1
|
Abdel-Megeed RM. Biogenic nanoparticles as a promising drug delivery system. Toxicol Rep 2025; 14:101887. [PMID: 39867515 PMCID: PMC11762933 DOI: 10.1016/j.toxrep.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Nanotechnology has significantly influenced the worldwide medical services sector during the past few decades. Biological collection approaches for nanoparticles are economical, non-toxic, and ecologically benign. This review provides up-to-date information on nanoparticle production processes and biological sources, including algae, plants, bacteria, fungus, actinomycetes, and yeast. The biological technique of generating nanoparticles has advantages over chemical, physical, and biological methods, including low-toxicity and friendly to the environment, thereby providing a viable option for therapeutic applications as s promising drug delivery system. In addition to aiding researchers, the bio-mediated, obtained nanoparticles also modify particles to promote both health and safety. We also looked at the important medicinal uses of nanoparticles, including their antifungal, antimicrobial, antiviral, antidiabetic, anti-inflammatory, and antioxidant properties. The current study highlights the findings of recent research in this field and discusses various methods proposed to describe the bio-mediated acquisition of novel nanoparticles.. The production of nanoparticles via biogenic sources possess various benefits, such as low cost, bioavailability, and environmental friendliness. In addition to the determination of the bioactive chemicals mediated by nanoparticle as well as the examination of the biochemical pathways and enzyme reactions. The major focus of this review is highlighting on the essential role of biogenic nanoparticles as promising drug delivery system.
Collapse
|
2
|
M A, S KB, Liyana EP, Jasmine JS. Transformative potential of plant-based nanoparticles in cancer diagnosis and treatment: bridging traditional medicine and modern therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04113-y. [PMID: 40237799 DOI: 10.1007/s00210-025-04113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer is a primary global health concern, with an estimated 35.3 million cancer cases expected worldwide, representing a 76.6% increase in 2022, and 20 million by 2050, resulting from genetic mutation and environmental factors that cause uncontrolled cell growth. Other factors including smoking, unhealthy diets, physical inactivity, exposure to carcinogens, UV radiation, and aging increase DNA damage. Current cancer treatments like chemotherapy, radiation therapy, immunotherapy, and surgery are effective, but those have significant effects like lack of specificity, development of drug resistance, and significant side effects to healthy tissues. An advancement to conventional therapies is plant-based nanoparticles as transformative approaches in cancer diagnosis and treatment. These nanoparticles synthesized using plant bioactive compounds like flavonoids, alkaloids, polyphenols, and some metals-oxides like gold, silver, copper, zinc, etc. offer eco-friendly, cost-effective, and biocompatible alternatives. They enhance targeted drug delivery, allowing anticancer agents specifically to tumor cells, minimizing damage to health. Improves imaging techniques like MRI and fluorescence imaging, and helps early detection, cancer biomarkers, allowing for prompt intervention. Recent findings show that nanocarriers made from plant-based materials, such as polyphenols (curcumin, resveratrol) and plant-extracted metal nanoparticles (gold, silver), can improve drug stability and selectively target tumor cells. Plant-derived nanoparticles play a crucial role in cancer immunotherapy and nanovaccines. Biodegradable plant-based nanocarriers can deliver cancer vaccines, stimulating long-term immunity against tumors. Graphene oxide and gold nanoparticles synthesized from plant extracts can absorb near-infrared (NIR) light, generating heat to destroy cancer cells with minimal damage to surrounding tissues. This study discusses the types of plant-based nanoparticles like plant virus nanoparticles (TMV, PVX, CPMV), plant metallic nanoparticles (Au, Ag., Cu, Zn, Mg, Ca, and Mn), and flavonoid nanoparticles found in cancer treatment, their significant roles, chemotherapy-based nanomedicines available in the medical field, and a detailed vision of nanomaterial applications in cancer diagnosis, treatment, and targeted drug delivery.
Collapse
Affiliation(s)
- Aswini M
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India.
| | - Kavitha Bagya S
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - E P Liyana
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
3
|
Anjum I, Nasir A, Naseer F, Ibrahim A, Rehman B, Bashir F, Tul Ain Q. Exploring the anti-inflammatory effects of phytochemicals in attenuating interstitial cystitis-a literature review. Front Pharmacol 2025; 16:1483548. [PMID: 39974737 PMCID: PMC11836544 DOI: 10.3389/fphar.2025.1483548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Interstitial cystitis is a fierce syndrome affecting the quality of life of thousands of individuals around the globe. It causes immense pain in the bladder and associated viscera along with inflammation-like lesions. The current medicinal and pharmacological research focuses on the protective and curative effects of phytochemicals in several ailments. Phytochemicals derived from many medicinal plants have shown potent outcomes in protection against various pathological conditions including interstitial cystitis. This review has summarized the insights of in vitro and in vivo studies regarding the effects of phytochemicals in fading the inflammation in bladder tissue and exhibiting a protective effect on the urothelium. Hemorrhagic cystitis is a common manifestation in patients undergoing chemotherapy with cyclophosphamide and related alkylating agents. Sodium 2-mercaptoethane sulfonate (Mesna) has traditionally been employed in clinical practice to counter cyclophosphamide-induced cystitis in humans. However, cyclophosphamide has been employed in developing animal models of interstitial cystitis in in vivo studies. Phytochemicals including quercetin, beta-caryophyllene, curcumol, boswellic acid, caftaric acid, some flavonoids and other secondary metabolites being a consequential component of numerous medicinal plants, have displayed a significant reduction in the levels of proinflammatory cytokines including TNF-α, NFĸB, IL-1β, NLRP3 inflammasome, IL-6, IL-2, matrix metalloproteinases etc. Uroprotective outcomes of these phytochemicals have been found to result in diminished oxidative stress and restoration of glutathione, superoxide dismutase, and related proteins in the inflamed bladder tissue. Many in vivo studies involving cyclophosphamide-induced interstitial cystitis have confirmed these findings. The coupling of phytotherapy with novel drug delivery systems such as nanoparticles, liposomes, nanotubes, quantum dots, etc. can help translate these beneficial effects of phytochemicals into clinical practice. Further investigations of these phytochemicals can provide intuition regarding the development of newer drug molecules having exclusive activity for attenuating interstitial cystitis.
Collapse
Affiliation(s)
- Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Ayesha Nasir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Faiza Naseer
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Department of Biosciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Ahsan Ibrahim
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Bisma Rehman
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Fawad Bashir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Qura Tul Ain
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| |
Collapse
|
4
|
Alqaraleh M, Khleifat KM, Al-Samydai A, Al-Najjar BO, Saqallah FG, Al Qaisi YT, Alsarayreh AZ, Alqudah DA, Fararjeh AS. Bioactive potency of extracts from Stylissa carteri and Amphimedon chloros with silver nanoparticles against cancer cell lines and pathogenic bacteria. Biomed Rep 2025; 22:34. [PMID: 39777210 PMCID: PMC11704841 DOI: 10.3892/br.2024.1912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis). In addition, sponge extracts contain biologically active substances with therapeutic effects. Therefore, the concurrent use of these agents may present a potential for the development of novel antitumor and antimicrobial drugs. The present study investigated the cytotoxic effects of AgNPs combined with the extracts from sponge species, Stylissa carteri or Amphimedon chloros, against various cancer cell lines and pathogenic bacterial strains. The present study was novel as it provided a further understanding of the cytotoxicity and underlying mechanisms of AgNPs. Alterations in the properties, such as size, charge and polydispersity index, of the AgNPs were demonstrated after lyophilization. Scanning electron microscopy revealed submicron-sized particles. The cytotoxic potential of AgNPs across various cancer cell lines such as lung, colorectal, breast and pancreatic cancer cell lines, was demonstrated, especially when the AgNPs were combined with sponge extracts, which suggested a synergistic effect. Analysis using liquid chromatography-mass spectrometry revealed key chemical components in the extracts, and molecular docking simulations indicated potential inhibition interactions between a number of the extract components and the epidermal growth factor receptor and tyrosine kinase receptor A. Synergistic antibacterial effects against several bacterial species such as Staphylococcus xylosus, Klebsiella oxytoca, Enterobacter aerogenes, Micrococcus spp. and Escherichia coli, were observed when AgNPs were combined with sponge ethyl acetate extracts. The results of the present study suggested a potential therapeutic application of marine-derived compounds and nanotechnology in combating cancer and bacterial infections. Future research should further elucidate the mechanistic pathways and investigate the in vivo therapeutic efficacy.
Collapse
Affiliation(s)
- Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Khaled M. Khleifat
- Department of Medical Laboratory Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Ali Al-Samydai
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 11814, Jordan
| | - Belal O. Al-Najjar
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 11814, Jordan
| | - Fadi G. Saqallah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Yaseen T. Al Qaisi
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Ahmad Z. Alsarayreh
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Dana A. Alqudah
- Department of Pharmaceutics and Technology, Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Abdulfattah S. Fararjeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| |
Collapse
|
5
|
Anjum S, Akhtar A, Aldaqal SM, Abduh MS, Ahmad H, Mustafa R, Naseer F, Sadia M, Ahmad T. Enhanced targeted treatment of cervical cancer using nanoparticle-based doxycycline delivery system. Sci Rep 2025; 15:2318. [PMID: 39824865 PMCID: PMC11742058 DOI: 10.1038/s41598-024-84203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol). Characterization of the HA-Chitosan nanoparticles showed a particle size of 284.6 nm, a zeta potential of 16.9 mV, and a polydispersity index of 0.314, with SEM confirming smooth surface morphology. The encapsulation efficiency of DOX-loaded nanoparticles was 89.32%, exhibiting a sustained release profile, with 67.45% released over 72 h in acidic conditions (pH 5.5). Cytotoxicity assays demonstrated a significant reduction in HeLa cell viability to 22% at 72 h, compared to 67% in normal HEK cells. Stability tests confirmed the maintenance of nanoparticle integrity and a consistent drug release profile over three months. Cell migration was reduced by 45%, and RT-PCR analysis revealed a 53% downregulation of TNF-α expression, suggesting effective targeting of inflammatory pathways. These results underscore the potential of HA-Chitosan-based DOX nanoparticles in improving cervical cancer treatment through enhanced targeted delivery and inhibition of tumor-promoting mechanisms.
Collapse
Affiliation(s)
- Sadia Anjum
- Department of Biology, University of Hail, Hail, Saudi Arabia
| | - Ayesha Akhtar
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saleh M Aldaqal
- Immune Responses in Different Diseases Research Group, Department of Surgery, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Maisa S Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia
| | - Hammad Ahmad
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad, Pakistan
| | - Riaz Mustafa
- Department of Pathology, University of Agriculture Faisalabad, Sub campus Toba Tek Singh, Faisalabad, Pakistan
| | - Faiza Naseer
- Department of Biosciences, Shifa Tameer e Millat University, Islamabad, Pakistan.
| | - Maryam Sadia
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
6
|
Fais G, Sidorowicz A, Perra G, Dessì D, Loy F, Lai N, Follesa P, Orrù R, Cao G, Concas A. Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells. Mar Drugs 2024; 22:549. [PMID: 39728124 DOI: 10.3390/md22120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/Ag2O/ZnO nanocomposites (NCs), using polar and apolar extracts of Chlorella vulgaris, offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/Ag2O NPs synthesized with apolar (Ag/Ag2O NPs A) and polar (Ag/Ag2O NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag+ ion release and the disruption of mitochondrial function. However, it is more likely the organic content, rather than size, influenced anticancer activity, as commercial Ag NPs, despite smaller crystallite sizes, exhibit less effective activity. ZnO NPs P showed increased reactive oxygen species (ROS) generation, correlated with higher cytotoxicity, while ZnO NPs A produced lower ROS levels, resulting in diminished cytotoxic effects. A comparative analysis revealed significant differences in LD50 values and toxicity profiles. Differentiated PC12 cells showed higher resistance to ZnO, while AgNPs and Ag/Ag2O-based materials had similar effects on both cell types. This study emphasizes the crucial role of the synthesis environment and bioactive compounds from C. vulgaris in modulating nanoparticle surface chemistry, ROS generation, and cytotoxicity. The results provide valuable insights for designing safer and more effective nanomaterials for biomedical applications, especially for targeting tumor-like cells, by exploring the relationships between nanoparticle size, polarity, capping agents, and nanocomposite structures.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giovanni Perra
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Debora Dessì
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Francesco Loy
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Nicola Lai
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Roberto Orrù
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
7
|
Almatroudi A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024; 16:1232. [PMID: 39339268 PMCID: PMC11435049 DOI: 10.3390/pharmaceutics16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability-key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
8
|
Ali M, Ahmed M, Memon M, Chandio F, Shaikh Q, Parveen A, Phull AR. Preeclampsia: A comprehensive review. Clin Chim Acta 2024; 563:119922. [PMID: 39142550 DOI: 10.1016/j.cca.2024.119922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Preeclampsia (PE) is a life-threatening disease of pregnancy and a prominent cause of neonatal and maternal mortality and morbidity. PE affects approximately 5-10% of pregnancies worldwide, posing significant risks to perinatal and maternal health. It is characterized by a variety of interconnected pathological cascades contributing to the stimulation of intravascular inflammation, oxidative stress (OS), endothelial cell activation, and syncytiotrophoblast stress that converge on a common pathway, ultimately resulting in disease progression. The present study was designed and executed to review the existing scientific literature, specifically focusing on the etiology (gestational diabetes mellitus and maternal obesity, insulin resistance, metabolic syndrome, maternal infection, periodontal disease, altered microbiome, and genetics), clinical presentations (hypertension, blood disorders, proteinuria, hepatic dysfunction, renal dysfunction, pulmonary edema, cardiac dysfunction, fetal growth restrictions, and eclampsia), therapeutic clinical biomarkers (creatinine, albuminuria, and cystatin C) along with their associations and mechanisms in PE. In addition, this study provides insights into the potential of nanomedicines for targeting these mechanisms for PE management and treatment. Inflammation, OS, proteinuria, and an altered microbiome are prominent biomarkers associated with progression and PE-related pathogenesis. Understanding the molecular mechanisms, exploring suitable markers, targeted interventions, comprehensive screening, and holistic strategies are critical to decreasing the incidence of PE and promoting maternal-fetal well-being. The present study comprehensively reviewed the etiology, clinical presentations, therapeutic biomarkers, and preventive potential of nanomedicines in the treatment and management of PE.
Collapse
Affiliation(s)
- Majida Ali
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Jaffer Khan Jamali Road, H-8/4, Islamabad, Pakistan
| | - Mehwish Memon
- Department of Biochemistry, Ibn e Sina University, Mirpur Khas, Pakistan
| | - Fozia Chandio
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Quratulain Shaikh
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Amna Parveen
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, South Korea.
| | - Abdul-Rehman Phull
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Sindh, Pakistan.
| |
Collapse
|
9
|
Phull AR, Arain SQ, Majid A, Fatima H, Ahmed M, Kim SJ. Oxidative stress-mediated epigenetic remodeling, metastatic progression and cell signaling in cancer. ONCOLOGIE 2024; 26:493-507. [DOI: 10.1515/oncologie-2024-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Abstract
Cancer is a serious public health issue and cases are rising at a high rate around the world. Altered production of reactive oxygen species (ROS) causes oxidative stress (OS) which plays a vital role in cancer development by disrupting signaling pathways and genomic integrity in the cellular microenvironment. In this study, we reviewed the regulation of noncoding RNAs, histone modifications, and DNA methylation which OS is involved in. These mechanisms promote cancer growth, metastasis, and resistance to chemotherapeutic agents. There is significant potential to improve patient outcomes through the development of customized medications and interventions that precisely address the role of OS in the onset and progression of cancer. Redox-modulating drugs, antioxidant-based therapies, and measures to restore regular cellular activity and OS-modulated signaling pathways are some examples of these strategies. One other hypothesis rationalizes the cancer-suppressing effect of OS, which acts as a two-edged condition that warns against the use of antioxidants for cancer treatment and management. The present study was executed to review the impact of OS on epigenetic machinery, the evolution of metastatic cancer, and how OS mediates cellular signaling. Along with, insights into the potential of targeting OS-mediated mechanisms for cancer therapy.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biochemistry , 66858 Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Sadia Qamar Arain
- Department of Biochemistry , 66858 Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Abdul Majid
- Department of Biochemistry , 66858 Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Humaira Fatima
- Department of Pharmacy , Quaid-i-Azam University , Islamabad , Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences , Shifa Tameer-e-Millat University , Islamabad , Pakistan
| | - Song-Ja Kim
- Department of Biological Sciences, College of Natural Sciences , Kongju National University , Gongju , South Korea
| |
Collapse
|
10
|
Anjum S, Naseer F, Ahmad T, Liaquat A, Abduh MS, Kousar K. Co-delivery of oncolytic virus and chemotherapeutic modality: Vincristine against prostate cancer treatment: A potent viro-chemotherapeutic approach. J Med Virol 2024; 96:e29748. [PMID: 38975633 DOI: 10.1002/jmv.29748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Prostate cancer is a prevalent carcinoma among males, and conventional treatment options are often limited. Cytotoxic chemotherapy, despite its drawbacks, remains a mainstay. We propose a targeted co-delivery approach using nanoscale delivery units for Oncolytic measles virus (OMV) and vincristine (VC) to enhance treatment efficacy. The HA-coated OMV + VC-loaded TCs nanoformulation is designed for targeted oncolytic activity in prostate cancer. The CD44 expression analysis in prostate cancer cell lines indicates a significantly high expression in PC3 cells. The optimization of nanoformulations using Design of Expert (DOE) is performed, and the preparation and characterization of HA-coated OMV + VC-loaded TCs nanoformulations are detailed showing average particle size 397.2 ± 0.01 nm and polydispersity index 0.122 with zeta potential 19.7 + 0.01 mV. Results demonstrate successful encapsulation efficiency with 2.4 × 106 TCID50/Ml and sustained release of OMV and VC from the nanoformulation for up to 72 h. In vitro, assays reveal potent anticancer activity at 10 ± 0.71% cell viability in PC3 cells compared to 73 ± 0.66% in HPrEC and significant morphological changes at 90 µg/ml in dose and time-dependent manner. The co-formulation showed positive cell death 49.5 ± 0.02% at 50 µg PI/ml in PBS and 54.3% cell cycle arrest at the G2/M phase, 8.1% G0/G1 and 5.7% at S phase, with significant mitochondrial membrane potential (MMP) at 50 µg/ml, as assessed by flow cytometry (FACS). The surface-integrating ligand approach enhances the targeted delivery of the oncolytic virus and chemotherapeutic drug, presenting a potential alternative for prostate cancer treatment and suggested that co-administering VC and OMV in a nanoformulation could improve therapeutic outcomes while reducing chemotherapeutic drug doses.
Collapse
Affiliation(s)
- Sadia Anjum
- Department of Biology, University of Hail, Hail, Saudia Arabia
| | - Faiza Naseer
- Department of Biosciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Afrose Liaquat
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Maisa S Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdul-Aziz University, Jeddah, Saudia Arabia
| | - Kousain Kousar
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
11
|
Talebian S, Shahnavaz B, Shakiba M, Rassouli FB. Illuminating new possibilities: Effects of copper oxide nanoparticles on gastrointestinal adenocarcinoma cells in hypoxic condition. Heliyon 2024; 10:e31414. [PMID: 38813193 PMCID: PMC11133906 DOI: 10.1016/j.heliyon.2024.e31414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer remains a major global health concern, necessitating the development of novel therapeutic approaches. Hypoxia is a common characteristic of solid tumors that plays a critical role in tumor progression, making it a prime target for anticancer therapies. This study aimed to determine the effects of copper oxide nanoparticles (CuONPs) on human gastrointestinal cancer cells in hypoxic condition for the first time. Toxicity of CuONPs was evaluated on human colon and gastric adenocarcinoma cells and normal fibroblasts by alamarBlue assay. Real-time polymerase chain reaction (PCR) was performed to study the effects of CuONPs on genes involved in cell apoptosis. To elucidate the molecular mechanisms underlying the effects of CuONPs in hypoxic condition, molecular docking was conducted on HIF-1α. Results revealed dose- and cell-type-dependent toxic effects of CuONPs, as a more significant (p < 0.0001) decrease in viability of LoVo cells (23 %) was observed compared to MKN-45 and HDF cells. In addition, CuONPs significantly (p < 0.0001) reduced LoVo cell viability down to 30.2 % in hypoxic condition. Gene expression analysis revealed significant (p < 0.0001) overexpression of P53 and BAX but downregulation of BCL-2 and CCND1 after treatment with CuONPs. Molecular docking indicated the preferable binding of CuONPs to the HIF-1α PAS-B domain through interaction with 15 residues with -4.8 kcal/mol binding energy. Our findings open up new possibilities for modulating HIF-1 activity and inhibiting hypoxia-induced tumor progression.
Collapse
Affiliation(s)
- Seyedehsaba Talebian
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bahar Shahnavaz
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammadhosein Shakiba
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Mansour HMM, Shehata MG, Abdo EM, Sharaf MM, Hafez ESE, Galal Darwish AM. Comparative analysis of silver-nanoparticles and whey-encapsulated particles from olive leaf water extracts: Characteristics and biological activity. PLoS One 2023; 18:e0296032. [PMID: 38109310 PMCID: PMC10727426 DOI: 10.1371/journal.pone.0296032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Nanotechnology applications have been employed to improve the stability of bioactive components and drug delivery. Natural-based extracts, especially olive leaf extracts, have been associated with the green economy not only as recycled agri-waste but also in the prevention and treatment of various non-communicable diseases (NCDs). The aim of this work was to provide a comparison between the characteristics, biological activity, and gene expression of water extract of olive leaves (OLE), green synthesized OLE silver nanoparticles (OL/Ag-NPs), and OLE whey protein capsules (OL/WPNs) of the two olive varieties, Tofahy and Shemlali. The particles were characterized by dynamic light scattering, scanning electron microscope (SEM), and Fourier transform infrared. The bioactive compounds of the preparations were evaluated for their antioxidant activity and anticancer effect on HCT-116 colorectal cells as well as for their regulatory effects on cytochrome C oxidase (Cox1) and tumor necrosis factor α (TNF-α) genes. (OL/Ag-NPs) were found to be smaller than (OL/WPNs) with sizes of (37.46±1.85 and 44.86±1.62 nm) and (227.20±2.43 and 553.02±3.60 nm) for Tofahy and Shemlali, respectively. SEM showed that Shemlali (OL/Ag-NPs) had the least aggregation due to their highest Ƹ-potential (-31.76 ± 0.87 mV). The preparations were relatively nontoxic to Vero cells (IC50 = 151.94-789.25 μg/mL), while they were cytotoxic to HCT-116 colorectal cells (IC50 = 77.54-320.64 μg/mL). Shemlali and Tofahy OLE and Tofahy OL/Ag-NPs had a higher selectivity index (2.97-7.08 μg/mL) than doxorubicin (2.36 μg/mL), indicating promising anticancer activity. Moreover, Shemlali preparations regulated the expression of Cox1 (up-regulation) and TNF-α (down-regulation) on HCT-116 cells, revealing their efficiency in suppressing the expression of genes that promote cancer cell proliferation. (OL/Ag-NPs) from Tofahy and Shemlali were found to be more stable, effective, and safe than (OL/WPNs). Consequently, OL/Ag-NPs, especially Tofahy, are the best and safest nanoscale particles that can be safely used in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Hanem M. M. Mansour
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed G. Shehata
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Eman M. Abdo
- Food Science Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mona Mohamad Sharaf
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - El-sayed E. Hafez
- Plant Protection and Bio-Molecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amira M. Galal Darwish
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
| |
Collapse
|
13
|
Hu Q, Xu L, Huang X, Duan Y, Sun D, Fu Z, Ge Y. Polydopamine-Modified Zeolite Imidazole Framework Drug Delivery System for Photothermal Chemotherapy of Hepatocellular Carcinoma. Biomacromolecules 2023; 24:5964-5976. [PMID: 37938159 DOI: 10.1021/acs.biomac.3c00971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Metal-organic frameworks (MOFs) are promising drug-delivering platforms for their intrinsic capability of loading and releasing different cargoes. To further extend their biomedical practices, the development of collaborative MOF systems with good biocompatibility and synergistic efficacy is essential. Herein, the near-infrared and pH dual-response collaborative zeolitic imidazolate framework-8 (ZIF-8) platform SOR@ZIF-8@PDA (SZP) was constructed, in which the chemotherapeutic drug sorafenib (SOR) was encapsulated in ZIF-8 and via polydopamine (PDA) coating on ZIF-8 by hierarchical self-assembly. PDA coating serves as a photothermal agent for PPT while reducing the toxicity of ZIF-8. SZP achieves intelligent release of therapeutic drugs by responding to the lower pH of the tumor microenvironment and thermal stimulation generated by near-infrared light irradiation. In addition, under light irradiation, SZP could effectively realize treatment of cancer cells through synergistic chemo-photothermal therapy, as evidenced by the enhanced cell apoptosis, inhibited tumor cell proliferation and migration. This collaborative MOFs system showed excellent biocompatibility and antitumor ability in vivo on a mouse HepG2 tumor model. Our results demonstrated that PDA-modified MOFs exhibited a fantastic good development prospect in biomedical applications.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoyu Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuxuan Duan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yunfen Ge
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
14
|
Shanmuganathan R, Hoang Le Q, Devanesan S, R M Sayed S, Rajeswari VD, Liu X, Jhanani GK. Mint leaves (Mentha arvensis) mediated CaO nanoparticles in dye degradation and their role in anti-inflammatory, anti-cancer properties. ENVIRONMENTAL RESEARCH 2023; 236:116718. [PMID: 37481060 DOI: 10.1016/j.envres.2023.116718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
In ancient times, herbal plants were considered one of the greatest gifts from nature that human beings could receive, and about 80% of these plants have medicinal uses. In traditional medicine, Mentha arvensis, commonly known as mint, has many applications, and in the present study, the mint leaf extract has been used to synthesis nanoparticles using the mint leaf extract as a biosource for the extraction of nanoparticles. In addition to having a wide range of applications in various fields, calcium oxide (CaO) nanoparticles are also considered to be safe for human use. In order to assess the characteristics of the abstracted CaO nanoparticles, UV-visible absorption spectrophotometers, Fourier Transform Infrared spectrophotometers (FTIR), Scanning Electron Microscopes (SEMs), Dynamic Light Scattering (DLS), and X-ray Diffraction Spectrophotometers (XRDs) were used. By conducting a protein denaturation assay and nitric oxide scavenging assay, mint leaf mediated CaO nanoparticles were evaluated for their therapeutic applications. MTT assays were used to prove that the CaO nanoparticles mediated by mint leaf had anti-cancer properties. By examining the ability of mint leaf mediated CaO nanoparticles to degrade various dyes such as methyl red, methyl orange, and methylene blue, which are the most used azo dyes in textile industries resulting in water contamination, the ability of these nanoparticles to act as a photocatalytic agent was examined.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
15
|
Singh H, Desimone MF, Pandya S, Jasani S, George N, Adnan M, Aldarhami A, Bazaid AS, Alderhami SA. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int J Nanomedicine 2023; 18:4727-4750. [PMID: 37621852 PMCID: PMC10444627 DOI: 10.2147/ijn.s419369] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Background Conventional nanoparticle synthesis methods involve harsh conditions, high costs, and environmental pollution. In this context, researchers are actively searching for sustainable, eco-friendly alternatives to conventional chemical synthesis methods. This has led to the development of green synthesis procedures among which the exploration of the plant-mediated synthesis of nanoparticles experienced a great development. Especially, because plant extracts can work as reducing and stabilizing agents. This opens up new possibilities for cost-effective, environmentally-friendly nanoparticle synthesis with enhanced size uniformity and stability. Moreover, bio-inspired nanoparticles derived from plants exhibit intriguing pharmacological properties, making them highly promising for use in medical applications due to their biocompatibility and nano-dimension. Objective This study investigates the role of specific phytochemicals, such as phenolic compounds, terpenoids, and proteins, in plant-mediated nanoparticle synthesis together with their influence on particle size, stability, and properties. Additionally, we highlight the potential applications of these bio-derived nanoparticles, particularly with regard to drug delivery, disease management, agriculture, bioremediation, and application in other industries. Methodology Extensive research on scientific databases identified green synthesis methods, specifically plant-mediated synthesis, with a focus on understanding the contributions of phytochemicals like phenolic compounds, terpenoids, and proteins. The database search covered the field's development over the past 15 years. Results Insights gained from this exploration highlight plant-mediated green synthesis for cost-effective nanoparticle production with significant pharmacological properties. Utilizing renewable biological resources and controlling nanoparticle characteristics through biomolecule interactions offer promising avenues for future research and applications. Conclusion This review delves into the scientific intricacies of plant-mediated synthesis of nanoparticles, highlighting the advantages of this approach over the traditional chemical synthesis methods. The study showcases the immense potential of green synthesis for medical and other applications, aiming to inspire further research in this exciting area and promote a more sustainable future.
Collapse
Affiliation(s)
- Harjeet Singh
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shivani Pandya
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Srushti Jasani
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Noble George
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, 28814, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Suliman A Alderhami
- Chemistry Department, Faculty of Science and Arts in Almakhwah, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
16
|
Kousar K, Naseer F, Abduh MS, Anjum S, Ahmad T. CD44 targeted delivery of oncolytic Newcastle disease virus encapsulated in thiolated chitosan for sustained release in cervical cancer: a targeted immunotherapy approach. Front Immunol 2023; 14:1175535. [PMID: 37283735 PMCID: PMC10239954 DOI: 10.3389/fimmu.2023.1175535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Cervical cancer accounts for one of most common cancers among women of reproductive age. Oncolytic virotherapy has emerged as a promising immunotherapy modality but it comes with several drawbacks that include rapid clearance of virus from body due to immune-neutralization of virus in host. To overcome this, we encapsulated oncolytic Newcastle disease virus (NDV) in polymeric thiolated chitosan nanoparticles. For active targeting of virus loaded nanoformulation against CD44 (cluster of differentiation 44) receptors which are overly expressed on cancer cells, these nanoparticles were surface functionalized with hyaluronic acid (HA). Methods Using half dose of NDV (TCID50 (50% tissue culture infective dose) single dose 3 × 105), virus loaded nanoparticles were prepared by green synthesis approach through ionotropic gelation method. Zeta analysis was performed to analyse size and charge on nanoparticles. Nanoparticles (NPs) shape and size were analysed by SEM (scanning electron microscope) and TEM (transmission electron microscope) while functional group identification was done by FTIR (fourier transform infrared) and XRD (X-ray diffraction). Viral quantification was done by TCID50 and Multiplicity of infection (MOI) determination while oncolytic potential of NPs encapsulated virus was analysed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and cell morphology analysis. Results Zeta analysis showed that average size of NDV loaded thiolated chitosan nanoparticles surface functionalized with HA (HA-ThCs-NDV) was 290.4nm with zeta potential of 22.3 mV and 0.265 PDI (polydispersity index). SEM and TEM analysis showed smooth surface and spherical features of nanoparticles. FTIR and XRD confirmed the presence of characteristic functional groups and successful encapsulation of the virus. In vitro release showed continuous but sustained release of NDV for up to 48 hours. TCID50 for HA-ThCs-NDV nanoparticles was 2.63x 106/mL titter and the nanoformulation exhibited high oncolytic potential in cell morphology analysis and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay as compared to naked virus, in dose dependent manner. Discussion These findings suggest that virus encapsulation in thiolated chitosan nanoparticles and surface functionalization with HA is not only helpful in achieving active targeting while masking virus from immune system but, it also gives sustained release of virus in tumor microenvironment for longer period of time that increases bioavailability of virus.
Collapse
Affiliation(s)
- Kousain Kousar
- Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Naseer
- Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sadia Anjum
- Department of Biology, University of Hail, Hail, Saudi Arabia
| | - Tahir Ahmad
- Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
17
|
Abaid R, Malik M, Iqbal MA, Malik M, Shahwani Z, Ali TZ, Morsy K, Capangpangan RY, Alguno AC, Choi JR. Biosynthesizing Cassia fistula Extract-Mediated Silver Nanoparticles for MCF-7 Cell Lines Anti-Cancer Assay. ACS OMEGA 2023; 8:17317-17326. [PMID: 37214698 PMCID: PMC10193565 DOI: 10.1021/acsomega.3c02225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
The unique consequence of green synthesis is that the mediator plant is able to release chemicals that are efficacious as reducing as well as stabilizing agents. In this work, the fruit pulp and leaf essences of Cassia fistula have been used to manufacture silver nanoparticles through the green synthesis technique. The sculpturing of nanoparticles was accomplished by utilizing the reduction phenomenon that ensued due to the reaction between plant essences and the precursor solution. These biosynthesized silver nanoparticles were examined, where we used scanning electron microscopy, UV-vis spectroscopy, and X-ray diffraction techniques as means to analyze the structure, optical properties, and crystalline behavior, respectively. The absorption spectra for fruit and leaf extracts obtained from the UV-vis analyses peaked at 401 and 397 nm, and these peaks imply the appearance of optical energy gaps of 2.12 and 2.58 eV, accompanying spherical shapes of particles with diameters in the ranges of 12-20 and 50-80 nm, respectively. These silver nanoparticles together with the adopted green technique have a vast array of applications, specifically in the biomedical realm. In particular, they are being used to treat several diseases and are manifested as strong anti-tumor agents to medicate MCF-7 breast cancer cell lines in order to minimize the cell growth rate depending on their concentrations.
Collapse
Affiliation(s)
- Rija Abaid
- Centre
of Excellence in Solid State Physics, University
of the Punjab, Lahore 54590, Pakistan
| | - Maria Malik
- Centre
of Excellence in Solid State Physics, University
of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Aamir Iqbal
- School
of Materials Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Mariam Malik
- Faculty
of Biological and Applied Sciences, International
Islamic University, Islamabad 04436, Pakistan
| | - Zubeda Shahwani
- Guangdong
Key Laboratory for Genome Stability and Disease Prevention and Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
Department of Biomedical Engineering, Shenzhen
University, School of Medicine, Shenzhen 518060, China
| | - Taha Zaid Ali
- Pharmacy
Department, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Kareem Morsy
- Biology Department,
College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Rey Y. Capangpangan
- Department
of Physical Sciences and Mathematics, College
of Marine and Allied Sciences Mindanao State University at Naawan, Poblacion, Naawan 9023, Misamis Oriental, Philippines
| | - Arnold C. Alguno
- Department
of Physics, Premier Research Institute of
Science and Mathematics (PRISM) Mindanao State University - Iligan
Institute of Technology, Tibanga Highway, Iligan City 9200 Philippines
| | - Jeong Ryeol Choi
- School
of Electronic Engineering, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic
of Korea
| |
Collapse
|
18
|
Sukocheva OA, Zhang Y. Nanomedicines: Targeting inflammatory pathway in cancer and aging. Semin Cancer Biol 2022; 86:1218-1221. [PMID: 36341801 DOI: 10.1016/j.semcancer.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University, Bedford Park 5042, South Australia, Australia; Department of Hepatology, Royal Adelaide Hospital, SA Health, Adelaide 5000, South Australia, Australia.
| | - Yonggang Zhang
- West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Ma L, Qiu S, Chen K, Tang J, Liu J, Su W, Liu X, Zeng X. Synergistic Antibacterial Effect from Silver Nanoparticles and Anticancer Activity Against Human Lung Cancer Cells. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microbially synthesized silver nanoparticles (AgNPs) with high stability and bioactivity have recently shown considerable promise in biomedical research and application. In this study, AgNPs prepared by Penicillium aculeatum Su1 exhibited effective antibacterial action by inhibiting
bacterial growth and destroying cellular structure. Meanwhile, their assessed increased in fold area (IFA) through the Kirby-Bauer disc diffusion method proved that, the AgNPs showed synergistic antibacterial effect on different bacteria when combined with antibiotics, especially for drug-resistant
P. aeruginosa (4.58∼6.36-fold) and B. subtilis (4.2-fold). Moreover, the CCK-8 assay and flow cytometric analysis were used to evaluate the cytotoxic effects of AgNPs on normal cells (HBE) and lung cancer cells (HTB-182), which confirmed that they presented higher biocompatibility
towards HBE cells when compared with silver ions, but high cytotoxicity in a dosedependent manner with an IC50 values of 35.00 μg/mL towards HTB-182 cells by raising intracellular reactive oxygen species (ROS) levels, hindering cell proliferation, and ultimately leading
to cell cycle arrest and cell apoptosis. These results demonstrate that, the biosynthesized AgNPs could be a potential candidate for future therapies of infection caused by drug-resistant bacteria, as well as lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Liang Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Siyu Qiu
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Kang Chen
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Jianxin Liu
- School of Geosciences and Info-Physics, Central South University, Changsha, 410083, Hunan, PR China
| | - Wei Su
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Xiaoxi Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| |
Collapse
|