1
|
Fernández-Nogueira P, Linzoain-Agos P, Cueto-Remacha M, De la Guia-Lopez I, Recalde-Percaz L, Parcerisas A, Gascon P, Carbó N, Gutierrez-Uzquiza A, Fuster G, Bragado P. Role of semaphorins, neuropilins and plexins in cancer progression. Cancer Lett 2024; 606:217308. [PMID: 39490515 DOI: 10.1016/j.canlet.2024.217308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Progress in understanding nervous system-cancer interconnections has emphasized the functional role of semaphorins (SEMAs) and their receptors, neuropilins (NRPs) and plexins (PLXNs), in cancer progression. SEMAs are a conserved and extensive family of broadly expressed soluble and membrane-associated proteins that were first described as regulators of axon guidance and neural and vascular development. However, recent advances have shown that they can have a dual role in cancer progression, acting either as tumor promoters or suppressors. SEMAs effects result from their interaction with specific co-receptors/receptors NRPs/PLXNs, that have also been described to play a role in cancer progression. They can influence both cancer cells and tumor microenvironment components modulating various aspects of tumorigenesis such as oncogenesis, tumor growth, invasion and metastatic spread or treatment resistance. In this review we focus on the role of these axon guidance signals and their receptors and co-receptors in various aspects of cancer. Furthermore, we also highlight their potential application as novel approaches for cancer treatment in the future.
Collapse
Affiliation(s)
- P Fernández-Nogueira
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - P Linzoain-Agos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - M Cueto-Remacha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - I De la Guia-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - L Recalde-Percaz
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Parcerisas
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain
| | - P Gascon
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - N Carbó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - G Fuster
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain.
| | - P Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
2
|
AbuQeis I, Zou Y, Ba YC, Teeti AA. Neuroscience of cancer: Research progress and emerging of the field. IBRAIN 2024; 10:305-322. [PMID: 39346791 PMCID: PMC11427805 DOI: 10.1002/ibra.12172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024]
Abstract
Cancer cells immediately expand and penetrate adjoining tissues, as opposed to metastasis, that is the spread of cancer cells through the circulatory or lymphatic systems to more distant places via the invasion process. We found that a lack of studies discussed tumor development with the nervous system, by the aspects of cancer-tissue invasion (biological) and chemical modulation of growth that cascades by releasing neural-related factors from the nerve endings via chemical substances known as neurotransmitters. In this review, we aimed to carefully demonstrate and describe the cancer invasion and interaction with the nervous system, as well as reveal the research progress and the emerging neuroscience of cancer. An initial set of 160 references underwent systematic review and summarization. Through a meticulous screening process, these data were refined, ultimately leading to the inclusion of 98 studies that adhered to predetermined criteria. The outcomes show that one formidable challenge in the realm of cancer lies in its intrinsic heterogeneity and remarkable capacity for rapid adaptation. Despite advancements in genomics and precision medicine, there is still a need to identify new molecular targets. Considering cancer within its molecular and cellular environment, including neural components, is crucial for addressing this challenge. In conclusion, this review provides good referential data for direct, indirect, biological, and chemical interaction for nerve tissue-tumor interaction, suggesting the establishment of new therapy techniques and mechanisms by controlling and modifying neuron networks that supply signals to tumors.
Collapse
Affiliation(s)
- Issam AbuQeis
- Department of Radiology Palestinian Ministry of Health Ramallah Palestine
- Department of Anatomy, Institute of Neuroscience, School of Basic Medicine Kunming Medical University Kunming China
| | - Yu Zou
- Department of Anatomy, Institute of Neuroscience, School of Basic Medicine Kunming Medical University Kunming China
| | - Ying-Chun Ba
- Department of Anatomy, Institute of Neuroscience, School of Basic Medicine Kunming Medical University Kunming China
| | - Abeer A Teeti
- Department of Chemistry, School of Science Hebron University Hebron Palestine
- Department of Epidemiology, School of Public Health Kunming Medical University Kunming China
| |
Collapse
|
3
|
Peng H, Yang M, Feng K, Lv Q, Zhang Y. Semaphorin 3C (Sema3C) reshapes stromal microenvironment to promote hepatocellular carcinoma progression. Signal Transduct Target Ther 2024; 9:169. [PMID: 38956074 PMCID: PMC11220018 DOI: 10.1038/s41392-024-01887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
More than 90% of hepatocellular carcinoma (HCC) cases develop in the presence of fibrosis or cirrhosis, making the tumor microenvironment (TME) of HCC distinctive due to the intricate interplay between cancer-associated fibroblasts (CAFs) and cancer stem cells (CSCs), which collectively regulate HCC progression. However, the mechanisms through which CSCs orchestrate the dynamics of the tumor stroma during HCC development remain elusive. Our study unveils a significant upregulation of Sema3C in fibrotic liver, HCC tissues, peripheral blood of HCC patients, as well as sorafenib-resistant tissues and cells, with its overexpression correlating with the acquisition of stemness properties in HCC. We further identify NRP1 and ITGB1 as pivotal functional receptors of Sema3C, activating downstream AKT/Gli1/c-Myc signaling pathways to bolster HCC self-renewal and tumor initiation. Additionally, HCC cells-derived Sema3C facilitated extracellular matrix (ECM) contraction and collagen deposition in vivo, while also promoting the proliferation and activation of hepatic stellate cells (HSCs). Mechanistically, Sema3C interacted with NRP1 and ITGB1 in HSCs, activating downstream NF-kB signaling, thereby stimulating the release of IL-6 and upregulating HMGCR expression, consequently enhancing cholesterol synthesis in HSCs. Furthermore, CAF-secreted TGF-β1 activates AP1 signaling to augment Sema3C expression in HCC cells, establishing a positive feedback loop that accelerates HCC progression. Notably, blockade of Sema3C effectively inhibits tumor growth and sensitizes HCC cells to sorafenib in vivo. In sum, our findings spotlight Sema3C as a novel biomarker facilitating the crosstalk between CSCs and stroma during hepatocarcinogenesis, thereby offering a promising avenue for enhancing treatment efficacy and overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical. Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Chen T, Li S, Wang L. Semaphorins in tumor microenvironment: Biological mechanisms and therapeutic progress. Int Immunopharmacol 2024; 132:112035. [PMID: 38603857 DOI: 10.1016/j.intimp.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Hallmark features of the tumor microenvironment include immune cells, stromal cells, blood vessels, and extracellular matrix (ECM), providing a conducive environment for the growth and survival of tumors. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins (SEMAs). SEMAs are a large and diverse family of widely expressed secreted and membrane-binding proteins, which were initially implicated in axon guidance and neural development. However, it is now clear that they are widely expressed beyond the nervous system and participate in regulating immune responses and cancer progression. In fact, accumulating evidence disclosed that different SEMAs can either stimulate or restrict tumor progression, some of which act as important regulators of tumor angiogenesis. Conversely, limited information is known about the functional relevance of SEMA signals in TME. In this setting, we systematically elaborate the role SEMAs and their major receptors played in characterized components of TME. Furthermore, we provide a convergent view of current SEMAs pharmacological progress in clinical treatment and also put forward their potential application value and clinical prospects in the future.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Shazhou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
5
|
Liu ZZ, Liu LY, Zhu LY, Zhu J, Luo JY, Wang YF, Xu HA. Plexin B3 guides axons to cross the midline in vivo. Front Cell Neurosci 2024; 18:1292969. [PMID: 38628398 PMCID: PMC11018898 DOI: 10.3389/fncel.2024.1292969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
During the development of neural circuits, axons are guided by a variety of molecular cues to navigate through the brain and establish precise connections with correct partners at the right time and place. Many axon guidance cues have been identified and they play pleiotropic roles in not only axon guidance but also axon fasciculation, axon pruning, and synaptogenesis as well as cell migration, angiogenesis, and bone formation. In search of receptors for Sema3E in axon guidance, we unexpectedly found that Plexin B3 is highly expressed in retinal ganglion cells of zebrafish embryos when retinal axons are crossing the midline to form the chiasm. Plexin B3 has been characterized to be related to neurodevelopmental disorders. However, the investigation of its pathological mechanisms is hampered by the lack of appropriate animal model. We provide evidence that Plexin B3 is critical for axon guidance in vivo. Plexin B3 might function as a receptor for Sema3E while Neuropilin1 could be a co-receptor. The intracellular domain of Plexin B3 is required for Semaphorin signaling transduction. Our data suggest that zebrafish could be an ideal animal model for investigating the role and mechanisms of Sema3E and Plexin B3 in vivo.
Collapse
Affiliation(s)
- Zhi-Zhi Liu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| | - Ling-Yan Liu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| | - Lou-Yin Zhu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
| | - Jian Zhu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
| | - Jia-Yu Luo
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| | - Ye-Fan Wang
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
| | - Hong A. Xu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| |
Collapse
|
6
|
Hajebi Khaniki S, Shokoohi F, Esmaily H, Kerachian MA. Analyzing aberrant DNA methylation in colorectal cancer uncovered intangible heterogeneity of gene effects in the survival time of patients. Sci Rep 2023; 13:22104. [PMID: 38092774 PMCID: PMC10719305 DOI: 10.1038/s41598-023-47377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Colorectal cancer (CRC) involves epigenetic alterations. Irregular gene-methylation alteration causes and advances CRC tumor growth. Detecting differentially methylated genes (DMGs) in CRC and patient survival time paves the way to early cancer detection and prognosis. However, CRC data including survival times are heterogeneous. Almost all studies tend to ignore the heterogeneity of DMG effects on survival. To this end, we utilized a sparse estimation method in the finite mixture of accelerated failure time (AFT) regression models to capture such heterogeneity. We analyzed a dataset of CRC and normal colon tissues and identified 3406 DMGs. Analysis of overlapped DMGs with several Gene Expression Omnibus datasets led to 917 hypo- and 654 hyper-methylated DMGs. CRC pathways were revealed via gene ontology enrichment. Hub genes were selected based on Protein-Protein-Interaction network including SEMA7A, GATA4, LHX2, SOST, and CTLA4, regulating the Wnt signaling pathway. The relationship between identified DMGs/hub genes and patient survival time uncovered a two-component mixture of AFT regression model. The genes NMNAT2, ZFP42, NPAS2, MYLK3, NUDT13, KIRREL3, and FKBP6 and hub genes SOST, NFATC1, and TLE4 were associated with survival time in the most aggressive form of the disease that can serve as potential diagnostic targets for early CRC detection.
Collapse
Affiliation(s)
- Saeedeh Hajebi Khaniki
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Farhad Shokoohi
- Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
7
|
An Overview of the Molecular Cues and Their Intracellular Signaling Shared by Cancer and the Nervous System: From Neurotransmitters to Synaptic Proteins, Anatomy of an All-Inclusive Cooperation. Int J Mol Sci 2022; 23:ijms232314695. [PMID: 36499024 PMCID: PMC9739679 DOI: 10.3390/ijms232314695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
We propose an overview of the molecular cues and their intracellular signaling involved in the crosstalk between cancer and the nervous system. While "cancer neuroscience" as a field is still in its infancy, the relation between cancer and the nervous system has been known for a long time, and a huge body of experimental data provides evidence that tumor-nervous system connections are widespread. They encompass different mechanisms at different tumor progression steps, are multifaceted, and display some intriguing analogies with the nervous system's physiological processes. Overall, we can say that many of the paradigmatic "hallmarks of cancer" depicted by Weinberg and Hanahan are affected by the nervous system in a variety of manners.
Collapse
|
8
|
Gong T, Wang Y, Dong S, Ma X, Du D, Zou C, Zheng Q, Wen Z. Single-cell RNA-seq reveals the communications between extracellular matrix-related components and Schwann cells contributing to the earlobe keloid formation. Front Med (Lausanne) 2022; 9:1000324. [PMID: 36388926 PMCID: PMC9643690 DOI: 10.3389/fmed.2022.1000324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/28/2022] [Indexed: 07/26/2023] Open
Abstract
Keloid is a major type of skin fibrotic disease, with one prominent feature of extensive accumulation of extracellular matrix (ECM) components, and another feature of pain/itching, which is closely related to the peripheral nervous system (PNS). However, the molecular pathogenesis of these two prominent features still needs to be further explored. In the present study, we performed single-cell RNA sequencing (scRNA-seq) on clinical earlobe keloid samples and adjacent normal skin samples and constructed a keloid atlas of 31,379 cells. All cells were clustered into 13 major cell types using cell-type-specific markers. Among them, fibroblast, vascular endothelial cells, and smooth muscle cells were defined as the ECM-related populations according to their ECM-associated functions. Also, we found that Schwann cells (SCs) were the main neuron cells of PNS in the skin. Interestingly, the cell proportions of ECM-related populations, as well as SC were increased significantly in the earlobe keloid compared to the adjacent normal tissues, suggesting an important role of these cell types in the development of the earlobe keloid. Comprehensive cell-cell interaction analysis at the single-cell level revealed a strong interaction between SC and ECM-related subgroups which might be mediated by SEMA3C signaling pathways and MK/PTN gene family, which are found to be mainly involved in promoting cell proliferation and migration. Moreover, further exploration of the interactions of ECM-related populations and SC in different keloids, including earlobe keloid, back keloid, and chest keloid revealed an increasing amount of TGFβ-TGFβ receptor interactions in chest/back keloids as compared to earlobe keloid, which suggested the anatomic site-specific pathogenesis in different keloids. Altogether, these findings suggested the interactions between ECM-related populations and SC contributing to the earlobe keloid formation and helped us to better understand the pathogenesis of keloids.
Collapse
Affiliation(s)
- Taogen Gong
- Otolaryngology-Head and Neck Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Yayu Wang
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Shaowei Dong
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoshi Ma
- Department of Pathology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Danfeng Du
- Department of Pathology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Chang Zou
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Zhong Wen
- Otolaryngology-Head and Neck Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Regulation of Semaphorin3A in the process of cutaneous wound healing. Cell Death Differ 2022; 29:1941-1954. [PMID: 35347234 PMCID: PMC9525670 DOI: 10.1038/s41418-022-00981-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Semaphorin 3A (Sema3A) has been recognized as a crucial regulator of morphogenesis and homeostasis over a wide range of organ systems. However, its function in cutaneous wound healing is poorly understood. In our study, we demonstrated that Sema3A adenovirus plasmids transfection limited keratinocyte proliferation and decreased migrative capacity as assessed by in vitro wound healing assay. Sema3A transduction inhibited TGF-β1-mediated keratinocyte migration and EMT process. Besides, we applied mice with K14-Cre-mediated deletion of Sema3A and found that Sema3A depletion postponed wound closure with decreased re-epithelialization and matrix growth. Contrary to the results obtained with full-length Sema3A plasmids transfection, increased keratinocyte migration with recombinant Sema3A proteins resulted in quicker closure of the wounding area after a scratch. Further, exogenously applied recombinant Sema3A worked with EGF to maintain the activation of EGFR by interacting with NRP1 and thereby regulated the internalization of the EGFR-NRP1 complex. Taken together, these results indicated a paradoxical role of autonomous and non-autonomous Sema3A expression during wound healing. Combined administration of recombinant EGF and Sema3A proteins could accelerate the process of wound repair, thus providing promising treatment prospects in the future.
Collapse
|
10
|
Ieguchi K, Funakoshi M, Mishima T, Takizawa K, Omori T, Nakamura F, Watanabe M, Tsuji M, Kiuchi Y, Kobayashi S, Tsunoda T, Maru Y, Wada S. The Sympathetic Nervous System Contributes to the Establishment of Pre-Metastatic Pulmonary Microenvironments. Int J Mol Sci 2022; 23:ijms231810652. [PMID: 36142564 PMCID: PMC9501257 DOI: 10.3390/ijms231810652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence suggests that neural activity contributes to tumor initiation and its acquisition of metastatic properties. More specifically, it has been reported that the sympathetic nervous system regulates tumor angiogenesis, tumor growth, and metastasis. The function of the sympathetic nervous system in primary tumors has been gradually elucidated. However, its functions in pre-metastatic environments and/or the preparation of metastatic environments far from the primary sites are still unknown. To investigate the role of the sympathetic nervous system in pre-metastatic environments, we performed chemical sympathectomy using 6-OHDA in mice and observed a decrease in lung metastasis by attenuating the recruitment of myeloid-derived suppressor cells. Furthermore, we note that neuro-immune cell interactions could be observed in tumor-bearing mouse lungs in conjunction with the decreased expression of Sema3A. These data indicate that the sympathetic nervous system contributes to the preparation of pre-metastatic microenvironments in the lungs, which are mediated by neuro-immune cell interactions.
Collapse
Affiliation(s)
- Katsuaki Ieguchi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
| | - Masabumi Funakoshi
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of Peripheral Nervous System Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Taishi Mishima
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Kohtaro Takizawa
- Department of Biochemistry, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tsutomu Omori
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Fumio Nakamura
- Department of Biochemistry, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Makoto Watanabe
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Department of Pharmacology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
| | - Takuya Tsunoda
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Correspondence: (Y.M.); (S.W.); Tel.: +81-3-5269-7417 (Y.M.); +81-3-3300-5257 (S.W.)
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Correspondence: (Y.M.); (S.W.); Tel.: +81-3-5269-7417 (Y.M.); +81-3-3300-5257 (S.W.)
| |
Collapse
|
11
|
Li Y, Xu C, Sun B, Zhong F, Cao M, Yang L. Sema3d Restrained Hepatocellular Carcinoma Progression Through Inactivating Pi3k/Akt Signaling via Interaction With FLNA. Front Oncol 2022; 12:913498. [PMID: 35957887 PMCID: PMC9358705 DOI: 10.3389/fonc.2022.913498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide due to the high incidence rate of metastasis and recurrence. Semaphorin 3d (Sema3d) has been shown to play a critical role in vascular development during early embryogenesis and several forms of cancer progression via regulating cell migration. However, the function of Sema3d in hepatocellular carcinoma (HCC) remains elusive. This study aimed to explore the function and mechanisms of Sema3d in HCC. In our study, Sema3d expression was significantly downregulated in HCC tissues and cell lines. Downregulated Sema3d was closely correlated with aggressive clinicopathological features and poor clinical outcomes in HCC patients. Moreover, overexpression of Sema3d in HCCLM3 cells was significantly inhibited and knockdown of Sema3d in PLC/PRF/5 cells promoted proliferation, migration, invasion, and epithelial–mesenchymal transition (EMT) of HCC cells in vitro and tumor growth, EMT, and metastasis in vivo. Furthermore, the RNA sequencing and gene set enrichment analysis (GSEA) indicated that these phenotypic and functional changes in Sema3d-interfered HCC cells were mediated by the Pi3k/Akt signaling pathway, and co-IP–combined mass spectrometry indicated Sema3d might interact with FLNA. Finally, we proved that Sema3d exerted its tumor-restraining effect by interacting with FLNA to inactivate the Pi3k/Akt signaling pathway and remodel the cytoskeleton. Our data showed that Sema3d restrained hepatocellular carcinoma proliferation, invasion, and metastasis through inactivating Pi3k/Akt via interaction with FLNA, which may serve as a novel prognostic predictor and a potential therapeutic target for HCC patients.
Collapse
|
12
|
Meng Z, Li FL, Fang C, Yeoman B, Qiu Y, Wang Y, Cai X, Lin KC, Yang D, Luo M, Fu V, Ma X, Diao Y, Giancotti FG, Ren B, Engler AJ, Guan KL. The Hippo pathway mediates Semaphorin signaling. SCIENCE ADVANCES 2022; 8:eabl9806. [PMID: 35613278 PMCID: PMC9132450 DOI: 10.1126/sciadv.abl9806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Semaphorins were originally identified as axonal guidance molecules, but they also control processes such as vascular development and tumorigenesis. The downstream signaling cascades of Semaphorins in these biological processes remain unclear. Here, we show that the class 3 Semaphorins (SEMA3s) activate the Hippo pathway to attenuate tissue growth, angiogenesis, and tumorigenesis. SEMA3B restoration in lung cancer cells with SEMA3B loss of heterozygosity suppresses cancer cell growth via activating the core Hippo kinases LATS1/2 (large tumor suppressor kinase 1/2). Furthermore, SEMA3 also acts through LATS1/2 to inhibit angiogenesis. We identified p190RhoGAPs as essential partners of the SEMA3A receptor PlexinA in Hippo regulation. Upon SEMA3 treatment, PlexinA interacts with the pseudo-guanosine triphosphatase (GTPase) domain of p190RhoGAP and simultaneously recruits RND GTPases to activate p190RhoGAP, which then stimulates LATS1/2. Disease-associated etiological factors, such as genetic lesions and oscillatory shear, diminish Hippo pathway regulation by SEMA3. Our study thus discovers a critical role of Hippo signaling in mediating SEMA3 physiological function.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Fu-Long Li
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cao Fang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kimberly C. Lin
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Di Yang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Luo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Vivian Fu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yarui Diao
- Regeneration Next Initiative, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Filippo G. Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of GU Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Herbert Irving Comprehensive Cancer Center and Department of Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10033, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Christie SM, Hao J, Tracy E, Buck M, Yu JS, Smith AW. Interactions between semaphorins and plexin-neuropilin receptor complexes in the membranes of live cells. J Biol Chem 2021; 297:100965. [PMID: 34270956 PMCID: PMC8350011 DOI: 10.1016/j.jbc.2021.100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Signaling of semaphorin ligands via their plexin-neuropilin receptors is involved in tissue patterning in the developing embryo. These proteins play roles in cell migration and adhesion but are also important in disease etiology, including in cancer angiogenesis and metastasis. While some structures of the soluble domains of these receptors have been determined, the conformations of the full-length receptor complexes are just beginning to be elucidated, especially within the context of the plasma membrane. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy allows direct insight into the formation of protein-protein interactions in the membranes of live cells. Here, we investigated the homodimerization of neuropilin-1 (Nrp1), plexin A2, plexin A4, and plexin D1 using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy. Consistent with previous studies, we found that Nrp1, plexin A2, and plexin A4 are present as dimers in the absence of exogenous ligand. Plexin D1, on the other hand, was monomeric under similar conditions, which had not been previously reported. We also found that plexin A2 and A4 assemble into a heteromeric complex. Stimulation with semaphorin 3A or semaphorin 3C neither disrupts nor enhances the dimerization of the receptors when expressed alone, suggesting that activation involves a conformational change rather than a shift in the monomer-dimer equilibrium. However, upon stimulation with semaphorin 3C, plexin D1 and Nrp1 form a heteromeric complex. This analysis of interactions provides a complementary approach to the existing structural and biochemical data that will aid in the development of new therapeutic strategies to target these receptors in cancer.
Collapse
Affiliation(s)
| | - Jing Hao
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erin Tracy
- Department of Chemistry, University of Akron, Akron, Ohio, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jennifer S Yu
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA; Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, Ohio, USA.
| |
Collapse
|
14
|
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13133253. [PMID: 34209679 PMCID: PMC8268686 DOI: 10.3390/cancers13133253] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Since the targeting of a single pro-angiogenic factor fails to improve oncological disease outcome, significant efforts have been made to identify new pro-angiogenic factors that could compensate for the deficiency of current therapy or act independently as single drugs. Our review aims to present the state-of-the art for well-known and recently described factors produced by macrophages that induce and regulate angiogenesis. A number of positive and negative regulators of angiogenesis in the tumor microenvironment are produced by tumor-associated macrophages (TAMs). Accumulating evidence has indicated that, apart from the well-known angiogenic factors, there are plenty of novel angiogenesis-regulating proteins that belong to different classes. We summarize the data regarding the direct or indirect mechanisms of the interaction of these factors with endothelial cells during angiogenesis. We highlight the recent findings that explain the limitations in the efficiency of current anti-angiogenic therapy approaches. Abstract Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
- Correspondence: (I.L.); (J.K.)
| | - Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
- Correspondence: (I.L.); (J.K.)
| |
Collapse
|
15
|
Wang H, Zheng Q, Lu Z, Wang L, Ding L, Xia L, Zhang H, Wang M, Chen Y, Li G. Role of the nervous system in cancers: a review. Cell Death Discov 2021; 7:76. [PMID: 33846291 PMCID: PMC8041826 DOI: 10.1038/s41420-021-00450-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Nerves are important pathological elements of the microenvironment of tumors, including those in pancreatic, colon and rectal, prostate, head and neck, and breast cancers. Recent studies have associated perineural invasion with tumor progression and poor outcomes. In turn, tumors drive the reprogramming of neurons to recruit new nerve fibers. Therefore, the crosstalk between nerves and tumors is the hot topic and trend in current cancer investigations. Herein, we reviewed recent studies presenting direct supporting evidences for a better understanding of nerve-tumor interactions.
Collapse
Affiliation(s)
- Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Hao Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Yicheng Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
16
|
Lettieri A, Oleari R, Paganoni AJJ, Gervasini C, Massa V, Fantin A, Cariboni A. Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Front Cell Dev Biol 2021; 9:638674. [PMID: 33869187 PMCID: PMC8047133 DOI: 10.3389/fcell.2021.638674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
CHD7 is a chromatin remodeler protein that controls gene expression via the formation of multi-protein complexes with specific transcription factors. During development, CHD7 controls several differentiation programs, mainly by acting on neural progenitors and neural crest (NC) cells. Thus, its roles range from the central nervous system to the peripheral nervous system and the organs colonized by NC cells, including the heart. Accordingly, mutated CHD7 is linked to CHARGE syndrome, which is characterized by several neuronal dysfunctions and by malformations of NC-derived/populated organs. Altered CHD7 has also been associated with different neoplastic transformations. Interestingly, recent evidence revealed that semaphorins, a class of molecules involved in developmental and pathological processes similar to those controlled by CHD7, are regulated by CHD7 in a context-specific manner. In this article, we will review the recent insights that support the existence of genetic interactions between these pathways, both during developmental processes and cancer progression.
Collapse
Affiliation(s)
- Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alyssa J J Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Fantin
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
17
|
Plexin-B3 Regulates Cellular Motility, Invasiveness, and Metastasis in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040818. [PMID: 33669221 PMCID: PMC7919786 DOI: 10.3390/cancers13040818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/17/2022] Open
Abstract
The Plexins family of proteins are well-characterized transmembrane receptors of semaphorins, axon guidance cue molecules, that mediate the cell attraction or repelling effects for such cues. Plexins and their ligands are involved in numerous cellular activities, such as motility, invasion, and adhesion to the basement membrane. The detachment of cells and the gain in motility and invasion are hallmarks of the cancer metastasis cascade, thus generating interest in exploring the role of plexins in cancer metastasis. Semaphorin-plexin complexes can act as tumor promoters or suppressors, depending upon the cancer type, and are under investigation for therapeutic purposes. Our group has identified Semaphorin-5A (SEMA5A)/Plexin-B3 as an attractive targetable complex for pancreatic cancer (PC) metastasis. However, our understanding of the Plexin-B3 function and pathological expression in PC is limited, and our present study delineates the role of Plexin-B3 in PC malignancy. We examined the pathological expression of Plexin-B3 in PC tumors and metastasis using a human tissue microarray, disease progression model of PDX-Cre-Kras(G12D) (KC) mice, and different metastatic sites obtained from the KrasG12D; Trp53R172H; Pdx1-Cre (KPC) mice model. We observed a higher Plexin-B3 expression in PC tumor cores than the normal pancreas, and different metastatic sites were positive for Plexin-B3 expression. However, in the KC mice model, the Plexin-B3 expression increased initially and then decreased with the disease progression. Next, to evaluate the functional role of Plexin-B3, we utilized T3M-4- and CD18/HPAF-Control and -Plexin B3 knockdown cells for different in vivo and in vitro studies. The knockdown of Plexin-B3 enhanced the in vitro cellular migration, invasiveness, and impaired colony formation in three-dimensional culture, along with an increase in cellular spread and remodeling of the actin filaments. We also observed a higher metastasis in nude mice injected with T3M-4- and CD18/HPAF-shPlexin-B3 cells compared to their respective control cells. Furthermore, we observed a lower number of proliferating Ki-67-positive cells and higher ALDH1-A1-positive cells in the tumors formed by Plexin-B3 knockdown cells compared to tumors formed by the control cells. Together, our data suggest that the loss of Plexin-B3 is associated with the interference of cell division machinery and the induction of stem cell-like characteristics in PC cells.
Collapse
|
18
|
Hou Y, Wang W, Zeng Z, Gan W, Lv S, Li T, Yan Z, Zhang R, Yang M. High SEMA4C expression promotes the epithelial-mesenchymal transition and predicts poor prognosis in colorectal carcinoma. Aging (Albany NY) 2020; 12:21992-22018. [PMID: 33177246 PMCID: PMC7695389 DOI: 10.18632/aging.104038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Semaphorin 4C (SEMA4C), is an important regulator of axonal guidance and aggravates tumor development. However, the roles and prognostic value of SEMA4C in colorectal cancer (CRC) remain unclear. Here, bioinformatics analyses of transcriptome data from multiple CRC patient datasets and immunohistochemical staining of a CRC tissue microarray (TMA) (n=83) showed that SEMA4C mRNA and protein expression were higher in CRC tissues than normal colorectal tissues. SEMA4C mRNA and protein expression correlated with pathologic stage and metastasis in CRC patients. Higher SEMA4C expression was associated with shorter overall survival, consensus molecular subtype 4 (CMS4), and DNA hypomethylation of SEMA4C in CRC patients. Multivariate Cox regression analyses revealed that SEMA4C expression was an independent prognostic predictor in CRC patients. Gene set expression analysis (GSEA) illustrated that SEMA4C expression had remarkable correlations with epithelial-mesenchymal transition (EMT) as well as hedgehog, Wnt/β-catenin, TGF-β, and Notch signaling pathways. Receiver operating characteristic (ROC) curve analysis demonstrated that SEMA4C expression accurately distinguished between the CMS4 and CMS1-3 subtypes of CRC patients. By inhibiting EMT, SEMA4C silencing reduced in vitro proliferation, migration, and invasion by CRC cells. These findings suggest that SEMA4C is a CMS4-associated gene that enhances CRC progression by inducing EMT.
Collapse
Affiliation(s)
- Yufang Hou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zifan Zeng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenqiang Gan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Silin Lv
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tiegang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zheng Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rixin Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
19
|
Ahammad I. A comprehensive review of tumor proliferative and suppressive role of semaphorins and therapeutic approaches. Biophys Rev 2020; 12:1233-1247. [PMID: 32577918 PMCID: PMC7575654 DOI: 10.1007/s12551-020-00709-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
Semaphorins have been traditionally known as axon guidance proteins that negatively regulate axonal growth. However, in the past couple of decades, their versatile role in so many other biological processes has come to prominence as well. One such example is their role in cancer. In this review article, the focus was on the tumor proliferative and tumor suppressive role of all 20 semaphorin family members under the 7 semaphorin classes found in vertebrates and invertebrates as well as the ongoing and emerging therapeutic approaches to combat semaphorin-mediated cancers. Except sema6C, 19 of the 20 non-viral semaphorin family members have been discovered to be associated with cancer in one way or another. Eleven semaphorin family members have been discovered to be tumor proliferative and 8 to be tumor suppressive. Six therapeutic avenues and their safety profiles have been discussed which are currently at use or at the various stages of development. Finally, perspectives on which approach is the best for treating cancers associated with semaphorins have been given.
Collapse
Affiliation(s)
- Ishtiaque Ahammad
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh.
| |
Collapse
|
20
|
Tarullo SE, Hill RC, Hansen KC, Behbod F, Borges VF, Nelson AC, Lyons TR. Postpartum breast cancer progression is driven by semaphorin 7a-mediated invasion and survival. Oncogene 2020; 39:2772-2785. [PMID: 32020054 PMCID: PMC7103487 DOI: 10.1038/s41388-020-1192-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 11/09/2022]
Abstract
Young women diagnosed with breast cancer (BC) have poor prognosis due to increased rates of metastasis. In addition, women diagnosed within 10 years of most recent childbirth are approximately three times more likely to develop metastasis than age- and stage-matched nulliparous women. We define these cases as postpartum BC (PPBC) and propose that the unique biology of the postpartum mammary gland drives tumor progression. Our published results revealed roles for SEMA7A in breast tumor cell growth, motility, invasion, and tumor-associated lymphangiogenesis, all of which are also increased in preclinical models of PPBC. However, whether SEMA7A drives progression in PPBC remains largely unexplored. Our results presented herein show that silencing of SEMA7A decreases tumor growth in a model of PPBC, while overexpression is sufficient to increase growth in nulliparous hosts. Further, we show that SEMA7A promotes multiple known drivers of PPBC progression including tumor-associated COX-2 expression and fibroblast-mediated collagen deposition in the tumor microenvironment. In addition, we show for the first time that SEMA7A-expressing cells deposit fibronectin to promote tumor cell survival. Finally, we show that co-expression of SEMA7A/COX-2/FN predicts for poor prognosis in breast cancer patient cohorts. These studies suggest SEMA7A as a key mediator of BC progression, and that targeting SEMA7A may open avenues for novel therapeutic strategies.
Collapse
Affiliation(s)
- Sarah E Tarullo
- Division of Medical Oncology, Department of Medicine, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
- Young Women's BC Translational Program, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Fariba Behbod
- Division of Cancer and Developmental Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Virginia F Borges
- Division of Medical Oncology, Department of Medicine, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
- Young Women's BC Translational Program, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
- University of Colorado Cancer Center, Aurora, CO, 80045, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, CU Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Young Women's BC Translational Program, CU Anschutz Medical Campus, Aurora, CO, 80045, USA.
- University of Colorado Cancer Center, Aurora, CO, 80045, USA.
| |
Collapse
|
21
|
Chen W, Ding R, Tang J, Li H, Chen C, Zhang Y, Zhang Q, Zhu X. Knocking Out SST Gene of BGC823 Gastric Cancer Cell by CRISPR/Cas9 Enhances Migration, Invasion and Expression of SEMA5A and KLF2. Cancer Manag Res 2020; 12:1313-1321. [PMID: 32110105 PMCID: PMC7040191 DOI: 10.2147/cmar.s236374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background The impact and potential molecular mechanisms of SST in the occurrence and development of GC have not been determined. Materials and Methods Two pairs of sgRNA and reporter were designed according to targeting sequence of SST gene for double-nicking. Plasmids were transfected into 293T for selecting sgRNA with higher cutting efficiency. The subline which has knocked-out SST gene were selected by FACS and verified by sequencing and expression level. Moreover, the migration and invasion ability was evaluated by wound healing and transwell after knocking out SST. Besides, the protein expression of SEMA5A and KLF2 were observed by Western blotting and LSCM. Last, we detected the expression levels of SST, SEMA5A, and KLF2 in GC tissues by Western blotting. Results The results revealed that the new subline 1E9, which had knocked out SST gene, was established by CRISPR/Cas9. In addition, the knockout of SST in GC cells markedly increased migration and invasion ability. The results also demonstrated that the knockout of SST increased the expression of SEMA5A and KLF2. The expression level of SST was decreased in GC tissues, and its decrease was associated with overexpression of SEMA5A and KLF2. Conclusion SST plays an inhibitory role in the migration and invasion of GC cell BGC823. The protein expression levels of SEMA5A and KLF2 were enhanced in GC cells and tissues lacking SST expression.
Collapse
Affiliation(s)
- Wei Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Ruixian Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Jinlu Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Haodong Li
- Department of Clinical Medicine, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Chonghua Chen
- Department of Clinical Medicine, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Yaru Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Qinxian Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Xiaoyan Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| |
Collapse
|
22
|
Hu R, Peng GQ, Ban DY, Zhang C, Zhang XQ, Li YP. High-Expression of Neuropilin 1 Correlates to Estrogen-Induced Epithelial-Mesenchymal Transition of Endometrial Cells in Adenomyosis. Reprod Sci 2020; 27:395-403. [PMID: 32046395 DOI: 10.1007/s43032-019-00035-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
Abstract
Epithelial-mesenchymal transition (EMT) induced by estrogen contributes to the development of adenomyosis. However, the exact underlying mechanism remains mostly obscure. We hypothesized that a transmembrane glycoprotein neuropilin 1 (NRP1) was critical in the EMT induced by estrogen, accelerating the development of adenomyosis. We firstly investigated the expression pattern of NRP1 in endometrium samples from women with adenomyosis. We found that NRP1 expression was significantly increased in the endometrium of uterine adenomyosis, especially in the ectopic endometrium. To determine the role of NRP1 in the EMT in endometrial cells, we used an NRP1 overexpression retrovirus to up-regulate the NPR1 expression in human endometrial cells (HEC-1-A). Endometrial cells infected with NRP1 retroviruses showed a high expression of NRP1 and exerted a mesenchymal phenotype, characterized by down-regulation of E-cadherin and Occludin, up-regulation of α-SMA and N-cadherin, and enhanced migration. Then, we found that 17β-estradiol (E2) up-regulated the expression of NRP1 in endometrial cells in a dose-dependent manner, which was eliminated by raloxifene, a selective estrogen receptor inhibitor. Importantly, NRP1 shRNA significantly suppressed the EMT induced by E2 in endometrial cells. And NRP1 shRNA significantly inhibited the phosphorylation of Smad3 and restored the expressions of Slug and Snail1 mRNA. Collectively, these data highlight the possible role of NRP1 in the EMT in the development of adenomyosis and provide a potential therapeutic target for adenomyosis patients.
Collapse
Affiliation(s)
- Rong Hu
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guo-Qing Peng
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - De-Ying Ban
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chun Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Qiong Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yan-Ping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
23
|
Liu R, Shuai Y, Luo J, Zhang Z. SEMA3C Promotes Cervical Cancer Growth and Is Associated With Poor Prognosis. Front Oncol 2019; 9:1035. [PMID: 31649890 PMCID: PMC6794562 DOI: 10.3389/fonc.2019.01035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Aberrant activation of Semaphorin3C(SEMA3C) is widespread in human cancers. We aimed to analyze SEMA3C expression in cervical cancer and investigate the role of SEMA3C in cervical cancer and its underlying mechanism, which is important for exploring new therapeutic targets and prognostic factors. Materials and Methods: The expression of SEMA3C was examined in paraffin-embedded cervical cancer specimens. In vivo and in vitro assays were performed to validate the effect of SEMA3C on cervical cancer cell proliferation and p-ERK pathway activation. Gene Set Enrichment Analysis (GSEA) was performed using The Cancer Genome Atlas (TCGA) data set. Results: SEMA3C expression was associated with poor survival in both the TCGA cohort and our cohort. Silencing of SEMA3C suppressed cervical cancer cell proliferation, colony formation ability, and the activation of the p-ERK signaling pathway in vitro. SEMA3C depletion inhibited tumor growth in vitro. GSEA also showed that the epithelial mesenchymal transition (EMT), TGFβ signaling pathway, angiogenesis, and extracellular matrix (ECM) receptor interactions are associated with a high SEMA3C expression phenotype. Conclusion: SEMA3C is correlated with poor prognosis of cervical cancer patients and promotes tumor growth via the activation of the p-ERK pathway.
Collapse
Affiliation(s)
- Ruoyan Liu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanjie Shuai
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jingtao Luo
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Ze Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
24
|
Huang LJ, Shen Y, Bai J, Wang FX, Feng YD, Chen HL, Peng Y, Zhang R, Li FM, Zhang PH, Lei XR, Xue F, Ma YP, Hu JS, He AL. High Expression Levels of Long Noncoding RNA Small Nucleolar RNA Host Gene 18 and Semaphorin 5A Indicate Poor Prognosis in Multiple Myeloma. Acta Haematol 2019; 143:279-288. [PMID: 31597158 DOI: 10.1159/000502404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND The aim of this study was to detect the expression of long noncoding RNA small nucleolar RNA host gene 18 (SNHG18) andsemaphorin 5A (SEMA5A) genes in multiple myeloma (MM) patients and to explore the correlation of the expression of these genes with the clinical characteristics and prognosis of MM patients. METHODS Forty-seven newly diagnosed MM, 18 complete remission MM, 13 refractory/relapse MM, and 22 iron deficiency anemia (serving as control) samples were extracted at the Department of Hematology, Second Affiliated Hospital of Xian Jiaotong University between January 2015 and December 2016. The clinical features of the MM patients are summarized. Real-time quantitative PCR was performed to analyze the relative expression levels of the SNHG18 and SEMA5Agenes. The clinical characteristics and overall survival (OS) of the MM patients were statistically analyzed while measuring different levels of SNHG18 and SEMA5Agene expression. At the same time, the correlation between the expression of SNHG18 and SEMA5A was also analyzed. RESULTS The analysis confirmed that SNHG18 and its possible target gene SEMA5A were both highly expressed in newly diagnosed MM patients. After analyzing the clinical significance of SNHG18 and SEMA5A in MM patients, we found that the expression of SNHG18 and SEMA5A was related to the Durie-Salmon (DS), International Staging System (ISS), and Revised International Staging System (R-ISS) classification systems, and the Mayo Clinic Risk Stratification for Multiple Myeloma (mSMART; p < 0.05). Moreover, we observed a significant difference in OS between the SNHG18/SEMA5A high expression group and the low expression group. We found a positive correlation between SNHG18 and SEMA5A expression (r = 0.709, p < 0.01). Surprisingly, the expected median OS times of both the SNHG18 and SEMA5Ahigh expression groups were significantly decreased, which was in contrast to those of both the SNHG18 and SEMA5Alow expression groups and the single-gene high expression group (p < 0.05). CONCLUSION High expression of both SNHG18 and SEMA5A is associated with poor prognosis in patients with MM.
Collapse
Affiliation(s)
- Ling-Juan Huang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of General Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
- School of General Medicine, Xi'an Medical University, Xi'an, China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ju Bai
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fang-Xia Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan-Dong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong-Li Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Peng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ru Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fang-Mei Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pei-Hua Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Ru Lei
- Institute of Hematology, Xi'an Central Hospital, Xi'an, China
| | - Feng Xue
- Department of Hematology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yan-Ping Ma
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jin-Song Hu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Ai-Li He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,
| |
Collapse
|
25
|
Gurrapu S, Franzolin G, Fard D, Accardo M, Medico E, Sarotto I, Sapino A, Isella C, Tamagnone L. Reverse signaling by semaphorin 4C elicits SMAD1/5- and ID1/3-dependent invasive reprogramming in cancer cells. Sci Signal 2019; 12:12/595/eaav2041. [DOI: 10.1126/scisignal.aav2041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Semaphorins are a family of molecular signals that guide cell migration and are implicated in the regulation of cancer cells. In particular, transmembrane semaphorins are postulated to act as both ligands (“forward” mode) and signaling receptors (“reverse” mode); however, reverse semaphorin signaling in cancer is relatively less understood. Here, we identified a previously unknown function of transmembrane semaphorin 4C (Sema4C), acting in reverse mode, to elicit nonconventional TGF-β/BMP receptor activation and selective SMAD1/5 phosphorylation. Sema4C coimmunoprecipitated with TGFBRII and BMPR1, supporting its role as modifier of this pathway. Sema4C reverse signaling led to the increased abundance of ID1/3 transcriptional factors and to extensive reprogramming of gene expression, which suppressed the typical features of the epithelial-mesenchymal transition in invasive carcinoma cells. This phenotype was nevertheless coupled with burgeoning metastatic behavior in vivo, consistent with evidence that Sema4C expression correlates with metastatic progression in human breast cancers. Thus, Sema4C reverse signaling promoted SMAD1/5- and ID1/3-dependent gene expression reprogramming and phenotypic plasticity in invasive cancer cells.
Collapse
|
26
|
Brenca M, Stacchiotti S, Fassetta K, Sbaraglia M, Janjusevic M, Racanelli D, Polano M, Rossi S, Brich S, Dagrada GP, Collini P, Colombo C, Gronchi A, Astolfi A, Indio V, Pantaleo MA, Picci P, Casali PG, Dei Tos AP, Pilotti S, Maestro R. NR4A3 fusion proteins trigger an axon guidance switch that marks the difference between EWSR1 and TAF15 translocated extraskeletal myxoid chondrosarcomas. J Pathol 2019; 249:90-101. [PMID: 31020999 PMCID: PMC6766969 DOI: 10.1002/path.5284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 12/31/2022]
Abstract
Extraskeletal myxoid chondrosarcoma (EMC) is a rare sarcoma histotype with uncertain differentiation. EMC is hallmarked by the rearrangement of the NR4A3 gene, which in most cases fuses with EWSR1 or TAF15. TAF15‐translocated EMC seem to feature a more aggressive course compared to EWSR1‐positive EMCs, but whether the type of NR4A3 chimera impinges upon EMC biology is still largely undefined. To gain insights on this issue, a series of EMC samples (7 EWSR1‐NR4A3 and 5 TAF15‐NR4A3) were transcriptionally profiled. Our study unveiled that the two EMC variants display a distinct transcriptional profile and that the axon guidance pathway is a major discriminant. In particular, class 4–6 semaphorins and axonal guidance cues endowed with pro‐tumorigenic activity were more expressed in TAF15‐NR4A3 tumors; vice versa, class 3 semaphorins, considered to convey growth inhibitory signals, were more abundant in EWSR1‐NR4A3 EMC. Intriguingly, the dichotomy in axon guidance signaling observed in the two tumor variants was recapitulated in in vitro cell models engineered to ectopically express EWSR1‐NR4A3 or TAF15‐NR4A3. Moreover, TAF15‐NR4A3 cells displayed a more pronounced tumorigenic potential, as assessed by anchorage‐independent growth. Overall, our results indicate that the type of NR4A3 chimera dictates an axon guidance switch and impacts on tumor cell biology. These findings may provide a framework for interpretation of the different clinical–pathological features of the two EMC variants and lay down the bases for the development of novel patient stratification criteria and therapeutic approaches. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Monica Brenca
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Silvia Stacchiotti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Kelly Fassetta
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Marta Sbaraglia
- Department of Pathology, Treviso Regional Hospital, Treviso, Italy
| | - Milijana Janjusevic
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Dominga Racanelli
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Maurizio Polano
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Sabrina Rossi
- Department of Pathology, Treviso Regional Hospital, Treviso, Italy
| | - Silvia Brich
- Unit of Experimental Molecular Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Gian P Dagrada
- Laboratory of Molecular Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Collini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Chiara Colombo
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Annalisa Astolfi
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Maria A Pantaleo
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo G Casali
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Oncology and Haemato-Oncology Department, University of Milan, Milano, Italy
| | - Angelo P Dei Tos
- Department of Pathology, Treviso Regional Hospital, Treviso, Italy.,Department of Medicine, University of Padua School of Medicine, Padova, Italy
| | - Silvana Pilotti
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
27
|
Wei L, Li H, Tamagnone L, You H. Semaphorins and Their Receptors in Hematological Malignancies. Front Oncol 2019; 9:382. [PMID: 31143707 PMCID: PMC6521731 DOI: 10.3389/fonc.2019.00382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022] Open
Abstract
While semaphorins were initially identified as axonal guidance cues for wiring the neural network, it was then recognized their wide relevance in tissue development and homeostasis. Notably, semaphorin activities were also extensively studied in many types of solid tumors; however, their relevance in hematological malignancies is far from understood. In this mini-review, we surveyed the current knowledge about semaphorins and their receptors in leukemias, lymphomas, and multiple myeloma. Noteworthy, current data support a promoting role for Semaphorin 4D and Neuropilin-1 in these tumors, while Semaphorin 3A seems to consistently act as oncosuppressor in leukemias and multiple myeloma. The expression levels and functional activities of SEMA3B, SEMA3F, and Neuropilin-2 have furthermore been investigated in leukemias and lymphoma cells. Herein, we reviewed the state of the art and highlighted some of the open questions to be addressed in the field.
Collapse
Affiliation(s)
- Li Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Hongbo Li
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Luca Tamagnone
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,YouJiang Medical University For Nationalities, Baise, China.,Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Hui DHF, Tam KJ, Jiao IZF, Ong CJ. Semaphorin 3C as a Therapeutic Target in Prostate and Other Cancers. Int J Mol Sci 2019; 20:E774. [PMID: 30759745 PMCID: PMC6386986 DOI: 10.3390/ijms20030774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
The semaphorins represent a large family of signaling molecules with crucial roles in neuronal and cardiac development. While normal semaphorin function pertains largely to development, their involvement in malignancy is becoming increasingly evident. One member, Semaphorin 3C (SEMA3C), has been shown to drive a number of oncogenic programs, correlate inversely with cancer prognosis, and promote the progression of multiple different cancer types. This report surveys the body of knowledge surrounding SEMA3C as a therapeutic target in cancer. In particular, we summarize SEMA3C's role as an autocrine andromedin in prostate cancer growth and survival and provide an overview of other cancer types that SEMA3C has been implicated in including pancreas, brain, breast, and stomach. We also propose molecular strategies that could potentially be deployed against SEMA3C as anticancer agents such as biologics, small molecules, monoclonal antibodies and antisense oligonucleotides. Finally, we discuss important considerations for the inhibition of SEMA3C as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Daniel H F Hui
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Kevin J Tam
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Ivy Z F Jiao
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Christopher J Ong
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
29
|
Semaphorin Signaling in Cancer-Associated Inflammation. Int J Mol Sci 2019; 20:ijms20020377. [PMID: 30658382 PMCID: PMC6358995 DOI: 10.3390/ijms20020377] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.
Collapse
|
30
|
Iyer AS, Chapoval SP. Neuroimmune Semaphorin 4A in Cancer Angiogenesis and Inflammation: A Promoter or a Suppressor? Int J Mol Sci 2018; 20:ijms20010124. [PMID: 30598022 PMCID: PMC6337608 DOI: 10.3390/ijms20010124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Neuroimmune semaphorin 4A (Sema4A), a member of semaphorin family of transmembrane and secreted proteins, is an important regulator of neuronal and immune functions. In the nervous system, Sema4A primarily regulates the functional activity of neurons serving as an axon guidance molecule. In the immune system, Sema4A regulates immune cell activation and function, instructing a fine tuning of the immune response. Recent studies have shown a dysregulation of Sema4A expression in several types of cancer such as hepatocellular carcinoma, colorectal, and breast cancers. Cancers have been associated with abnormal angiogenesis. The function of Sema4A in angiogenesis and cancer is not defined. Recent studies have demonstrated Sema4A expression and function in endothelial cells. However, the results of these studies are controversial as they report either pro- or anti-angiogenic Sema4A effects depending on the experimental settings. In this mini-review, we discuss these findings as well as our data on Sema4A regulation of inflammation and angiogenesis, which both are important pathologic processes underlining tumorigenesis and tumor metastasis. Understanding the role of Sema4A in those processes may guide the development of improved therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Apoorva S Iyer
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Svetlana P Chapoval
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- SemaPlex LLC, Ellicott City, MD 21042, USA.
| |
Collapse
|
31
|
Lee CCW, Munuganti RSN, Peacock JW, Dalal K, Jiao IZF, Shepherd A, Liu L, Tam KJ, Sedgwick CG, Bhasin S, Lee KCK, Gooding L, Vanderkruk B, Tombe T, Gong Y, Gleave ME, Cherkasov A, Ong CJ. Targeting Semaphorin 3C in Prostate Cancer With Small Molecules. J Endocr Soc 2018; 2:1381-1394. [PMID: 30534631 PMCID: PMC6280316 DOI: 10.1210/js.2018-00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Despite the amenability of early-stage prostate cancer to surgery and radiation therapy, locally advanced and metastatic prostate cancer is clinically problematic. Chemical castration is often used as a first-line therapy for advanced disease, but progression to the castration-resistant prostate cancer phase occurs with dependable frequency, largely through mutations to the androgen receptor (AR), aberrant AR signaling, and AR-independent mechanisms, among other causes. Semaphorin 3C (SEMA3C) is a secreted signaling protein that is essential for cardiac and neuronal development and has been shown to be regulated by the AR, to drive epithelial-to-mesenchymal transition and stem features in prostate cells, to activate receptor tyrosine kinases, and to promote cancer progression. Given that SEMA3C is linked to several key aspects of prostate cancer progression, we set out to explore SEMA3C inhibition by small molecules as a prospective cancer therapy. A homology-based SEMA3C protein structure was created, and its interaction with the neuropilin (NRP)-1 receptor was modeled to guide the development of the corresponding disrupting compounds. Experimental screening of 146 in silico‒identified molecules from the National Cancer Institute library led to the discovery of four promising candidates that effectively bind to SEMA3C, inhibit its association with NRP1, and attenuate prostate cancer growth. These findings provide proof of concept for the feasibility of inhibiting SEMA3C with small molecules as a therapeutic approach for prostate cancer.
Collapse
Affiliation(s)
- Chung C W Lee
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - James W Peacock
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kush Dalal
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ivy Z F Jiao
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ashley Shepherd
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Liangliang Liu
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Kevin J Tam
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin G Sedgwick
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Satyam Bhasin
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Kevin C K Lee
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Luke Gooding
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Benjamin Vanderkruk
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Tabitha Tombe
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Yifan Gong
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Martin E Gleave
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher J Ong
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Nakayama H, Kusumoto C, Nakahara M, Fujiwara A, Higashiyama S. Semaphorin 3F and Netrin-1: The Novel Function as a Regulator of Tumor Microenvironment. Front Physiol 2018; 9:1662. [PMID: 30532711 PMCID: PMC6265511 DOI: 10.3389/fphys.2018.01662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
Axon guidance molecules play an important role in regulating proper neuronal networking during neuronal development. They also have non-neuronal properties, which include angiogenesis, inflammation, and tumor development. Semaphorin 3F (SEMA3F), a member of the class 3 semaphorins, was initially identified as an axon guidance factor, that repels axons and collapses growth cones. However, SEMA3F has similar effects on endothelial cells (ECs) and tumor cells. In this review, we discuss the novel molecular mechanisms underlying SEMA3F activity in vascular and tumor biology. Recent evidence suggests that SEMA3F functions as a PI3K-Akt-mTOR inhibitor in mammalian cells, including T cells, ECs, and tumor cells. Therefore, SEMA3F may have broad therapeutic implications. We also discuss the key role of axon guidance molecules as regulators of the tumor microenvironment. Netrin-1, a chemoattractant factor in the neuronal system, promotes tumor progression by enhancing angiogenesis and metastasis. Moreover, our recent studies demonstrate that netrin-1/neogenin interactions augment CD4+ T cell chemokinesis and elicit pro-inflammatory responses, suggesting that netrin-1 plays a key role in modulating the function of a tumor and its surrounding cells in the tumor microenvironment. Overall, this review focuses on SEMA3F and netrin-1 signaling mechanisms to understand the diverse biological functions of axon guidance molecules.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Chiaki Kusumoto
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Masako Nakahara
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Akira Fujiwara
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
33
|
Wen JX, Li XQ, Chang Y. Signature Gene Identification of Cancer Occurrence and Pattern Recognition. J Comput Biol 2018; 25:907-916. [PMID: 29957033 DOI: 10.1089/cmb.2017.0261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To identify signature genes for the pathogenesis of cancer, which provides a theoretical support for prevention and early diagnosis of cancer. The pattern recognition method was used to analyze the genome-wide gene expression data, which was collected from the The Cancer Genome Atlas (TCGA) database. For the transcription of invasive breast carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, colon adenocarcinoma, renal clear-cell carcinoma, thyroid carcinoma, and hepatocellular carcinoma of the seven cancers, the signature genes were selected by means of a combination of statistical methods, such as correlation, t-test, confidence interval, etc. Modeling by artificial neural network model, the accuracy can be as high as 98% for the TCGA data and as high as 92% for the Gene Expression Omnibus (GEO) independent data, the recognition accuracy of stage I is more than 95%, which is higher compared with the previous study. The common genes emerging in five cancers were obtained from the signature genes of seven cancers, PID1, and SPTBN2. At the same time, we obtain three common pathways of cancer by using Kyoto Encyclopedia of Genes and Genomes' pathway analysis. A functional analysis of the pathways shows their close relationship at the level of gene regulation, which indicted that the identified signature genes play an important role in the pathogenesis of cancer and is very important for understanding the pathogenesis of cancer and the early diagnosis.
Collapse
Affiliation(s)
- Jian-Xin Wen
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, P.R. China
| | - Xiao-Qin Li
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, P.R. China
| | - Yu Chang
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, P.R. China
| |
Collapse
|
34
|
Semaphorin 3C and Its Receptors in Cancer and Cancer Stem-Like Cells. Biomedicines 2018; 6:biomedicines6020042. [PMID: 29642487 PMCID: PMC6027460 DOI: 10.3390/biomedicines6020042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023] Open
Abstract
Neurodevelopmental programs are frequently dysregulated in cancer. Semaphorins are a large family of guidance cues that direct neuronal network formation and are also implicated in cancer. Semaphorins have two kinds of receptors, neuropilins and plexins. Besides their role in development, semaphorin signaling may promote or suppress tumors depending on their context. Sema3C is a secreted semaphorin that plays an important role in the maintenance of cancer stem-like cells, promotes migration and invasion, and may facilitate angiogenesis. Therapeutic strategies that inhibit Sema3C signaling may improve cancer control. This review will summarize the current research on the Sema3C pathway and its potential as a therapeutic target.
Collapse
|
35
|
Sema4C/PlexinB2 signaling controls breast cancer cell growth, hormonal dependence and tumorigenic potential. Cell Death Differ 2018; 25:1259-1275. [PMID: 29555978 DOI: 10.1038/s41418-018-0097-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 11/09/2022] Open
Abstract
Semaphorin 4C (Sema4C) expression in human breast cancers correlates with poor disease outcome. Surprisingly, upon knock-down of Sema4C or its receptor PlexinB2 in diverse mammary carcinoma cells (but not their normal counterparts), we observed dramatic growth inhibition associated with impairment of G2/M phase transition, cytokinesis defects and the onset of cell senescence. Mechanistically, we demonstrated a Sema4C/PlexinB2/LARG-dependent signaling cascade that is required to maintain critical RhoA-GTP levels in cancer cells. Interestingly, we also found that Sema4C upregulation in luminal-type breast cancer cells drives a dramatic phenotypic change, with disassembly of polarity complexes, mitotic spindle misorientation, cell-cell dissociation and increased migration and invasiveness. We found that this signaling cascade is dependent on the PlexinB2 effectors ErbB2 and RhoA-dependent kinases. Moreover, Sema4C-overexpressing luminal breast cancer cells upregulated the transcription factors Snail, Slug and SOX-2, and formed estrogen-independent metastatic tumors in mice. In sum, our data indicate that Sema4C/PlexinB2 signaling is essential for the growth of breast carcinoma cells, featuring a novel potential therapeutic target. In addition, elevated Sema4C expression enables indolent luminal-type tumors to become resistant to estrogen deprivation, invasive and metastatic in vivo, which could account for its association with a subset of human breast cancers with poor prognosis.
Collapse
|
36
|
Arese M, Bussolino F, Pergolizzi M, Bizzozero L, Pascal D. Tumor progression: the neuronal input. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:89. [PMID: 29666812 DOI: 10.21037/atm.2018.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the challenges of cancer is its heterogeneity and rapid capacity to adapt. Notwithstanding significant progress in the last decades in genomics and precision medicine, new molecular targets and therapies appear highly necessary. One way to approach this complex problem is to consider cancer in the context of its cellular and molecular microenvironment, which includes nerves. The peripheral nerves, the topic of this review, modulate the biological behavior of the cancer cells and influence tumor progression, including the events related to the metastatic spread of the disease. This mechanism involves the release of neurotransmitters directly into the microenvironment and the activation of the corresponding membrane receptors. While this fact appears to complicate further the molecular landscape of cancer, the neurotransmitters are highly investigated molecules, and often are already targeted by well-developed drugs, a fact that can help finding new therapies at a fraction of the cost and time needed for new medicines (through the so-called drug repurposing). Moreover, the modulation of tumor progression by neurotransmitters can probably explain the long-recognized effects of psychological factors on the burden of cancer. We begin with an introduction on the tumor-nervous-connections and a description of the perineural invasion and neoneurogenesis, the two most important interaction patterns of cancer and nerves. Next, we discuss the most recent data that unequivocally demonstrate the necessity of the nervous system for tumor onset and growth. We introduce the molecular players of the tumor-nervous-connections by citing the role of three main families: neurotropic factors, axon guidance molecules, and neurotransmitters. Finally, we review the role the most important neurotransmitters in tumor biology and we conclude by analyzing the significance of the presented data for cancer therapy, with all the potential advantages and caveats.
Collapse
Affiliation(s)
- Marco Arese
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Margherita Pergolizzi
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Laura Bizzozero
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Davide Pascal
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| |
Collapse
|
37
|
Yu H, Pei T, Ren J, Ding Y, Wu A, Zhou Y. Semaphorin 3A enhances osteogenesis of MG63 cells through interaction with Schwann cells in vitro. Mol Med Rep 2018; 17:6084-6092. [PMID: 29484438 DOI: 10.3892/mmr.2018.8628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/26/2018] [Indexed: 11/06/2022] Open
Abstract
Bone remodeling is under the control of various signals and systems in the body, including the nervous system. Semaphorin (Sema) 3A is a chemorepellent protein which regulates bone mass. Schwann cells, having a pivotal role following nerve injury, interact with Sema3A under numerous circumstances. The present study established a co‑culture system of MG63 and Schwann cells to investigate the role of the interaction between Sema3A and Schwann cells in osteogenesis. The results from the alkaline phosphatase assay, calcium nodule staining and the analysis of the osteogenic gene expression revealed that Sema3A inhibits osteogenic differentiation of MG63 cells in single‑cell culture and promotes osteogenic differentiation of MG63 cells in co‑culture with Schwann cells, in a concentration‑dependent manner. These findings suggest that the presence of Schwann cells induces Sema3A‑associated osteogenic differentiation in bone cells, and also reveals the pivotal role of Sema3A as a regulator in the skeletal and nervous systems, thus contributing to a better understanding of the interaction between these systems.
Collapse
Affiliation(s)
- Hongqiang Yu
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tingting Pei
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jingyi Ren
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Ding
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Anqian Wu
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanmin Zhou
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
38
|
Tam KJ, Dalal K, Hsing M, Cheng CW, Khosravi S, Yenki P, Tse C, Peacock JW, Sharma A, Chiang YT, Wang Y, Cherkasov A, Rennie PS, Gleave ME, Ong CJ. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget 2018; 8:9617-9633. [PMID: 28038451 PMCID: PMC5354758 DOI: 10.18632/oncotarget.14168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily of transcription factors and is central to prostate cancer (PCa) progression. Ligand-activated AR engages androgen response elements (AREs) at androgen-responsive genes to drive the expression of gene batteries involved in cell proliferation and cell fate. Understanding the transcriptional targets of the AR has become critical in apprehending the mechanisms driving treatment-resistant stages of PCa. Although AR transcription regulation has been extensively studied, the signaling networks downstream of AR are incompletely described. Semaphorin 3C (SEMA3C) is a secreted signaling protein with roles in nervous system and cardiac development but can also drive cellular growth and invasive characteristics in multiple cancers including PCa. Despite numerous findings that implicate SEMA3C in cancer progression, regulatory mechanisms governing its expression remain largely unknown. Here we identify and characterize an androgen response element within the SEMA3C locus. Using the AR-positive LNCaP PCa cell line, we show that SEMA3C expression is driven by AR through this element and that AR-mediated expression of SEMA3C is dependent on the transcription factor GATA2. SEMA3C has been shown to promote cellular growth in certain cell types so implicit to our findings is the discovery of direct regulation of a growth factor by AR. We also show that FOXA1 is a negative regulator of SEMA3C. These findings identify SEMA3C as a novel target of AR, GATA2, and FOXA1 and expand our understanding of semaphorin signaling and cancer biology.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Kush Dalal
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael Hsing
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Chi Wing Cheng
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Shahram Khosravi
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Parvin Yenki
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Charan Tse
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Aishwariya Sharma
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Yan Ting Chiang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Movassagh H, Khadem F, Gounni AS. Semaphorins and Their Roles in Airway Biology: Potential as Therapeutic Targets. Am J Respir Cell Mol Biol 2018; 58:21-27. [PMID: 28817310 DOI: 10.1165/rcmb.2017-0171tr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Semaphorins are a large family of proteins originally identified as axon guidance cues that play a crucial role in neural development. They are also ubiquitously expressed beyond the nervous system and contribute to regulation of essential cell functions, such as cell migration, proliferation, and adhesion. Binding of semaphorins to their receptors, including plexins and neuropilins, triggers diverse signaling pathways, which are involved in the pathogenesis of various diseases, from cancer to autoimmune and allergic disorders. Despite emerging evidence suggestive of nonredundant roles of semaphorins in cellular and molecular mechanisms of the airway biology, their precise expression and function have not been fully addressed. Here, we first provide an overview about the semaphorin family, their receptors, signaling pathways, and their cellular functions. Then, we highlight the novel findings on the role of semaphorins in airway biology under developmental, homeostatic, and pathological conditions. In particular, we discuss the dual roles of semaphorins in respiratory disorders where they can up- or downregulate processes underlying the pathophysiology of the airway diseases. Next, our recent findings on the expression and function of semaphorin 3E in allergic asthma are further emphasized, and its potential mechanism of action in allergic airway inflammation and remodeling is discussed. Finally, we raise some unanswered questions aiming to develop future research directions.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Forough Khadem
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
40
|
Peacock JW, Takeuchi A, Hayashi N, Liu L, Tam KJ, Al Nakouzi N, Khazamipour N, Tombe T, Dejima T, Lee KC, Shiota M, Thaper D, Lee WC, Hui DH, Kuruma H, Ivanova L, Yenki P, Jiao IZ, Khosravi S, Mui ALF, Fazli L, Zoubeidi A, Daugaard M, Gleave ME, Ong CJ. SEMA3C drives cancer growth by transactivating multiple receptor tyrosine kinases via Plexin B1. EMBO Mol Med 2018; 10:219-238. [PMID: 29348142 PMCID: PMC5801490 DOI: 10.15252/emmm.201707689] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Growth factor receptor tyrosine kinase (RTK) pathway activation is a key mechanism for mediating cancer growth, survival, and treatment resistance. Cognate ligands play crucial roles in autocrine or paracrine stimulation of these RTK pathways. Here, we show SEMA3C drives activation of multiple RTKs including EGFR, ErbB2, and MET in a cognate ligand-independent manner via Plexin B1. SEMA3C expression levels increase in castration-resistant prostate cancer (CRPC), where it functions to promote cancer cell growth and resistance to androgen receptor pathway inhibition. SEMA3C inhibition delays CRPC and enzalutamide-resistant progression. Plexin B1 sema domain-containing:Fc fusion proteins suppress RTK signaling and cell growth and inhibit CRPC progression of LNCaP xenografts post-castration in vivo SEMA3C inhibition represents a novel therapeutic strategy for treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- James W Peacock
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ario Takeuchi
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medical Sciences Kyushi University, Fukuoka, Japan
| | - Norihiro Hayashi
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Kevin J Tam
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Takashi Dejima
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medical Sciences Kyushi University, Fukuoka, Japan
| | - Kevin Ck Lee
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Masaki Shiota
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medical Sciences Kyushi University, Fukuoka, Japan
| | - Daksh Thaper
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | - Parvin Yenki
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ivy Zf Jiao
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Alice L-F Mui
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Nejadtaghi M, Jafari H, Farrokhi E, Samani KG. Familial Colorectal Cancer Type X (FCCTX) and the correlation with various genes-A systematic review. Curr Probl Cancer 2017; 41:388-397. [PMID: 29096939 DOI: 10.1016/j.currproblcancer.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 05/10/2017] [Accepted: 10/12/2017] [Indexed: 02/09/2023]
Abstract
Familial Colorectal Cancer Type X (FCCTX) is a type of hereditary nonpolyposis colorectal cancer in accordance to Amsterdam criteria-1 for Lynch syndrome, with no related mutation in mismatch repair gene. FCCTX is microsatellite stable and is accounted for 40% of families with Amsterdam criteria-1 with a high age of onset. Thus, the carcinogenesis of FCCTX is different compared to Lynch syndrome. In addition to the microsatellite stability and the presence of less predominant tumors in proximal colon, various clinical features have also been associated with FCCTX in comparison with Lynch syndrome such as no increased risk of extra-colonic cancers, older age of diagnosis and higher adenoma/carcinoma rate. Genetic etiology of this type of cancer which is autosomal dominant is unknown. In this review, we focus on the genes and their variants identified in this type of CRC. In order to find out the correlation between FCCTX and various genes database such as PubMed and PMC, search engine such as Google scholar and portals such as Springer and Elsevier have been searched. Based on our literature search, several studies suggest that FCCTX is a heterogeneous type of disease with different genetic variants. Recent studies describe the correlation between FCCTX and genes such as BRCA2, SEMA4, NTS, RASSF9, GALNT12, KRAS, BRAF, APC, BMPR1A, and RPS20. Considering the fact that BRCA2 has the highest mutation rate (60%) and is one of the most crucial DNA repair genes, it will be considered as a big role player in this type of cancer in comparison with other genes.
Collapse
Affiliation(s)
- Mahdieh Nejadtaghi
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Hamideh Jafari
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Effat Farrokhi
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran.
| | - Keihan Ghatreh Samani
- Clinical Biochemistry Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| |
Collapse
|
42
|
Ren S, Wei GH, Liu D, Wang L, Hou Y, Zhu S, Peng L, Zhang Q, Cheng Y, Su H, Zhou X, Zhang J, Li F, Zheng H, Zhao Z, Yin C, He Z, Gao X, Zhau HE, Chu CY, Wu JB, Collins C, Volik SV, Bell R, Huang J, Wu K, Xu D, Ye D, Yu Y, Zhu L, Qiao M, Lee HM, Yang Y, Zhu Y, Shi X, Chen R, Wang Y, Xu W, Cheng Y, Xu C, Gao X, Zhou T, Yang B, Hou J, Liu L, Zhang Z, Zhu Y, Qin C, Shao P, Pang J, Chung LWK, Xu J, Wu CL, Zhong W, Xu X, Li Y, Zhang X, Wang J, Yang H, Wang J, Huang H, Sun Y. Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression. Eur Urol 2017; 73:322-339. [PMID: 28927585 DOI: 10.1016/j.eururo.2017.08.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/24/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Global disparities in prostate cancer (PCa) incidence highlight the urgent need to identify genomic abnormalities in prostate tumors in different ethnic populations including Asian men. OBJECTIVE To systematically explore the genomic complexity and define disease-driven genetic alterations in PCa. DESIGN, SETTING, AND PARTICIPANTS The study sequenced whole-genome and transcriptome of tumor-benign paired tissues from 65 treatment-naive Chinese PCa patients. Subsequent targeted deep sequencing of 293 PCa-relevant genes was performed in another cohort of 145 prostate tumors. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The genomic alteration landscape in PCa was analyzed using an integrated computational pipeline. Relationships with PCa progression and survival were analyzed using nonparametric test, log-rank, and multivariable Cox regression analyses. RESULTS AND LIMITATIONS We demonstrated an association of high frequency of CHD1 deletion with a low rate of TMPRSS2-ERG fusion and relatively high percentage of mutations in androgen receptor upstream activator genes in Chinese patients. We identified five putative clustered deleted tumor suppressor genes and provided experimental and clinical evidence that PCDH9, deleted/loss in approximately 23% of tumors, functions as a novel tumor suppressor gene with prognostic potential in PCa. Furthermore, axon guidance pathway genes were frequently deregulated, including gain/amplification of PLXNA1 gene in approximately 17% of tumors. Functional and clinical data analyses showed that increased expression of PLXNA1 promoted prostate tumor growth and independently predicted prostate tumor biochemical recurrence, metastasis, and poor survival in multi-institutional cohorts of patients with PCa. A limitation of this study is that other genetic alterations were not experimentally investigated. CONCLUSIONS There are shared and salient genetic characteristics of PCa in Chinese and Caucasian men. Novel genetic alterations in PCDH9 and PLXNA1 were associated with disease progression. PATIENT SUMMARY We reported the first large-scale and comprehensive genomic data of prostate cancer from Asian population. Identification of these genetic alterations may help advance prostate cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China; Division of Genomics and Bioinformatics, CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Hong Kong, China
| | - Lihua Peng
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Qin Zhang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Yanbing Cheng
- BGI-Shenzhen, Shenzhen, China; Division of Genomics and Bioinformatics, CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Su
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhou
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | | | - Fuqiang Li
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | | | - Zhikun Zhao
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China; School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Changjun Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Xin Gao
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chia-Yi Chu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jason Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Colin Collins
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stanislav V Volik
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Robert Bell
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Danfeng Xu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongwei Yu
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lianhui Zhu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Meng Qiao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hang-Mao Lee
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Yuehong Yang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaolei Shi
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yang Wang
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Weidong Xu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yanqiong Cheng
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xu Gao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tie Zhou
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bo Yang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianguo Hou
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Liu
- BGI-Shenzhen, Shenzhen, China
| | - Zhensheng Zhang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Pang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jianfeng Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | | | | | - Jian Wang
- BGI-Shenzhen, Shenzhen, China; James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China; James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, China; Department of Biology, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
43
|
Tam KJ, Hui DHF, Lee WW, Dong M, Tombe T, Jiao IZF, Khosravi S, Takeuchi A, Peacock JW, Ivanova L, Moskalev I, Gleave ME, Buttyan R, Cox ME, Ong CJ. Semaphorin 3 C drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells. Sci Rep 2017; 7:11501. [PMID: 28904399 PMCID: PMC5597577 DOI: 10.1038/s41598-017-11914-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3 C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Daniel H F Hui
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Wilson W Lee
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Mingshu Dong
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Tabitha Tombe
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ivy Z F Jiao
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Shahram Khosravi
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ario Takeuchi
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Larissa Ivanova
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Igor Moskalev
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Ralph Buttyan
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Michael E Cox
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
44
|
Evanno E, Godet J, Piccirilli N, Guilhot J, Milin S, Gombert JM, Fouchaq B, Roche J. Tri-methylation of H3K79 is decreased in TGF-β1-induced epithelial-to-mesenchymal transition in lung cancer. Clin Epigenetics 2017; 9:80. [PMID: 28804523 PMCID: PMC5549304 DOI: 10.1186/s13148-017-0380-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/31/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The epithelial-to-mesenchymal transition (EMT) enables epithelial cancer cells to acquire mesenchymal features and contributes to metastasis and resistance to treatment. This process involves epigenetic reprogramming for gene expression. We explored global histone modifications during TGF-β1-induced EMT in two non-small cell lung cancer (NSCLC) cell lines and tested different epigenetic treatment to modulate or partially reverse EMT. RESULTS Loss of classical epithelial markers and gain of mesenchymal markers were verified in A549 and H358 cell lines during TGF-β1-induced EMT. In addition, we noticed increased expression of the axonal guidance protein semaphorin 3C (SEMA3C) and PD-L1 (programmed death-ligand 1) involved in the inhibition of the immune system, suggesting that both SEMA3C and PD-L1 could be the new markers of TGF-β1-induced EMT. H3K79me3 and H2BK120me1 were decreased in A549 and H358 cell lines after a 48-h TGF-β1 treatment, as well as H2BK120ac in A549 cells. However, decreased H3K79me3 was not associated with expression of the histone methyltransferase DOT1L. Furthermore, H3K79me3 was decreased in tumors compared in normal tissues and not associated with cell proliferation. Associations of histone deacetylase inhibitor (SAHA) with DOT1L inhibitors (EPZ5676 or SGC0946) or BET bromodomain inhibitor (PFI-1) were efficient to partially reverse TGF-β1 effects by decreasing expression of PD-L1, SEMA3C, and its receptor neuropilin-2 (NRP2) and by increasing epithelial markers such as E-cadherin. CONCLUSION Histone methylation was modified during EMT, and combination of epigenetic compounds with conventional or targeted chemotherapy might contribute to reduce metastasis and to enhance clinical responses.
Collapse
Affiliation(s)
- Emilie Evanno
- Eurofins Cerep SA, Le Bois l’Evêque, F-86600 Celle L’Evescault, France
- Université de Poitiers, Laboratoire LNEC, F-86022 Poitiers, France
| | - Julie Godet
- CHU de Poitiers, Service d’Anatomie et de Cytologie Pathologiques, F-86021 Poitiers, France
| | | | - Joëlle Guilhot
- INSERM CIC 0802, CHU de Poitiers, F-86021 Poitiers, France
| | - Serge Milin
- CHU de Poitiers, Service d’Anatomie et de Cytologie Pathologiques, F-86021 Poitiers, France
| | - Jean Marc Gombert
- INSERM U1082, CHU de Poitiers, F-86021 Poitiers, France
- Service Immunologie, CHU de Poitiers, F-86021 Poitiers, France
| | - Benoit Fouchaq
- Eurofins Cerep SA, Le Bois l’Evêque, F-86600 Celle L’Evescault, France
| | - Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions (EBI), Université de Poitiers, UMR-CNRS 7267, F-86073 Poitiers, France
| |
Collapse
|
45
|
Jongbloets BC, Lemstra S, Schellino R, Broekhoven MH, Parkash J, Hellemons AJCGM, Mao T, Giacobini P, van Praag H, De Marchis S, Ramakers GMJ, Pasterkamp RJ. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun 2017; 8:14666. [PMID: 28281529 PMCID: PMC5353663 DOI: 10.1038/ncomms14666] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023] Open
Abstract
The guidance protein Semaphorin7A (Sema7A) is required for the proper development of the immune and nervous systems. Despite strong expression in the mature brain, the role of Sema7A in the adult remains poorly defined. Here we show that Sema7A utilizes different cell surface receptors to control the proliferation and differentiation of neural progenitors in the adult hippocampal dentate gyrus (DG), one of the select regions of the mature brain where neurogenesis occurs. PlexinC1 is selectively expressed in early neural progenitors in the adult mouse DG and mediates the inhibitory effects of Sema7A on progenitor proliferation. Subsequently, during differentiation of adult-born DG granule cells, Sema7A promotes dendrite growth, complexity and spine development through β1-subunit-containing integrin receptors. Our data identify Sema7A as a key regulator of adult hippocampal neurogenesis, providing an example of how differential receptor usage spatiotemporally controls and diversifies the effects of guidance cues in the adult brain.
Collapse
Affiliation(s)
- Bart C. Jongbloets
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Suzanne Lemstra
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Roberta Schellino
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10100 Torino, Italy
| | - Mark H. Broekhoven
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Jyoti Parkash
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University Punjab, City Campus, Mansa Road, Bathinda 151001, India
| | - Anita J. C. G. M. Hellemons
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, 59045 Lille, France
- University of Lille, 59045 Lille, France
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Silvia De Marchis
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10100 Torino, Italy
| | - Geert M. J. Ramakers
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
46
|
Bollard J, Massoma P, Vercherat C, Blanc M, Lepinasse F, Gadot N, Couderc C, Poncet G, Walter T, Joly MO, Hervieu V, Scoazec JY, Roche C. The axon guidance molecule semaphorin 3F is a negative regulator of tumor progression and proliferation in ileal neuroendocrine tumors. Oncotarget 2017; 6:36731-45. [PMID: 26447612 PMCID: PMC4742207 DOI: 10.18632/oncotarget.5481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022] Open
Abstract
Gastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs. SEMA3F expression was detected in normal neuroendocrine cells but was lost in most of human primary tumors and all their metastases. SEMA3F loss of expression was associated with promoter gene methylation. After increasing endogenous SEMA3F levels through stable transfection, enteroendocrine cell lines STC-1 and GluTag showed a reduced proliferation rate in vitro. In two different xenograft mouse models, SEMA3F-overexpressing cells exhibited a reduced ability to form tumors and a hampered liver dissemination potential in vivo. This resulted, at least in part, from the inhibition of mTOR and MAPK signaling pathways. This study demonstrates an anti-tumoral role of SEMA3F in ileal NETs. We thus suggest that SEMA3F and/or its cellular signaling pathway could represent a target for ileal NET therapy.
Collapse
Affiliation(s)
- Julien Bollard
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Patrick Massoma
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Cécile Vercherat
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Martine Blanc
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Florian Lepinasse
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France
| | - Nicolas Gadot
- Université Lyon 1, Fédération de Recherche Santé Lyon-Est, ANIPATH, Faculté Laennec, F-69372 Lyon, France
| | - Christophe Couderc
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Gilles Poncet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, F-69437 Lyon, France
| | - Thomas Walter
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, F-69437 Lyon, France
| | - Marie-Odile Joly
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France.,Université de Lyon, Université Lyon 1, F-69622 Villeurbanne, France
| | - Valérie Hervieu
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France.,Université de Lyon, Université Lyon 1, F-69622 Villeurbanne, France
| | - Jean-Yves Scoazec
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France.,Université Lyon 1, Fédération de Recherche Santé Lyon-Est, ANIPATH, Faculté Laennec, F-69372 Lyon, France.,Université de Lyon, Université Lyon 1, F-69622 Villeurbanne, France
| | - Colette Roche
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| |
Collapse
|
47
|
Liu Y, Hou Y, Ma L, Sun C, Pan J, Yang Y, Zhou H, Zhang J. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta. ACTA ACUST UNITED AC 2017; 50:e6057. [PMID: 28225892 PMCID: PMC5333722 DOI: 10.1590/1414-431x20166057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/13/2016] [Indexed: 12/01/2022]
Abstract
Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D) is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ) participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2) significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication.
Collapse
Affiliation(s)
- Y Liu
- Department of Gynecology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Y Hou
- Department of Gynecology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - L Ma
- Department of Reproduction and Genetics, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - C Sun
- Department of Gynecology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - J Pan
- Department of Gynecology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Y Yang
- Department of Gynecology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - H Zhou
- Department of Gynecology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - J Zhang
- Department of General Surgery, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
48
|
Moiso E, Accardo M, Tamagnone L. Experimental Approaches for Studying Semaphorin Signals in Tumor Growth and Metastasis in Mouse Models. Methods Mol Biol 2017; 1493:467-484. [PMID: 27787871 DOI: 10.1007/978-1-4939-6448-2_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tumor growth and metastatic dissemination are complex multistep processes. They clearly depend on the intrinsic behavior of cancer cells, but are remarkably influenced by a variety of stromal cells present in the tumor microenvironment, which include those implicated in tumor angiogenesis, as well as bone marrow-derived cells recruited from the circulation. Moreover, multiple molecular signals exchanged between cancer cells and non-neoplastic stromal cells control tumor growth and metastasis; notably, members of the semaphorin family are emerging players in this scenario.In vivo tumor models represent the best setting for studying metastatic tumor progression, as they allow recapitulating the contribution of multiple cell types and signaling molecules in a complex tissue context, subject to pathophysiological local and systemic responses, such as metabolic changes, hypoxia, necrosis, fibrosis, inflammation, and cytokine release. Here, we describe some experimental approaches based on murine models to study the role of semaphorin signaling in tumor growth and metastatic progression in vivo.
Collapse
Affiliation(s)
- Enrico Moiso
- Laboratory of Cancer Cell Biology, Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, Candiolo, TO, Italy
- Department of Oncology, University of Torino, c/o IRCCS, S.P. 142, Candiolo, 10060, TO, Italy
| | - Massimo Accardo
- Laboratory of Cancer Cell Biology, Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, Candiolo, TO, Italy
- Department of Oncology, University of Torino, c/o IRCCS, S.P. 142, Candiolo, 10060, TO, Italy
| | - Luca Tamagnone
- Laboratory of Cancer Cell Biology, Candiolo Cancer Institute-FPO, IRCCS, Str. Prov. 142, Candiolo, TO, Italy.
- Department of Oncology, University of Torino, c/o IRCCS, S.P. 142, Candiolo, 10060, TO, Italy.
| |
Collapse
|
49
|
Rehman M, Gurrapu S, Cagnoni G, Capparuccia L, Tamagnone L. PlexinD1 Is a Novel Transcriptional Target and Effector of Notch Signaling in Cancer Cells. PLoS One 2016; 11:e0164660. [PMID: 27749937 PMCID: PMC5066946 DOI: 10.1371/journal.pone.0164660] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022] Open
Abstract
The secreted semaphorin Sema3E controls cell migration and invasiveness in cancer cells. Sema3E-receptor, PlexinD1, is frequently upregulated in melanoma, breast, colon, ovarian and prostate cancers; however, the mechanisms underlying PlexinD1 upregulation and the downstream events elicited in tumor cells are still unclear. Here we show that the canonical RBPjk-dependent Notch signaling cascade controls PlexinD1 expression in primary endothelial and cancer cells. Transcriptional activation was studied by quantitative PCR and promoter activity reporter assays. We found that Notch ligands and constitutively activated intracellular forms of Notch receptors upregulated PlexinD1 expression; conversely RNAi-based knock-down, or pharmacological inhibition of Notch signaling by gamma-secretase inhibitors, downregulated PlexinD1 levels. Notably, both Notch1 and Notch3 expression positively correlates with PlexinD1 levels in prostate cancer, as well as in other tumor types. In prostate cancer cells, Sema3E-PlexinD1 axis was previously reported to regulate migration; however, implicated mechanisms were not elucidated. Here we show that in these cells PlexinD1 activity induces the expression of the transcription factor Slug, downregulates E-cadherin levels and enhances cell migration. Moreover, our mechanistic data identify PlexinD1 as a pivotal mediator of this signaling axis downstream of Notch in prostate cancer cells. In fact, on one hand, PlexinD1 is required to mediate cell migration and E-cadherin regulation elicited by Notch. On the other hand, PlexinD1 upregulation is sufficient to induce prostate cancer cell migration and metastatic potential in mice, leading to functional rescue in the absence of Notch. In sum, our work identifies PlexinD1 as a novel transcriptional target induced by Notch signaling, and reveals its role promoting prostate cancer cell migration and downregulating E-cadherin levels in Slug-dependent manner. Collectively, these findings suggest that Notch-PlexinD1 signaling axis may be targeted to impair prostate cancer cell invasiveness and metastasis.
Collapse
MESH Headings
- Animals
- Benzazepines/pharmacology
- Cadherins/genetics
- Cadherins/metabolism
- Cell Adhesion Molecules, Neuronal/antagonists & inhibitors
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Diamines/pharmacology
- Down-Regulation/drug effects
- Enzyme Inhibitors/pharmacology
- HEK293 Cells
- Human Umbilical Vein Endothelial Cells
- Humans
- Intracellular Signaling Peptides and Proteins
- Jagged-1 Protein/pharmacology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Membrane Glycoproteins
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Microscopy, Fluorescence
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Notch/antagonists & inhibitors
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction/drug effects
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Thiazoles/pharmacology
- Transplantation, Heterologous
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Michael Rehman
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Sreeharsha Gurrapu
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Gabriella Cagnoni
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Lorena Capparuccia
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Luca Tamagnone
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
- * E-mail:
| |
Collapse
|
50
|
Maejima R, Tamai K, Shiroki T, Yokoyama M, Shibuya R, Nakamura M, Yamaguchi K, Abue M, Oikawa T, Noguchi T, Miura K, Fujiya T, Sato I, Iijima K, Shimosegawa T, Tanaka N, Satoh K. Enhanced expression of semaphorin 3E is involved in the gastric cancer development. Int J Oncol 2016; 49:887-94. [PMID: 27572291 PMCID: PMC4948954 DOI: 10.3892/ijo.2016.3593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/06/2016] [Indexed: 11/23/2022] Open
Abstract
Semaphorins and their receptors are abnormally expressed in various cancers, but little is known about the expression and function of semaphorin 3E (SEMA3E) and its receptor, plexin D1 (PLXND1), in gastric cancer development or metastasis. We evaluated SEMA3E and PLXND1 expression by quantitative RT-PCR in gastric tissues from 62 patients who underwent gastrectomy and analyzed the correlation between their expression and clinicopathological variables. To assess the function of SEMA3E, we generated human gastric cancer cell lines with suppressed or increased SEMA3E expression. The expression level of SEMA3E, but not PLXND1, was correlated with lymph node involvement and metastatic progression in gastric cancer. A significant association was observed between a high level of SEMA3E expression and poor differentiation or poor survival in the intestinal type of gastric cancer. SEMA3E knockdown in gastric cancer cells attenuated cell proliferation and metastatic ability in vitro and in vivo. Moreover, SEMA3E caused cell proliferation and anchorage-independent cell growth in the intestinal type of gastric cancer. These results suggested that SEMA3E is likely to be involved in the development of gastric cancer and might also be a therapeutic target for its treatment.
Collapse
Affiliation(s)
- Ryuhei Maejima
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Takeharu Shiroki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Misa Yokoyama
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Rie Shibuya
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Mao Nakamura
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Makoto Abue
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Tomoyuki Oikawa
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Tetsuya Noguchi
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Koh Miura
- Department of Gastroenterological Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Tsuneaki Fujiya
- Department of Gastroenterological Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Katsunori Iijima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nobuyuki Tanaka
- Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Kennichi Satoh
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| |
Collapse
|