1
|
Li J, Gu J, Pan S, Deng N, Khan M, Li L, Wu X, Li Y. Synergic effect of the combination of isoliquiritigenin and arsenic trioxide in HepG2 liver cancer cells. Cell Signal 2025; 131:111752. [PMID: 40107478 DOI: 10.1016/j.cellsig.2025.111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/06/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Despite continuous therapeutic interventions, the prognosis of hepatocellular carcinoma (HCC) remains very poor. Thus, quest for novel treatment strategies to improve therapeutic window of HCC therapy is paramount. Arsenic trioxide (ATO) is commonly used as the first-line treatment for acute promyelocytic leukemia (APL). Isoliquiritigenin (ISL) is a potential plant-based bioactive molecule with versatile biological and pharmacological effects including anticancer effect. The present study aimed to investigate the potential synergistic effects of combination of ISL and ATO in HCC cells. The data revealed that the combination of ISL and ATO synergistically inhibited HCC cell proliferation. The collective data demonstrate that synergistic anticancer effect of combined treatment of ISL + ATO was achieved via cooperative induction of mitochondrial apoptosis through ROS generation and inhibition of PI3K/Akt/mTOR pathway. In addition, ROS generation and suppression of PI3K/Akt/mTOR pathway were found to be two independent events in induction of apoptosis. Finally, we observed that combination treatment effectively suppressed tumor growth in nude mice xenograft model through induction of intrinsic apoptosis and inhibition of PI3K/Akt/mTOR pathway. In conclusion, the findings of this study suggest that both drugs work synergistically to exert anti-tumor effect in HCC, both in-vitro and in-vivo and could offer novel strategy for liver cancer treatment.
Collapse
Affiliation(s)
- Jingjing Li
- School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Gu
- School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sijia Pan
- School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nuo Deng
- School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Muhammad Khan
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
| | - Lingyan Li
- School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao Wu
- School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yongming Li
- School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Wei W, Zhang Y, Li Y, Huang J, Kang F, Tan S, Lin L, Lu X, Wei H, Wang N. Hypoxia-mediated high expression of TRIM15 promotes malignant progression of high-grade serous ovarian cancer through activation of AKT signaling pathway by K63 ubiquitination. Int J Cancer 2025; 156:2401-2415. [PMID: 40026037 DOI: 10.1002/ijc.35387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/24/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
The tripartite motif (TRIM) family member TRIM15 is an E3 ubiquitin ligase that is abnormally expressed in a variety of tumors, but its role and mechanism in high-grade serous ovarian cancer (HGSOC) are unclear. Here, we found for the first time that TRIM15 was upregulated in HGSOC and was associated with poor overall survival. Functional experiments showed that TRIM15 drove the proliferation of HGSOC cells and inhibited the apoptosis of tumor cells in vivo and in vitro. In terms of mechanism, we found that TRIM15 contributed to the malignant proliferation of HGSOC cells by promoting the activation of AKT and that there was a direct binding between them. TRIM15 induced lysine-63 (K63) ubiquitination of AKT through its Ring domain, which in turn activated the AKT signaling pathway. In addition, TRIM15-mediated K63 ubiquitination occurs mainly in the pleckstrin homology (PH) domain of AKT. We further identified other proteins and their functions regulated by TRIM15 in HGSOC cells by ubiquitin proteomic analysis. Furthermore, hypoxia-inducible factor-1α promoted TRIM15 transcriptional activation by binding to the hypoxia response elements of the TRIM15 promoter. Our study suggests that TRIM15 induces K63 ubiquitination of the AKT PH domain through its Ring domain and activates the AKT signaling pathway, thereby promoting HGSOC progression. In addition, the abnormally high expression of TRIM15 was associated with the hypoxic microenvironment of HGSOC tissues.
Collapse
Affiliation(s)
- Wei Wei
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yang Zhang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yibing Li
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jiazhen Huang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Fuli Kang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Shuang Tan
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Lin Lin
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Xiaohang Lu
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ning Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
3
|
Casarcia N, Rogers P, Guld E, Iyer S, Li Y, Burcher JT, DeLiberto LK, Banerjee S, Bishayee A. Phytochemicals for the prevention and treatment of pancreatic cancer: Current progress and future prospects. Br J Pharmacol 2025; 182:2181-2234. [PMID: 37740585 DOI: 10.1111/bph.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the United States, owing to its aggressive nature and suboptimal treatment options, emphasizing the need for novel therapeutic approaches. Emerging studies have exhibited promising results regarding the therapeutic utility of plant-derived compounds (phytochemicals) in pancreatic cancer. The purpose of this review is to evaluate the potential of phytochemicals in the treatment and prevention of pancreatic cancer. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses was applied to collect articles for this review. Scholarly databases, including PubMed, Scopus and ScienceDirect, were queried for relevant studies using the following keywords: phytochemicals, phenolics, terpenoids, alkaloids, sulfur-containing compounds, in vitro, in vivo, clinical studies, pancreatic cancer, tumour, treatment and prevention. Aggregate results pooled from qualified studies indicate phytochemicals can inhibit pancreatic cancer cell growth or decrease tumour size and volume in animal models. These effects have been attributed to various mechanisms, such as increasing proapoptotic factors, decreasing antiapoptotic factors, or inducing cell death and cell cycle arrest. Notable signalling pathways modulated by phytochemicals include the rat sarcoma/mitogen activated protein kinase, wingless-related integration site/β-catenin and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signal transduction pathways. Clinically, phytochemicals have been found to increase survival while being well-tolerated and safe, though research is scarce. While these promising results have produced great interest in this field, further in-depth studies are required to characterize the anticancer activities of phytochemicals before they can be utilized to prevent or treat pancreatic cancer in clinical practice. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Patrick Rogers
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Emma Guld
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Samvit Iyer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Yutong Li
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
4
|
Guo S, Ding R, Zhao Q, Wang X, Lv S, Ji XY. Recent Insights into the Roles of PEST-Containing Nuclear Protein. Mol Biotechnol 2025; 67:1800-1813. [PMID: 38762838 DOI: 10.1007/s12033-024-01188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
PEST-containing nuclear protein (PCNP), a short-lived small nuclear protein with 178 amino acids, is a nuclear protein containing two PEST sequences. PCNP is highly expressed in several malignant tumors such as cervical cancer, rectal cancer, and lung cancer. It is also associated with cell cycle regulation and the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Wnt signaling pathways during tumor growth. The present article discuss how PCNP regulates the PI3K/AKT/mTOR and Wnt signaling pathways and related proteins, and the ubiquitination of PCNP regulates tumor cell cycle as well as the progress of the application of PCNP in the pathophysiology and treatment of colon cancer, human ovarian cancer, thyroid cancer, lung adenocarcinoma and oral squamous cell carcinoma. The main relevant articles were retrieved from PubMed, with keywords such as PEST-containing nuclear protein (PCNP), cancer (tumor), and signaling pathways as inclusion/exclusion criteria. Relevant references has been included and cited in the manuscript.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qian Zhao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xu Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, 475004, Henan, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, 450064, Henan, China.
| |
Collapse
|
5
|
Cao H, Song H, Zhou W, Lv X, Liu X, Xiang Z, Fu R, Cheng Y, Chen J, Wang S, Hu Y, Yan H, You W, Guo C, Chen B, Cao G, Wang W, Jia J. Exploring the active ingredients of Banzhilian and its mechanism of action on diabetic Gastric cancer based on network pharmacology. Sci Rep 2025; 15:14808. [PMID: 40295613 PMCID: PMC12037812 DOI: 10.1038/s41598-025-98214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
The incidence of Gastric cancer (GC) has shown a sharp upward trend, and patients with GC complicated by diabetes exhibit significantly worse clinical outcomes and prognosis compared to those without diabetes. Traditional Chinese medicine has played a crucial role in the treatment of both GC and diabetes. Currently, Banzhilian(Scutellaria barbata D. Don) is utilized in the treatment of GC; however, the specific small-molecule monomers it contains and their mechanisms of action have not yet been fully elucidated. This study aims to explore the mechanism of quercetin, a key component of Banzhilian, through network pharmacology, molecular docking, molecular dynamics (MD) simulation, bioinformatics, and in vitro and in vivo experiments. Initially, core targets and key pathways involved in the treatment of diabetes-associated GC (GC-diabetes) were identified using public databases. Subsequently, molecular docking, MD simulation, and survival analysis were performed. Experimental validation included CCK-8 assays, colony formation assays, apoptosis detection, cell cycle analysis, wound healing assays, Transwell migration assays, Western blotting, and mouse subcutaneous tumor formation experiments to evaluate the effects of quercetin, as an active monomer in Banzhilian, on Gastric cancer cells (HGC-27-HG cells) under high-glucose conditions. In this study, quercetin was identified as the key active component, with AKT1, TP53, JUN, MYC, and CCND1 recognized as the target genes, and the PI3K/AKT signaling pathway as the primary regulatory pathway. The results of the study indicate that the proliferation, migration, and invasion capabilities of HGC-27-HG cells are significantly higher than those of HGC-27 cells. However, quercetin inhibited the growth of HGC-27-HG cells, promoted apoptosis, induced cell cycle arrest at the G0/G1 phase, and reduced the cells' migration and invasion abilities. Furthermore, it downregulated the expression of target genes and their phosphorylation levels. The experimental findings confirmed that quercetin, as an active monomer in Banzhilian, suppresses the proliferation of HGC-27-HG cells by inhibiting the PI3K/AKT/MYC pathway, promoting apoptosis, blocking cell cycle progression, and inhibiting cell migration and invasion.
Collapse
Affiliation(s)
- Haikun Cao
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical University, 801 Zhihuai Road, Longzihu District, Bengbu City, 233000, Anhui Province, People's Republic of China
| | - Hui Song
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China
| | - Weiguo Zhou
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
| | - Xiaohu Lv
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China
| | - Xinlei Liu
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China
| | - Zheng Xiang
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China
| | - Rui Fu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
| | - Yixian Cheng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
| | - Junjie Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
| | - Shengwei Wang
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China
| | - Yvbo Hu
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China
| | - Huayue Yan
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China
| | - Wenlong You
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China
| | - Changqian Guo
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China
| | - Bo Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China.
| | - Guodong Cao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China.
| | - Wei Wang
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China.
| | - Jianguang Jia
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical University, 801 Zhihuai Road, Longzihu District, Bengbu City, 233000, Anhui Province, People's Republic of China.
- Department of Surgical Oncology, Second Affiliated Hospital of Bengbu Medical University, No. 633, Longhua Road, Huaishang District, Bengbu City, 233000, Anhui Province, People's Republic of China.
| |
Collapse
|
6
|
Zhou Y, Gao Y, Peng Y, Cai C, Han Y, Chen Y, Deng G, Ouyang Y, Shen H, Zeng S, Du Y, Xiao Z. QKI-induced circ_0001766 inhibits colorectal cancer progression and rapamycin resistance by miR-1203/PPP1R3C/mTOR/Myc axis. Cell Death Discov 2025; 11:192. [PMID: 40263288 PMCID: PMC12015279 DOI: 10.1038/s41420-025-02478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/25/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and remains a significant challenge due to high rates of drug resistance and limited therapeutic options. Circular RNAs (circRNAs) are increasingly recognized for their roles in CRC initiation, progression, and drug resistance. However, no circRNA-based therapies have yet entered clinical development, underscoring the need for comprehensive detection and mechanistic studies of circRNAs in CRC. Here, we identified and characterized a circular RNA, circ_0001766 (hsa_circ_0001766), through microarray analysis of CRC tissues. Our results showed that circ_0001766 is downregulated in CRC tissues and closely associated with patient survival and metastasis. Functional experiments demonstrated that circ_0001766 inhibits CRC cell proliferation, migration and invasion both in-vitro and in-vivo. Mechanistically, hypoxia downregulates Quaking (QKI), an RNA-binding protein essential for the biogenesis of circ_0001766 by binding to introns 1 and 3 of PDIA4 pre-mRNA. Reduced QKI expression under hypoxic conditions leads to decreased circ_0001766 levels in CRC. Circ_0001766 acts as a competitive endogenous RNA, sponging miR-1203 to prevent the degradation of PPP1R3C mRNA. Loss of circ_0001766 results in decreased PPP1R3C expression, leading to the activation of mTOR signaling and increased phosphorylation of Myc, which promotes CRC progression and rapamycin resistance. Our study reveals that overexpression of circ_0001766 or PPP1R3C in CRC cells inhibits the mTOR and Myc pathway, thereby resensitizing cells to rapamycin. The combination of circ_0001766 or PPP1R3C with rapamycin markedly inhibits CRC cell proliferation and induces apoptosis by reducing rapamycin-induced Myc phosphorylation. In summary, our study elucidates a critical circ_0001766/miR-1203/PPP1R3C axis that modulates CRC progression and rapamycin resistance. Our findings highlight circ_0001766 as a promising therapeutic target in CRC, providing a new avenue for enhancing the efficacy of existing treatments and overcoming drug resistance.
Collapse
Grants
- This study was supported by grants from the National Natural Science Foundation of China (No. 82373275, 81974384, 82173342 & 82203015), the China Postdoctoral Science Foundation (No.2023JJ40942), three projects from the Nature Science Foundation of Hunan Province (No.2021JJ3109, 2021JJ31048, 2023JJ40942), Nature Science Foundation of Changsha (No.73201), CSCO Cancer Research Foundation (No.Y-HR2019-0182 & Y-2019Genecast-043), the Key Research and Development Program of Hainan Province (No.ZDYF2020228 & ZDYF2020125), Natural Science Foundation (Youth Funding) of Hunan Province of China (2022JJ40458), Hunan Provincial Natural Science Foundation of China (2024JJ6662), The Youth Science Foundation of Xiangya Hospital (2023Q01) and Scientific Research Program of Hunan Provincial Health Commission (202203105261). The graphical abstract was created using BioRender (BioRender.com).This study was supported by grants from the National Natural Science Foundation of China (No. 82373275, 81974384, 82173342 & 82203015), the China Postdoctoral Science Foundation (No.2023JJ40942), three projects from the Nature Science Foundation of Hunan Province (No.2021JJ3109, 2021JJ31048, 2023JJ40942), Nature Science Foundation of Changsha (No.73201), CSCO Cancer Research Foundation (No.Y-HR2019-0182 & Y-2019Genecast-043), the Key Research and Development Program of Hainan Province (No.ZDYF2020228 & ZDYF2020125), Natural Science Foundation (Youth Funding) of Hunan Province of China (2022JJ40458), Hunan Provincial Natural Science Foundation of China (2024JJ6662), The Youth Science Foundation of Xiangya Hospital (2023Q01) and Scientific Research Program of Hunan Provincial Health Commission (202203105261). The graphical abstract was created using BioRender (BioRender.com).
Collapse
Affiliation(s)
- Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, USA
| | - Yan Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gongping Deng
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Yanhong Ouyang
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangfeng Du
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China.
| | - Zemin Xiao
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China.
| |
Collapse
|
7
|
Chen G, Zhang C, Zou J, Zhou Z, Zhang J, Yan Y, Liang Y, Tang G, Chen G, Xu X, Wang N, Feng Y. Coptidis Rhizoma and Berberine as Anti-cancer Drugs: a 10-year updates and future perspectives. Pharmacol Res 2025:107742. [PMID: 40258505 DOI: 10.1016/j.phrs.2025.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Cancer continues to be among the most substantial health challenges globally. Among various natural compounds, berberine, an isoquinoline alkaloid obtained from Coptidis Rhizoma, has garnered considerable attention for its broad-spectrum biological activities, including anti-inflammatory, antioxidant, anti-diabetic, anti-obesity, and anti-microbial activities. Furthermore, berberine exhibits a broad spectrum of anti-cancer efficacy against various malignancies, such as ovarian, breast, lung, gastric, hepatic, colorectal, cervical, and prostate cancers. Its anti-cancer mechanisms are multifaceted, encompassing the inhibition of cancer cell proliferation, the prevention of metastasis, the induction of apoptosis, the facilitation of autophagy, the modulation of the tumor microenvironment and gut microbiota, and the enhancement of the efficacy of conventional therapeutic strategies. This paper offers an exhaustive overview of the cancer-fighting characteristics of Coptidis Rhizoma and berberine, while also exploring recent developments in nanotechnology aimed at enhancing the bioavailability of berberine. Furthermore, the side effects and safety of berberine are addressed as well. The potential role of artificial intelligence in optimizing berberine's therapeutic applications is also highlighted. This paper provides precious perspectives on the prospective application of Coptidis Rhizoma and berberine in the prevention and management of cancer.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Jiayi Zou
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zitian Zhou
- The Fourth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Yan
- The School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinglan Liang
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoyi Tang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Guang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Xiaoyu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
| |
Collapse
|
8
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
9
|
Wang Y, Gao H, Li X, Li D, Huang F, Sun Y, Liu X, Yang J, Sun F. PRC1 as an independent adverse prognostic factor in Wilms tumor via integrated bioinformatics and experimental validation. Sci Rep 2025; 15:13282. [PMID: 40247060 PMCID: PMC12006549 DOI: 10.1038/s41598-025-98030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Wilms Tumor (WT), a prevalent pediatric renal malignancy, exhibits marked heterogeneity and variable clinical outcomes. Epithelial-mesenchymal transition (EMT), a biological process enabling epithelial cells to acquire mesenchymal traits associated with enhanced migratory and invasive capacities, plays a crucial role in cancer progression. Protein Regulator of Cytokinesis 1 (PRC1) is a critical protein in cell division, whose overexpression is linked to poor prognosis in various cancers. This study investigates the role of PRC1 as a key prognostic factor in WT and explore the mechanism through comprehensive bioinformatic and experimental approaches. Through bulk RNA-seq data from the TARGET database, we identified PRC1 as significantly up-regulated in WT and associated with poor overall survival. Functional enrichment analyses (GO, KEGG, GSEA) demonstrated PRC1's involvement in cell division, chromatin dynamics, and activation of oncogenic pathways including Wnt/β-catenin, PI3K/AKT/mTOR, and Hedgehog signaling. Immunological analysis showed that elevated PRC1 expression correlates with diminished immune cell activity, particularly in NK cells, suggesting potential immune evasion mechanisms. Single-cell RNA-seq analysis (GSE200256) confirmed PRC1's elevated expression in anaplastic Wilms tumor (AWT) compared to favorable Wilms tumor (FWT), and highlighted its involvement in intercellular communication and metastasis via the EMT process. Genomic analyses identified copy number variations (CNVs) and downregulated PRC1-targeting microRNAs as drivers of its overexpression. In vitro, PRC1 knockdown in WIT-49 cells significantly impaired migratory capacity, invasive potential, EMT progression, and glycolytic metabolism. These findings collectively position PRC1 as a promising therapeutic target and prognostic biomarker in WT.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hongjie Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xuetian Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ding Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Huang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yuqiang Sun
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xingjian Liu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Junli Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.
| | - Fengyin Sun
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
10
|
Li X, Zhang Y, Gong J, Liu W, Zhao H, Xue W, Ren Z, Bao J, Lin Z. Development of a breast cancer invasion score to predict tumor aggressiveness and prognosis via PI3K/AKT/mTOR pathway analysis. Cell Death Discov 2025; 11:157. [PMID: 40204712 PMCID: PMC11982538 DOI: 10.1038/s41420-025-02422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025] Open
Abstract
Invasiveness is a key indicator of tumor malignancy and is often linked to poor prognosis in breast cancer (BC). To explore the diverse characteristics of invasive cells, single-cell RNA sequencing (scRNA-seq) data from three ductal carcinoma stages were analyzed, classifying samples into invasion and non-invasion groups. Nine genes (MCTS1, PGK1, PCMT1, C8orf76, TMEM242, QPRT, SLC16A2, AFG1L, and SPINK8) were identified as key discriminators between these groups. A breast cancer invasion score (BCIS) model was developed using LASSO Cox regression, revealed that high BCIS correlated with poorer overall survival in TCGA-BRCA patients and was validated across GSE20685 and METABRIC datasets (five-year and ten-year survival). Functional experiments demonstrated that knockdown of PGK1 or PCMT1 inhibited tumor cell proliferation and reduced the phosphorylation levels of mTORC, P70S6K, S6, and AKT, indicating suppression of the PI3K/AKT/mTOR pathways. High-BCIS tumors exhibited enrichment in protein secretion and PI3K/AKT/mTOR pathways, associated with aggressiveness and therapy resistance. This study introduced the BCIS score, distinguishing invasion from non-invasion cells, linked to PI3K/AKT/mTOR pathways, offering insights into BRCA prognosis and tumor aggressiveness.
Collapse
Affiliation(s)
- Xiujuan Li
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Ya Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianping Gong
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Wenjia Liu
- OmixScience Research Institute, OmixScience Co., Ltd., Hangzhou, 311199, China
| | - Hanchen Zhao
- OmixScience Research Institute, OmixScience Co., Ltd., Hangzhou, 311199, China
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Wei Xue
- OmixScience Research Institute, OmixScience Co., Ltd., Hangzhou, 311199, China
| | - Zhaojun Ren
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210000, China.
| | - Jun Bao
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Ziao Lin
- OmixScience Research Institute, OmixScience Co., Ltd., Hangzhou, 311199, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311100, China.
| |
Collapse
|
11
|
Srinivasan MK, Namasivayam N. Evaluating the in vitro and in vivo effects of carvacrol zinc oxide quantum dots in breast cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:796-815. [PMID: 39625392 DOI: 10.1080/09205063.2024.2429325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
The study investigates the molecular interactions and biological effects of carvacrol zinc oxide quantum dots (CVC-ZnO QDs) on breast cancer in vitro MCF-7 cell lines and in vivo mammary cancer models. Molecular docking using AutoDock Vina revealed binding energies of CVC with key proteins in the PI3K/AKT/mTOR pathway, including PI3K, AKT, PTEN, and mTOR. The results showed significant interaction with specific amino acids, indicating a strong binding affinity. In vitro studies demonstrated a dose-dependent cytotoxic effect of CVC-ZnO QDs on MCF-7 cells, with an IC50 of 20.02 µg/mL, while enhancing intracellular reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), indicative of apoptosis induction. Antioxidant activity, lipid peroxidation, and nuclear morphological changes were assessed, revealing decreased antioxidant status and increased lipid peroxidation in treated cells. In vivo, CVC-ZnO QDs modulated the PI3K/AKT/mTOR signaling in DMBA-induced mammary cancer in rats, decreasing p-PI3K, p-AKT, and p-mTOR expression while upregulating PTEN. Immunohistochemistry, qRT-PCR, and Western blot analyses confirmed these molecular alterations. The study concludes that CVC-ZnO QDs exert cytotoxic and pro-apoptotic effects on breast cancer cells by modulating the PI3K/Akt/mTOR pathway and promoting oxidative stress, presenting a potential therapeutic strategy for breast cancer management.
Collapse
Affiliation(s)
- Manoj Kumar Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| | - Nalini Namasivayam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| |
Collapse
|
12
|
Xie H, Wu Y, Huang J, Shen Q, Li X, Wang L, Lin J, Chi Z, Ke K, Lin X, Chen R, Liao R, Li Y, Huang N. NK Cell Exosomes Alleviate PD-L1 Expression and Facilitate Tumor Immunity by Repressing PI3K-AKT-mTOR Signaling. Immunol Invest 2025; 54:382-395. [PMID: 39748646 DOI: 10.1080/08820139.2024.2445608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND Liver cancer (LC) is a deadly malignancy with limited therapeutic options in recent years. Natural killer cell-derived exosomes (NK-exo), as an important bridge of information transmission between cells, also have a certain killing effect on tumor cells. On this basis, this study investigated the specific regulatory mechanism of NK-exo on LC cells. METHODS NK-exo was collected by differential centrifugation. The diameter and size distribution were characterized by dynamic light scattering (DLS), respectively. Western Blot (WB) assay detected the expression levels of exosome marker protein, PD-L1, and PI3K-AKT-mTOR signal-related proteins. The effect of NK-exo treatment on LC cell viability was measured by the CCK-8. With the use of CFDA·SE, we assessed the proliferation ability of CD8+T cells in direct co-culture with LC cells. The content of cytokines secreted by CD8+T cells in each treatment group was determined by enzyme-linked immunosorbent assay (ELISA) kits. We employed flow cytometry to analyze the expression of PD-L1 protein on the surface of LC cells and CD8 level in mice tumor tissues. RESULTS CCK-8 assay demonstrated that NK-exo repressed the cell viability of LC cells. WB uncovered that the protein expressions of PD-L1, p-AKT, and p-mTOR in NK-exo treated LC cells were decreased, which was returned to the control level after the addition of PI3K agonist. When NK-exo-treated LC cells were directly co-cultivated with CD8+T cells, the proliferation ability and cytokine secretion content of T cells were considerably elevated, and the expression of PD-L1 on LC cell surface was considerably reduced. However, these effects were restored to control levels by PI3K agonists.The in vivo experiments also confirmed that NK-exo could effectively inhibit the progression of LC, and the PI3K agonist could restore this effect to the level of the control group. CONCLUSION This study provided the first evidence that exosomes derived from NK cells inhibited the PI3K-AKT-mTOR signaling pathway in LC cells, and reduced PD-L1 expression, thereby promoting tumor immunity. In comparison to traditional immune checkpoint inhibitors, NK-exo possessed unique mechanisms of action and potential advantages. NK-exo holds the promise of becoming an innovative immunotherapy for the treatment of LC.
Collapse
Affiliation(s)
- Hang Xie
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yujie Wu
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingyao Huang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Quan Shen
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoyan Li
- Pathology Department, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lili Wang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Junqing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhen Chi
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kun Ke
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xin Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rong Chen
- Fujian Medical University Union Medical College, Fuzhou, China
| | - Rihua Liao
- Radiology Department, The First Hospital Affiliated Longyan, Fujian Medical University, Longyan, China
| | - Yong Li
- Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ning Huang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
13
|
Chang K, Zhu LF, Wu TT, Zhang SQ, Yu ZC. Network Pharmacology and in vitro Experimental Verification on Intervention of Oridonin on Non-Small Cell Lung Cancer. Chin J Integr Med 2025; 31:347-356. [PMID: 39331210 DOI: 10.1007/s11655-024-4116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE To explore the key target molecules and potential mechanisms of oridonin against non-small cell lung cancer (NSCLC). METHODS The target molecules of oridonin were retrieved from SEA, STITCH, SuperPred and TargetPred databases; target genes associated with the treatment of NSCLC were retrieved from GeneCards, DisGeNET and TTD databases. Then, the overlapping target molecules between the drug and the disease were identified. The protein-protein interaction (PPI) was constructed using the STRING database according to overlapping targets, and Cytoscape was used to screen for key targets. Molecular docking verification were performed using AutoDockTools and PyMOL software. Using the DAVID database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. The impact of oridonin on the proliferation and apoptosis of NSCLC cells was assessed using cell counting kit-8, cell proliferation EdU image kit, and Annexin V-FITC/PI apoptosis kit respectively. Moreover, real-time quantitative PCR and Western blot were used to verify the potential mechanisms. RESULTS Fifty-six target molecules and 12 key target molecules of oridonin involved in NSCLC treatment were identified, including tumor protein 53 (TP53), Caspase-3, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase kinase 8 (MAPK8), and mammalian target of rapamycin (mTOR). Molecular docking showed that oridonin and its key target molecules bind spontaneously. GO and KEGG enrichment analyses revealed cancer, apoptosis, phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), and other signaling pathways. In vitro experiments showed that oridonin inhibited the proliferation, induced apoptosis, downregulated the expression of Bcl-2 and Akt, and upregulated the expression of Caspase-3. CONCLUSION Oridonin can act on multiple targets and pathways to exert its inhibitory effects on NSCLC, and its mechanism may be related to upregulating the expression of Caspase-3 and downregulating the expressions of Akt and Bcl-2.
Collapse
Affiliation(s)
- Ke Chang
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Li-Fei Zhu
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Ting-Ting Wu
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Si-Qi Zhang
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Zi-Cheng Yu
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
14
|
Lu J, Yu D, Li H, Qin P, Chen H, Chen L. Promising natural products targeting protein tyrosine phosphatase SHP2 for cancer therapy. Phytother Res 2025; 39:1735-1757. [PMID: 38558278 DOI: 10.1002/ptr.8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The development of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors is a hot spot in the research and development of antitumor drugs, which may induce immunomodulatory effects in the tumor microenvironment and participate in anti-tumor immune responses. To date, several SHP2 inhibitors have made remarkable progress and entered clinical trials for the treatment of patients with advanced solid tumors. Multiple compounds derived from natural products have been proved to influence tumor cell proliferation, apoptosis, migration and other cellular functions, modulate cell cycle and immune cell activation by regulating the function of SHP2 and its mutants. However, there is a paucity of information about their diversity, biochemistry, and therapeutic potential of targeting SHP2 in tumors. This review will provide the structure, classification, inhibitory activities, experimental models, and antitumor effects of the natural products. Notably, this review summarizes recent advance in the efficacy and pharmacological mechanism of natural products targeting SHP2 in inhibiting the various signaling pathways that regulate different cancers and thus pave the way for further development of anticancer drugs targeting SHP2.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Wang H, Zhang Y, Wan X, Li Z, Bai O. In the era of targeted therapy and immunotherapy: advances in the treatment of large B-cell lymphoma of immune-privileged sites. Front Immunol 2025; 16:1547377. [PMID: 40292282 PMCID: PMC12023281 DOI: 10.3389/fimmu.2025.1547377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Primary large B-cell lymphomas of immune-privileged sites (IP-LBCLs) include primary central nervous system large B-cell lymphoma (PCNSL), primary vitreoretinal large B-cell lymphoma (PVRL), and primary testicular large B-cell lymphoma (PTL). These tumors not only have a unique anatomical distribution but also exhibit specific biological and clinical characteristics. Given the high biological overlap between intravascular large B-cell lymphoma (IVLBCL) and IP-LBCLs, and the fact that IVLBCL is confined to the intravascular microenvironment, IVLBCL is currently included in the category of IP-LBCLs. IP-LBCLs are associated with suboptimal prognosis. However, advancements in biomarker detection technologies have facilitated novel therapeutic approaches for this disease entity. This review aims to summarize and analyze the latest research progress in IP-LBCLs, with a focus on new treatment strategies in the era of targeted therapy and immunotherapy. It is intended to further understand the biological characteristics, treatment, and latest advancements of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, ChangChun, Jilin, China
| |
Collapse
|
16
|
Arvejeh PM, Chermahini FA, Marincola F, Taheri F, Mirzaei SA, Alizadeh A, Deris F, Jafari R, Amiri N, Soltani A, Bijad E, Dehkordi ES, Khosravian P. A novel approach for the co-delivery of 5-fluorouracil and everolimus for breast cancer combination therapy: stimuli-responsive chitosan hydrogel embedded with mesoporous silica nanoparticles. J Transl Med 2025; 23:382. [PMID: 40165241 PMCID: PMC11956229 DOI: 10.1186/s12967-025-06396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Breast cancer remains one of the leading causes of death among women globally, with traditional therapies often limited by challenges such as drug resistance and significant side effects. Combination therapies, coupled with nanotechnology-based co-delivery systems, offer enhanced efficacy by targeting multiple pathways in cancer progression. In this study, we developed an injectable, stimuli-responsive nanosystem using a chitosan hydrogel embedded with mesoporous silica nanoparticles for the co-administration of 5-fluorouracil and everolimus. This approach aims to optimize controlled drug release, enhance the synergistic anticancer effect, and overcome challenges associated with co-loading different therapeutic agents. METHODS Various techniques were employed to characterize the nanoparticles and the hydrogel. Cell uptake, apoptosis, and proliferation of 4T1 breast cancer cells were evaluated by flow cytometry and Resazurin assay, respectively. The Balb/C mice model of breast cancer, which received the therapeutical nanoplatforms subcutaneously near the tumoral region was used to examine tumor size and lung metastases. RESULTS The results revealed that the nanoparticles had a suitable loading capacity and high cellular uptake. The drug release was pH-sensitive and synergistic. By incorporating nanoparticles into the hydrogel, the cell death rate and apoptosis of 4T1 breast cancer cells increased significantly, due to the synergistic effects of co-delivered drugs. Additionally, the combination treatment groups showed a significant reduction in tumor size and lung metastasis compared to the monotherapy and control groups. CONCLUSIONS These findings underscore the potential of the nanocomposite used to develop a novel co-delivery system to enhance therapeutic outcomes, reduce side effects, and provide a promising new strategy for future cancer treatments.
Collapse
Affiliation(s)
- Pooria Mohammadi Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Amini Chermahini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Fatemeh Taheri
- Department of Pathology, Hematology & Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Deris
- Department of Epidemiology and Biostatistics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Raziyeh Jafari
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Niloufar Amiri
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ebrahim Soleiman Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
17
|
Zhang C, Xu S, Yin C, Hu S, Liu P. The role of the mTOR pathway in breast cancer stem cells (BCSCs): mechanisms and therapeutic potentials. Stem Cell Res Ther 2025; 16:156. [PMID: 40158191 PMCID: PMC11954216 DOI: 10.1186/s13287-025-04218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/11/2025] [Indexed: 04/01/2025] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer globally, exerting a profound impact on women's health and healthcare systems. Central to its pathogenesis and therapeutic resistance are breast cancer stem cells (BCSCs), which possess unique properties such as self-renewal, differentiation, and resistance to conventional therapies, contributing to tumor initiation, metastasis, and recurrence. This comprehensive review elucidates the pivotal role of the mechanistic target of rapamycin (mTOR) pathway in regulating BCSCs and its implications for breast cancer progression and treatment resistance. We explore the cellular mechanisms by which mTOR influences metastasis, metabolism, autophagy, and ferroptosis in BCSCs, highlighting its contribution to epithelial-to-mesenchymal transition (EMT), metabolic reprogramming, and survival under therapeutic stress. On a molecular level, mTOR interacts with key signaling pathways including PI3K/Akt, Notch, IGF-1R, AMPK, and TGF-β, as well as regulatory proteins and non-coding RNAs, orchestrating a complex network that sustains BCSC properties and mediates chemoresistance and radioresistance. The review further examines various therapeutic strategies targeting the mTOR pathway in BCSCs, encompassing selective PI3K/Akt/mTOR inhibitors, monoclonal antibodies, natural products, and innovative approaches such as nanoparticle-mediated drug delivery. Clinical trials investigating mTOR inhibitors like sirolimus and combination therapies with agents such as everolimus and trastuzumab are discussed, underscoring their potential in eradicating BCSCs and improving patient outcomes. Additionally, natural compounds and repurposed drugs offer promising adjunctive therapies by modulating mTOR activity and targeting BCSC-specific vulnerabilities. In conclusion, targeting the mTOR pathway presents a viable and promising avenue for enhancing breast cancer treatment efficacy by effectively eliminating BCSCs, reducing tumor recurrence, and improving overall patient survival. Continued research and clinical validation of mTOR-targeted therapies are essential to translate these insights into effective clinical interventions, ultimately advancing personalized cancer management and therapeutic outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shu Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Zhang D, Chu Y, Li M, Du L. Isogarcinol Reduces MARS Levels and Deactivates the PI3K/AKT Pathway to Suppress the Malignant Properties of Breast Cancer Cells. Cell Biochem Biophys 2025:10.1007/s12013-025-01727-0. [PMID: 40120049 DOI: 10.1007/s12013-025-01727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Natural products and their extracts are increasingly considered valuable sources for small-molecule anti-cancer drugs. This study investigates the biological impacts of isogarcinol (ISO) on breast cancer (BC) cells and delves into the underlying mechanisms. In vitro, treatment of ISO at 13 μM substantially reduced the viability, proliferation, and mobility of BC. In vivo, ISO treatment at 5, 10, and 15 mg/kg reduced the tumorigenic activity of MDA-MB-231 cells and decreased the levels of Ki-67 and CD31. ISO exerted tumor suppressive effects by reducing the protein level of methionyl-tRNA synthetase (MARS), as the MARS restoration reversed the trends induced by ISO. Phosphorylation levels of phosphatidyl inositol 3 (PI3K) and protein kinase B (AKT) in BC cells were reduced by ISO but restored by MARS. In the presence of MARS upregulation, further treatment of Alpelisib, a suppressor of the PI3K/AKT pathway, suppressed the malignant properties of BC cells. Collectively, these results demonstrate that ISO curbs the malignant behavior of BC cells by reducing the MARS protein level and deactivating the PI3K/AKT pathway. ISO may be considered a promising regimen for the management of BC.
Collapse
Affiliation(s)
- Dechao Zhang
- Pharmacy Intravenous Admixture Services, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, P.R. China
| | - Yunhai Chu
- Pharmacy Intravenous Admixture Services, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, P.R. China
| | - Meng Li
- Traditional Chinese Medicine Data Research Center, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, P.R. China
| | - Lin Du
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, P.R. China.
| |
Collapse
|
19
|
Rana JN, Mumtaz S. Prunin: An Emerging Anticancer Flavonoid. Int J Mol Sci 2025; 26:2678. [PMID: 40141319 PMCID: PMC11942023 DOI: 10.3390/ijms26062678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Despite the substantial advances in cancer therapies, developing safe and effective treatment methodologies is critical. Natural (plant-derived compounds), such as flavonoids, might be crucial in developing a safe treatment methodology without toxicity toward healthy tissues. Prunin is a flavonoid with the potential to be used in biomedical applications. Prunin has yet to undergo thorough scientific research, and its precise molecular mechanisms of action remain largely unexplored. This review summarizes the therapeutic potential of prunin for the first time, focusing on its underlying mechanisms as an anticancer compound. Prunin has gained significant attention due to its antioxidant, anti-inflammatory, and anticancer effects. This review aims to unlock how prunin functions at the molecular level to exert its anticancer effects, primarily modulating key cellular pathways. Furthermore, we have discussed the prunin's potential as an adjunctive therapy with conventional treatments, highlighting its ability to strengthen treatment responses while decreasing drug resistance. Moreover, the discussion probes into innovative delivery methods, particularly nanoformulations, that might address prunin's bioavailability, solubility, and stability limitations and optimize its therapeutic application. By providing a comprehensive analysis of prunin's properties, this review aims to stimulate further exploration of using prunin as an anticancer agent, thereby progressing the development of targeted, selective, safe, and effective therapeutic methods.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sohail Mumtaz
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
20
|
Lee WJ, Jo JH, Uwamahoro C, Jang SI, Jung EJ, Bae JW, Moon J, Kim DH, Yi JK, Ha JJ, Oh DY, Kwon WS. Role of PI3K/AKT signaling pathway during capacitation. Theriogenology 2025; 235:94-102. [PMID: 39799846 DOI: 10.1016/j.theriogenology.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Spermatozoa must undergo a complex maturation process within the female genital tract known as capacitation. This process entails the phosphorylation or dephosphorylation of various proteins, and multiple signaling pathways are recognized to play a role. The present study aims to identify alterations in the expression of proteins related to the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway and assess sperm functions during capacitation. Mouse spermatozoa were incubated in a medium supplemented with bovine serum albumin to induce capacitation. Subsequently, we evaluated sperm motility, cell viability, capacitation status, and acrosome reaction. Consequently, we observed a significant increase in several kinematic parameters. Additionally, the capacitation status and acrosome reaction exhibited a time-dependent manner. Furthermore, we confirmed a significant increase in the phosphorylation of PI3K, PDK1, and p-AKT (Thr308), along with activation of PKA and tyrosine phosphorylation. These alterations in protein expression were found to correlate with capacitation status, acrosome reaction, and various kinematic parameters. Therefore, our findings show that the phosphorylation of PKA and PI3K/AKT pathway-related proteins during capacitation may plays a crucial role in regulating sperm function. These findings contribute to a better understanding of the molecular mechanisms and interactions of the PI3K/AKT signaling pathway in the capacitation process.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Jae-Hwan Jo
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Claudine Uwamahoro
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Joonho Moon
- Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dae-Hyun Kim
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jun Koo Yi
- School of Animal Life Convergence Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jae Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju, 36052, Republic of Korea
| | - Dong Yep Oh
- Gyeongbuk Livestock Research Institute, Yeongju, 36052, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
21
|
Singh G, Rohit, Kumar P, Aran KR. Targeting EGFR and PI3K/mTOR pathways in glioblastoma: innovative therapeutic approaches. Med Oncol 2025; 42:97. [PMID: 40064710 DOI: 10.1007/s12032-025-02652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Glioblastoma (GBM) stands as the most aggressive form of primary brain cancer in adults, characterized by its rapid growth, invasive nature, and a robust propensity to induce angiogenesis, forming new blood vessels to sustain its expansion. GBM arises from astrocytes, star-shaped glial cells, and despite significant progress in understanding its molecular mechanisms, its prognosis remains grim. It is frequently associated with mutations or overexpression of the epidermal growth factor receptor (EGFR), which initiates several downstream signaling pathways. Dysregulation of key signaling pathways, such as EGFR/PTEN/AKT/mTOR, drives tumorigenesis, promotes metastasis and leads to treatment resistance. The modest survival benefits of the conventional treatment of surgical resection followed by radiation and chemotherapy underscore the pressing need for innovative therapeutic approaches. In most the tumor, overexpression of EGFR is found associated with GBM and mutations in its several variants are important for promoting ongoing mitogenic signaling and tumor growth. This receptor inhibits apoptosis and promotes cell survival and proliferation by activating downstream PI3K/AKT/mTOR pathways. This route is typically blocked by PTEN, a crucial tumor suppressor, however, GBM frequently results in abnormalities in this protein. The aim of this review is to explore the molecular foundations of GBM, with a focus on the EGFR and PI3K/mTOR pathways and their impact on tumor behavior. Additionally, this review highlights EGFR and PI3K/AKT/mTOR inhibitors currently in clinical and preclinical trials, addressing treatment resistance, challenges, and future directions.
Collapse
Affiliation(s)
- Gursimran Singh
- Department of Pharmacy Practice, ISF College of Pharmacy (an Autonomous College), Moga, Punjab, 142001, India
| | - Rohit
- Research Scholar, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, 144603, India
| | - Pankaj Kumar
- Department of Pharmacology, Himachal Institute of Pharmaceutical Education and Research (HIPER), Tehsil-Nadaun, Hamirpur, Himachal Pradesh, 177033, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy (an Autonomous College), Moga, Punjab, 142001, India.
| |
Collapse
|
22
|
Song J, Shen Y, Wu Z, Huang L, Deng Y, Yu W, Wang X, Zhang X. Quantitative Proteome and Phosphoproteome Profiling across Three Cell Lines Revealed Potential Proteins Relevant to Nasopharyngeal Carcinoma Metastasis. J Proteome Res 2025; 24:1356-1372. [PMID: 39970938 DOI: 10.1021/acs.jproteome.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Despite the substantial reduction in the mortality rates of nasopharyngeal carcinoma (NPC), metastasis remains the primary cause of death in NPC cases. To explore metastasis-related proteins, we conducted proteomic and phosphoproteomic analyses of three NPC cell lines: SUNE1 and its subclones, 5-8F (high metastatic potential) and 6-10B (low metastatic potential). Using TMT-based quantification, we identified 1231, 1524, and 166 differentially regulated proteins (DRPs), as well as 177, 270, and 20 differentially regulated phosphoproteins (DRpPs) in 5-8F/SUNE1, 6-10B/SUNE1 and 5-8F/6-10B, respectively. These were enriched in cancer metastasis-related pathways, including cell migration and PPAR and PI3K pathways. Notably, 5-8F and 6-10B showed greater proteomic and phosphoproteomic similarity. To identify key proteins involved in NPC metastasis, we focused on the top 10 DRPs in 5-8F/6-10B. Knockdown experiments revealed that eight of these proteins, CRABP2, DNAJC15, NACAD, MYL9, DPYSL3, MAOA, MCAM, and S100A2, significantly influenced cell migration or invasion, with CRABP2, NACAD, and DPYSL3 dramatically enhancing these processes. Notably, DNAJC15 and NACAD are identified for the first time as novel metastasis-related proteins. Our findings demonstrate the effectiveness of this approach in identifying NPC metastasis biomarker candidates and offer new insights into underlying metastasis mechanisms, thus laying the groundwork for future research endeavors.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yi Shen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yun Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
23
|
Sabit H, Attia MG, Mohamed N, Taha PS, Ahmed N, Osama S, Abdel-Ghany S. Beyond traditional biopsies: the emerging role of ctDNA and MRD on breast cancer diagnosis and treatment. Discov Oncol 2025; 16:271. [PMID: 40050490 PMCID: PMC11885725 DOI: 10.1007/s12672-025-01940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Breast cancer management has traditionally relied on tissue biopsies and imaging, which offer limited insights into the disease. However, the discovery of circulating tumor DNA (ctDNA) and minimal residual disease (MRD) detection has revolutionized our approach to breast cancer. ctDNA, which is fragmented tumor DNA found in the bloodstream, provides a minimally invasive way to understand the tumor's genomic landscape, revealing heterogeneity and critical mutations that biopsies may miss. MRD, which indicates cancer cells that remain after treatment, can now be detected using ctDNA and other advanced methods, improving our ability to predict disease recurrence. This allows for personalized adjuvant therapies based on individual MRD levels, avoiding unnecessary treatments for patients with low MRD. This review discusses how ctDNA and MRD represent a paradigm shift towards personalized, genomically guided cancer care, which has the potential to significantly improve patient outcomes in breast cancer.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
| | - Manar G Attia
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Nouran Mohamed
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Pancé S Taha
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Nehal Ahmed
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Salma Osama
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| |
Collapse
|
24
|
Zhu D, Hu J, Tan R, Lin X, Wang R, Lu J, Yu B, Xie Y, Ni X, Liang C, Dang Y, Jiang W. Advanced RPL19-TRAP KI-seq method reveals mechanism of action of bioactive compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:16. [PMID: 40042546 PMCID: PMC11882491 DOI: 10.1007/s13659-025-00500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Natural products play a crucial role in new drug development, but their druggability is often limited by uncertain molecular targets and insufficient research on mechanisms of action. In this study, we developed a new RPL19-TRAPKI-seq method, combining CRISPR/Cas9 and TRAP technologies, to investigate these mechanisms. We identified and validated seven ribosomal large subunit surface proteins suitable for TRAP, selecting RPL19 for its high enrichment. We successfully established a stable cell line expressing EGFP-RPL19 using CRISPR knock-in and verified its efficiency and specificity in enriching ribosomes and translating mRNA. Integrated with next-generation sequencing, this method allows precise detection of translating mRNA. We validated RPL19-TRAPKI-seq by investigating rapamycin, an mTOR inhibitor, yielding results consistent with previous reports. This optimized TRAP technology provides an accurate representation of translating mRNA, closely reflecting protein expression levels. Furthermore, we investigated SBF-1, a 23-oxa-analog of natural saponin OSW-1 with significant anti-tumor activity but an unclear mechanism. Using RPL19-TRAPKI-seq, we found that SBF-1 exerts its cytotoxic effects on tumor cells by disturbing cellular oxidative phosphorylation. In conclusion, our method has been proven to be a promising tool that can reveal the mechanisms of small molecules with greater accuracy, setting the stage for future exploration of small molecules and advancing the fields of pharmacology and therapeutic development.
Collapse
Affiliation(s)
- Di Zhu
- Laboratory of Tumor Immunology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Renke Tan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaofeng Lin
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ruina Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Junyan Lu
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xiaohua Ni
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Chunmin Liang
- Laboratory of Tumor Immunology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Zhang Y, Wang B, Chen J, Li T. Role of exosomal miRNAs and macrophage polarization in gastric cancer: A novel therapeutic strategy. Eur J Pharmacol 2025; 990:177268. [PMID: 39805486 DOI: 10.1016/j.ejphar.2025.177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication. In recent years, exosomal miRNAs have gained attention for their role in various cancers. These exosomal miRNAs can impact GC development and progression by targeting specific genes or influencing signaling pathways and cytokines involved in Angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and immune regulation. They show great potential in terms of diagnosis, prognosis, and treatment of GC. Notably, the gastrointestinal tract has the largest number of macrophages, which play a significant role in GC progression. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and can influence macrophage programming through various mediators, including macrophage polarization. Macrophage polarization is involved in inflammatory responses and significantly impacts the GC process.
Collapse
Affiliation(s)
- Yun Zhang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; General Hospital of Ningxia Medical University, Ningxia, China
| | - Baozhen Wang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; General Hospital of Ningxia Medical University, Ningxia, China
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| | - Tao Li
- Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Ningxia, China.
| |
Collapse
|
26
|
Yao L, Gu C, Ge R, Zhang X, Meng X, Wang L, Peng D, Li G. Acetylated Dendrobium huoshanense polysaccharide: a novel inducer of apoptosis in colon cancer cells via Fas-FasL pathway activation and metabolic reprogramming. Front Oncol 2025; 15:1529868. [PMID: 40104499 PMCID: PMC11913854 DOI: 10.3389/fonc.2025.1529868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction Not all polysaccharides function as antitumor drugs, nor do they universally possess the same advantages regarding safety and biocompatibility. Those polysaccharides that are effective antitumor agents typically demonstrate superior safety profiles and biocompatibility compared to synthetic anticancer drugs, which can exhibit high toxicity and harmful side effects. Dendrobium huoshanense polysaccharide (DHP) has been recognized for its potential bioactive properties, particularly in anti-tumor treatment. This study investigates the effects of DHP on the proliferation and apoptosis of HCT116 colon cancer cells. Methods DHP was extracted according to previously published experimental methods. The inhibitory effects of DHP were evaluated using IEC6, Caco-2, and HCT116 cell lines, with changes in cell morphology observed via transmission electron microscopy. After establishing the conditions for DHP administration, flow cytometry was employed to assess its effects on apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential of HCT116 cells. Additionally, immunoprecipitation, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and biomarker detection were utilized to investigate the mechanisms underlying DHP's inhibition of HCT116 cells and its impact on metabolic reprogramming. Results In the present study, we observed that DHP treatment at 600 μg/ml for 24 h reduced HCT116 cell viability to 54.87%. In contrast, the inhibitory effect of DHP on the viability of IEC6 and Caco-2 cells was relatively mild. The specific mechanism involves DHP activating the mitochondrial apoptotic pathway leading to the downregulation of key metabolic intermediates and enzymes such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and ST6Gal-I. By inhibiting ST6Gal-I activity, DHP activates the Fas/FasL signaling pathway. Additionally, DHP-induced ROS production effectively triggers apoptosis in HCT116 cells. Conclusion Our study demonstrates that DHP effectively inhibits the proliferation and induces apoptosis in HCT116 colon cancer cells through the activation of the Fas-FasL signaling pathway and metabolic reprogramming. The selective inhibitory effect of DHP on HCT116 cells, the activation of both death receptor and mitochondrial apoptotic pathways, and the modulation of metabolic reprogramming provide novel insights into the potential therapeutic strategies for colon cancer.
Collapse
Affiliation(s)
- Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Chen Gu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Ruipeng Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| | - Xinqian Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui Province Key Laboratory for Research and Development of Research and Development of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui Province Key Laboratory for Research and Development of Research and Development of Chinese Medicine, Hefei, China
| | - Guozhuan Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
27
|
Li L, Hu Q, Chen J, Zhang X, Wang J, Luo Y. Polyphyllin I inhibits endometriosis in vitro by inducing apoptosis and autophagy via the inactivation of AKT/mTOR signalling pathway. Nat Prod Res 2025; 39:1095-1100. [PMID: 38099370 DOI: 10.1080/14786419.2023.2294113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 03/04/2025]
Abstract
Previous research has indicated that Polyphyllin I (PPI) possesses potent anticancer properties. However, its impact on endometriosis remains unexplored. This study aims to investigate the inhibitory effects of PPI on ectopic endometrial stromal cells (EESCs). The CCK-8 and flow cytometry results respectively showed that the cell viability of EESCs decreased and the number of apoptotic cells increased in a dosage dependent of PPI. Wound healing and transwell assays demonstrated a notable reduction in cell motility and migration ability in the PPI group. Moreover, the Western blot analysis revealed a decrease in p62 levels and an increase in LC3-II expression following PPI administration. Additionally, the protein levels of p-Akt and p-mTOR were observed to decrease with increasing concentrations of PPI, indicating the potential of PPI to induce autophagy in EESCs through modulation of the Akt/mTOR signalling pathway. Consequently, PPI holds promise as a targeted therapeutic agent for the management of endometriosis.
Collapse
Affiliation(s)
- Liping Li
- Prenatal Diagnosis Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Qiwen Hu
- School of Clinical Medicine, Nanchang University, Nanchang, Jiangxi, China
- Radiology Department, Medical Image Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jin Chen
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Xiumei Zhang
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Jinhua Wang
- Radiology Department, Medical Image Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
28
|
Li X, Chen Y, Li X, Yang X, Zhou L, Cheng Y, Hou H, Yang D, Gong Y, Xiao H, Wang J. Weight Management for Fertility-Preservation Therapy in Endometrial Cancer: Opportunities and Challenges. Curr Oncol Rep 2025; 27:195-210. [PMID: 39913071 DOI: 10.1007/s11912-025-01635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE OF REVIEW Obesity is increasingly recognized as a significant factor impacting the outcomes of fertility-preserving therapies for endometrial cancer (EC). This review explores the effects of glycolipid metabolism on EC and its relationship with body weight. We will examine how excess body weight influences the effectiveness of fertility-preserving treatments and discuss potential mechanisms for effective weight management. Additionally, the review highlights the importance of comprehensive weight management as an adjunct strategy to enhance the efficacy of fertility-preserving interventions, providing insights into how to integrate metabolic health into clinical treatment protocols. RECENT FINDINGS Weight management can modify the tumor microenvironment by depriving the tumor of nutrients, whereas exercise can enhance immunity, potentially leading to tumor cell death. In addition, progesterone therapy may impede the proliferation of EC cells. Comprehensive weight management can serve as an essential adjuvant treatment for patients undergoing fertility-preserving therapies for EC. In this review, we highlight that comprehensive weight management can serve as a crucial adjuvant treatment for patients undergoing fertility-preserving therapies for endometrial cancer. Targeting glycolipid metabolism and addressing adiposity can improve hormonal balance, reduce inflammation, and enhance fertility outcomes. Further research is necessary to establish specific protocols and evaluate the effectiveness of these strategies in clinical practice.
Collapse
Affiliation(s)
- XiaoDan Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - YiQian Chen
- Beijing Health Vocational College, Beijing, 101101, China
| | - XiaoWei Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Yuan Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - HongYi Hou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Dandan Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Yuanyuan Gong
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Haihua Xiao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
29
|
Wang H, Syed AA, Krijgsveld J, Sigismondo G. Isolation of Proteins on Chromatin Reveals Signaling Pathway-Dependent Alterations in the DNA-Bound Proteome. Mol Cell Proteomics 2025; 24:100908. [PMID: 39842777 PMCID: PMC11889358 DOI: 10.1016/j.mcpro.2025.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Signaling pathways often convergence on transcription factors and other DNA-binding proteins that regulate chromatin structure and gene expression, thereby governing a broad range of essential cellular functions. However, the repertoire of DNA-binding proteins is incompletely understood even for the best-characterized pathways. Here, we optimized a strategy for the isolation of Proteins on Chromatin (iPOC) exploiting tagged nucleoside analogs to label the DNA and capture associated proteins, thus enabling the comprehensive, sensitive, and unbiased characterization of the DNA-bound proteome. We then applied iPOC to investigate chromatome changes upon perturbation of the cancer-relevant PI3K-AKT-mTOR pathway. Our results show distinct dynamics of the DNA-bound proteome upon selective inhibition of PI3K, AKT, or mTOR, and we provide evidence how this signaling cascade regulates the DNA-bound status of SUZ12, thereby modulating H3K27me3 levels. Collectively, iPOC is a powerful approach to study the composition of the DNA-bound proteome operating downstream of signaling cascades, thereby both expanding our knowledge of the mechanism of action of the pathway and unveiling novel chromatin modulators that can potentially be targeted pharmacologically.
Collapse
Affiliation(s)
- Huiyu Wang
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Azmal Ali Syed
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
30
|
Pandey P, Verma M, Sanghvi G, R R, Joshi KK, V K, Ray S, Ramniwas S, Singh A, Lakhanpal S, Khan F. Plant-derived terpenoids modulating cancer cell metabolism and cross-linked signaling pathways: an updated reviews. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03937-y. [PMID: 40019530 DOI: 10.1007/s00210-025-03937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Cancer is a critical health issue that remains a predominant cause of mortality globally. It is a complex disease that may effectively regulate many signaling pathways and modify the metabolism of the body to evade the immune system. Understanding neoplastic metabolic reprogramming as a hallmark of cancer has facilitated the creation of innovative metabolism-targeted treatment strategies. Various signaling cascades, such as the PI3K/Akt/mTOR, ERK, JAK/STAT, MAPK/p38, NF-κB/Nrf2, and apoptotic pathways, are commonly involved in this process. It is now widely recognized that an inadequate response and the subsequent development of resistance are frequently caused by the highly selective blockage of these pathways in tumor cells. Consequently, to enhance the overall efficacy of anticancer agents, it is crucial to employ multi-target compounds that can concurrently inhibit multiple vital processes within tumor cells. The utilization of plant-derived bioactive compounds for this purpose is particularly promising, owing to their varied structures and numerous targets. Among these bioactive compounds, terpenoids have exhibited significant anticancer efficacy by targeting various altered signaling pathways. Thus, this review examines the terpenoid class of plant-derived compounds exhibiting potential anticancer activity, including their impact on metabolism and interconnected deregulated signaling pathways in human tumor cells. Accordingly, current research will help in the rational design and critical evaluation of innovative anticancer therapeutics utilizing plant-derived terpenoids for the modulation of cross-linked signaling pathways of cancer metabolism.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal, Pradesh, 174103, India
| | - Meenakshi Verma
- University Centre of Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Seema Ramniwas
- University Centre of Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Ajay Singh
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
31
|
Liu W, Xia K, Huang X, Wei Z, Wei Z, Wang X, Xiong C, Guo W. HMGCL activates autophagy in osteosarcoma through β-HB mediated inhibition of the PI3K/AKT/mTOR signaling pathway. J Transl Med 2025; 23:219. [PMID: 39985081 PMCID: PMC11846287 DOI: 10.1186/s12967-025-06227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND 3-hydroxy-3-methylglutaryl-coenzymOHBe A(HMG-CoA) lyase (HMGCL) catalyzes the cleavage of HMG-CoA into acetyl-CoA and acetoacetic acid and serves as a rate-limiting enzyme in the metabolism of ketone bodies. While HMGCL is involved in various biological processes, its specific role in osteosarcoma remains unclear. METHODS Using data from a public database of osteosarcoma patients, we investigated the expression and prognostic value of HMGCL. The effects of HMGCL on the proliferation, migration, and invasion of osteosarcoma cells were assessed using CCK-8 assays, wound healing tests, and transwell invasion assays. We explored and validated the specific molecular mechanisms by which HMGCL influences osteosarcoma through transcriptome sequencing. Finally, we established a subcutaneous tumor formation model in nude mice to investigate the function of HMGCL in vivo. RESULTS The expression of HMGCL is downregulated in osteosarcoma and correlates with the prognosis of osteosarcoma patients. Overexpression of HMGCL can inhibit the proliferation, migration, and invasion of osteosarcoma cells, as well as tumor growth in vivo. Through our investigation of the underlying mechanism, we found that HMGCL may inhibit the activation of the PI3K/AKT/mTOR signaling pathway via its product, β-HB. This inhibition promotes the phosphorylation of ULK1, thereby facilitating autophagy in osteosarcoma cells and enhancing the malignancy of the disease. CONCLUSION HMGCL inhibits the activation of the PI3K/AKT/mTOR signaling pathway mediated by β-HB, thereby reducing the proliferation, migration, and invasion of osteosarcoma cells while promoting autophagy. HMGCL may represent a new target for the treatment of osteosarcoma, offering new hope for patients with this disease.
Collapse
Affiliation(s)
- Wenda Liu
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Kezhou Xia
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Xinghan Huang
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Zhun Wei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Zicheng Wei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Xingyu Wang
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Chen Xiong
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Weichun Guo
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
32
|
Sokal A, Mruczek P, Niedoba M, Dewalska A, Stocerz K, Kadela-Tomanek M. Anticancer Activity of Ether Derivatives of Chrysin. Molecules 2025; 30:960. [PMID: 40005270 PMCID: PMC11857933 DOI: 10.3390/molecules30040960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Chrysin, a naturally occurring flavonoid, exhibits a broad spectrum of biological activities, including showing anticancer properties. However, its clinical application is limited by poor bioavailability and low solubility. The introduction of an amine, amide, ester, or alkoxy group to a flavone skeleton influences the biological activity. This review also discusses hybrid compounds, such as the chrysin-porphyrin hybrid, which are characterized by higher biological activity and better bioavailability properties than single molecules. This review concentrates on the anticancer activity of chrysin and its derivatives against the most popular cancers, such as breast, lung, prostate, and gastrointestinal tumors.
Collapse
Affiliation(s)
- Arkadiusz Sokal
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (A.S.); (P.M.)
- Doctoral School, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.); (A.D.); (K.S.)
| | - Patryk Mruczek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (A.S.); (P.M.)
| | - Mateusz Niedoba
- Doctoral School, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.); (A.D.); (K.S.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
| | - Agnieszka Dewalska
- Doctoral School, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.); (A.D.); (K.S.)
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Str., 41-800 Zabrze, Poland
| | - Klaudia Stocerz
- Doctoral School, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.); (A.D.); (K.S.)
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 10 Jedności Str., 41-200 Sosnowiec, Poland
| | - Monika Kadela-Tomanek
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
33
|
Qiang M, Chen Z, Liu H, Dong J, Gong K, Zhang X, Huo P, Zhu J, Shao Y, Ma J, Zhang B, Liu W, Tang M. Targeting the PI3K/AKT/mTOR pathway in lung cancer: mechanisms and therapeutic targeting. Front Pharmacol 2025; 16:1516583. [PMID: 40041495 PMCID: PMC11877449 DOI: 10.3389/fphar.2025.1516583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Owing to its high mortality rate, lung cancer (LC) remains the most common cancer worldwide, with the highest malignancy diagnosis rate. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling (PAM) pathway is a critical intracellular pathway involved in various cellular functions and regulates numerous cellular processes, including growth, survival, proliferation, metabolism, apoptosis, invasion, and angiogenesis. This review aims to highlight preclinical and clinical studies focusing on the PAM signaling pathway in LC and underscore the potential of natural products targeting it. Additionally, this review synthesizes the existing literature and discusses combination therapy and future directions for LC treatment while acknowledging the ongoing challenges in the field. Continuous development of novel therapeutic agents, technologies, and precision medicine offers an increasingly optimistic outlook for the treatment of LC.
Collapse
Affiliation(s)
- Min Qiang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Zhe Chen
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hongyang Liu
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Junxue Dong
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xinjun Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Peng Huo
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jingjun Zhu
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yifeng Shao
- Department of General Surgery, Capital Institute of Pediatrics’ Children’s Hospital, Beijing, China
| | - Jinazun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bowei Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Wang M, He L, Yan P. Integrated network pharmacology, molecular docking and experimental validation to investigate the mechanism of tannic acid in nasopharyngeal cancer. Sci Rep 2025; 15:5645. [PMID: 39955364 PMCID: PMC11830035 DOI: 10.1038/s41598-025-90211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Tannic acid (TA) is the primary bioactive component in the gallnut (Galla chinensis) and has exhibited the anticancer effects. However, the mechanism of its anti-cancer activity in nasopharyngeal carcinoma (NPC) remains unclear. This research aims to explore the underlying mechanism of TA in the treatment of nasopharyngeal cancer using network pharmacology, molecular docking and experimental validation. Firstly, the targets of TA and NPC were predicted and collected through databases, and the intersection targets were identified. Subsequently, protein-protein interaction (PPI) network analysis, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes Genomes (KEGG) pathway enrichment analysis, molecular docking and molecular dynamics (MD) simulation were conducted to uncover the potential mechanisms of TA in treatment of NPC. Finally, in vitro experiments were utilized to verify the mechanism of TA with anticancer activity in NPC. The results of network pharmacology revealed 42 intersection targets between NPC-related targets and TA-related targets. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling was identified as the main target pathway of TA against NPC. Additionally, molecular docking and MD simulation confirmed the closely binding affinities of TA with AKT1. Furthermore, the results of in vitro experiments demonstrated that TA exerts anticancer activity against NPC by targeting the PI3K/AKT signaling pathway, leading to the suppression of cell proliferation. TA is a promising therapeutic candidate for NPC through PI3K/AKT signaling pathway. These results provide insights into the clinical application of TA, particularly when considered in combination with other therapeutic modalities.
Collapse
Affiliation(s)
- Meiwei Wang
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, Hunan, China
| | - Longmei He
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, Hunan, China
| | - Pan Yan
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, Hunan, China.
| |
Collapse
|
35
|
Shahrokhi H, Asili J, Tayarani-Najaran Z, Boozari M. Signaling pathways behind the biological effects of tanshinone IIA for the prevention of cancer and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03857-x. [PMID: 39937254 DOI: 10.1007/s00210-025-03857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Tanshinone IIA (Tan IIA) is a well-known fat-soluble diterpenoid found in Salvia miltiorrhiza, recognized for its various biological effects. The molecular signaling pathways of Tan IIA have been investigated in different diseases, including the anti-inflammatory, hepatoprotective, renoprotective, neuroprotective effects, and fibrosis prevention. This article provides a brief overview of the signaling pathways related to anti-cancer and cardioprotective effects of Tan IIA. It shows that Tan IIAs anti-cancer ability has good expectation through multiplicity mechanisms affecting various aspects' tumor biology. The major pathways involved in its anti-cancer effects include inhibition of PI3/Akt, MAPK, and p53/p21 signaling which leads to enhancement of immune responses and increased radiation sensitivity. Some essential pathways responsible for cardioprotective effects induced by Tan IIA are PI3/AKT activation, MAPK, and SIRT1 promoting protection against ischemia/reperfusion injury in myocardial cells as well as inhibiting pathological remodeling processes. Finally, the article underscores the complex and specific signaling pathways influenced by Tan IIA. The PI3/Akt and MAPK pathways play critical roles in the anti-cancer and cardioprotective effects of Tan IIA. Particularly, Tan IIA suppresses the proliferation of malignancies in cancerous cells but stimulates protective mechanisms in normal cardiovascular cells. These findings highlight the importance of investigating molecular signaling pathways in evaluating the therapeutic potential of natural products. Studying about signaling pathways is vital in understanding the therapeutic aspects of Tan IIA and its derivatives as anti-cancer and cardio-protective agents. Further research is necessary to understand these complex mechanisms.
Collapse
Affiliation(s)
- Homa Shahrokhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Wu L, Katsube T, Li X, Wang B, Xie Y. Unveiling the impact of CD133 on cell cycle regulation in radio- and chemo-resistance of cancer stem cells. Front Public Health 2025; 13:1509675. [PMID: 39980929 PMCID: PMC11839412 DOI: 10.3389/fpubh.2025.1509675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
The adaptation of malignancy to therapy presents a significant challenge in cancer treatment. The cell cycle plays a crucial role in regulating the evolution of radio- and chemo-resistance in tumor cells. Cancer stem cells (CSCs) are the primary source of therapy resistance, with CD133 being one of the most recognized and valuable cell surface markers of CSCs. Evidence increasingly suggests that CD133 is associated with cancer resistance. The current understanding of the molecular biological function of CD133 is limited, leading to ongoing debates about its role in cancer biology. In this review, we explore recent research and emerging trends related to CD133 through extensive literature and content analysis. It was summarized that new insights into the relationships of CD133 and cell cycle signaling pathways in resistant CSCs. The aim of this review is to provide a foundational understanding of how these signaling pathways and their interactions impact cancer prognosis and inform treatment strategies.
Collapse
Affiliation(s)
- Luyao Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Takanori Katsube
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Xiaofei Li
- Gansu Nuclear and Radiation Safety Center, Lanzhou, China
| | - Bing Wang
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
37
|
Zeng C, Peng Z, Huang S, Xu Z, Peng Z, Wu Z, Lei J, Zhang X, Qin J, Ye K, Li B, Zhao Z, Pan Y, Yin M, Lu X. Metal-organic framework-based nanoplatforms for synergistic anti-atherosclerosis therapy by regulating the PI3K/AKT/MSR1 pathway in macrophages. NANOSCALE 2025; 17:3071-3085. [PMID: 39704073 DOI: 10.1039/d4nr04058a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Atherosclerosis is the main pathogenic factor of various cardiovascular diseases. During the pathogenesis of atherosclerosis, macrophages play a major role, mainly by secreting pro-inflammatory cytokines and taking in lipids to form foam cells. Thiamine pyrophosphate (TPP) is an antagonist of the P2Y6 receptor, which is overexpressed on macrophages during atherosclerosis and facilitates the lipid phagocytosis of macrophages. However, the excessive accumulation of TPP may interfere with some vital metabolic processes like the tricarboxylic acid cycle, oxidative phosphorylation and the pentose phosphate pathway. Herein, we designed and constructed a nanoparticle ZIF-8@TPP for the treatment of atherosclerosis. The as-established ZIF-8@TPP nanoplatform exhibited specific cytotoxicity towards macrophages in vitro. Meanwhile, histological analysis confirmed the excellent therapeutic efficacy of ZIF-8@TPP in vivo. Mechanistic studies indicated that ZIF-8@TPP potentially lowered lipid phagocytosis and lipid metabolism of macrophages via the PI3K/AKT/MSR1 pathway. This study also demonstrated that the anti-atherosclerotic effect of TPP was enhanced after combination with a prototypical metal-organic framework (MOF), ZIF-8. This synergistic controlled-release drug delivery system may provide a novel idea for anti-atherosclerosis therapy by combining reagents that can inhibit lipid phagocytosis of macrophages with MOFs.
Collapse
Affiliation(s)
- Chenlin Zeng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaoxi Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jiahao Lei
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xing Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Minyi Yin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Vascular Center of Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
38
|
Li C, Yuan Y, Jia Y, Zhou Q, Wang Q, Jiang X. Cellular senescence: from homeostasis to pathological implications and therapeutic strategies. Front Immunol 2025; 16:1534263. [PMID: 39963130 PMCID: PMC11830604 DOI: 10.3389/fimmu.2025.1534263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cellular aging is a multifactorial and intricately regulated physiological process with profound implications. The interaction between cellular senescence and cancer is complex and multifaceted, senescence can both promote and inhibit tumor progression through various mechanisms. M6A methylation modification regulates the aging process of cells and tissues by modulating senescence-related genes. In this review, we comprehensively discuss the characteristics of cellular senescence, the signaling pathways regulating senescence, the biomarkers of senescence, and the mechanisms of anti-senescence drugs. Notably, this review also delves into the complex interactions between senescence and cancer, emphasizing the dual role of the senescent microenvironment in tumor initiation, progression, and treatment. Finally, we thoroughly explore the function and mechanism of m6A methylation modification in cellular senescence, revealing its critical role in regulating gene expression and maintaining cellular homeostasis. In conclusion, this review provides a comprehensive perspective on the molecular mechanisms and biological significance of cellular senescence and offers new insights for the development of anti-senescence strategies.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Yixiao Yuan
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - YingDong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Xiulin Jiang
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
An W, Zhang K, Li G, Zheng S, Cao Y, Liu J. Hypericin mediated photodynamic therapy induces ferroptosis via inhibiting the AKT/mTORC1/GPX4 axis in cholangiocarcinoma. Transl Oncol 2025; 52:102234. [PMID: 39674093 PMCID: PMC11700288 DOI: 10.1016/j.tranon.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
Cholangiocarcinoma remains a challenging primary hepatobiliary malignancy with dismal prognosis. Photodynamic therapy (PDT),a less invasive treatment, has been found to inhibit the proliferation and induce ferroptosis, apoptosis and necrosis in other tumor cells in recent years. Regrettably, the role and exact molecule mechanism of PDT is still incompletely clear in cholangiocarcinoma cells. Ferroptosis is a novel regulated cell death(RCD), which is controlled by glutathione peroxidase4(GPX4) with the characteristics of iron dependent and excessive intracellular accumulation of lipid peroxides. This novel form of RCD has attracted great attention as a potential new target in clinical oncology during recent years. In this study, we observed that hypericin mediated PDT(HY-PDT) could significantly inhibit the proliferation of the cholangiocarcinoma cells and suppress migration and the epithelial mesenchymal transition (EMT) as well. Then, we conducted transcriptome sequencing and bioinformatics analysis and observed that HY-PDT was most likely involved in ferroptosis, apoptosis, the EMT process and AKT/mTORC1 signaling pathways in cholangiocarcinoma cells. Next, a series of in vitro and in vivo experiments were performed to confirm that HY-PDT could trigger cholangiocarcinoma cells ferroptosis through inhibiting the expression of GPX4 protein. In terms of molecular mechanism, we found that HY-PDT induced ferroptosis by decreasing GPX4 expression via suppression of the AKT/mTORC1 signaling pathway. In addition, we also found that HY-PDT inhibit cholangiocarcinoma cells migration and the EMT process by inhibiting the AKT/mTORC1 pathway. Our study illustrated a new mechanism of action for HY-PDT and might throw light on the individualized precision therapy for cholangiocarcinoma patients.
Collapse
Affiliation(s)
- Wei An
- Department of Hepatobiliary surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250031, China; Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Kai Zhang
- Department of Hepatobiliary surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250031, China
| | - Guangbing Li
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shunzhen Zheng
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yukun Cao
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Jun Liu
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
40
|
Ashayeri Ahmadabad H, Mohammadi Panah S, Ghasemnejad-Berenji H, Ghojavand S, Ghasemnejad-Berenji M, Khezri MR. Metformin and the PI3K/AKT signaling pathway: implications for cancer, cardiovascular, and central nervous system diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1035-1055. [PMID: 39225830 DOI: 10.1007/s00210-024-03358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Recent findings have brought our understanding of diseases at the molecular level, highlighting upstream intracellular pathways as potential therapeutic targets. The PI3K/AKT pathway, a key regulator of cellular responses to environmental changes, is frequently altered in various diseases, making it a promising target for intervention. Metformin is the most known anti-diabetic agent that is known due to its effects on cancer, inflammatory-related diseases, oxidative stress, and other human diseases. It is clearly understood that metformin modulates the activity of the PI3K/AKT pathway leading to a wide variety of outcomes. This interaction has been well-studied in various diseases. Therefore, this review aims to examine PI3K/AKT-modulating properties of metformin in cancer, cardiovascular, and central nervous system diseases. Our findings indicate that metformin is effective in treating cancer and CNS diseases, and plays a role in both the prevention and treatment of cardiovascular diseases. These insights support the potential of metformin in comprehensive strategies for disease management.
Collapse
Affiliation(s)
| | | | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shabnam Ghojavand
- Faculty of Pharmacy, Islamic Azad University of Tehran, Tehran, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
41
|
Gan X, Luo X, Chen J, Fang W, Nie M, Lu H, Liu Y, Wang X. Ilicicolin C suppresses the progression of prostate cancer by inhibiting PI3K/AKT/mTOR pathway. Mol Cell Biochem 2025; 480:1089-1104. [PMID: 38801644 DOI: 10.1007/s11010-024-05026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Aberrant activation of the PI3K/AKT pathway is a driving factor in the development of prostate cancer. Therefore, inhibiting the function of the PI3K/AKT signaling pathway is a strategy for the treatment of prostate cancer. Ilicicolin C is an ascochlorin derivative isolated from the coral-derived fungus Acremonium sclerotigenum GXIMD 02501. Which has anti-inflammatory activity, but its activity against prostate cancer has not yet been elucidated. MTT assay, plate clone-formation assay, flow cytometry and real-time cell analysis technology were used to detect the effects of ilicicolin C on cell viability, proliferation, apoptosis and migration of prostate cancer cells. Molecular docking software and surface plasmon resonance technology were used to analyze the interaction between ilicicolin C and PI3K/AKT proteins. Western blot assay was performed to examine the changes in protein expression. Finally, QikProp software was used to simulate the process of ilicicolin C in vivo, and a zebrafish xenograft model was used to further verify the anti-prostate cancer activity of ilicicolin C in vivo. Ilicicolin C showed cytotoxic effects on prostate cancer cells, with the most significant effect on PC-3 cells. Ilicicolin C inhibited proliferation and migration of PC-3 cells. It could also block the cell cycle and induce apoptosis in PC-3 cells. In addition, ilicicolin C could bind to PI3K/AKT proteins. Furthermore, ilicicolin C inhibited the expression of PI3K, AKT and mTOR proteins and could also regulate the expression of downstream proteins in the PI3K/AKT/mTOR signaling pathway. Moreover, the calculations speculated that ilicicolin C was well absorbed orally, and the zebrafish xenograft model confirmed the in vivo anti-prostate cancer effect of ilicicolin C. Ilicicolin C emerges as a promising marine compound capable of inducing apoptosis of prostate cancer cells by counteracting the aberrant activation of PI3K/AKT/mTOR, suggesting that ilicicolin C may be a viable candidate for anti-prostate cancer drug development. These findings highlight the potential of ilicicolin C against prostate cancer and shed light on its mechanism of action.
Collapse
Affiliation(s)
- Xia Gan
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jingqin Chen
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Wenxuan Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Mingyi Nie
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Humu Lu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
42
|
Bie L, Chen G, Lei X, Xiao F, Xu Z, Xiang Z, Lu Z, Jiang X. B4GALNT1 Regulates Hepatocellular Carcinoma Cell Proliferation and Apoptosis via the PI3K-AKT-mTOR Pathway. J Clin Lab Anal 2025; 39:e25155. [PMID: 39829207 PMCID: PMC11848214 DOI: 10.1002/jcla.25155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a ubiquitous malignancy linked to significant mortality. The abnormal expression of β-1,4-N-acetyl-galactosaminyltransferase 1 (B4GALNT1) seemed to be implicated in tumorigenesis. Nonetheless, this enzyme's roles in HCC are unclear. METHODS By analyzing the TCGA_LIHC, GSE77509, and GSE135631 datasets, the levels of B4GALNT1 expression in HCC and surrounding non-cancerous tissues were compared. The prognostic implications of B4GALNT1 were assessed using the Cox regression analysis (CRA). The relationship of B4GALNT1 mutations with CpG island methylation levels and prognosis was examined by analyzing the cBioPortal and MethSurv databases. We sifted the evidence of B4GALNT1 expression correlating with 28 immune cell types' infiltration by harnessing the "GSVA" R package. To delve into the influences of genes associated with B4GALNT1 on HCC, we implemented gene set enrichment analysis (GSEA). We constructed a lentiviral vector expressing B4GALNT1 and knocked down B4GALNT1 in HepG2 cells. The resulting effects on HCC cell proliferation and apoptosis were analyzed via cell proliferation assays and flow cytometry. RESULTS HCC tissues presented significant B4GALNT1 overexpression relative to surrounding non-cancerous tissues, marking it as a standalone risk factor for HCC progression. Methylation levels of two CpG islands were high, suggesting poor prognosis. It was detectable that B4GALNT1 expression interrelated with the infiltration extent of natural killer T cells in HCC tissues. B4GALNT1-fueled cell proliferation and enhanced resistance to apoptosis in HCC cells. CONCLUSION B4GALNT1 is a strong regulator of HCC progression and holds promise as a marker for prognosis and a hallmark for therapy in HCC.
Collapse
Affiliation(s)
- Lihan Bie
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal‐Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xin Lei
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Feng Xiao
- Department of PathologyThe Seventh People's Hospital Affiliated to the Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zheng Xu
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhouhong Xiang
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhicheng Lu
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiudi Jiang
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
43
|
Pan S, Xu A, Chen B, Lu X, Zou J, Hua Y. Sodium tanshinone IIA sulfonate alleviates fetal growth restriction by mediating aquaporin-3 expression in placental trophoblast cells. FASEB J 2025; 39:e70314. [PMID: 39825721 DOI: 10.1096/fj.202402346rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence. The case-control study compared AQP3 expression in placental trophoblast cells of pregnant women with FGR and those with normal pregnancies. Then mouse FGR models were induced via cadmium exposure, and placental trophoblast cells (JEG-3) were similarly treated. The study assessed the effects of Sodium tanshinone IIA sulfonate (STS) and the role of the PI3K/Akt pathway in improving AQP3 expression and trophoblast cell function. Placental trophoblast cells in FGR cases exhibited significantly reduced AQP3 expression. AQP3-knockdown cells displayed dysfunction. Cadmium exposure in mice and JEG-3 cells led to decreased AQP3 expression and trophoblast cell dysfunction, both of which were ameliorated by STS. Fetal mouse weight increased with STS treatment. STS upregulated AQP3 expression and improved trophoblast cell function in AQP3-knockdown cells. Inhibiting the PI3K/Akt pathway diminished STS's beneficial effects. ThereforeSTS may enhance AQP3 expression in placental trophoblast cells affected by FGR through the activation of the PI3K/Akt pathway, ultimately bolstering placental trophoblast cell function and alleviating FGR. As above, STS appears to be a potential therapeutic agent for alleviating FGR.
Collapse
Affiliation(s)
- Shuangjia Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anjian Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baoyi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyue Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieni Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
44
|
Zhang T, Xu B. Didymin Inhibits Proliferation and Induces Apoptosis in Gastric Cancer Cells by Modulating the PI3K/Akt Pathway. Nutr Cancer 2025; 77:537-552. [PMID: 39849840 DOI: 10.1080/01635581.2025.2454050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
Gastric cancer (GC) is a malignant tumor with high morbidity and mortality rates worldwide. This study aimed to investigate the effects and mechanisms of action of didymin, a dietary flavonoid glycoside, on GC treatment. Human GC cell lines Hs-746T and AGS were used to assess the effects of didymin on cell viability, cell proliferation, and cell cycle. The results showed that didymin decreased the proliferative capacity of GC cells and blocked cell cycle. Didymin decreased wound healing, invasion, and migration capacities of GC cells. Mitochondrial reactive oxygen species (ROS) levels and mitochondrial membrane potentials were reduced in cells treated with didymin. Network pharmacology analysis revealed that the therapeutic effects of didymin on AGS cells were related to the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. In vivo mouse xenograft studies confirmed that didymin treatment decreased tumor cell proliferation, cell cycle protein levels, and Akt phosphorylation. The present study demonstrated that didymin regulates mitochondrial function and the PI3K/Akt pathway to inhibit cell proliferation and induce apoptosis in GC cells in vitro and in vivo. Therefore, didymin is a promising drug for the treatment of GC.
Collapse
Affiliation(s)
- Tong Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Bin Xu
- Department of General Surgery, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
45
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
46
|
Zhang D, Yuan Y, Zeng Q, Xiong J, Gan Y, Jiang K, Xie N. Plant protein-derived anti-breast cancer peptides: sources, therapeutic approaches, mechanisms, and nanoparticle design. Front Pharmacol 2025; 15:1468977. [PMID: 39898323 PMCID: PMC11783187 DOI: 10.3389/fphar.2024.1468977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Breast cancer causes the deaths of approximately 685,000 women annually, posing a severe threat to women's health. Consequently, there is an urgent need for low-cost, low-toxicity and effective therapeutic methods to prevent or mitigate breast cancer progression. PDBP are natural, non-toxic, and affordable substances and have demonstrated excellent anti-breast cancer activities in inhibiting proliferation, migration, and invasion, and promoting apoptosis both in vitro and in vivo, thus effectively preventing or inhibiting breast cancer. However, there are no comprehensive reviews summarizing the effects and mechanisms of PDBP on the treatment of breast cancer. Therefore, this review described the inhibitory effects and mechanisms of active peptides from different plant protein sources on breast cancer. Additionally, we summarized the advantages and preparation methods of plant protein-derived anticancer peptide-encapsulated nanoparticles and their effects in inhibiting breast cancer. This review provides a scientific basis for understanding the anti-breast cancer mechanisms of PDBP and offers guidance for the development of therapeutic adjuvants enriched with these peptides.
Collapse
Affiliation(s)
- Deju Zhang
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Yuan
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qingdong Zeng
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Juan Xiong
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yiming Gan
- Plant Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kai Jiang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, China
| | - Ni Xie
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
47
|
Liu Y, Chen M, Wang XX, Gao Y, Han X, Wang S, Zhang W, Lei X, Yu P, Liu L, Zhang HM, Zhang K. Targeting METTL8 with Rabdosiin overcomes lenvatinib resistance in hepatocellular carcinoma. Exp Cell Res 2025; 444:114389. [PMID: 39701355 DOI: 10.1016/j.yexcr.2024.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In hepatocellular carcinoma (HCC), lenvatinib is a key first-line treatment that significantly improves survival in some patients with advanced stage. However, lenvatinib resistance presents a major clinical challenge. This study aims to identify key molecular factors driving lenvatinib resistance in HCC and propose intervention strategies to overcome this resistance, thereby enhancing therapeutic efficacy. A genome-wide CRISPR-Cas9 activation screen identified METTL8 as a crucial gene associated with lenvatinib resistance. Validation through in vitro and in vivo assays confirmed METTL8's role in mediating lenvatinib resistance. Higher METTL8 expression was observed in lenvatinib-resistant HCC cells compared to parental cells. Immunohistochemical staining of tissue sections from HCC patients revealed a negative correlation between high METTL8 expression and lenvatinib sensitivity. To inhibit the function of METTL8 that mediate lenvatinib resistance, we conducted a screening using a natural compound library, virtual drug screening identified Rabdosiin as a potential METTL8 inhibitor, subsequent experiments demonstrated that Rabdosiin could effectively overcome METTL8-mediated lenvatinib resistance. In conclusion, this research highlights METTL8 as a novel target for mitigating lenvatinib resistance, proposing that targeting METTL8 could restore lenvatinib sensitivity in HCC, and underscores its value as a biomarker for lenvatinib application in clinical settings.
Collapse
Affiliation(s)
- Yunpeng Liu
- The Department of Clinical Oncology, Xijing Hospital, Air Force Medical University, 710032, Xi'an, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032, Xi'an, PR China
| | - Muhua Chen
- Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032, Xi'an, PR China
| | - Xiang-Xu Wang
- The Department of Clinical Oncology, Xijing Hospital, Air Force Medical University, 710032, Xi'an, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032, Xi'an, PR China
| | - Yuan Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, Air Force Medical University, 710032, Xi'an, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032, Xi'an, PR China
| | - Xiao Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, Air Force Medical University, 710032, Xi'an, PR China
| | - Shuning Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, Air Force Medical University, 710032, Xi'an, PR China
| | - Wangqian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, Air Force Medical University, 710032, Xi'an, PR China
| | - Xiaoying Lei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, Air Force Medical University, 710032, Xi'an, PR China
| | - Pengfei Yu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Lei Liu
- Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032, Xi'an, PR China.
| | - Hong-Mei Zhang
- The Department of Clinical Oncology, Xijing Hospital, Air Force Medical University, 710032, Xi'an, PR China.
| | - Kuo Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, Air Force Medical University, 710032, Xi'an, PR China.
| |
Collapse
|
48
|
Zhao G, Zhou Y, Tang Y, Abbas M, Dong S, Zhao X, Liu X, Wang X, Li C, Liu C. Potential antitumor effect of polysaccharides extracted from Polygonatum sibiricum on human prostate cancer PC‑3 cells. Oncol Lett 2025; 29:28. [PMID: 39512496 PMCID: PMC11542168 DOI: 10.3892/ol.2024.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Polygonatum sibiricum polysaccharides (PSP) are a traditional herbal medicine component with potential therapeutic effects on several diseases. The present study aimed to assess the role of PSP in the treatment of human prostate cancer using a PC-3 cell line by Cell CK-8, transwell and wound healing assays, then elucidate the potential underlying mechanisms by western blot and quantitative Real-time RT-PCR. Different concentrations of PSP were applied to PC-3 cells, and the proliferation, invasion and migration of PC-3 cells were demonstrated to be significantly inhibited with increasing concentrations of PSP. Additionally, cell apoptosis rate and expression of caspase-3 increased with higher PSP concentrations, and the cell cycle was arrested in the S phase. Furthermore, it was demonstrated that the expression of the multidrug resistance-1 gene and its encoded protein P-glycoprotein in PC-3 cells decreased following PSP treatment, suggesting that PSP may have the potential to reverse multidrug resistance in PC-3 cells. The present study also evaluated the possible mechanism of PSP action on PC-3 cells. The results revealed that phosphorylated P65, PI3K and AKT decreased in a concentration-dependent manner. As key molecules in the NF-κB and PI3K/Akt signaling pathways, this finding suggests that the potential mechanism of the effect of PSP on prostate cancer cells may involve simultaneous mediation of the PI3K/Akt and NF-κB signaling pathways. The present study demonstrated that PSP inhibit the proliferation, invasion and migration of PC-3 cells in vitro, as well as reverse MDR in these cells. The underlying mechanism may involve the simultaneous regulation of the PI3K/Akt and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Guobin Zhao
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yan Zhou
- Department of Immunology, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yuhong Tang
- Department of Immunology, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Muhammad Abbas
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Shaowen Dong
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Xinyang Zhao
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Xin Liu
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Xinmei Wang
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Chen Li
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Chenxi Liu
- Graduate School, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
49
|
Nururrozi A, Igase M, Miyanishi K, Sakurai M, Sakai Y, Tanabe M, Mizuno T. Potential Contribution of Epithelial Growth Factor Receptor to PI3K/AKT Pathway Dysregulation in Canine Soft Tissue Sarcoma. In Vivo 2025; 39:110-119. [PMID: 39740903 PMCID: PMC11705126 DOI: 10.21873/invivo.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Soft tissue sarcoma (STS) is a mesenchymal tumor affecting multiple organs in dogs. Previous studies identified activation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB, AKT) pathway in canine STS cell lines and clinical samples, but the underlying mechanism remains unclear. This study investigated PTEN loss, PIK3CA mutation, and EGFR over-expression as potential drivers of PI3K/AKT pathway activation in STS. MATERIALS AND METHODS We analyzed 36 canine STS samples. PTEN and EGFR expression were evaluated using immunohistochemistry, while PIK3CA and EGFR mutations were assessed through DNA sequencing. RESULTS PTEN was expressed in all analyzed samples, with no evidence of loss. Weak PTEN expression was observed in 12 (33.3%) samples, while 24 (66.7%) showed normal expression. DNA sequencing of PIK3CA revealed a single point mutation (c.554 A>C, H554P) in one case, but no hotspot mutations were identified. High EGFR expression was significantly correlated with elevated phospho-AKT levels (p<0.0001). Immunolabelling indicated that 30 samples (83.3%) were EGFR-positive, and 27 of these also showed positive phospho-AKT labeling. Accordingly, one missense point mutation in exon 21 of EGFR (E868K) was identified in one of 12 samples. CONCLUSION EGFR over-expression, rather than PTEN loss or PIK3CA mutations, may contribute to PI3K/AKT pathway dysregulation in canine STS. Further studies with larger sample sizes and additional validation techniques are necessary to confirm these findings.
Collapse
Affiliation(s)
- Alfarisa Nururrozi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Kyohei Miyanishi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Sakurai
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Mika Tanabe
- Veterinary Pathology Diagnostic Center, Fukuoka, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan;
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
50
|
Liang G, Qi Z, Du C. MFAP5 inhibits the malignant progression of endometrial cancer cells in vitro. Open Life Sci 2024; 19:20220990. [PMID: 39759103 PMCID: PMC11699556 DOI: 10.1515/biol-2022-0990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 01/07/2025] Open
Abstract
To investigate the biological role of MFAP5 in endometrial cancer (EC). HEC-1-A and Ishikawa cells overexpressing MFAP5 were created. Cell proliferation, apoptosis, migration, and invasion were evaluated using CCK8, colony formation, flow cytometry, and transwell assays. A western blot was used to analyze the expression of markers affiliated with the epithelial-mesenchymal transition process and AKT/mTOR pathway. As a result, MFAP5 was found to be down-regulated in EC. Overexpression of MFAP5 suppressed proliferation and promoted apoptosis of HEC-1-A and Ishikawa cells, as evidenced by the inhibition of cell viability and colony formation, and the increase in cell apoptosis rate. Besides, overexpression of MFAP5 attenuated the abilities of cell migration and invasion, as well as reduced MMP2 and MMP9 protein expression. Furthermore, E-cadherin protein level was elevated, while N-cadherin and α-SMA protein levels were decreased, and the phosphorylation of AKT and mTOR was reduced in cells overexpressing MFAP5. Our findings indicate that MFAP5 overexpression inhibits the malignant behaviors of EC cells, possibly by blocking the AKT/mTOR pathway, suggesting that MFAP5 may be a new therapeutic target for EC.
Collapse
Affiliation(s)
- Guanying Liang
- Department of Pathology, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Harbin, Heilongjiang, 150081, China
| | - Zijuan Qi
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, 150000, China
| | - Chun Du
- Department of Pathology, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Harbin, Heilongjiang, 150081, China
| |
Collapse
|