, and C4-2 cells by suppressing the activation of p-AKT, p-mTOR, p-STAT3, HSP90, and HSP70. Moreover, treatment with 1 decreased the mRNA expression level of ErbB4, PDK1, STAT3, HSP70, and HSP90 in some PCa cells. Therefore, compound 1 may have therapeutic potential in PCa due to its role in suppressing cancer proliferation and metastasis.
Collapse
Affiliation(s)
- Sultan Pulat
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Sunchon, Jeonnam 57922, Republic of Korea
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Grace Choi
- Department of Biomaterial Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Yoon-Hee Jung
- Department of Biomaterial Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Sunchon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
11
|
Zhao H, Zhao D, Li S, Liu Y, Zhao R, Zhu X, Xiong P, Mo Y, Gu H, Liu J. PRAP1 regulates colorectal cancer cell proliferation and ferroptosis through the Nrf2 signaling pathway. Cell Signal 2025:111863. [PMID: 40373840 DOI: 10.1016/j.cellsig.2025.111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/22/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common type of cancer that impacts the digestive tract, and current treatment options have limitations. Studies have confirmed that ferroptosis plays a key role in CRC progression. This research sought to clarify how Proline-rich acidic protein 1 (PRAP1) influences CRC advancement and ferroptosis, and to uncover the underlying mechanisms involved. METHODS Real-time quantitative PCR (RT-qPCR) and western blot were employed to ascertain the levels of PRAP1 in CRC cells (SW480, SW620, and LOVO) and tissues. Immunofluorescence was utilized to locate PRAP1. Biological characterization of CRC cells was determined through CCK-8 assay, EdU staining, Transwell assay, TUNEL staining and Scratch-wound assay. Iron and Fe2+ content was measured using prussian blue staining and iron assay kit. A nude mouse model of xenograft was established, and the impact of PRAP1 on tumor growth was investigated by pathological staining. Expression of ferroptosis-related proteins as well as nuclear factor-erythroid factor 2-related factor 2 (Nrf2) pathway proteins was detected by Western blot. RESULTS PRAP1 levels were elevated in CRC. Overexpression PRAP1 promoted cell proliferation, inhibited apoptosis and ferroptosis. Additionally, overexpression PRAP1 can activate the Nrf2 pathway. However, silencing PRAP1 had the opposite effect. In vivo tumor xenograft experiments showed that silencing PRAP1 resulted in decreased Ki67 positivity and increased TUNEL positivity in tumor tissues, and blocked Nrf2 pathway, thereby inhibited tumor growth. CONCLUSION PRAP1 promotes CRC cell proliferation and inhibits ferroptosis by Nrf2 pathway. This study provides a conceptual framework for the development of novel targeted drugs.
Collapse
Affiliation(s)
- Hongchao Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Siting Li
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Yang Liu
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China
| | - Ruiwen Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Xiaorong Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Pingping Xiong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan Province 471003, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Hao Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China.
| |
Collapse
|
12
|
Liu Y, Zhang J, Lai Y, Wu C, Liu D, Liang R, Chen G, Jiang X. Exploring the Potential of Chaihu-Danggui Tang in Breast Cancer Treatment Based on Network Pharmacology, Molecular Docking, and Experimental Validation. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:385-401. [PMID: 40370757 PMCID: PMC12077417 DOI: 10.2147/bctt.s510274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Background Chaihu-Danggui Tang (CHDGT) has a long history in traditional Chinese medicine (TCM) as an adjuvant therapy for breast cancer (BC), but its precise anti-tumor mechanisms remain unknown. In this study, we used network pharmacology, molecular docking, and experimental validation methods to investigate the core components, key targets, and possible mechanisms through which CHDGT may exert therapeutic effects in BC treatment. Methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP) was employed to obtain the active ingredient and targets of CHDGT. Meanwhile, the GeneCards databases were used to retrieve pertinent targets for BC. The Venn plot was used to obtain intersection targets. Cytoscape software was used to construct an "CHDGT-active ingredients-targets" network and identify core targets. The common targets after STRING processing were imported into the Metascape database for GO and KEGG pathway enrichment analysis. Molecular docking of key ingredients and core targets of drugs was accomplished using Autodock and PyMol software. The cell and animal experiments confirmed CHDGT efficacy and mechanism in treating BC. Results We screened 5 key effector components, 8 core targets, and multiple signaling pathways of CHDGT in treating BC. In vitro, the results of CCK-8 assay showed that CHDGT can dose-dependently inhibits BC cell growth, and at 100 mg L-1 after 48 hours, the cell inhibition rate reached approximately 50%. Further analysis showed that CHDGT can promote apoptosis of BC cell, and regulate the expression levels of apoptosis-related genes, such as Caspase3, p53, and Bcl-2. The animal experiments verified that CHDGT can significantly inhibit the progression of BC, the tumor inhibition rate of CHDGT-H groups was as high as 60.06 ± 4.82%. In addition, H&E staining and blood biochemical analysis suggest that CHDGT exhibits favorable safety. Conclusion This study may provide perspectives for the development of anticancer Chinese herbs for the treatment of BC.
Collapse
Affiliation(s)
- Yusheng Liu
- Comprehensive Laboratory, Yangjiang People’s Hospital, Yangjiang, 529500, People’s Republic of China
- Department of Traditional Chinese Medicine, Hainan West Central Hospital, Danzhou, 571700, People’s Republic of China
| | - Junfeng Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, People’s Republic of China
| | - Yigui Lai
- Comprehensive Laboratory, Yangjiang People’s Hospital, Yangjiang, 529500, People’s Republic of China
| | - Chunying Wu
- Comprehensive Laboratory, Yangjiang People’s Hospital, Yangjiang, 529500, People’s Republic of China
| | - Dongsheng Liu
- Department of Traditional Chinese Medicine, Hainan West Central Hospital, Danzhou, 571700, People’s Republic of China
| | - Rongyao Liang
- Comprehensive Laboratory, Yangjiang People’s Hospital, Yangjiang, 529500, People’s Republic of China
| | - Gang Chen
- Comprehensive Laboratory, Yangjiang People’s Hospital, Yangjiang, 529500, People’s Republic of China
| | - Xuefeng Jiang
- Comprehensive Laboratory, Yangjiang People’s Hospital, Yangjiang, 529500, People’s Republic of China
- Department of Traditional Chinese Medicine, Hainan West Central Hospital, Danzhou, 571700, People’s Republic of China
| |
Collapse
|
13
|
Dera AA, Al Fayi M. CEG-0598, a novel dual inhibitor of EGFR and C5aR demonstrates in vitro anticancer and antimetastatic activity in prostate cancer cells. Discov Oncol 2025; 16:710. [PMID: 40343625 PMCID: PMC12064535 DOI: 10.1007/s12672-025-02574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The EGFR is abundantly expressed in prostate cancer (PC). The anaphylatoxin C5a induces leukocyte migration via the C5a receptor (C5aR) by releasing matrix metalloproteinases (MMP) to favor metastasis in the tumor microenvironment. This work aims to selectively inhibit the EGFR and C5aR in PC cells to abort cell growth/ proliferation and metastasis. METHODS For lead identification, high-throughput virtual screening (HTVS) of the ChemBridge library was followed by protein-ligand interaction profilers, GROMACS, and GMX-MMPBSA techniques. LNCaP and PC3 cells were used to validate in vitro efficacy. RESULTS HTVS identified CEG-0598 with favorable binding affinities of - 10.2 kcal/mol and - 13.5 kcal/mol towards EGFR and C5aR respectively. Molecular dynamic simulations demonstrated stable binding interactions for CEG-0598 with Root Mean Square Deviation values around 0.06 nm. The ΔG binding calculation was - 50.29, and - 51.64 for EGFR and C5aR respectively. ADME supported favorable small molecule characteristics and selective inhibition profiles. Kinome-wide off-target virtual screening predicted EGFR to have above-average docking scores. CEG-0598 inhibited EGFR and C5aR activities with IC50 values of 145.8 nM and 55.51 nM respectively. The compound effectively controlled the proliferation of LNCaP and PC3cells with GI50 values of 156.1 nM, and 112.2 nM respectively. CEG-0598 prompted dose-responsive apoptosis in the PC cells and decreased the tarns endothelial migration of both PC cells. Treatment with CEG-0598 reduced the C5a-induced MMP activity in the LNCaP and PC3cells. CONCLUSION CEG-0598 is a selective EGFR/C5a dual inhibitor that downregulates MMP activity to control proliferation, migration and induce apoptosis, in PC cells warranting further preclinical developments.
Collapse
Affiliation(s)
- Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Servadei F, Bonfiglio R, Sisto R, Casciardi S, Giacobbi E, Scioli MP, Palumbo V, Buonomo CO, Melino G, Mauriello A, Scimeca M. Mercury Bioaccumulation in Female Breast Cancer Is Associated to CXCR4 Expression. Int J Mol Sci 2025; 26:4427. [PMID: 40362664 PMCID: PMC12073024 DOI: 10.3390/ijms26094427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
The growing incidence of breast cancer over time suggests that environmental factors might contribute to the underlying causes of the disease. Mercury, a toxic metal classified as a Substance of Very High Concern, accumulates in the body through contaminated food, air, water, and soil, raising concerns about its role in tumor biology. The main aim of this study was to identify the possible associations between in situ mercury bioaccumulation and the molecular features of breast cancer. To achieve this, a total of 26 breast cancer cases were analyzed using an integrated approach that combined DNA and RNA sequencing, histological analysis, and inductively coupled plasma mass spectrometry (ICP-MS) to assess mercury bioaccumulation. Mercury was detected in 72% of the cases. A significant positive correlation was found between mercury bioaccumulation and CXCR4 expression in breast cancer tissues. Bioinformatic analysis further revealed that CXCR4 expression was significantly higher in metastatic tissues compared to primary tumors. These findings suggest that mercury accumulation may influence tumor biology through the CXCR4-CXCL12 signaling pathway, highlighting a potential mechanism by which mercury contributes to breast cancer progression.
Collapse
Affiliation(s)
- Francesca Servadei
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Rita Bonfiglio
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (R.S.); (S.C.)
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (R.S.); (S.C.)
| | - Erica Giacobbi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Maria Paola Scioli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Valeria Palumbo
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Claudio Oreste Buonomo
- Breast Unit, Department of Surgical Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Manuel Scimeca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| |
Collapse
|
15
|
Xu M, Xu B. Protein lipidation in the tumor microenvironment: enzymology, signaling pathways, and therapeutics. Mol Cancer 2025; 24:138. [PMID: 40335986 PMCID: PMC12057185 DOI: 10.1186/s12943-025-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
Protein lipidation is a pivotal post-translational modification that increases protein hydrophobicity and influences their function, localization, and interaction network. Emerging evidence has shown significant roles of lipidation in the tumor microenvironment (TME). However, a comprehensive review of this topic is lacking. In this review, we present an integrated and in-depth literature review of protein lipidation in the context of the TME. Specifically, we focus on three major lipidation modifications: S-prenylation, S-palmitoylation, and N-myristoylation. We emphasize how these modifications affect oncogenic signaling pathways and the complex interplay between tumor cells and the surrounding stromal and immune cells. Furthermore, we explore the therapeutic potential of targeting lipidation mechanisms in cancer treatment and discuss prospects for developing novel anticancer strategies that disrupt lipidation-dependent signaling pathways. By bridging protein lipidation with the dynamics of the TME, our review provides novel insights into the complex relationship between them that drives tumor initiation and progression.
Collapse
Affiliation(s)
- Mengke Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
16
|
Wang M, Shi Z, Wang F, Wang C, Wang H. Integrating structure-activity relationships, computational approaches, and experimental validation to unlock the therapeutic potential of indole-3-carbinol and its derivatives. Biochem Pharmacol 2025; 238:116968. [PMID: 40318812 DOI: 10.1016/j.bcp.2025.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Indole-3-carbinol (I3C) a bioactive compound derived from cruciferous vegetables, has garnered significant attention for its role in cancer prevention and its broad-spectrum biological activities, including anti-inflammatory properties and the modulation of critical signaling pathways. This review explores the structure-activity relationship (SAR) of I3C and its derivatives, emphasizing their molecular mechanisms and therapeutic potential. Key cellular targets, such as estrogen receptors, and pathways, including NF-κB, Wnt/β-catenin, and PI3K/Akt, are highlighted for their roles in apoptosis, autophagy, and the disruption of mitogenic signaling. The SAR analysis reveals the influence of molecular modifications, particularly in dimeric forms like diindolylmethane (DIM) on pharmacokinetics and bioactivity. Computational approaches, including molecular docking, molecular dynamics simulations, and density functional theory (DFT) provide insights into ligand-receptor interactions, binding energetics, and electronic properties, facilitating biological activity predictions. Experimental evidence from in vitro assays and synergistic studies underscores the cytotoxic efficacy and combinatorial benefits of I3C with conventional chemotherapeutics. Challenges in clinical translation, such as bioavailability and targeted delivery, are addressed, highlighting the potential of integrating computational and experimental findings to develop novel I3C-based therapeutics. This comprehensive analysis positions I3C as a promising scaffold for designing effective agents against cancer and other diseases.
Collapse
Affiliation(s)
- Mingjie Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, PR China.
| | - Zihan Shi
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, PR China.
| | - Fangfang Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, PR China
| | - Cunqin Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, PR China.
| | - Hongting Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, PR China.
| |
Collapse
|
17
|
Li Y, Yi Z, Li X, Wang R, Zhao M, Mi L, Zhang W, Guo R, Yan S, Song J. Research Progress of GPR137 in Malignant Tumors: A Review. Onco Targets Ther 2025; 18:545-558. [PMID: 40255680 PMCID: PMC12009054 DOI: 10.2147/ott.s511943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Receptors coupled with G proteins (GPCRs) are expressed in large numbers in multiple systems, such as endocrine, cardiovascular, digestive, immune, and reproductive systems. As an important signal transduction mediator, in recent years, the research on GPCRs has become more and more in-depth. Many articles have verified that in the gastrointestinal, reproductive, and urinary systems, GPCRs are contributed to the development and occurrence of cancerous tumors and have been associated with the infiltration of malignant tumors and metastasis. Currently, in clinical practice, GPCRs become the target of action for about 30% of drugs. However, it should be noted that there are still over 100 GPCRs collectively referred to as orphan GPCRs (OGPCRs) due to the lack of corresponding ligands. Despite the lack of known ligands, research in animals and experiments has proved that numerous OGPCRs regulate crucial physiological functions and are intriguing and undeveloped targets for therapeutics. GPR137 is a member of OGPCRS, which promotes carcinogenesis and progression of cancers, and its expression is elevated in various malignant tumor tissues. Additionally, GPR137 has been shown to play a role in promoting tumorigenesis and metastasis in colorectal, gastric, hepatocellular, ovarian and prostate cancers. Knockdown of the GPR137 leads to cell cycle arrest within cancer cells, effectively inhibiting their proliferation and colony-forming ability while promoting apoptosis. This highlights its potential therapeutic significance as a target for numerous cancers.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - ZhongQuan Yi
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rui Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Mengjie Zhao
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Lida Mi
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Weisong Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rongqi Guo
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Song Yan
- Department of Thoracic Surgery, Sheyang County People’s Hospital, Yancheng, Jiangsu, People’s Republic of China
| | - JianXiang Song
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| |
Collapse
|
18
|
Deng H, Wu D, He Y, Yu X, Liu J, Zhang Y, Leng B, Yuan X, Xiao L. E2F1-driven EXOSC10 transcription promotes hepatocellular carcinoma growth and stemness: a potential therapeutic target. Hereditas 2025; 162:60. [PMID: 40221814 PMCID: PMC11992873 DOI: 10.1186/s41065-025-00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND E2F Transcription Factor 1 (E2F1) is a transcription factor that plays a crucial role in the growth of many cancers, including hepatocellular carcinoma (HCC). Herein, this study probed the functions and underlying mechanisms of E2F1 in HCC tumorigenesis. METHODS The expression profiles of E2F1 and Exosome Component 10 (EXOSC10) were detected using qRT-PCR and western blotting. Functional experiments were carried out using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, tube formation, and sphere formation assays in vitro, as well as xenograft experiments in vivo, respectively. Stemness-related proteins were assayed using western blotting. The interaction between E2F1 and EXOSC10 was verified using bioinformatics analysis and dual-luciferase reporter assay. RESULTS E2F1 was highly expressed in HCC tissues and cells, and was associated with advanced TNM stage, distant metastasis, and short survival rate. Functionally, knockdown of E2F1 suppressed HCC cell proliferation, angiogenesis, and stemness, and induced cell apoptosis. Mechanistically, E2F1 directly bound to the promoter region of EXOSC10 to up-regulate its expression. EXOSC10 silencing impaired HCC cell proliferation, angiogenesis, and stemness. Moreover, the anticancer effects of E2F1 knockdown were reversed by EXOSC10 elevation. In vivo assay, E2F1 deficiency suppressed HCC tumor growth and eliminated cancer stemness, while these effects were abolished by EXOSC10 up-regulation. CONCLUSION E2F1 promotes EXOSC10 transcription and then facilitates HCC growth and cancer stemness, revealing a potential target for HCC therapy.
Collapse
Affiliation(s)
- Haoyue Deng
- Department of Pathology, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Dingyong Wu
- Department of Oncology, Songshan General Hospital, Chongqing, 401120, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Inaffiliationidualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Xiaolei Yu
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Jifei Liu
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Yanrui Zhang
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Bing Leng
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Xiaofeng Yuan
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China.
| | - Liguo Xiao
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China.
| |
Collapse
|
19
|
Lee SH, Lee D, Choi J, Oh HJ, Ham IH, Ryu D, Lee SY, Han DJ, Kim S, Moon Y, Song IH, Song KY, Lee H, Lee S, Hur H, Kim TM. Spatial dissection of tumour microenvironments in gastric cancers reveals the immunosuppressive crosstalk between CCL2+ fibroblasts and STAT3-activated macrophages. Gut 2025; 74:714-727. [PMID: 39580151 PMCID: PMC12013559 DOI: 10.1136/gutjnl-2024-332901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND A spatially resolved, niche-level analysis of tumour microenvironments (TME) can provide insights into cellular interactions and their functional impacts in gastric cancers (GC). OBJECTIVE Our goal was to translate the spatial organisation of GC ecosystems into a functional landscape of cellular interactions involving malignant, stromal and immune cells. DESIGN We performed spatial transcriptomics on nine primary GC samples using the Visium platform to delineate the transcriptional landscape and dynamics of malignant, stromal and immune cells within the GC tissue architecture, highlighting cellular crosstalks and their functional consequences in the TME. RESULTS GC spatial transcriptomes with substantial cellular heterogeneity were delineated into six regional compartments. Specifically, the fibroblast-enriched TME upregulates epithelial-to-mesenchymal transformation and immunosuppressive response in malignant and TME cells, respectively. Cell type-specific transcriptional dynamics revealed that malignant and endothelial cells promote the cellular proliferations of TME cells, whereas the fibroblasts and immune cells are associated with procancer and anticancer immunity, respectively. Ligand-receptor analysis revealed that CCL2-expressing fibroblasts promote the tumour progression via JAK-STAT3 signalling and inflammatory response in tumour-infiltrated macrophages. CCL2+ fibroblasts and STAT3-activated macrophages are co-localised and their co-abundance was associated with unfavourable prognosis. We experimentally validated that CCL2+ fibroblasts recruit myeloid cells and stimulate STAT3 activation in recruited macrophages. The development of immunosuppressive TME by CCL2+ fibroblasts were also validated in syngeneic mouse models. CONCLUSION GC spatial transcriptomes revealed functional cellular crosstalk involving multiple cell types among which the interaction between CCL2+ fibroblasts and STAT3-activated macrophages plays roles in establishing immune-suppressive GC TME with potential clinical relevance.
Collapse
Affiliation(s)
- Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary's Hostpital, Collage of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Dagyeong Lee
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Junyong Choi
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
- Cancer Biology Graduate Program, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Daeun Ryu
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Seo-Yeong Lee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Dong-Jin Han
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Sunmin Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Youngbeen Moon
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - In-Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, The Republic of Korea
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Hyeseong Lee
- Department of Hospital Pathology, Seoul St. Mary's Hostpital, Collage of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Seungho Lee
- Department of Surgery, Yonsei University, Seoul, The Republic of Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
- Cancer Biology Graduate Program, Ajou University School of Medicine, Suwon, The Republic of Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- CMC Institute for Basic Medical Science, the Catholic Medical Center of The Catholic University of Korea, Seoul, The Republic of Korea
| |
Collapse
|
20
|
Huang L, Shen Q, Yu K, Yang J, Li X. RBPMS-AS1 sponges miR-19a-3p to restrain cervical cancer cells via enhancing PLCL1-mediated pyroptosis. Biotechnol Appl Biochem 2025; 72:340-354. [PMID: 39300709 DOI: 10.1002/bab.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Cervical cancer (CC) poses a threat to human health. Enhancing pyroptosis can prevent the proliferation and epithelial-mesenchymal transition (EMT) of tumor cells. This study aims to reveal the candidates that modulate pyroptosis in CC. Accordingly, the common microRNAs (miRNAs/miRs) that were sponged by RBPMS antisense RNA 1 (RBPMS-AS1) and could target Phospholipase C-Like 1 (PLCL1) were intersected. The expression of PBPMS-AS1/miR-19a-3p (candidate miRNA)/PLCL1 was predicted in cervical squamous cell carcinoma (CESC), by which the expression location of RBPMS-AS1 and the binding between RBPMS-AS1/PLCL1 and miR-19a-3p were analyzed. The targeting relationship between RBPMS-AS1/PLCL1 and miR-19a-3p was confirmed by dual-luciferase reporter assay. After the transfection, cell counting kit-8 assay, colony formation assay, quantitative reverse transcription PCR, and Western blot were implemented for cell viability and proliferation analysis as well as gene and protein expression quantification analysis. Based on the results, RBPMS-AS1 and PLCL1 were lowly expressed, yet miR-19a-3p was highly expressed in CESC. RBPMS-AS1 overexpression diminished the proliferation and expressions of N-cadherin, vimentin, and miR-19a-3p, yet enhanced those of E-cadherin, PLCL1, and pyroptosis-relevant proteins (inteleukin-1β, caspase-1, and gasdermin D N-terminal). However, the above RBPMS-AS1 overexpression-induced effects were counteracted in the presence of miR-19a-3p. There also existed a targeting relationship and negative interplay between PLCL1 and miR-19a-3p. In short, RBPMS-AS1 sponges miR-19a-3p and represses the growth and EMT of CC cells via enhancing PLCL1-mediated pyroptosis.
Collapse
Affiliation(s)
- Lina Huang
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qinqin Shen
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kun Yu
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jie Yang
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiuxiu Li
- Department of Science and Education, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Avila E, Hernández-Monterde LD, Cedro-Tanda A, Lizardi-Aguilera TM, Barrera D, Villegas-Rodriguez FV, García-Quiroz J, Díaz L, Larrea F. Transcriptomic profile induced by calcitriol in CaSki human cervical cancer cell line. PLoS One 2025; 20:e0319812. [PMID: 40168262 PMCID: PMC11960991 DOI: 10.1371/journal.pone.0319812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/09/2025] [Indexed: 04/03/2025] Open
Abstract
The vitamin D endocrine system, primarily mediated by its main metabolite calcitriol and the vitamin D receptor (VDR), plays a critical role in numerous human physiological processes, ranging from calcium metabolism to the prevention of various tumors, including cervical cancer. In this study, we comprehensively investigated the genomic regulatory effects of calcitriol in a cervical cancer model. We examined the transcriptional changes induced by calcitriol in CaSki cells, a cervical cell line harboring multiple copies of HPV16, the primary causal agent of cervical cancer. Our microarray findings, revealed that calcitriol regulated over 1000 protein-coding genes, exhibiting a predominantly repressive effect on the CaSki cell transcriptome by suppressing twice as many genes as it induced. Calcitriol decreased EPHA2 and RARA expression while inducing KLK6 and CYP4F3 expression in CaSki cells, as validated by qPCR and Western blot. Functional analysis demonstrated that calcitriol effectively inhibited key processes involved in cancer progression, including cell proliferation and migration. This was further supported by the significant downregulation of MMP7 and MMP13 mRNA levels. Our microarray results also showed that, in addition to its effects on protein-coding genes, calcitriol significantly regulates non-coding RNAs, altering the expression of approximately 400 non-coding RNAs, including 111 microRNA precursors and 29 mature microRNAs, of which 17 were upregulated and 12 downregulated. Notably, among these calcitriol-regulated microRNAs are some involved in cervical cancer biology, such as miR-6129, miR-382, miR-655, miR-211, miR-590, miR-130a, miR-301a, and miR-1252. Collectively, these findings suggest that calcitriol exhibits a significant antitumor effect in this advanced cervical cancer model by blocking critical processes for tumor progression, underscoring the importance of maintaining adequate vitamin D nutritional status.
Collapse
Affiliation(s)
- Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis David Hernández-Monterde
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Tomas Misael Lizardi-Aguilera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David Barrera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Francisco Vladimir Villegas-Rodriguez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
22
|
Kozak Y, Finiuk N, Czarnomysy R, Gornowicz A, Pinyazhko R, Lozynskyi A, Holota S, Klyuchivska O, Karkhut A, Polovkovych S, Klishch M, Stoika R, Lesyk R, Bielawski K, Bielawska A. Juglone-Bearing Thiopyrano[2,3-d]thiazoles Induce Apoptosis in Colorectal Adenocarcinoma Cells. Cells 2025; 14:465. [PMID: 40136714 PMCID: PMC11941218 DOI: 10.3390/cells14060465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Colorectal cancer is a major global health challenge, with current treatments limited by toxicity and resistance. Thiazole derivatives, known for their bioactivity, are emerging as promising alternatives. Juglone (5-hydroxy-1,4-naphthoquinone) is a naturally occurring compound with known anticancer properties, and its incorporation into thiopyrano[2,3-d]thiazole scaffolds may enhance their therapeutic potential. This study examined the cytotoxicity of thiopyrano[2,3-d]thiazoles and their effects on apoptosis in colorectal cancer cells. Les-6547 and Les-6557 increased the population of ROS-positive HT-29 cancer cells approximately 10-fold compared with control cells (36.3% and 38.5% vs. 3.8%, respectively), potentially contributing to various downstream effects. Elevated ROS levels were associated with cell cycle arrest, inhibition of DNA biosynthesis, and reduced cell proliferation. A significant shift in the cell cycle distribution was observed, with an increase in S-phase (from 17.3% in the control to 34.7% to 51.3% for Les-6547 and Les-6557, respectively) and G2/M phase (from 24.3% to 39.9% and 28.8%). Additionally, Les-6547 and Les-6557 inhibited DNA biosynthesis in HT-29 cells, with IC50 values of 2.21 µM and 2.91 µM, respectively. Additionally, ROS generation may initiate the intrinsic apoptotic pathway. Les-6547 and Les-6557 activated both intrinsic and extrinsic apoptotic pathways, demonstrated by notable increases in the activity of caspase 3/7, 8, 9, and 10. This study provides a robust basis for investigating the detailed molecular mechanisms of action and therapeutic potential of Les-6547 and Les-6557.
Collapse
Affiliation(s)
- Yuliia Kozak
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine; (N.F.); (O.K.); (M.K.); (R.S.)
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine; (N.F.); (O.K.); (M.K.); (R.S.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland; (R.C.); (K.B.)
| | - Agnieszka Gornowicz
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland;
| | - Roman Pinyazhko
- Department of Normal Physiology, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine;
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (A.L.); (S.H.); (R.L.)
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (A.L.); (S.H.); (R.L.)
| | - Olga Klyuchivska
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine; (N.F.); (O.K.); (M.K.); (R.S.)
| | - Andriy Karkhut
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytecnic National University, Bandera 12, 79013 Lviv, Ukraine; (A.K.); (S.P.)
| | - Svyatoslav Polovkovych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytecnic National University, Bandera 12, 79013 Lviv, Ukraine; (A.K.); (S.P.)
| | - Mykola Klishch
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine; (N.F.); (O.K.); (M.K.); (R.S.)
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine; (N.F.); (O.K.); (M.K.); (R.S.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (A.L.); (S.H.); (R.L.)
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland; (R.C.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland;
| |
Collapse
|
23
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
24
|
Garibaldi-Ríos AF, Figuera LE, Zúñiga-González GM, Gómez-Meda BC, Puebla-Pérez AM, Rivera-Cameras A, Magaña-Torres MT, García-Ortíz JE, Dávalos-Rodríguez IP, Rosales-Reynoso MA, García-Verdín PM, Carrillo-Dávila IA, Torres-Mendoza BM, Ávalos-Navarro G, Gallegos-Arreola MP. Genomic Landscape of Breast Cancer: Study Across Diverse Ethnic Groups. Diseases 2025; 13:86. [PMID: 40136626 PMCID: PMC11941751 DOI: 10.3390/diseases13030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Breast cancer (BC) is the most common cancer among women worldwide, with incidence and mortality rates varying across ethnic groups due to sociodemographic, clinicopathological, and genomic differences. This study aimed to characterize the genomic landscape of BC in diverse ethnic groups using computational tools to explore these variations. Methodology: cBioPortal was used to analyze genomic, clinicopathological, and sociodemographic data from 1084 BC samples. Mutated genes were classified based on GeneCards platform data. Enrichment analysis was performed with CancerHallmarks, and genes not found were compared with MSigDB's Hallmark Gene Sets. Genes absent from both were further analyzed using NDEx through Cytoscape.org to explore their role in cancer. Results: Significant differences (p < 0.05) were observed in sex, tumor subtypes, genetic ancestry, median of the fraction of the altered genome, mutation count, and mutation frequencies of genes across ethnic groups. We identified the most frequently mutated genes. Some of these genes were found to be associated with classic cancer hallmarks, such as replicative immortality, sustained proliferative signaling, and the evasion of growth suppressors. However, the exact role of some of these genes in cancer remains unclear, highlighting the need for further research to better understand their involvement in tumor biology. Conclusions: This study identified significant clinicopathological and genomic variations in BC across ethnic groups. While key genes associated with cancer hallmarks were found, the incomplete characterization of some highlights the need for further research, especially focusing on ethnic groups, to understand their role in tumor biology and improve personalized treatments.
Collapse
Affiliation(s)
- Asbiel Felipe Garibaldi-Ríos
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (M.T.M.-T.); (J.E.G.-O.); (I.P.D.-R.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (M.T.M.-T.); (J.E.G.-O.); (I.P.D.-R.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Guillermo Moisés Zúñiga-González
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico; (G.M.Z.-G.); (M.A.R.-R.)
| | - Belinda Claudia Gómez-Meda
- Departamento de Biología Molecular y Genómica, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Ana María Puebla-Pérez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico;
| | - Alicia Rivera-Cameras
- Departamento Ciclo de Vida, Genética y Medicina Genómica, Unidad Académica de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Guadalajara 45129, Jalisco, Mexico;
| | - María Teresa Magaña-Torres
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (M.T.M.-T.); (J.E.G.-O.); (I.P.D.-R.); (P.M.G.-V.); (I.A.C.-D.)
| | - José Elías García-Ortíz
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (M.T.M.-T.); (J.E.G.-O.); (I.P.D.-R.); (P.M.G.-V.); (I.A.C.-D.)
| | - Ingrid Patricia Dávalos-Rodríguez
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (M.T.M.-T.); (J.E.G.-O.); (I.P.D.-R.); (P.M.G.-V.); (I.A.C.-D.)
| | - Mónica Alejandra Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico; (G.M.Z.-G.); (M.A.R.-R.)
| | - Patricia Montserrat García-Verdín
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (M.T.M.-T.); (J.E.G.-O.); (I.P.D.-R.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Irving Alejandro Carrillo-Dávila
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (M.T.M.-T.); (J.E.G.-O.); (I.P.D.-R.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias Humanas y Retrovirus, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico;
- Departamento de Disciplinas Filosófico Metodológicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Guadalupe Ávalos-Navarro
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico;
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (M.T.M.-T.); (J.E.G.-O.); (I.P.D.-R.); (P.M.G.-V.); (I.A.C.-D.)
| |
Collapse
|
25
|
Rust K, Schubert A, Peralta JM, Nystul TG. Independent signaling pathways provide a fail-safe mechanism to prevent tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640798. [PMID: 40093137 PMCID: PMC11908167 DOI: 10.1101/2025.02.28.640798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Controlled signaling activity is vital for normal tissue homeostasis and oncogenic signaling activation facilitates tumorigenesis. Here we use single-cell transcriptomics to investigate the effects of pro-proliferative signaling on epithelial homeostasis using the Drosophila follicle cell lineage. Notably, EGFR-Ras overactivation induces cell cycle defects by activating the transcription factors Pointed and E2f1 and impedes differentiation. Hh signaling simultaneously promotes an undifferentiated state and induces differentiation via activation of EMT-associated transcription factors zfh1 and Mef2. As a result, overactivation of Hh signaling generates a transcriptional hybrid state comparable to epithelial-mesenchymal-transition. Co-overactivation of Hh signaling with EGFR-Ras signaling blocks differentiation and induces key characteristics of tumor cells including a loss of tissue architecture caused by reduced expression of cell adhesion molecules, sustained proliferation and an evasion of cell cycle checkpoints. These findings provide new insight into how non-interacting signaling pathways converge at the transcriptional level to prevent malignant cell behavior.
Collapse
Affiliation(s)
- Katja Rust
- Institute of Physiology and Pathophysiology, Dept. of Molecular Cell Physiology, Philipps University Marburg, Germany
| | - Andrea Schubert
- Institute of Physiology and Pathophysiology, Dept. of Molecular Cell Physiology, Philipps University Marburg, Germany
| | - Jobelle M Peralta
- UCSF, Department of Anatomy, 513 Parnassus Ave, San Francisco, CA 94143, USA
- UCSF, Department of OB-GYN/RS, 513 Parnassus Ave, San Francisco, CA 94143, USA
- Broad Center of Regeneration Medicine and Stem Cell Research, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Todd G Nystul
- UCSF, Department of Anatomy, 513 Parnassus Ave, San Francisco, CA 94143, USA
- UCSF, Department of OB-GYN/RS, 513 Parnassus Ave, San Francisco, CA 94143, USA
- Broad Center of Regeneration Medicine and Stem Cell Research, 513 Parnassus Ave, San Francisco, CA 94143, USA
| |
Collapse
|
26
|
Molefi T, Mabonga L, Hull R, Mwazha A, Sebitloane M, Dlamini Z. The Histomorphology to Molecular Transition: Exploring the Genomic Landscape of Poorly Differentiated Epithelial Endometrial Cancers. Cells 2025; 14:382. [PMID: 40072110 PMCID: PMC11898822 DOI: 10.3390/cells14050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
The peremptory need to circumvent challenges associated with poorly differentiated epithelial endometrial cancers (PDEECs), also known as Type II endometrial cancers (ECs), has prompted therapeutic interrogation of the prototypically intractable and most prevalent gynecological malignancy. PDEECs account for most endometrial cancer-related mortalities due to their aggressive nature, late-stage detection, and poor response to standard therapies. PDEECs are characterized by heterogeneous histopathological features and distinct molecular profiles, and they pose significant clinical challenges due to their propensity for rapid progression. Regardless of the complexities around PDEECs, they are still being administered inefficiently in the same manner as clinically indolent and readily curable type-I ECs. Currently, there are no targeted therapies for the treatment of PDEECs. The realization of the need for new treatment options has transformed our understanding of PDEECs by enabling more precise classification based on genomic profiling. The transition from a histopathological to a molecular classification has provided critical insights into the underlying genetic and epigenetic alterations in these malignancies. This review explores the genomic landscape of PDEECs, with a focus on identifying key molecular subtypes and associated genetic mutations that are prevalent in aggressive variants. Here, we discuss how molecular classification correlates with clinical outcomes and can refine diagnostic accuracy, predict patient prognosis, and inform therapeutic strategies. Deciphering the molecular underpinnings of PDEECs has led to advances in precision oncology and protracted therapeutic remissions for patients with these untamable malignancies.
Collapse
Affiliation(s)
- Thulo Molefi
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
- Department of Medical Oncology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lloyd Mabonga
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
| | - Absalom Mwazha
- Department of Anatomical Pathology, National Health Laboratory Services, Durban 4058, South Africa
| | - Motshedisi Sebitloane
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
| |
Collapse
|
27
|
Wang L, He H, Zhai R, Gao R, Su M, Duan R, Tu Z, Huang R. Investigation of the mechanism by which FOXJ2 inhibits proliferation, metastasis and cell cycle progression of ovarian cancer cells through the PI3K/AKT signaling pathway. Eur J Med Res 2025; 30:152. [PMID: 40038842 PMCID: PMC11881463 DOI: 10.1186/s40001-025-02270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/01/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND As one member of the Forkhead Box transcription factor, Forkhead Box J2 (FOXJ2) is involved in diverse cancers. At present, the specific role and mechanism of FOXJ2 in ovarian cancer (OC) have not been fully addressed, which allows us to fill the blank. MATERIALS AND METHODS Accordingly, the expression of FOXJ2 in OC cells and ovarian epithelial cells was quantified via real-time qPCR. Following the transfection, cell counting kit-8, Transwell, wound healing and flow cytometry assays were performed to measure the proliferation, metastasis, apoptosis and cell cycle of OC cells A2780 and HEY. Further, real-time qPCR and Western blotting were both employed for the quantification assays on the expression levels of FOXJ2 as well as phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) (in both unphosphorylated and phosphorylated forms). RESULTS Based on the results, FOXJ2 were highly-expressed in OC cells (P < 0.05). Silencing of FOXJ2 resulted in attenuated OC cell proliferation, reduced numbers of migrating and invading OC cells, decreased apoptotic capacity, and cell cycle arrest in G1/S phase (P < 0.05). In addition, the knockdown of FOXJ2 caused the downward trend on the phosphorylation level of both PI3K and AKT in OC cells (P < 0.05). CONCLUSION The silencing of FOXJ2 could repress the growth and metastasis potentials and cause the cell cycle G1/S arrest of OC cells in vitro, which was possibly achieved via targeting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Liyuan Wang
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Han He
- Department of Urology and Reproductive Oncology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Ruifang Zhai
- Gynecology Department, The First Hospital of Shanxi Medical University, Taiyuan, 03001, China
| | - Ruifan Gao
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Min Su
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiyun Duan
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zengrong Tu
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Rong Huang
- Department of Urology and Reproductive Oncology, The First People's Hospital of Foshan, Foshan, 528000, China.
| |
Collapse
|
28
|
Oulad Ali H, Belboukhari N, Sekkoum K, Belboukhari M, Seddiki LS. Computational Molecular Docking Analysis of Linalool Enantiomers Interaction With Mitogen-Activated Protein Kinase 1 (MAPK1): Insights Into Potential Binding Mechanisms and Affinity. Chirality 2025; 37:e70030. [PMID: 40047200 DOI: 10.1002/chir.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 05/13/2025]
Abstract
Molecular docking analysis of linalool interaction with mitogen-activated protein kinase 1 (MAPK1) provides valuable insights into the potential binding mechanisms and affinity of this interaction. Linalool, a naturally occurring terpene alcohol, has been the subject of increasing interest due to its diverse pharmacological properties, including anti-inflammatory, antioxidant, and anticancer activities. MAPK1 is a crucial signaling protein involved in various cellular processes, including cell proliferation, differentiation, and survival. Using MOE software, we conducted a stereoisomer analysis of (R)- and (S)-linalool in our study. After docking, the ligand was ranked according to their binding energy and the best lead compound was selected based on the highest binding energy. The results showed that the S-linalool isomer showed superior anticancer activity, while the R-linalool molecule showed less activity. This interaction could provide insights into linalool's potential therapeutic applications, highlighting its diverse pharmacological properties.
Collapse
Affiliation(s)
- Halima Oulad Ali
- Bioactive Molecules and Chiral Separation Laboratory, Faculty of Exact Sciences, Tahri Mohammed University, Bechar, Algeria
| | - Nasser Belboukhari
- Bioactive Molecules and Chiral Separation Laboratory, Faculty of Exact Sciences, Tahri Mohammed University, Bechar, Algeria
| | - Khaled Sekkoum
- Bioactive Molecules and Chiral Separation Laboratory, Faculty of Exact Sciences, Tahri Mohammed University, Bechar, Algeria
| | - Mebarka Belboukhari
- Bioactive Molecules and Chiral Separation Laboratory, Faculty of Exact Sciences, Tahri Mohammed University, Bechar, Algeria
| | - Lamia Salima Seddiki
- Bioactive Molecules and Chiral Separation Laboratory, Faculty of Exact Sciences, Tahri Mohammed University, Bechar, Algeria
| |
Collapse
|
29
|
Lim S, Chung HJ, Oh YJ, Hinterdorfer P, Myung SC, Seo Y, Ko K. Modification of Fc-fusion protein structures to enhance efficacy of cancer vaccine in plant expression system. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:960-982. [PMID: 39724301 PMCID: PMC11869200 DOI: 10.1111/pbi.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins. Immunoblotting, SDS-PAGE and ELISA analyses demonstrated that proteins with KDEL had higher expression levels and binding activity to anti-EpCAM IgGs. IgM showed the strongest binding among the fusion proteins, followed by IgA and IgG. Sera from BALB/c mice immunized with these vaccines produced anti-EpCAM IgGs. Flow cytometry indicated that the EpCAM-Fc fusion proteins significantly activated CD8+ cytotoxic T cells, CD4+ helper T cells and B cells, particularly with EpCAM-FcKP and EpCAM-FcP (FcKP) × JP (JKP). The induced anti-EpCAM IgGs captured human prostate cancer PC-3 and colorectal cancer SW620 cells. Sera from immunized mice inhibited cancer cell proliferation, migration and invasion; down-regulated proliferation markers (PCNA, Ki-67) and epithelial-mesenchymal transition markers (Vimentin); and up-regulated E-cadherin. These findings suggest that N. tabacum can produce effective vaccine candidates to induce anti-cancer immune responses.
Collapse
Affiliation(s)
- Sohee Lim
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Hyun Joo Chung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Yoo Jin Oh
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Peter Hinterdorfer
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Soon Chul Myung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Young‐Jin Seo
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kisung Ko
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
30
|
Shen C, Han X, Liu Q, Lu T, Wang W, Wang X, Ou Z, Zhang S, Cheng X. The emerging role of transmembrane proteins in tumorigenesis and therapy. Transl Cancer Res 2025; 14:1447-1466. [PMID: 40104699 PMCID: PMC11912080 DOI: 10.21037/tcr-24-1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/17/2024] [Indexed: 03/20/2025]
Abstract
Transmembrane proteins (TMEMs) are a kind of proteins that can cross the phospholipid bilayer one or multiple times and remain permanently anchored. They are involved in the regulation of many biological functions, and their dysregulation is associated with many human diseases and even cancer. Abnormal expression alterations of TMEMs widely exist in tumor tissues compared with paracancerous tissues. They are associated with the clinicopathological features of cancer patients by promoting or inhibiting the development of cancer, thus affecting survival. This review summarized the structure and physiological functions of TMEMs, as well as their roles in tumorigenesis, such as cell proliferation, apoptosis, autophagy, adhesion, metastasis, metabolism and drug resistance. In addition, we elaborated on the potentiality of TMEMs for tumor immunity. Moreover, the advances of TMEMs were subsequently retrospected in several common types of human cancers, including breast cancer, gastric cancer, and lung cancer. Subsequently, we outlined the targeted therapeutic strategies against TMEMs proposed based on existing studies. To date, there are still many TMEMs whose functions and mechanisms have not been well known due to their special structures. Since the important roles TMEMs plays in the development of human cancers, it is urgent to portray their structure and function in carcinogenesis, providing potential biomarkers for cancer patients in the future.
Collapse
Affiliation(s)
- Chenlu Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiao Han
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qi Liu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Tao Lu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Weiwei Wang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xinyi Wang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhimin Ou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
31
|
SINGH RAHULKUMAR, MANDAL SUROJIT, MOHANTA ADRIJA, YADAV RITU, KUMAR RAJIVRANJAN, KHATKAR RINKU, UTTAM VIVEK, SHARMA UTTAM, RANA MANJITKAUR, JAIN MANJU, TULI HARDEEPSINGH, JAIN AKLANK. The regulatory role of ZFAS1/miRNAs/mRNAs axis in cancer: a systematic review. Oncol Res 2025; 33:591-604. [PMID: 40109869 PMCID: PMC11915068 DOI: 10.32604/or.2024.050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 03/22/2025] Open
Abstract
Objectives Recently, we and others have demonstrated the involvement of Zinc Finger Antisense 1 (ZFAS1) in cancer development. However, the intricate interplay of ZFAS1 with miRNAs and mRNAs remains to be fully understood. Materials and methods We followed PRISMA guidelines to retrieve and assess the available literature on the topic "ZFAS1/miRNA/mRNA axis" and "Cancer" from databases such as PubMed, Google Scholar, and ScienceDirect. We also used bioinformatic webtools for analyzing the potential miRNA targets of ZFAS1 and its role in survival of cancer patients along with their role in various biological functions and pathways. Results Our literature search and bioinformatic analysis reveals that ZFAS1 serves as a sponge for numerous miRNAs. Among the various targeted miRNAs, miR-150-5p stands out as significantly correlated with ZFAS1 across multiple databases (p-value = 3.27e-16, R-value = -0.346). Additionally, our Kaplan-Meier survival analysis indicates a noteworthy association between ZFAS1 expression levels and overall poor prognosis and survival rates in ovarian, sarcoma, and pancreatic cancers. We also underscore the involvement of various signaling pathways, including Signal Transducer and Activator of Transcription 3 (STAT3), Spindle and Kinetochore-associated Protein 1 (SKA1), Lysophosphatidic acid receptor 1 (LPAR1), and Wnt β-catenin, in cancer development through the ZFAS1/miRNAs/mRNAs axis. Furthermore, we identify ZFAS1's pivotal roles in diverse molecular processes, such as RNA binding and ribonucleoprotein formation. Conclusion In conclusion, this review comprehensively summarizes the latest advancements in understanding the regulatory relationships among ZFAS1, miRNAs, and mRNAs, emphasizing their collective role in cancer development to propose innovative avenues for cancer treatment. We believe that the intricate relationship among the ZFAS1-miRNA-mRNA axis may yield potential therapeutic targets for effective cancer management.
Collapse
Affiliation(s)
- RAHUL KUMAR SINGH
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - SUROJIT MANDAL
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - ADRIJA MOHANTA
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - RITU YADAV
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - RAJIV RANJAN KUMAR
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - RINKU KHATKAR
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - VIVEK UTTAM
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - UTTAM SHARMA
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - MANJIT KAUR RANA
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences, Bathinda, 151001, India
| | - MANJU JAIN
- Department of Biochemistry, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - HARDEEP SINGH TULI
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - AKLANK JAIN
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| |
Collapse
|
32
|
Li K, Wu Y, Hu Y, Yue Y, Ma X, Wang S, Gan X, Xu X. Bipolar Electrode-Based Precise Manipulation and Selective Electroporation of Cells. Anal Chem 2025; 97:3908-3919. [PMID: 39950441 DOI: 10.1021/acs.analchem.4c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The intracellular delivery toward a specific type of single cell shows great potential in single-cell-specific therapeutic and diagnostic applications. Most of the current methods require high-precision micromanipulators or require multiple steps for motor fabrication, which hinders their practical application. Herein, we for the first time report a method for precise manipulation and selective electroporation of cells using a bipolar electrode. We achieved the precise control of the position of target cells via dielectrophoresis (DEP) at the edge of a bipolar electrode and selective electroporation of specific cells by the local intensified electric field obtained by the gap between the driving electrodes under a direct current (DC) pulse train. Active cell targeting and electroporation of cells are demonstrated using a rotating electric field to drive the cells and a train of pulses to transfect the cells. By harnessing pDEP and twDEP, our device offers the ability to precisely control the movement and placement of specific cells under a rotating electric field and enables the targeted cells to be driven toward regions where the electric field strength is optimized for efficient electroporation. Our method was demonstrated to be applicable across a wide range of cell types, by selective electroporation of different cells including yeast cells, K562 cells, THP-1 cells, 293T cells, and SNU-1 cells. In addition to the injection of fluorescence dye molecules, we also further demonstrated the introduction of plasmids into the SNU-1 cells successfully. This approach is generic and applicable to bacteria and a wide range of cell types, offering an important and novel experimental tool for targeted delivery and single-cell analysis.
Collapse
Affiliation(s)
- Kemu Li
- School of Integrated Circuits, Southeast University, Sipailou 2, Nanjing 210096, P. R. China
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Yupan Wu
- School of Integrated Circuits, Southeast University, Sipailou 2, Nanjing 210096, P. R. China
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- Yulin Environmental Monitoring Station, Yulin, Shanxi 719000, P. R. China
- Yangtze River Delta Research Institute of NPU, Taicang, Suzhou, Jiangsu 215400, P. R. China
| | - Yan Hu
- The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, Suzhou, Jiangsu 215400, P. R. China
| | - Yuanbo Yue
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xun Ma
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xuetao Gan
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xiaohui Xu
- The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, Suzhou, Jiangsu 215400, P. R. China
| |
Collapse
|
33
|
Yan Q, Sun Q, Feng Y, Hu Q, Zhu J. ATP1B3 may promote glioma proliferation and migration through MAPK/NF-KB signaling pathway. Front Oncol 2025; 15:1537687. [PMID: 40027130 PMCID: PMC11868815 DOI: 10.3389/fonc.2025.1537687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Objective To investigate the function of ATPase Na+/K+ Transporting Subunit Beta 3 (ATP1B3) in gliomas and the molecular mechanisms associated with them in order to identify a novel target and approach for glioma clinical diagnosis and treatment. Methods The Cancer Genome Atlas (TCGA), a public tumor database, and the Chinese Glioma Genome Atlas (CGGA) were used to evaluate the differential expression of ATP1B3 in glioma cells of various grades. Its connection to patient survival and prognosis; The siRNA interference approach instantly reduced the amount of ATP1B3 expression in the glioma cell lines U87MG and U251MG. The knockdown efficiency was assessed by Western Blotting (WB) and RT-qPCR. Following ATP1B3 knockdown, the ability of glioma cells to proliferate, migrate, and invade was identified using the Transwell assay and CCK-8. The proteins that might interact with ATP1B3 were filtered out using the TCGA database and literature analysis. The WB assay was used to determine the expression level of Protein Phosphatase 1 Catalytic Subunit Alpha (PPP1CA) following ATP1B3 deletion, immunoprecipitation was used to determine the direct influence of the two proteins, and immunofluorescence was used to analyze the distribution of ATP1B3 and PPP1CA proteins in glioma cells. Cyclin D1 and vascular endothelial growth factor A(VEGFA) expression alterations following ATP1B3 deletion were identified using the WB assay. Following ATP1B3 knockdown, the WB assay was used to determine the expression levels of p-Raf1, p-MEK 1/2, p-ERK 1/2, p-IκBα, and p-P65 in the MAPK and NF-κB signaling pathway. Results Database analysis revealed a negative correlation between the patients' prognosis and the expression level of ATP1B3, and a positive correlation with the malignant degree of the glioma. The mRNA and protein expression levels of ATP1B3 were significantly decreased after knockout, and the proliferation, migration and invasion ability of cells in knockout group were significantly lower than those in control group, with statistical difference. The immunoprecipitation results were negative, and the knockdown group's PPP1CA expression was lower than the control group's. Following ATP1B3 knockdown, Cyclin D1 and VEGFA protein expression levels dropped, and the effects were statistically significant. There was a statistically significant drop in the expression levels of p-Raf1, p-MEK 1/2, p-ERK 1/2, p-IκBα, and p-P65 following ATP1B3 deletion. Conclusion In gliomas, ATP1B3 is highly expressed. Glioma cell motility, invasion, and proliferation all decline when ATP1B3 expression is lowered. The downstream protein PPP1CA is indirectly regulated by ATP1B3. By controlling the MAPK and NF-κB signaling pathways, ATP1B3 may have a role in the invasion, migration, and proliferation of glioma cells. As a result, the ATP1B3 gene might be a biological target for treatment and a possible neurotumor diagnostic.
Collapse
Affiliation(s)
- Qikang Yan
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Quan Sun
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yan Feng
- Qilufoshan Community Hospital, People's Hospital of Lixia District, Jinan, Shandong, China
| | - Qingyun Hu
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Jinling Zhu
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
34
|
Wu H, Sun X, Li K, Li J, Jiang H, Yan D, Lin Y, Ding Y, Lu Y, Zhu X, Chen X, Li X, Liang G, Xu H. Pyruvate Kinase M2-Responsive Release of Paclitaxel and Indoleamine 2,3-Dioxygenase Inhibitor for Immuno-Chemotherapy of Nonsmall Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409790. [PMID: 39716923 PMCID: PMC11831488 DOI: 10.1002/advs.202409790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Indexed: 12/25/2024]
Abstract
Paclitaxel (PTX) is a first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC) but it can induce indoleamine 2,3-dioxygenase (IDO) activation, which severely lowers down its immuno-chemotherapeutic effect. To address this issue, a smart peptide hydrogelator Nap-Phe-Phe-Phe-Lys-Ser-Thr-Gly-Gly-Lys-Ala-Pro-Arg-OH (Nap-T), which co-assembles with PTX and an IDO inhibitor GDC0919 to form a hydrogel GP@Gel Nap-T, is rationally designed. Upon specific phosphorylation by pyruvate kinase M2 (PKM2), an overexpressed biomarker of NSCLC, Nap-T is gradually converted to Nap-Phe-Phe-Phe-Lys-Ser-Thr(H2PO3)-Gly-Gly-Lys-Ala-Pro-Arg-OH (Nap-Tp), leading to dehydrogelation and sustained release of PTX and GDC0919 within NSCLC tissues. The released PTX exerts chemotherapy on NSCLC cells as well as immunogenic cell death induction, while GDC0919 promotes the immuno-chemotherapeutic effect of PTX through IDO inhibition. We find that GP@Gel Nap-T enhances the infiltration of tumor-infiltrating immune cells and reduces the number of immunosuppressive cells in either tumor tissues or tumor-draining lymph nodes, thus enhancing the immuno-chemotherapy of PTX toward NSCLC. With this PKM2-responsive drug release strategy, the smart peptide hydrogel platform might be applied for NSCLC treatment in clinic in near future.
Collapse
Affiliation(s)
- Haisi Wu
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing211189China
| | - Kaiming Li
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Jinyu Li
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Hui Jiang
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Dan Yan
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Ya Lin
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Yan Ding
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Yawen Lu
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Xiaole Zhu
- Department of EmergencyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Xufeng Chen
- Department of EmergencyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Xiaolin Li
- Department of Geriatric GastroenterologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing211189China
| | - Huae Xu
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| |
Collapse
|
35
|
Molina Calistro L, Arancibia Y, Olivera MA, Domke S, Torres RF. Interaction of GPER-1 with the endocrine signaling axis in breast cancer. Front Endocrinol (Lausanne) 2025; 16:1494411. [PMID: 39936103 PMCID: PMC11811623 DOI: 10.3389/fendo.2025.1494411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
G Protein-Coupled Estrogen Receptor 1 (GPER-1) is a membrane estrogen receptor that has emerged as a key player in breast cancer development and progression. In addition to its direct influence on estrogen signaling, a crucial interaction between GPER-1 and the hypothalamic-pituitary-gonadal (HPG) axis has been evidenced. The novel and complex relationship between GPER-1 and HPG implies a hormonal regulation with important homeostatic effects on general organ development and reproductive tissues, but also on the pathophysiology of cancer, especially breast cancer. Recent research points to a great versatility of GPER-1, interacting with classical estrogen receptors and with signaling pathways related to inflammation. Importantly, through its activation by environmental and synthetic estrogens, GPER-1 is associated with hormone therapy resistance in breast cancer. These findings open new perspectives in the understanding of breast tumor development and raise the possibility of future applications in the design of more personalized and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Yennyfer Arancibia
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | | | - Sigrid Domke
- Facultad de Ciencias para el cuidado de la salud, Universidad San Sebastián, Puerto Montt, Chile
| | | |
Collapse
|
36
|
Bruno PS, Arshad A, Gogu MR, Waterman N, Flack R, Dunn K, Darie CC, Neagu AN. Post-Translational Modifications of Proteins Orchestrate All Hallmarks of Cancer. Life (Basel) 2025; 15:126. [PMID: 39860065 PMCID: PMC11766951 DOI: 10.3390/life15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins. In this review, we summarized and analyzed a wide spectrum of PTMs of proteins involved in all regulatory mechanisms that drive tumorigenesis, genetic instability, epigenetic reprogramming, all events of the metastatic cascade, cytoskeleton and extracellular matrix (ECM) remodeling, angiogenesis, immune response, tumor-associated microbiome, and metabolism rewiring as the most important hallmarks of cancer. All cancer hallmarks develop due to PTMs of proteins, which modulate gene transcription, intracellular and extracellular signaling, protein size, activity, stability and localization, trafficking, secretion, intracellular protein degradation or half-life, and protein-protein interactions (PPIs). PTMs associated with cancer can be exploited to better understand the underlying molecular mechanisms of this heterogeneous and chameleonic disease, find new biomarkers of cancer progression and prognosis, personalize oncotherapies, and discover new targets for drug development.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania;
| | - Natalie Waterman
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Rylie Flack
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Kimberly Dunn
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
37
|
Sokoli L, Takáč P, Budovská M, Michalková R, Kello M, Nosálová N, Balážová Ľ, Salanci Š, Mojžiš J. The Proapoptotic Effect of MB-653 Is Associated with the Modulation of Metastasis and Invasiveness-Related Signalling Pathways in Human Colorectal Cancer Cells. Biomolecules 2025; 15:72. [PMID: 39858466 PMCID: PMC11762530 DOI: 10.3390/biom15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide and has a high mortality rate. In this study, we investigated the cytotoxic, proapoptotic, and anti-invasive effects of the synthetic indole phytoalexin MB-653. The antiproliferative effect was determined using an MTT assay, showing IC50 values of 5.8 ± 0.3 μmol/L for HCT116 cells and 6.1 ± 2.1 μmol/L for Caco2 cells. Flow cytometry and Western blot analysis were employed to investigate the molecular mechanisms underlying cytotoxicity, proapoptotic action, and anti-invasion effects. The proapoptotic activity was evidenced by the activation of caspases 3 and 7, mitochondrial dysfunction, and an increased number of apoptotic cells, confirmed by annexin V/PI and AO/PI staining. Additionally, MB-653 induces dose-dependent G2/M phase cell cycle arrest, the cause of which could be cyclin B1/CDC2 complex dysfunction and/or a decrease in α-tubulin protein expression. Another important observation was that MB-653 modulated several signalling pathways associated with various cellular activities, including survival, proliferation, tumour invasiveness, metastasis, and epithelial-mesenchymal transition (EMT). We further demonstrated its safety for topical and parenteral application. To sum up, our results indicate the real potential of MB-653 in treating colorectal cancer.
Collapse
Affiliation(s)
- Libor Sokoli
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Peter Takáč
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Mariana Budovská
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Natália Nosálová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Ľudmila Balážová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia;
| | - Šimon Salanci
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| |
Collapse
|
38
|
Santos EEP, de Oliveira Andrade ML, Dos Santos Nascimento IJ, Cibulski SP, da Silva Alves H. Potential Anti-tumor Effects and Apoptosis-inducing Mechanisms of Saponins: A Review. Curr Top Med Chem 2025; 25:378-394. [PMID: 39440734 DOI: 10.2174/0115680266315197241015101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
The search for effective cancer therapies highlights saponins, natural plant-derived compounds, as promising anticancer agents. These compounds induce apoptosis in cancer cells by activating caspases, essential enzymes for cell death. For example, Soyasapogenol B from Glycine max and Astragaloside IV from Astragalus membranaceus effectively trigger apoptosis in cancer cells. Additionally, saponins, such as Compound K from American ginseng and Saikosaponin from Bupleurum falcatum, affect extrinsic and intrinsic pathways, including mitochondrial release of cytochrome C and activation of caspase-9. Ziyuglycoside II also acts on both pathways and activates the ROS/JNK pathway. Understanding these mechanisms provides promising prospects for developing more specific and safer anticancer therapies. The review utilized the ScienceDirect, PubMed, and Google Scholar databases. It was found that original articles and reviews from journals indexed in these sources emphasized the antitumor capabilities of saponins and discussed their role in apoptosis induction and caspase activation. The activation of caspases by saponins in the apoptotic pathway involves two main pathways: the extrinsic pathway is initiated by external signals that activate caspase-8, while the intrinsic pathway starts with internal stimuli, causing the release of cytochrome c and the activation of caspase-9. These pathways both lead to the activation of effector caspases (caspases 3, 6, and 7), culminating in apoptosis, an essential process for maintaining cellular balance and eliminating damaged cells. Identifying saponins in the context of cancer and their mechanisms of action is an ever-evolving field. Future research may lead to more targeted and personalized therapies, highlighting the collaboration between basic and clinical research in this promising area of medicine.
Collapse
Affiliation(s)
- Edvania Emannuelle Pinheiro Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas. Universidade Estadual da Paraíba. Rua Baraúnas, 351, Bairro Universitário 58429-500 Campina Grande-PB, Brasil
| | - Maria Lorena de Oliveira Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas. Universidade Estadual da Paraíba. Rua Baraúnas, 351, Bairro Universitário 58429-500 Campina Grande-PB, Brasil
| | - Igor José Dos Santos Nascimento
- Programa de Pós-Graduação em Ciências Farmacêuticas. Universidade Estadual da Paraíba. Rua Baraúnas, 351, Bairro Universitário 58429-500 Campina Grande-PB, Brasil
| | - Samuel Paulo Cibulski
- Programa de Pós-Graduação em Ciências Farmacêuticas. Universidade Estadual da Paraíba. Rua Baraúnas, 351, Bairro Universitário 58429-500 Campina Grande-PB, Brasil
| | - Harley da Silva Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas. Universidade Estadual da Paraíba. Rua Baraúnas, 351, Bairro Universitário 58429-500 Campina Grande-PB, Brasil
| |
Collapse
|
39
|
Wang XJ, Huo YX, Yang PJ, Gao J, Hu WD. Significance of Ribonucleoside-diphosphate Reductase Subunit M2 in Lung Adenocarcinoma. Curr Gene Ther 2025; 25:136-156. [PMID: 38920074 DOI: 10.2174/0115665232286359240611051307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION The Ribonucleoside-diphosphate Reductase subunit M2 (RRM2) is known to be overexpressed in various cancers, though its specific functional implications remain unclear. This aims to elucidate the role of RRM2 in the progression of Lung Adenocarcinoma (LUAD) by exploring its involvement and potential impact. METHODS RRM2 data were sourced from multiple databases to assess its diagnostic and prognostic significance in LUAD. We evaluated the association between RRM2 expression and immune cell infiltration, analyzed its function, and explored the effects of modulating RRM2 expression on LUAD cell characteristics through laboratory experiments. RESULTS RRM2 was significantly upregulated in LUAD tissues and cells compared to normal counterparts (p < 0.05), with rare genetic alterations noted (approximately 2%). This overexpression clearly distinguished LUAD from normal tissue (area under the curve (AUC): 0.963, 95% confidence intervals (CI): 0.946-0.981). Elevated RRM2 expression was significantly associated with adverse clinicopathological characteristics and poor prognosis in LUAD patients. Furthermore, a positive association was observed between RRM2 expression and immune cell infiltration. Pathway analysis revealed a critical connection between RRM2 and the cell cycle signaling pathway within LUAD. Targeting RRM2 inhibition effectively suppressed LUAD cell proliferation, migration, and invasion while promoting apoptosis. This intervention also modified the expression of several crucial proteins, including the downregulation of CDC25A, CDC25C, RAD1, Bcl-2, and PPM1D and the upregulation of TP53 and Bax (p < 0.05). CONCLUSION Our findings highlight the potential utility of RRM2 expression as a biomarker for diagnosing and predicting prognosis in LUAD, shedding new light on the role of RRM2 in this malignancy.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- Department of Respiratory Medicine, Gansu Province People Hospital, Lanzhou, Gansu, PR China
| | - Yun-Xia Huo
- Department of Neurological Surgery, The Second People Hospital of Lanzhou City, Lanzhou, Gansu, PR China
| | - Peng-Jun Yang
- Department of Internal Medicine, The Xigu Hospital of Lanzhou City, Lanzhou, Gansu, PR China
| | - Jing Gao
- Department of Respiratory Medicine, Gansu Province People Hospital, Lanzhou, Gansu, PR China
- Department of Medicine, Respiratory Medicine Unit , Karolinska Institute, Stockholm, Sweden
- Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Wei-Dong Hu
- Department of Respiratory Medicine, Gansu Province People Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
40
|
Lucas O, Ward S, Zaidi R, Bunkum A, Frankell AM, Moore DA, Hill MS, Liu WK, Marinelli D, Lim EL, Hessey S, Naceur-Lombardelli C, Rowan A, Purewal-Mann SK, Zhai H, Dietzen M, Ding B, Royle G, Aparicio S, McGranahan N, Jamal-Hanjani M, Kanu N, Swanton C, Zaccaria S. Characterizing the evolutionary dynamics of cancer proliferation in single-cell clones with SPRINTER. Nat Genet 2025; 57:103-114. [PMID: 39614124 PMCID: PMC11735394 DOI: 10.1038/s41588-024-01989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/15/2024] [Indexed: 12/01/2024]
Abstract
Proliferation is a key hallmark of cancer, but whether it differs between evolutionarily distinct clones co-existing within a tumor is unknown. We introduce the Single-cell Proliferation Rate Inference in Non-homogeneous Tumors through Evolutionary Routes (SPRINTER) algorithm that uses single-cell whole-genome DNA sequencing data to enable accurate identification and clone assignment of S- and G2-phase cells, as assessed by generating accurate ground truth data. Applied to a newly generated longitudinal, primary-metastasis-matched dataset of 14,994 non-small cell lung cancer cells, SPRINTER revealed widespread clone proliferation heterogeneity, orthogonally supported by Ki-67 staining, nuclei imaging and clinical imaging. We further demonstrated that high-proliferation clones have increased metastatic seeding potential, increased circulating tumor DNA shedding and clone-specific altered replication timing in proliferation- or metastasis-related genes associated with expression changes. Applied to previously generated datasets of 61,914 breast and ovarian cancer cells, SPRINTER revealed increased single-cell rates of different genomic variants and enrichment of proliferation-related gene amplifications in high-proliferation clones.
Collapse
Affiliation(s)
- Olivia Lucas
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- University College London Hospitals, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Genomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Rija Zaidi
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Abigail Bunkum
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Alexander M Frankell
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Wing Kin Liu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Daniele Marinelli
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emilia L Lim
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Sonya Hessey
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- University College London Hospitals, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | | | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Haoran Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Michelle Dietzen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Boyue Ding
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- University College London Hospitals, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- University College London Hospitals, London, UK.
| | - Simone Zaccaria
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
41
|
Kim HG, Park WL, Min HJ, Won YS, Seo KI. Antioxidant and anticancer effects of kiwi ( Actinidia deliciosa) fermented beverage using Lactobacillus plantarum. Food Sci Biotechnol 2025; 34:207-216. [PMID: 39758717 PMCID: PMC11695656 DOI: 10.1007/s10068-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 06/16/2024] [Indexed: 01/07/2025] Open
Abstract
Kiwi fermented beverages utilizing lactic acid bacteria exhibit a decrease in sugar content, pH and increase in total acidity. The maximum CFU is observed in 20% kiwi fermented beverages containing Lactobacillus plantarum. For the most efficient fermentation conditions, 20% kiwi fermented beverages fermented at 24 h was selected for use in subsequent experiments. The glucose, fructose, citric acid levels decreased in optimized kiwi fermented beverage, while the succinic acid, lactic acid, acetic acid, total flavonoid content, and total polyphenol content increased. Furthermore, optimized kiwi fermented beverage showed significantly higher reducing power, ABTS·+ and DPPH radical scavenging activities, and hydroxyl radical scavenging activities compared to the optimized kiwi beverage. Optimized kiwi fermented beverage suppresses proliferation in various cells, including MDA-MB-231, in a dose- and time-dependent manner. Lactobacillus plantarum fermentation of kiwi fruit enhances its functionality, underscoring the potential of OKFB as an improved functional food ingredient.
Collapse
Affiliation(s)
- Hwi Gon Kim
- Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea
| | - Wool Lim Park
- Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea
| | - Hye Ji Min
- Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea
| | - Yeong Seon Won
- Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea
- Division of Research Management, Honam National Institute of Biological Resources, Jeollanam-do, Mokpo, 58672 Republic of Korea
| | - Kwon Il Seo
- Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea
| |
Collapse
|
42
|
Soniya N, Soumya V, Shivlingrao MD, M M, Meeramol C. Therapeutic Potental of Quinolin-2 H-one Hybrids as Anticancer Agents. Mini Rev Med Chem 2025; 25:386-402. [PMID: 39323349 DOI: 10.2174/0113895575305597240912192037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/27/2024]
Abstract
The statistical data related to cancer in recent years has shown a great increase in the number of cases and is likely to further increase in the future. Even after seeking thorough knowledge on the aetiology of cancer and related disorders and attempting to cure it by various methods like gene therapy, T cell therapy, chemotherapy, surgery, hormone therapy, and photodynamic therapy, there has always been disappointment concerning the survival rate. Hence, there is still a great urge for the discovery of novel drugs for the treatment of cancer. Chemotherapy being one of the widely used methods, several drug entities possessing anticancer properties are already in the market but none of them is known to show good efficacy which necessitates researchers to design newer drugs for the treatment of cancer. The urge to synthesize novel anticancer entities directed researchers towards molecular hybridization as one of the novel methods for designing newer drugs. Literature reveals wide research carried out on quinolin-2-one hybrids, possessing anticancer properties through different mechanisms. Tipifarnib and Dovitinib are quinolin-2-one hybrids used to treat cancer, possessing imidazole and benzimidazole heterocyclic rings. Different heterocyclic scaffolds such as pyrone, pyrrole, pyrimidine, pyridine, thiazole, and pyrazole in combination with heterocyclic quinolin-2-one have shown high potential to become lead for newer anticancer agents with better and wider therapeutic properties and lesser side effects. The current review presents information on the different quinolin-2-one hybrids and their effect on different cancer cell lines. It also imparts knowledge of the structural requirements for designing novel anticancer agents.
Collapse
Affiliation(s)
- Naik Soniya
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
- Department of Pharmaceutical Chemistry, PESs Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Vasu Soumya
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Mamle Desai Shivlingrao
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Manickavasagam M
- Department of Oncology, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Chellappan Meeramol
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| |
Collapse
|
43
|
Salu P, Tuvin D, Reindl KM. AGR2 knockdown induces ER stress and mitochondria fission to facilitate pancreatic cancer cell death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119854. [PMID: 39353469 DOI: 10.1016/j.bbamcr.2024.119854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Anterior gradient 2 (AGR2) is often overexpressed in many human cancers, including pancreatic ductal adenocarcinoma (PDAC). Elevated AGR2 expression is known to play a critical role in tumor development, progression, and metastasis and positively correlates with poor patient survival. However, the relationship between AGR2 expression and tumor growth is not fully understood. Our study aims to investigate the impact of AGR2 knockdown on the survival of two pancreatic cancer cell lines, HPAF-II and PANC-1, that exhibit high AGR2 expression. This study revealed that the knockdown of AGR2 expression through an inducible shRNA-mediated approach reduced the proliferative ability and colony-forming potential of PDAC cells compared to scramble controls. Significantly, knocking down AGR2 led to the inhibition of multiple protein biosynthesis pathways and induced ER stress through unfolded protein response (UPR) activation. AGR2 knockdown induced ER stress and increased mitochondrial fission, while mitochondrial fusion remained unaffected. Ultimately, apoptotic cell death was heightened in AGR2 knockdown PDAC cells compared to the controls. Overall, these data reveal a new axis involving AGR2-ER stress-associated mitochondrial fission that could be targeted to improve PDAC patient outcomes.
Collapse
Affiliation(s)
- Philip Salu
- North Dakota State University, Department of Biological Sciences, Fargo, ND, United States of America
| | - Daniel Tuvin
- Roger Maris Cancer Center, Sanford Health, Fargo, ND, United States of America
| | - Katie M Reindl
- North Dakota State University, Department of Biological Sciences, Fargo, ND, United States of America.
| |
Collapse
|
44
|
Lv C, Chen G, Lv S. Regulation of lymphoma in vitro by CLP36 through the PI3K/AKT/CREB signaling pathway. PeerJ 2024; 12:e18693. [PMID: 39735560 PMCID: PMC11674146 DOI: 10.7717/peerj.18693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Background CLP36 is also known as PDZ and LIM Domain 1 (PDLIM1) that is a ubiquitously-expressed α-actinin-binding cytoskeletal protein involved in carcinogenesis, and our current study aims to explore its involvement in lymphoma. Methods Accordingly, the CLP36 expression pattern in lymphoma and its association with the overall survival was predicted. Then, qPCR was applied to gauge CLP36 expression in lymphoma cells and determine the knockdown efficiency. The survival, proliferation and apoptosis of CLP36-silencing lymphoma cells were tested. Cell viability, proliferation and apoptosis were assessed based on cell counting kit-8 (CCK-8) assay, colony formation assay, EdU staining, and flow cytometry, respectively. Additionally, qPCR was used to calculate the expressions of proteins associated with metastasis and apoptosis, while immunoblotting was employed to determine the phosphorylation status of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/cAMP-response element binding protein (CREB). Results CLP36 expression was relatively higher in lymphoma, which was associated with a poor prognosis. Also, CLP36 was highly-expressed in lymphoma cells and the silencing of CLP36 contributed to the suppressed survival and proliferation as well as the enhanced apoptosis of lymphoma cells. Further, CLP36 silencing repressed the expressions of Cadherin 2 (CDH2) and Vimentin (VIM) yet promoted those of Bax and Caspase 3 in lymphoma cells, concurrent with the reduction on the phosphorylation of PI3K, AKT and CREB, all of which were confirmed to be positively correlated with CLP36. Conclusion This study, so far as we are concerned, provided evidence on the involvement of CLP36/PI3K/AKT/CREB axis in lymphoma, which may be contributive for the identification on the relevant molecular targets of lymphoma.
Collapse
Affiliation(s)
- Chao Lv
- Medical Oncology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Guannan Chen
- Hepatological Surgery Department, Tianjin First Central Hospital, Tianjin, China
| | - Shuang Lv
- Medical Oncology, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
45
|
Mota IDS, Cardoso M, Bueno J, da Silva IGM, Gonçalves J, Bao SN, Neto BAD, Brand G, Corrêa JR, Leite JRSA, Saldanha-Araujo F. Intragenic antimicrobial peptide Hs02 toxicity against leukemia cell lines is associated with increased expression of select pyroptotic components. Toxicol In Vitro 2024; 101:105945. [PMID: 39343072 DOI: 10.1016/j.tiv.2024.105945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The anticancer potential of some antimicrobial peptides has been reported. Hs02 is a recently characterized Intragenic Antimicrobial Peptide (IAP), which was able to exhibit potent antimicrobial and anti-inflammatory action. In this study, we evaluate for the first time the antineoplastic potential of the Hs02 IAP using cell lines representing the main types of leukemia as cancer models. Interestingly, this peptide decreased the viability of several leukemic cell lines, without compromising the viability of PBMCs in the same concentration. In the HL-60 line, treatment with Hs02 controlled cell division, leading to cell arrest in the G1 phase of the cell cycle. More importantly, HL-60 cells treated with Hs02 undergo cell death, with the formation of pores in the plasma membrane and the release of LDH. Accordingly, Hs02 treatment stimulated the expression of components involved in pyroptosis, such as NLRP1, CASP-1, GSDME, and IL-1β. Taken together, our data characterize the antineoplastic potential of Hs02 and open an opportunity for both evaluating the peptide's antineoplastic potential in other cancer models and using this molecule as a template for new peptides with therapeutic potential against cancer.
Collapse
Affiliation(s)
- Isabella de Souza Mota
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Miguel Cardoso
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília-DF, 70910-900, Brazil; iMed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon 1649-003, Portugal
| | - João Bueno
- Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Ingrid Gracielle Martins da Silva
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - João Gonçalves
- iMed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon 1649-003, Portugal
| | - Sonia N Bao
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Brenno A D Neto
- Laboratório de Química Medicinal e Tecnológica, Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Guilherme Brand
- Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - José Raimundo Corrêa
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília-DF, 70910-900, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
46
|
Childs BA, Kim J, Patel RR, Vandergriff TW, Goff HW, Wang RC. Whole-Exome Sequencing Identifies Novel and Previously Reported Mutations in a Case of Intravascular B-Cell Lymphoma. Am J Dermatopathol 2024; 46:890-893. [PMID: 39288753 DOI: 10.1097/dad.0000000000002824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Affiliation(s)
- Beth A Childs
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX
| | - Jiwoong Kim
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX; and
| | - Ravi R Patel
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX
| | | | - Heather W Goff
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX
| | - Richard C Wang
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX
- Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
47
|
Mounika V, P IK, Siluvai S, G K. Carbon Monoxide in Healthcare Monitoring Balancing Potential and Challenges in Public Health Perspective: A Narrative Review. Cureus 2024; 16:e74052. [PMID: 39712838 PMCID: PMC11661877 DOI: 10.7759/cureus.74052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Carbon monoxide (CO) has medicinal potential and harmful qualities. However, excessive exposure to CO can lead to severe organ failure. CO is exogenously and endogenously generated within the human body. Ongoing research aims to uncover the beneficial aspects of CO. It serves as a biomarker for inflammation and other serious illnesses. Preclinical trials exploring CO's application have indicated potential benefits in addressing conditions such as Ischemia, Tendonitis, Neuropathic pain, and even cancer therapy. Cardiovascular disease emerges as a particularly promising target for CO therapy due to its potent vasodilatory effects. While research into CO-based therapeutics has shown promise in experimental and preclinical settings, clinical translation and widespread adoption remain in the early stages. This review will illuminate the advantageous role of CO as a biomarker alongside the obstacles and challenges associated with its implementation.
Collapse
Affiliation(s)
- V Mounika
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Indumathi K P
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Sibyl Siluvai
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Krishnaprakash G
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
48
|
Liu GH, Yao ZQ, Chen GQ, Li YL, Liang B. Potential Benefits of Green Tea in Prostate Cancer Prevention and Treatment: A Comprehensive Review. Chin J Integr Med 2024; 30:1045-1055. [PMID: 38561489 DOI: 10.1007/s11655-024-4100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 04/04/2024]
Abstract
Prostate cancer is a prevalent and debilitating disease that necessitates effective prevention and treatment strategies. Green tea, a well-known beverage derived from the Camellia sinensis plant, contains bioactive compounds with potential health benefits, including catechins and polyphenols. This comprehensive review aims to explore the potential benefits of green tea in prostate cancer prevention and treatment by examining existing literature. Green tea possesses antioxidant, anti-inflammatory, and anti-carcinogenic properties attributed to its catechins, particularly epigallocatechin gallate. Epidemiological studies have reported an inverse association between green tea consumption and prostate cancer risk, with potential protection against aggressive forms of the disease. Laboratory studies demonstrate that green tea components inhibit tumor growth, induce apoptosis, and modulate signaling pathways critical to prostate cancer development and progression. Clinical trials and human studies further support the potential benefits of green tea. Green tea consumption has been found to be associated with a reduction in prostate-specific antigen levels, tumor markers, and played a potential role in slowing disease progression. However, challenges remain, including optimal dosage determination, formulation standardization, and conducting large-scale, long-term clinical trials. The review suggests future research should focus on combinatorial approaches with conventional therapies and personalized medicine strategies to identify patient subgroups most likely to benefit from green tea interventions.
Collapse
Affiliation(s)
- Gui-Hong Liu
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Ze-Qin Yao
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Guo-Qiang Chen
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Ya-Lang Li
- Department of Urology, Yuzhou People's Hospital, Xuchang City, Henan Province, 461670, China
| | - Bing Liang
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China.
| |
Collapse
|
49
|
Zhou H, Deng C, Xi Y. Mechanism of HOXA10 in nasopharyngeal carcinoma cell proliferation through the PTPRG-AS1/USP1 axis. J Biochem Mol Toxicol 2024; 38:e70025. [PMID: 39445487 DOI: 10.1002/jbt.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma arising from the nasopharyngeal mucosal lining. The present study sought to analyze the mechanism by which homeobox A10 (HOXA10) affects NPC cell proliferation. The expression levels of HOXA10/long noncoding RNA (lncRNA) PTPRG antisense RNA 1 (PTPRG-AS1)/ubiquitin-specific peptidase 1 (USP1) in NPC tissues and cells were determined. Cell proliferation was evaluated. The enrichment of HOXA10 on the PTPRG-AS1 promoter was determined. The binding of PTPRG-AS1, HuR, and USP1 to each other was analyzed via RNA immunoprecipitation. USP1 mRNA stability was determined after actinomycin D treatment. The role of the PTPRG-AS1/USP1 axis in NPC cell proliferation was analyzed in combined experiments. The role of HOXA10 in vivo was confirmed in xenograft tumor models. The results revealed that HOXA10 was overexpressed in NPC. HOXA10 downregulation reduced NPC cell proliferation. PTPRG-AS1 and USP1 were upregulated in NPC. HOXA10 bound to the PTPRG-AS1 promoter to increase PTPRG-AS1 expression, and the binding of PTPRG-AS1 to HuR increased USP1 expression. PTPRG-AS1 or USP1 overexpression attenuated the inhibitory effects of HOXA10 downregulation on NPC cell proliferation. HOXA10 downregulation inhibited in vivo NPC proliferation through the PTPRG-AS1/USP1 axis. In conclusion, HOXA10 facilitates NPC cell proliferation in vitro and in vivo through the PTPRG-AS1/USP1 axis.
Collapse
Affiliation(s)
- He Zhou
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chang Deng
- Forensic Laboratory of Material Evidence Identification Department, Jinan Municipal Bureau of Public Security, Jinan, China
| | - Yue Xi
- Department of Pathology, Heze Municipal Hospital, Heze, China
| |
Collapse
|
50
|
Li Y, Yang X, Han T, Zhou J, Liu Y, Guo J, Liu Z, Bai Y, Xing Y, Ding X, Wu J, Hu D. IGFBP1 promotes the proliferation and migration of lung adenocarcinoma cells through the PPARα pathway. Transl Oncol 2024; 49:102095. [PMID: 39167955 PMCID: PMC11382126 DOI: 10.1016/j.tranon.2024.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The immune status is closely linked to cancer progression, metastasis, and prognosis. Lipid metabolism, crucial for reshaping immune status, plays a key role in regulating the advancement of lung adenocarcinoma (LUAD) and deserves further investigation. METHODS This study classifies LUAD patients into different immune subtypes based on lipid metabolism-related genes and compares the clinical characteristics among these subtypes. Single-multi COX analysis screens out key genes related to prognosis, and a risk feature and prognostic model are constructed. Cell cloning, scratch, transwell, western blotting and flow cytometry cell cycle analysis to detect the function of key genes. A subcutaneous tumor animal model is used to investigate the in vivo function and molecular mechanisms of key genes. RESULTS LUAD patients are classified into three immune subtypes, among which C3 subtype has lower immune status and higher frequency of gene mutations, and show lower immunoreactivity in immunotherapy. COX analysis identified a prognostic model for four lipid metabolism factors (IGFBP1, NR0B2, PPARA, and POMC). IGFBP1, a core gene in this model, is highly expressed in the C3 subtype. Functionally, knocking down IGFBP1 significantly inhibits tumor cell cloning, scratch, and migration abilities, and downregulates the expression of cell cycle and EMT-related proteins. Knocking down IGFBP1 significantly inhibits tumor burden (P < 0.05). Mechanistically, knocking down IGFBP1 inhibits the activation of PPARα to regulate tumor cell growth. CONCLUSIONS This study found that lipid metabolism genes are closely related to LUAD, and IGFBP1 may be a key gene in regulating tumor growth and development.
Collapse
Affiliation(s)
- Yunyun Li
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Xuelian Yang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ziqin Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China
| | - Yingru Xing
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Xuansheng Ding
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; School of pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China.
| |
Collapse
|