1
|
Martínez‐Augustin O, Tena‐Garitaonaindia M, Ceacero‐Heras D, Jiménez‐Ortas Á, Enguix‐Huete JJ, Álvarez‐Mercado AI, Ruiz‐Henares G, Aranda CJ, Gámez‐Belmonte R, Sánchez de Medina F. Macronutrients as Regulators of Intestinal Epithelial Permeability: Where Do We Stand? Compr Rev Food Sci Food Saf 2025; 24:e70178. [PMID: 40421830 PMCID: PMC12108046 DOI: 10.1111/1541-4337.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 05/28/2025]
Abstract
The intestinal barrier function (IBF) is essential for intestinal homeostasis. Its alterations have been linked to intestinal and systemic disease. Regulation of intestinal permeability is key in the maintenance of the IBF, in which the intestinal epithelium and tight junctions, the mucus layer, sIgA, and antimicrobial peptides are important factors. This review addresses the concept of IBF, focusing on permeability, and summarizes state-of-the-art information on how starvation and macronutrients regulate it. Novel mechanisms regulate intestinal permeability, like its induction by the normal process of nutrient absorption, the contribution of starvation-induced autophagy, or the stimulation of sIgA production by high-protein diets in a T-cell-independent fashion. In addition, observations evidence that starvation and protein restriction increase intestinal permeability, compromising mucin, antimicrobial peptides, and/or intestinal sIgA production. Regarding specific macronutrients, substantial evidence indicates that casein (compared to other protein sources), specific protein-derived peptides and glutamine reinforce IBF. Dietary carbohydrates regulate intestinal permeability in a structure- and composition-dependent fashion; fructose, glucose, and sucrose increase it, while nondigestible oligosaccharides (NDOs) decrease it. Among NDOs, human milk oligosaccharides (HMOs) stand as a promising tool. NODs effects are mediated by intestinal microbiota modulation, production of short-chain fatty acids, and direct interactions with intestinal cells. Finally, evidence supports avoiding high-fat diets for their detrimental effects on IBF. Most studies have been carried out in vitro or in animal models. More information is needed from clinical studies to substantiate beneficial effects and the use of macronutrients in the treatment and prevention of IBF-related diseases.
Collapse
Affiliation(s)
- Olga Martínez‐Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Mireia Tena‐Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Diego Ceacero‐Heras
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Ángela Jiménez‐Ortas
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Juan J. Enguix‐Huete
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Ana I. Álvarez‐Mercado
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Guillermo Ruiz‐Henares
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Carlos J. Aranda
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina‐ IBIMA Plataforma BIONANDRICORS “Enfermedades inflamatorias”MálagaSpain
| | - Reyes Gámez‐Belmonte
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
- Department of Medicine 1University of Erlangen‐NurembergErlangenGermany
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| |
Collapse
|
2
|
Pires CL, Moreno MJ. Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers. MEMBRANES 2024; 14:157. [PMID: 39057665 PMCID: PMC11278619 DOI: 10.3390/membranes14070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The ability to predict the rate of permeation of new compounds across biological membranes is of high importance for their success as drugs, as it determines their efficacy, pharmacokinetics, and safety profile. In vitro permeability assays using Caco-2 monolayers are commonly employed to assess permeability across the intestinal epithelium, with an extensive number of apparent permeability coefficient (Papp) values available in the literature and a significant fraction collected in databases. The compilation of these Papp values for large datasets allows for the application of artificial intelligence tools for establishing quantitative structure-permeability relationships (QSPRs) to predict the permeability of new compounds from their structural properties. One of the main challenges that hinders the development of accurate predictions is the existence of multiple Papp values for the same compound, mostly caused by differences in the experimental protocols employed. This review addresses the magnitude of the variability within and between laboratories to interpret its impact on QSPR modelling, systematically and quantitatively assessing the most common sources of variability. This review emphasizes the importance of compiling consistent Papp data and suggests strategies that may be used to obtain such data, contributing to the establishment of robust QSPRs with enhanced predictive power.
Collapse
Affiliation(s)
- Cristiana L. Pires
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Shi YB, Dong HL, Chang WK, Zhao Y, Jin HJ, Li JK, Yan S. Genetic evidence for a causal link between gut microbiota and arterial embolism and thrombosis: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1396699. [PMID: 38957618 PMCID: PMC11217536 DOI: 10.3389/fmicb.2024.1396699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Background Previous research has hinted at a crucial link between gut microbiota and arterial embolism and thrombosis, yet the causal relationship remains enigmatic. To gain a deeper understanding, we aimed to comprehensively explore the causal relationship and elucidate the impact of the gut microbiota on the risk through a two-sample Mendelian randomization (MR) study. Methods Genetic instrumental variables for gut microbiota were identified from a genome-wide association study (GWAS) of 18,340 participants. Summary statistics for IBS were drawn from a GWAS including 1,076 cases and 381,997 controls. We used the inverse-variance weighted (IVW) method as the primary analysis. To test the robustness of our results, we further performed the weighted median method, MR-Egger regression, and MR pleiotropy residual sum and outlier test. Results We identified three bacterial traits that were associated with the risk of arterial embolism and thrombosis: odds ratio (OR): 1.58, 95% confidence interval (CI): 1.08-2.31, p = 0.017 for genus Catenibacterium; OR: 0.64, 95% CI: 0.42-0.96, p = 0.031 for genus Dialister; and OR: 2.08, 95% CI: 1.25-3.47, p = 0.005 for genus Odoribacter. The results of sensitivity analyses for these bacterial traits were consistent (P<0.05). Conclusion Our systematic analyses provided evidence to support a potential causal relationship between several gut microbiota taxa and the risk of arterial embolism and thrombosis. More studies are required to show how the gut microbiota affects the development of arterial embolism and thrombosis.
Collapse
Affiliation(s)
- Yong-Bin Shi
- Department of Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong-Lin Dong
- Department of Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wen-Kai Chang
- Department of Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Zhao
- Department of Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hai-Jiang Jin
- Department of Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun-Kai Li
- Department of Vascular Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng Yan
- Department of Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Long Y, Ang Y, Chen W, Wang Y, Shi M, Hu F, Zhou Q, Shi Y, Ge B, Peng Y, Yu W, Bao H, Li Q, Duan M, Gao J. Hydrogen alleviates impaired lung epithelial barrier in acute respiratory distress syndrome via inhibiting Drp1-mediated mitochondrial fission through the Trx1 pathway. Free Radic Biol Med 2024; 218:132-148. [PMID: 38554812 DOI: 10.1016/j.freeradbiomed.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and severe clinical complication lacking effective therapeutic interventions. The disruption of the lung epithelial barrier plays a crucial role in ARDS pathogenesis. Recent studies have proposed the involvement of abnormal mitochondrial dynamics mediated by dynamin-related protein 1 (Drp1) in the mechanism of impaired epithelial barrier in ARDS. Hydrogen is an anti-oxidative stress molecule that regulates mitochondrial function via multiple signaling pathways. Our previous study confirmed that hydrogen modulated oxidative stress and attenuated acute pulmonary edema in ARDS by upregulating thioredoxin 1 (Trx1) expression, but the exact mechanism remains unclear. This study aimed to investigate the effects of hydrogen on mitochondrial dynamics both in vivo and in vitro. Our study revealed that hydrogen inhibited lipopolysaccharide (LPS)-induced phosphorylation of Drp1 (at Ser616), suppressed Drp1-mediated mitochondrial fission, alleviated epithelial tight junction damage and cell apoptosis, and improved the integrity of the epithelial barrier. This process was associated with the upregulation of Trx1 in lung epithelial tissues of ARDS mice by hydrogen. In addition, hydrogen treatment reduced the production of reactive oxygen species in LPS-induced airway epithelial cells (AECs) and increased the mitochondrial membrane potential, indicating that the mitochondrial dysfunction was restored. Then, the expression of tight junction proteins occludin and zonula occludens 1 was upregulated, and apoptosis in AECs was alleviated. Remarkably, the protective effects of hydrogen on the mitochondrial and epithelial barrier were eliminated after applying the Trx1 inhibitor PX-12. The results showed that hydrogen significantly inhibited the cell apoptosis and the disruption of epithelial tight junctions, maintaining the integrity of the epithelial barrier in mice of ARDS. This might be related to the inhibition of Drp1-mediated mitochondrial fission through the Trx1 pathway. The findings of this study provided a new theoretical basis for the application of hydrogen in the clinical treatment of ARDS.
Collapse
Affiliation(s)
- Yun Long
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Yang Ang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Wei Chen
- Department of Otolaryngology, Jinling College Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Yujie Wang
- Department of Otolaryngology, Jinling College Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Min Shi
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Fan Hu
- State Key Labortory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qingqing Zhou
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Yadan Shi
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Baokui Ge
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Yigen Peng
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Wanyou Yu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210000, China
| | - Qian Li
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China; Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210000, China.
| | - Manlin Duan
- Department of Anesthesiology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China.
| | - Ju Gao
- Department of Anesthesiology, Yangzhou Clinical Medical College, Nanjing Medical University, Yangzhou, 225001, China; Department of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
5
|
Hsieh KL, Sun TB, Huang KH, Lin CH, Tang LY, Liu CL, Chao CM, Chang CP. Hyperbaric oxygen preconditioning normalizes scrotal temperature, sperm quality, testicular structure, and erectile function in adult male rats subjected to exertional heat injury. Mol Cell Endocrinol 2024; 584:112175. [PMID: 38341020 DOI: 10.1016/j.mce.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Testicular hyperthermia has been noted in men who work in high ambient temperatures. Scrotal temperatures above the normal range caused germ cell loss in the testes and resulted in male subfertility. In adult male rats, exercising at a higher environmental temperature (36 °C with relative humidity of 50%, 52 min) caused exertional heat stroke (EHS) characterized by scrotal hyperthermia, impaired sperm quality, dysmorphology in testes, prostates and bladders, and erectile dysfunction. Here, we aim to ascertain whether hyperbaric oxygen preconditioning (HBOP: 100% O2 at 2.0 atm absolute [ATA] for 2 h daily for 14 days consequently before the onset of EHS) is able to prevent the problem of EHS-induced sterility, testes, prostates, and bladders dysmorphology and erectile dysfunction. At the end of exertional heat stress compared to normobaric air (NBA or non-HBOP) rats, the HBOP rats exhibited lower body core temperature (40 °C vs. 43 °C), lower scrotal temperature (34 °C vs. 36 °C), lower neurological severity scores (2.8 vs. 5.8), higher erectile ability, (5984 mmHg-sec vs. 3788 mmHg-sec), higher plasma testosterone (6.8 ng/mL vs. 3.5 ng/mL), lower plasma follicle stimulating hormone (196.3 mIU/mL vs. 513.8 mIU/mL), lower plasma luteinizing hormone (131 IU/L vs. 189 IU/L), lower plasma adrenocorticotropic hormone (5136 pg/mL vs. 6129 pg/mL), lower plasma corticosterone (0.56 ng/mL vs. 1.18 ng/mL), lower sperm loss and lower values of histopathological scores for epididymis, testis, seminal vesicle, prostate, and bladder. Our data suggest that HBOP reduces body core and scrotal hyperthermia and improves sperm loss, testis/prostate/bladder dysmorphology, and erectile dysfunction after EHS in rats.
Collapse
Affiliation(s)
- Kun-Lin Hsieh
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tzong-Bor Sun
- Department of Hyperbaric Oxygen Medicine, Chi-Mei Medical Center, Tainan, Taiwan; Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Ling-Yu Tang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Chien-Liang Liu
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, Taiwan.
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
6
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
7
|
Shigetomi K, Ono Y, Matsuzawa K, Ikenouchi J. Cholesterol-rich domain formation mediated by ZO proteins is essential for tight junction formation. Proc Natl Acad Sci U S A 2023; 120:e2217561120. [PMID: 36791108 PMCID: PMC9974431 DOI: 10.1073/pnas.2217561120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Tight junctions (TJs) are cell-adhesion structures responsible for the epithelial barrier. We reported that accumulation of cholesterol at the apical junctions is required for TJ formation [K. Shigetomi, Y. Ono, T. Inai, J. Ikenouchi, J. Cell Biol. 217, 2373-2381 (2018)]. However, it is unclear how cholesterol accumulates and informs TJ formation-and whether cholesterol enrichment precedes or follows the assembly of claudins in the first place. Here, we established an epithelial cell line (claudin-null cells) that lacks TJs by knocking out claudins. Despite the lack of TJs, cholesterol normally accumulated in the vicinity of the apical junctions. Assembly of claudins at TJs is thought to require binding to zonula occludens (ZO) proteins; however, a claudin mutant that cannot bind to ZO proteins still formed TJ strands. ZO proteins were however necessary for cholesterol accumulation at the apical junctions through their effect on the junctional actomyosin cytoskeleton. We propose that ZO proteins not only function as scaffolds for claudins but also promote TJ formation of cholesterol-rich membrane domains at apical junctions.
Collapse
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| | - Yumiko Ono
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| | - Kenji Matsuzawa
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| |
Collapse
|
8
|
Sukumar M, DeFlorio R, Pai CY, Stone DE. A member of the claudin superfamily influences formation of the front domain in pheromone-responding yeast cells. J Cell Sci 2023; 136:286256. [PMID: 36601911 DOI: 10.1242/jcs.260048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Cell polarization in response to chemical gradients is important in development and homeostasis across eukaryota. Chemosensing cells orient toward or away from gradient sources by polarizing along a front-rear axis. Using the mating response of budding yeast as a model of chemotropic cell polarization, we found that Dcv1, a member of the claudin superfamily, influences front-rear polarity. Although Dcv1 localized uniformly on the plasma membrane (PM) of vegetative cells, it was confined to the rear of cells responding to pheromone, away from the pheromone receptor. dcv1Δ conferred mislocalization of sensory, polarity and trafficking proteins, as well as PM lipids. These phenotypes correlated with defects in pheromone-gradient tracking and cell fusion. We propose that Dcv1 helps demarcate the mating-specific front domain primarily by restricting PM lipid distribution.
Collapse
Affiliation(s)
- Madhushalini Sukumar
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Reagan DeFlorio
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chih-Yu Pai
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - David E Stone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
9
|
Ganieva U, Schneiderman S, Bu P, Beaman K, Dambaeva S. IL-22 regulates endometrial regeneration by enhancing tight junctions and orchestrating extracellular matrix. Front Immunol 2022; 13:955576. [PMID: 36091010 PMCID: PMC9453595 DOI: 10.3389/fimmu.2022.955576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
The uterine endometrium uniquely regenerates after menses, postpartum, or after breaks in the uterine layer integrity throughout women’s lives. Direct cell–cell contacts ensured by tight and adherens junctions play an important role in endometrial integrity. Any changes in these junctions can alter the endometrial permeability of the uterus and have an impact on the regeneration of uterine layers. Interleukin 22 (IL-22) is a cytokine that is recognized for its role in epithelial regeneration. Moreover, it is crucial in controlling the inflammatory response in mucosal tissues. Here, we studied the role of IL-22 in endometrial recovery after inflammation-triggered abortion. Fecundity of mice was studied in consecutive matings of the same animals after lipopolysaccharide (LPS) (10 µg per mouse)-triggered abortion. The fecundity rate after the second mating was substantially different between IL-22 knockout (IL-22−/−) (9.1%) and wild-type (WT) (71.4%) mice (p < 0.05), while there was no difference between the groups in the initial mating, suggesting that IL-22 deficiency might be associated with secondary infertility. A considerable difference was observed between IL-22−/− and WT mice in the uterine clearance following LPS-triggered abortion. Gross examination of the uteri of IL-22−/− mice revealed non-viable fetuses retained inside the horns (delayed clearance). In contrast, all WT mice had completed abortion with total clearance after LPS exposure. We also discovered that IL-22 deficiency is associated with a decreased expression of tight junctions (claudin-2 and claudin-10) and cell surface pathogen protectors (mucin-1). Moreover, IL-22 has a role in the remodeling of the uterine tissue in the inflammatory environment by regulating epithelial–mesenchymal transition markers called E- and N-cadherin. Therefore, IL-22 contributes to the proper regeneration of endometrial layers after inflammation-triggered abortion. Thus, it might have a practical significance to be utilized as a treatment option postpartum (enhanced regeneration function) and in secondary infertility caused by inflammation (enhanced barrier/protector function).
Collapse
Affiliation(s)
- Umida Ganieva
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sylvia Schneiderman
- Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Pengli Bu
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Kenneth Beaman
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Svetlana Dambaeva
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Svetlana Dambaeva,
| |
Collapse
|
10
|
Le T, Aguilar B, Mangal JL, Acharya AP. Oral drug delivery for immunoengineering. Bioeng Transl Med 2022; 7:e10243. [PMID: 35111945 PMCID: PMC8780903 DOI: 10.1002/btm2.10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022] Open
Abstract
The systemic pharmacotherapeutic efficacy of immunomodulatory drugs is heavily influenced by its route of administration. A few common routes for the systemic delivery of immunotherapeutics are intravenous, intraperitoneal, and intramuscular injections. However, the development of novel biomaterials, in adjunct to current progress in immunoengineering, is providing an exciting area of interest for oral drug delivery for systemic targeting. Oral immunotherapeutic delivery is a highly preferred route of administration due to its ease of administration, higher patient compliance, and increased ability to generate specialized immune responses. However, the harsh environment and slow systemic absorption, due to various biological barriers, reduces the immunotherapeutic bioavailability, and in turn prevents widespread use of oral delivery. Nonetheless, cutting edge biomaterials are being synthesized to combat these biological barriers within the gastrointestinal (GI) tract for the enhancement of drug bioavailability and targeting the immune system. For example, advancements in biomaterials and synthesized drug agents have provided distinctive methods to promote localized drug absorption for the modulation of local or systemic immune responses. Additionally, novel breakthroughs in the immunoengineering field show promise in the development of vaccine delivery systems for disease prevention as well as combating autoimmune diseases, inflammatory diseases, and cancer. This review will discuss current progress made within the field of biomaterials and drug delivery systems to enhance oral immunotherapeutic availability, and how these new delivery platforms can be utilized to deliver immunotherapeutics for resolution of immune-related diseases.
Collapse
Affiliation(s)
- Tien Le
- Chemical Engineering, School for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
| | - Brian Aguilar
- Biomedical Engineering, School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
| | - Joslyn L. Mangal
- Biological Design, School for Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
| | - Abhinav P. Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
- Biomedical Engineering, School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
- Biological Design, School for Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
- Materials Science and Engineering, School for the Engineering of Matter, Transport, and energyArizona State UniversityTempeArizonaUSA
- Biodesign Center for Immunotherapy, Vaccines and VirotherapyArizona State UniversityTempeArizonaUSA
| |
Collapse
|
11
|
Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021; 8:718093. [PMID: 34778332 PMCID: PMC8582318 DOI: 10.3389/fnut.2021.718093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
There is converging and increasing evidence, but also uncertainty, for the role of abnormal intestinal epithelial barrier function in the origin and development of a growing number of human gastrointestinal and extraintestinal inflammatory disorders, and their related complaints. Despite a vast literature addressing factors and mechanisms underlying changes in intestinal permeability in humans, and its connection to the appearance and severity of clinical symptoms, the ultimate link remains to be established in many cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic management of intestinal permeability disorders that allow health professionals involved in the management of these patients to carry out a consensus treatment based on clinical evidence. Instead, there are multiple pseudoscientific approaches and commercial propaganda scattered on the internet that confuse those affected and health professionals and that often lack scientific rigor. Therefore, in this review we aim to shed light on the different therapeutic options, which include, among others, dietary management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic and exosomes-manipulation, through an objective evaluation of the scientific publications in this field. Advances in the knowledge and management of intestinal permeability will sure enable better options of dealing with this group of common disorders to enhance quality of life of those affected.
Collapse
Affiliation(s)
- Marina Fortea
- Laboratory for Enteric NeuroScience, Translational Research Center for GastroIntestinal Disorders, University of Leuven, Leuven, Belgium
| | - Mercé Albert-Bayo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Abril-Gil
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - John-Peter Ganda Mall
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xavier Serra-Ruiz
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Alejandro Henao-Paez
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Monaco A, Ovryn B, Axis J, Amsler K. The Epithelial Cell Leak Pathway. Int J Mol Sci 2021; 22:ijms22147677. [PMID: 34299297 PMCID: PMC8305272 DOI: 10.3390/ijms22147677] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
The epithelial cell tight junction structure is the site of the transepithelial movement of solutes and water between epithelial cells (paracellular permeability). Paracellular permeability can be divided into two distinct pathways, the Pore Pathway mediating the movement of small ions and solutes and the Leak Pathway mediating the movement of large solutes. Claudin proteins form the basic paracellular permeability barrier and mediate the movement of small ions and solutes via the Pore Pathway. The Leak Pathway remains less understood. Several proteins have been implicated in mediating the Leak Pathway, including occludin, ZO proteins, tricellulin, and actin filaments, but the proteins comprising the Leak Pathway remain unresolved. Many aspects of the Leak Pathway, such as its molecular mechanism, its properties, and its regulation, remain controversial. In this review, we provide a historical background to the evolution of the Leak Pathway concept from the initial examinations of paracellular permeability. We then discuss current information about the properties of the Leak Pathway and present current theories for the Leak Pathway. Finally, we discuss some recent research suggesting a possible molecular basis for the Leak Pathway.
Collapse
Affiliation(s)
- Ashley Monaco
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
| | - Ben Ovryn
- Department of Physics, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA;
| | - Josephine Axis
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
| | - Kurt Amsler
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
- Correspondence: ; Tel.: +1-516-686-3716
| |
Collapse
|
13
|
Takasawa K, Takasawa A, Akimoto T, Magara K, Aoyama T, Kitajima H, Murakami T, Ono Y, Kyuno D, Suzuki H, Osanai M. Regulatory roles of claudin-1 in cell adhesion and microvilli formation. Biochem Biophys Res Commun 2021; 565:36-42. [PMID: 34090208 DOI: 10.1016/j.bbrc.2021.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Aberrant expression of tight junction proteins has recently been focused on in the cancer research field. We previously showed that claudin-1 is aberrantly expressed from an early stage of uterine cervical adenocarcinoma and contributes to malignant potentials. To elucidate the molecular mechanisms underlying tumor-promoting roles of claudin-1, we established and analyzed claudin-1 knockout cells. Knockout of claudin-1 suppressed conventional tight junctional functions, barrier and fence functions, and expression of cell adhesion-associated proteins including E-cadherin. Comparative proteome analysis revealed that expression of claudin-1 affected expression of a wide range of proteins, especially proteins that are associated with cell adhesion and actin cytoskeleton remodeling. Interactome analysis of the identified proteins revealed that E-cadherin and focal adhesion kinase play central roles in the claudin-1-dependently affected protein network. Moreover, knockout of claudin-1 significantly suppressed microvilli formation and activity of Ezrin/Radixin/Moesin. Taken together, the results indicate that expression of claudin-1 affects not only conventional tight junction function but also expression and activity of a wide range of proteins, especially proteins that are associated with cell adhesion and actin cytoskeleton remodeling, to contribute to malignant potentials and microvilli formation in cervical adenocarcinoma cells.
Collapse
Affiliation(s)
- Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Taishi Akimoto
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kazufumi Magara
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Taro Murakami
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Daisuke Kyuno
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
14
|
Alonso-Cotoner C, Abril-Gil M, Albert-Bayo M, Mall JPG, Expósito E, González-Castro AM, Lobo B, Santos J. The Role of Purported Mucoprotectants in Dealing with Irritable Bowel Syndrome, Functional Diarrhea, and Other Chronic Diarrheal Disorders in Adults. Adv Ther 2021; 38:2054-2076. [PMID: 33738725 PMCID: PMC7971407 DOI: 10.1007/s12325-021-01676-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
Chronic diarrhea is a frequent presenting symptom, both in primary care medicine and in specialized gastroenterology units. It is estimated that more than 5% of the global population suffers from chronic diarrhea. and that about 40% of these subjects are older than 60 years. The clinician is frequently faced with the need to decide which is the best therapeutic approach for these patients. While the origin of chronic diarrhea is diverse, impairment of intestinal barrier function, dysbiosis. and mucosal micro-inflammation are being increasingly recognized as underlying phenomena characterizing a variety of chronic diarrheal diseases. In addition to current pharmacological therapies, there is growing interest in alternative products such as mucoprotectants, which form a mucoadhesive film over the epithelium to reduce and protect against the development of altered intestinal permeability, dysbiosis, and mucosal micro-inflammation. This manuscript focuses on chronic diarrhea in adults, and we will review recent evidence on the ability of these natural compounds to improve symptoms associated with chronic diarrhea and to exert protective effects for the intestinal barrier.
Collapse
Affiliation(s)
- Carmen Alonso-Cotoner
- Servei de Aparell Digestiu, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona, Facultat de Medicina, Bellaterra, Barcelona, Spain
- CIBER de Enfermedades Hepaticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Abril-Gil
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Mercé Albert-Bayo
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - John-P Ganda Mall
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elba Expósito
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Ana M González-Castro
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Beatriz Lobo
- Servei de Aparell Digestiu, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Universitat Autònoma de Barcelona, Facultat de Medicina, Bellaterra, Barcelona, Spain.
| | - Javier Santos
- Servei de Aparell Digestiu, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Universitat Autònoma de Barcelona, Facultat de Medicina, Bellaterra, Barcelona, Spain.
- CIBER de Enfermedades Hepaticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Otani T, Furuse M. Tight Junction Structure and Function Revisited. Trends Cell Biol 2020; 30:805-817. [PMID: 32891490 DOI: 10.1016/j.tcb.2020.08.004] [Citation(s) in RCA: 390] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Tight junctions (TJs) are intercellular junctions critical for building the epithelial barrier and maintaining epithelial polarity. The claudin family of membrane proteins play central roles in TJ structure and function. However, recent findings have uncovered claudin-independent aspects of TJ structure and function, and additional players including junctional adhesion molecules (JAMs), membrane lipids, phase separation of the zonula occludens (ZO) family of scaffolding proteins, and mechanical force have been shown to play important roles in TJ structure and function. In this review, we discuss how these new findings have the potential to transform our understanding of TJ structure and function, and how the intricate network of TJ proteins and membrane lipids dynamically interact to drive TJ assembly.
Collapse
Affiliation(s)
- Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan.
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
16
|
Pérez AG, Andrade-Da-Costa J, De Souza WF, De Souza Ferreira M, Boroni M, De Oliveira IM, Freire-Neto CA, Fernandes PV, De Lanna CA, Souza-Santos PT, Morgado-Díaz JA, De-Freitas-Junior JCM. N‑glycosylation and receptor tyrosine kinase signaling affect claudin‑3 levels in colorectal cancer cells. Oncol Rep 2020; 44:1649-1661. [PMID: 32945502 PMCID: PMC7448416 DOI: 10.3892/or.2020.7727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Changes in protein levels in different components of the apical junctional complex occur in colorectal cancer (CRC). Claudin-3 is one of the main constituents of tight junctions, and its overexpression can increase the paracellular flux of macromolecules, as well as the malignant potential of CRC cells. The aim of this study was to investigate the molecular mechanisms involved in the regulation of claudin-3 and its prognostic value in CRC. In silico evaluation in each of the CRC consensus molecular subtypes (CMSs) revealed that high expression levels of CLDN3 (gene encoding claudin-3) in CMS2 and CMS3 worsened the patients' long-term survival, whereas a decrease in claudin-3 levels concomitant with a reduction in phosphorylation levels of epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) could be achieved by inhibiting N-glycan biosynthesis in CRC cells. We also observed that specific inactivation of these receptor tyrosine kinases (RTKs) led to a decrease in claudin-3 levels, and this regulation seems to be mediated by phospholipase C (PLC) and signal transducer and activator of transcription 3 (STAT3) in CRC cells. RTKs are modulated by their N-linked glycans, and inhibition of N-glycan biosynthesis decreased the claudin-3 levels; therefore, we evaluated the correlation between N-glycogenes and CLDN3 expression levels in each of the CRC molecular subtypes. The CMS1 (MSI immune) subtype concomitantly exhibited low expression levels of CLDN3 and N-glycogenes (MGAT5, ST6GAL1, and B3GNT8), whereas CMS2 (canonical) exhibited high gene expression levels of CLDN3 and N-glycogenes (ST6GAL1 and B3GNT8). A robust positive correlation was also observed between CLDN3 and B3GNT8 expression levels in all CMSs. These results support the hypothesis of a mechanism integrating RTK signaling and N-glycosylation for the regulation of claudin-3 levels in CRC, and they suggest that CLDN3 expression can be used to predict the prognosis of patients identified as CMS2 or CMS3.
Collapse
Affiliation(s)
- Amelia G Pérez
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Jéssica Andrade-Da-Costa
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Waldemir F De Souza
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Michelle De Souza Ferreira
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Mariana Boroni
- Bioinformatics and Computational Biology Laboratory, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Ivanir M De Oliveira
- Pathology Division, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Carlos A Freire-Neto
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Priscila V Fernandes
- Pathology Division, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Cristóvão A De Lanna
- Bioinformatics and Computational Biology Laboratory, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | | | - José A Morgado-Díaz
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | | |
Collapse
|
17
|
Dima C, Assadpour E, Dima S, Jafari SM. Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Crit Rev Food Sci Nutr 2020; 61:3031-3065. [PMID: 32691612 DOI: 10.1080/10408398.2020.1792409] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanofoods is a current concept that is based on the application of nanotechnologies in the preparation of safe foods, with superior nutritional and sensory characteristics, and capable of providing multiple health benefits. In line with the principles of this concept, food scientists have focused on developing new types of nano biosystems that can contribute to increasing the bioavailability of bioactive compounds used in food fortification. Numerous research teams have investigated the main factors limiting oral bioavailability including: bioaccessibility, absorption and transformation of bioactive compounds and bioactive-loaded nanocarriers. The physicochemical processes involved in the factors limiting oral bioavailability have been extensively studied, such asthe release, solubility and interaction of bioactive compounds and nanocarriers during food digestion, transport mechanisms of bioactive compounds and nanoparticles through intestinal epithelial cells as well as the chemical and biochemical transformations in phase I and phase II reactions. In this comprehensive review, the physicochemical processes involved in the bioaccessibility/bioavailability of different encapsulated bioactive compounds, that play an important role in human health, will be explained including polyphenols, phytosterols, carotenoids, vitamins and minerals. In particular, the mechanisms involved in the cellular uptake of bioactive-loaded nanocarriers including transcellular transport (diffusion, endocytosis, pinocytosis, transcytosis, phagocytosis), paracellular transport (through the "tight junctions" between epithelial cells), and the active transport of bioactive compounds under the action of membrane transporters are highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
18
|
Castro MM, Kim B, Games PD, Hill E, Neves CA, Serrão JE, Breton S, Machado-Neves M. Distribution pattern of ZO-1 and claudins in the epididymis of vampire bats. Tissue Barriers 2020; 8:1779526. [PMID: 32552339 DOI: 10.1080/21688370.2020.1779526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial cells connect with each other by tight junctions (TJs) in several tissues. In epididymides, TJs proteins form the blood-epididymis barrier (BEB), which is crucial for male fertility. However, little is known about BEB morphological and physiological aspects in wild animals. This study examines the region-specific distribution pattern of TJs proteins in D. rotundus' epididymis, assessing their regulation in rainy and dry season. The expression of zonula occludens-1 (ZO-1), and claudins (Cldn)-1, -3, and -4 were evaluated by confocal immunofluorescence and ELISA analysis. Herein, ZO-1 was strictly expressed in TJs, whereas Cldns were expressed in TJs and basolateral membranes of epithelial cells. Their co-localization and intensity of expression varied in the epididymal regions examined. The effect of season on protein expression was detected mainly in TJ proteins located in the proximal regions. As such, in the initial segment (IS), Cldn-3 and -4 were detected at low levels in basolateral membranes in the rainy season compared to the dry season. Furthermore, in the distal IS, Cldn-1 expression was lower in TJs of epithelial cells during the rainy season than the dry season. ZO-1 expression was higher in the cauda region than the corpus region by ELISA analysis. Additionally, in the corpus region, ZO-1 expression was higher in TJs during dry season compared to the rainy season. Our study sheds light on the understanding of BEB in D. rotundus, improving the knowledge of their reproductive biology.
Collapse
Affiliation(s)
- Mariana M Castro
- Departmento De Biologia Geral, Universidade Federal De Viçosa , Viçosa, Brasil
| | - Bongki Kim
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA.,Department of Animal Resources Science, Kongju National University , Yesan, Republic of Korea
| | - Patrícia D Games
- Departmento De Biologia Geral, Universidade Federal De Viçosa , Viçosa, Brasil
| | - Eric Hill
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA
| | | | - José Eduardo Serrão
- Departmento De Biologia Geral, Universidade Federal De Viçosa , Viçosa, Brasil
| | - Sylvie Breton
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA
| | | |
Collapse
|
19
|
Silva-Guillen YV, Arellano C, Boyd RD, Martinez G, van Heugten E. Growth performance, oxidative stress and immune status of newly weaned pigs fed peroxidized lipids with or without supplemental vitamin E or polyphenols. J Anim Sci Biotechnol 2020; 11:22. [PMID: 32158543 PMCID: PMC7057648 DOI: 10.1186/s40104-020-0431-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 01/10/2023] Open
Abstract
Background This study evaluated the use of dietary vitamin E and polyphenols on growth, immune and oxidative status of weaned pigs fed peroxidized lipids. A total of 192 piglets (21 days of age and body weight of 6.62 ± 1.04 kg) were assigned within sex and weight blocks to a 2 × 3 factorial arrangement using 48 pens with 4 pigs per pen. Dietary treatments consisted of lipid peroxidation (6% edible soybean oil or 6% peroxidized soybean oil), and antioxidant supplementation (control diet containing 33 IU/kg DL-α-tocopheryl-acetate; control with 200 IU/kg additional dl-α-tocopheryl-acetate; or control with 400 mg/kg polyphenols). Pigs were fed in 2 phases for 14 and 21 days, respectively. Results Peroxidation of oil for 12 days at 80 °C with exposure to 50 L/min of air substantially increased peroxide values, anisidine value, hexanal, and 2,4-decadienal concentrations. Feeding peroxidized lipids decreased (P < 0.001) body weight (23.16 vs. 18.74 kg), daily gain (473 vs. 346 g/d), daily feed intake (658 vs. 535 g/d) and gain:feed ratio (719 vs. 647 g/kg). Lipid peroxidation decreased serum vitamin E (P < 0.001) and this decrease was larger on day 35 (1.82 vs. 0.81 mg/kg) than day 14 (1.95 vs. 1.38 mg/kg). Supplemental vitamin E, but not polyphenols, increased (P ≤ 0.002) serum vitamin E by 84% and 22% for control and peroxidized diets, respectively (interaction, P = 0.001). Serum malondialdehyde decreased (P < 0.001) with peroxidation on day 14, but not day 35 and protein carbonyl increased (P < 0.001) with peroxidation on day 35, but not day 14. Serum 8-hydroxydeoxyguanosine was not affected (P > 0.05). Total antioxidant capacity decreased with peroxidation (P < 0.001) and increased with vitamin E (P = 0.065) and polyphenols (P = 0.046) for the control oil diet only. Serum cytokine concentrations increased with feeding peroxidized lipids on day 35, but were not affected by antioxidant supplementation (P > 0.05). Conclusion Feeding peroxidized lipids negatively impacted growth performance and antioxidant capacity of nursery pigs. Supplementation of vitamin E and polyphenols improved total antioxidant capacity, especially in pigs fed control diets, but did not restore growth performance.
Collapse
Affiliation(s)
- Y V Silva-Guillen
- 1Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - C Arellano
- 2Department of Statistics, North Carolina State University, Raleigh, NC 27695 USA
| | - R D Boyd
- The Hanor Company Inc, Franklin, KY 42134 USA
| | - G Martinez
- 1Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - E van Heugten
- 1Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
20
|
The Gut Microbiota in Cardiovascular Disease and Arterial Thrombosis. Microorganisms 2019; 7:microorganisms7120691. [PMID: 31847071 PMCID: PMC6956001 DOI: 10.3390/microorganisms7120691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota has emerged as a contributing factor in the development of atherosclerosis and arterial thrombosis. Metabolites from the gut microbiota, such as trimethylamine N-oxide and short chain fatty acids, were identified as messengers that induce cell type-specific signaling mechanisms and immune reactions in the host vasculature, impacting the development of cardiovascular diseases. In addition, microbial-associated molecular patterns drive atherogenesis and the microbiota was recently demonstrated to promote arterial thrombosis through Toll-like receptor signaling. Furthermore, by the use of germ-free mouse models, the presence of a gut microbiota was shown to influence the synthesis of endothelial adhesion molecules. Hence, the gut microbiota is increasingly being recognized as an influencing factor of arterial thrombosis and attempts of dietary pre- or probiotic modulation of the commensal microbiota, to reduce cardiovascular risk, are becoming increasingly significant.
Collapse
|
21
|
de Oliveira RB, Matheus VA, Canuto LP, De Sant'ana A, Collares-Buzato CB. Time-dependent alteration to the tight junction structure of distal intestinal epithelia in type 2 prediabetic mice. Life Sci 2019; 238:116971. [PMID: 31634462 DOI: 10.1016/j.lfs.2019.116971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 01/18/2023]
Abstract
AIM High-fat diet (HFD) intake has been associated with changes in intestinal microbiota composition, increased intestinal permeability, and onset of type 2 diabetes mellitus (T2DM). The aim of this work was twofold: 1) to investigate the structural and functional alterations of the tight junction (TJ)-mediated intestinal epithelial barrier of ileum and colon, that concentrate most of the microbiota, after exposure to a HFD for 15, 30 and 60 days, and 2) to assess the effect of in vitro exposure to free fatty acids (FFAs), one of the components of HFD, on paracellular barrier of colon-derived Caco-2 cells. METHODS/KEY FINDINGS HFD exposure induced progressive metabolic changes in male mice that culminated in prediabetes after 60d. Morphological analysis of ileum and colon mucosa showed no signs of epithelial rupture or local inflammation but changes in the junctional content/distribution and/or cellular content of TJ-associated proteins (claudins-1, -2, -3, and occludin) in intestinal epithelia were seen mainly after a prediabetes state has been established. This impairment in TJ structure was not associated with significant changes in intestinal permeability to FITC-dextran. Exposure of Caco-2 monolayers to palmitic or linoleic acids seems to induce a reinforcement of TJ structure while treatment with oleic acid had a more diverse effect on TJ protein distribution. SIGNIFICANCE TJ structure in distal intestinal epithelia can be specifically impaired by HFD intake at early stage of T2DM, but not by FFAs in vitro. Since the TJ change in ileum/colon was marginal, probably it does not contribute to the disease onset.
Collapse
Affiliation(s)
- Ricardo Beltrame de Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Valquiria Aparecida Matheus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leandro Pereira Canuto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ariane De Sant'ana
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carla Beatriz Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
22
|
Relationship between Changes in Microbiota and Liver Steatosis Induced by High-Fat Feeding-A Review of Rodent Models. Nutrients 2019; 11:nu11092156. [PMID: 31505802 PMCID: PMC6770892 DOI: 10.3390/nu11092156] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Several studies have observed that gut microbiota can play a critical role in nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) development. The gut microbiota is influenced by different environmental factors, which include diet. The aim of the present review is to summarize the information provided in the literature concerning the impact of changes in gut microbiota on the effects which dietary fat has on liver steatosis in rodent models. Most studies in which high-fat feeding has induced steatosis have reported reduced microbiota diversity, regardless of the percentage of energy provided by fat. At the phylum level, an increase in Firmicutes and a reduction in Bacteroidetes is commonly found, although widely diverging results have been described at class, order, family, and genus levels, likely due to differences in experimental design. Unfortunately, this fact makes it difficult to reach clear conclusions concerning the specific microbiota patterns associated with this feeding pattern. With regard to the relationship between high-fat feeding-induced changes in liver and microbiota composition, although several mechanisms such as alteration of gut integrity and increased permeability, inflammation, and metabolite production have been proposed, more scientific evidence is needed to address this issue and thus further studies are needed.
Collapse
|
23
|
Kyuno D, Bauer N, Schnölzer M, Provaznik J, Ryschich E, Hackert T, Zöller M. Distinct Origin of Claudin7 in Early Tumor Endosomes Affects Exosome Assembly. Int J Biol Sci 2019; 15:2224-2239. [PMID: 31592143 PMCID: PMC6775303 DOI: 10.7150/ijbs.35347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022] Open
Abstract
Microvesicles are the body's most powerful intercellular communication system and cancer-initiating cell microvesicles (CIC-TEX) reprogram Non-CIC towards fortified malignancy. Claudin7, a CIC-biomarker in gastrointestinal tumors, is recovered in TEX. Recent evidence suggesting individual cells delivering distinct microvesicles became of particular interest for claudin7, which is part of tight junctions (TJ) and glycolipid-enriched membrane domains (GEM), GEM-located claudin7 is palmitoylated. This offered the unique possibility of exploring the contribution of a CIC marker and its origin from distinct membrane domains on CIC-TEX biogenesis and activities. Proteome and miRNA analysis of wild-type, claudin7-knockdown and a rescue with claudin7 harboring a mutated palmitoylation site (mP) of a rat pancreatic and a human colon cancer line uncovered significant, only partly overlapping contributions of palmitoylated and non-palmitoylated claudin7 to TEX composition. Palmitoylated claudin7 facilitates GEM-integrated plasma membrane and associated signaling molecule recruitment; non-palmitoylated claudin7 supports recruitment of trafficking components, proteins engaged in fatty acid metabolism and TJ proteins into TEX. Claudin7mP also assists TEX recovery of selected miRNA. Thus, distinctly located claudin7 affects CIC-TEX composition and TJ-derived cld7 might play a unique role in equipping CIC-TEX with transporters and lipid metabolism-regulating molecules, awareness of distinct TEX populations being crucial facing therapeutic translation.
Collapse
Affiliation(s)
- Daisuke Kyuno
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany.,Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan
| | - Nathalie Bauer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany
| | | | | | - Eduard Ryschich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany
| | - Margot Zöller
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany
| |
Collapse
|
24
|
Betanzos A, Bañuelos C, Orozco E. Host Invasion by Pathogenic Amoebae: Epithelial Disruption by Parasite Proteins. Genes (Basel) 2019; 10:E618. [PMID: 31416298 PMCID: PMC6723116 DOI: 10.3390/genes10080618] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The epithelium represents the first and most extensive line of defence against pathogens, toxins and pollutant agents in humans. In general, pathogens have developed strategies to overcome this barrier and use it as an entrance to the organism. Entamoeba histolytica, Naegleriafowleri and Acanthamoeba spp. are amoebae mainly responsible for intestinal dysentery, meningoencephalitis and keratitis, respectively. These amoebae cause significant morbidity and mortality rates. Thus, the identification, characterization and validation of molecules participating in host-parasite interactions can provide attractive targets to timely intervene disease progress. In this work, we present a compendium of the parasite adhesins, lectins, proteases, hydrolases, kinases, and others, that participate in key pathogenic events. Special focus is made for the analysis of assorted molecules and mechanisms involved in the interaction of the parasites with epithelial surface receptors, changes in epithelial junctional markers, implications on the barrier function, among others. This review allows the assessment of initial host-pathogen interaction, to correlate it to the potential of parasite invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City 07360, Mexico.
| |
Collapse
|
25
|
Dahlgren D, Lennernäs H. Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches. Pharmaceutics 2019; 11:pharmaceutics11080411. [PMID: 31412551 PMCID: PMC6723276 DOI: 10.3390/pharmaceutics11080411] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
The main objective of this review is to discuss recent advancements in the overall investigation and in vivo prediction of drug absorption. The intestinal permeability of an orally administered drug (given the value Peff) has been widely used to determine the rate and extent of the drug’s intestinal absorption (Fabs) in humans. Preclinical gastrointestinal (GI) absorption models are currently in demand for the pharmaceutical development of novel dosage forms and new drug products. However, there is a strong need to improve our understanding of the interplay between pharmaceutical, biopharmaceutical, biochemical, and physiological factors when predicting Fabs and bioavailability. Currently, our knowledge of GI secretion, GI motility, and regional intestinal permeability, in both healthy subjects and patients with GI diseases, is limited by the relative inaccessibility of some intestinal segments of the human GI tract. In particular, our understanding of the complex and highly dynamic physiology of the region from the mid-jejunum to the sigmoid colon could be significantly improved. One approach to the assessment of intestinal permeability is to use animal models that allow these intestinal regions to be investigated in detail and then to compare the results with those from simple human permeability models such as cell cultures. Investigation of intestinal drug permeation processes is a crucial biopharmaceutical step in the development of oral pharmaceutical products. The determination of the intestinal Peff for a specific drug is dependent on the technique, model, and conditions applied, and is influenced by multiple interactions between the drug molecule and the biological membranes.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Uppsala University, Box 580 SE-751 23 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Box 580 SE-751 23 Uppsala, Sweden.
| |
Collapse
|
26
|
Tervonen A, Ihalainen TO, Nymark S, Hyttinen J. Structural dynamics of tight junctions modulate the properties of the epithelial barrier. PLoS One 2019; 14:e0214876. [PMID: 30964903 PMCID: PMC6456171 DOI: 10.1371/journal.pone.0214876] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/21/2019] [Indexed: 01/09/2023] Open
Abstract
Tight junctions are dynamic structures that are crucial in establishing the diffusion and electrical barrier of epithelial monolayers. Dysfunctions in the tight junctions can impede this barrier function and lead to many pathological conditions. Unfortunately, detailed understanding of the non-specific permeation pathway through the tight junctions, the so-called leak pathway, is lacking. We created computational models of the leak pathway to describe the two main barrier measures, molecular permeability and transepithelial electric resistance while using common structural dynamics. Our results showed that the proposed alternatives for the leak pathway, the bicellular strand opening dynamics and the tricellular pores, contribute together with distinct degrees, depending on the epithelium. The models can also capture changes in the tight junction barrier caused by changes in tight junction protein composition. In addition, we observed that the molecular permeability was markedly more sensitive to changes in the tight junction structure and strand dynamics compared with transepithelial electric resistance. The results highlight that our model creates a good methodological framework to integrate knowledge on the tight junction structure as well as to provide insights and tools to advance tight junction research.
Collapse
Affiliation(s)
- Aapo Tervonen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
- * E-mail:
| | - Teemu O. Ihalainen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| | - Soile Nymark
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| |
Collapse
|
27
|
Karasov WH. Integrative physiology of transcellular and paracellular intestinal absorption. ACTA ACUST UNITED AC 2018; 220:2495-2501. [PMID: 28724701 DOI: 10.1242/jeb.144048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glucose absorption by the small intestine has been studied for nearly a century. Despite extensive knowledge about the identity, functioning and regulation of the relevant transporters, there has been and there remains controversy about how these transporters work in concert to determine the overall epithelial absorption of key nutrients (e.g. sugars, amino acids) over a wide range of dietary and/or luminal concentrations. Our broader, integrative understanding of intestinal absorption requires more than the reductionist dissection of all the components and their elaboration at molecular and genetic levels. This Commentary emphasizes the integration of discrete molecular players and processes (including paracellular absorption) that, in combination, determine the overall epithelial absorption of key nutrients (e.g. sugars, amino acids) and putative anti-nutrients (water-soluble toxins), and the integration of that absorption with other downstream processes related to metabolic demands. It identifies historic key advances, controversies and future research ideas, as well as important perspectives that arise through comparative as well as biomedical physiological research.
Collapse
Affiliation(s)
- William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
28
|
Cai L, Li X, Geng C, Lei X, Wang C. Molecular mechanisms of somatostatin-mediated intestinal epithelial barrier function restoration by upregulating claudin-4 in mice with DSS-induced colitis. Am J Physiol Cell Physiol 2018; 315:C527-C536. [PMID: 30020824 DOI: 10.1152/ajpcell.00199.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal barrier dysfunction plays a crucial role in the pathogenesis of ulcerative colitis (UC). Previous studies have shown somatostatin (SST) can protect intestinal barrier structure possibly through upregulating tight junction (TJ) protein expression, but the mechanisms of this upregulation remain undefined. This study aimed to investigate the molecular mechanisms of interaction of SST with its downstream regulatory elements in DSS-induced colitis mice. In DSS-induced colitis mice, exogenous SST supplement (octreotide) effectively ameliorated disease progression, restored colonic barrier structure and function, and stimulated claudin-4 expression. Similar effects were also observed for SST on Caco-2 cells intervened by TNF-α. SST receptor 5 (SSTR5) agonist L-817,818 upregulated the claudin-4 expression whereas the SSTR2 agonist seglitide could not reverse TNF-α-induced reduction of claudin-4. SST treatment significantly decreased the phosphorylation levels of ERK1/2 and p38 induced by TNF-α. PD-98059 (ERK1/2 pathway inhibitor) but not SB-202190 (p38 pathway inhibitor) could reverse TNF-α-induced suppression of claudin-4 expression. Both inhibitors could improve the TJ barrier function damaged by TNF-α. Our studies suggest that the protective effect of SST on intestinal barrier achieved by upregulating claudin-4 expression through activation of SSTR5 and suppression of the ERK1/2 pathways. These findings will benefit the development of novel treatment regimens for UC.
Collapse
Affiliation(s)
- Lin Cai
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
- Division of Digestive Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xuelian Lei
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
29
|
An intestinal paracellular pathway biased toward positively-charged macromolecules. J Control Release 2018; 288:111-125. [PMID: 30194947 DOI: 10.1016/j.jconrel.2018.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022]
Abstract
Lacking an effective mechanism to safely and consistently enhance macromolecular uptake across the intestinal epithelium, prospects for successful development of oral therapeutic peptide drugs remain unlikely. We previously addressed this challenge by identifying an endogenous mechanism that controls intestinal paracellular permeability that can be activated by a peptide, termed PIP 640, which can increase cellular levels of phosphorylated myosin light chain at position S19 (MLC-pS19). Apical application in vitro or luminal application in vivo was shown to increase macromolecular solute transport within minutes that recovered completely within a few hours after removal. We now examine the nature of PIP 640-mediated permeability changes. Confluent Caco-2 cell monolayers treated with PIP 640 enhanced apical-to-basolateral (AB) transport of 4-kDa, but not 10-kDa, dextran. Expression and/or cellular distribution changes of tight junction (TJ) proteins were restricted to increased claudin-2 over a time course that correlated with an apparent shift in its distribution from the nucleus to the membrane fraction of the cell. PIP 640-mediated epithelial changes were distinct from the combined actions of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). While TNF-α/IFN-γ treatment also increased MLC-pS19 levels, these cytokines enhanced AB transport for 70-kDa dextran and decreased occludin expression at TJs. Claudin-2-dependent changes induced by PIP 640 resulted in an AB transport bias for positively-charged macromolecules demonstrated in vitro using charge variants of 4-kDa dextrans and by comparing transport of salmon calcitonin to exenatide. Comparable outcomes of increased TJ localization of claudin-2 and enhanced transport of these therapeutic peptides that biased toward cationic characteristics was demonstrated in vivo following after intra-luminal injection into rat jejunum. Together, these data have shown a potential mechanism for PIP 640 to enhance paracellular permeability of solutes in the size range of small therapeutic peptides that is biased toward positively-charged solutes.
Collapse
|
30
|
Ikenouchi J. Roles of membrane lipids in the organization of epithelial cells: Old and new problems. Tissue Barriers 2018; 6:1-8. [PMID: 30156967 DOI: 10.1080/21688370.2018.1502531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epithelial cells have characteristic membrane domains. Identification of membrane proteins playing an important role in these membrane domains has progressed and numerous studies have been performed on the functional analysis of these membrane proteins. On the other hand, the precise roles of membrane lipids in the organization of these membrane domains are largely unknown. Historically, the concept of lipid raft arose from the analysis of lipid composition of the apical membrane, and it can be said that epithelial cells are an optimal experimental model for elucidating the functions of lipids. In this review, I discuss the role of lipids in the formation of epithelial polarity and in the formation of cell membrane structures of epithelial cells such as microvilli in the apical domain, cell-cell adhesion apparatus in the lateral domain and cell-matrix adhesion in the basal domain.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- a Department of Biology, Faculty of Sciences , Kyushu University , Fukuoka , Nishi-ku , Japan.,b AMED-PRIME, Japan Agency for Medical Research and Development , Tokyo , Japan
| |
Collapse
|
31
|
Chopyk DM, Kumar P, Raeman R, Liu Y, Smith T, Anania FA. Dysregulation of junctional adhesion molecule-A contributes to ethanol-induced barrier disruption in intestinal epithelial cell monolayers. Physiol Rep 2018; 5. [PMID: 29208693 PMCID: PMC5727288 DOI: 10.14814/phy2.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022] Open
Abstract
Alcohol consumption promotes loss of intestinal barrier function. However, mechanisms by which ethanol affects the tight junction (TJ), the cellular structure responsible for maintaining the gut epithelial barrier, are not well understood. Three classes of transmembrane proteins comprise TJs: occludin, claudins, and junctional adhesion molecules (JAMs). It has recently been postulated that JAM‐A (F11R), the most abundant JAM expressed in intestinal epithelium, regulates “leak” pathway flux, a paracellular route for the nonselective permeation of large solutes. Since transluminal flux of many gut‐derived antigens occurs through this pathway, we investigated the role of JAM‐A in ethanol‐induced disruption of the intestinal epithelial barrier. Using Caco‐2 and SK‐CO15 monolayers, we found that ethanol induced a dose‐ and time‐dependent decrease in JAM‐A protein expression to about 70% of baseline levels. Alcohol also reduced Ras‐related protein 2 (Rap2) activity, and enhanced myosin light chain kinase (MLCK) activity, changes consistent with impaired JAM‐A signaling. Stable overexpression and shRNA‐mediated knockdown of JAM‐A were employed to investigate the role of JAM‐A in paracellular‐mediated flux following alcohol exposure. The paracellular flux of 40‐kDa fluorescein isothiocynate (FITC)‐dextran following ethanol treatment was decreased by the overexpression of JAM‐A; conversely, flux was enhanced by JAM‐A knockdown. Thus, we conclude that ethanol‐mediated control of JAM‐A expression and function contributes to mechanisms by which this chemical induces intestinal epithelial leakiness.
Collapse
Affiliation(s)
- Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Reben Raeman
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
32
|
Samanta P, Wang Y, Fuladi S, Zou J, Li Y, Shen L, Weber C, Khalili-Araghi F. Molecular determination of claudin-15 organization and channel selectivity. J Gen Physiol 2018; 150:949-968. [PMID: 29915162 PMCID: PMC6028499 DOI: 10.1085/jgp.201711868] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/08/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022] Open
Abstract
Members of the claudin family form tight junctions between adjacent epithelial and endothelial cells. Samanta et al. build an atomic model of claudin-15 using molecular dynamics simulations and conclude that four claudin-15 molecules each contribute an aspartic acid residue to form a selectivity filter. Tight junctions are macromolecular structures that traverse the space between adjacent cells in epithelia and endothelia. Members of the claudin family are known to determine tight junction permeability in a charge- and size-selective manner. Here, we use molecular dynamics simulations to build and refine an atomic model of claudin-15 channels and study its transport properties. Our simulations indicate that claudin-15 forms well-defined channels for ions and molecules and otherwise “seals” the paracellular space through hydrophobic interactions. Ionic currents, calculated from simulation trajectories of wild-type as well as mutant channels, reflect in vitro measurements. The simulations suggest that the selectivity filter is formed by a cage of four aspartic acid residues (D55), contributed by four claudin-15 molecules, which creates a negative electrostatic potential to favor cation flux over anion flux. Charge reversal or charge ablation mutations of D55 significantly reduce cation permeability in silico and in vitro, whereas mutations of other negatively charged pore amino acid residues have a significantly smaller impact on channel permeability and selectivity. The simulations also indicate that water and small ions can pass through the channel, but larger cations, such as tetramethylammonium, do not traverse the pore. Thus, our model provides an atomic view of claudin channels, their transport function, and a potential three-dimensional organization of its selectivity filter.
Collapse
Affiliation(s)
| | - Yitang Wang
- Department of Pathology, The University of Chicago, Chicago, IL.,Department of Surgery, The University of Chicago, Chicago, IL
| | - Shadi Fuladi
- Department of Physics, University of Illinois, Chicago, IL
| | - Jinjing Zou
- Department of Pathology, The University of Chicago, Chicago, IL
| | - Ye Li
- Department of Pathology, The University of Chicago, Chicago, IL
| | - Le Shen
- Department of Pathology, The University of Chicago, Chicago, IL .,Department of Surgery, The University of Chicago, Chicago, IL
| | | | | |
Collapse
|
33
|
Shigetomi K, Ono Y, Inai T, Ikenouchi J. Adherens junctions influence tight junction formation via changes in membrane lipid composition. J Cell Biol 2018; 217:2373-2381. [PMID: 29720382 PMCID: PMC6028530 DOI: 10.1083/jcb.201711042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/23/2018] [Accepted: 04/25/2018] [Indexed: 02/05/2023] Open
Abstract
How adherens junctions (AJs) influence tight junction (TJ) formation in epithelial cells is unclear. Shigetomi et al. show that loss of AJs affects plasma membrane (PM) lipid composition and that cholesterol addition in α-catenin–knockouts rescues TJ formation. In total, their data suggest that AJs affect TJ formation by controlling PM lipid levels. Tight junctions (TJs) are essential cell adhesion structures that act as a barrier to separate the internal milieu from the external environment in multicellular organisms. Although their major constituents have been identified, it is unknown how the formation of TJs is regulated. TJ formation depends on the preceding formation of adherens junctions (AJs) in epithelial cells; however, the underlying mechanism remains to be elucidated. In this study, loss of AJs in α-catenin–knockout (KO) EpH4 epithelial cells altered the lipid composition of the plasma membrane (PM) and led to endocytosis of claudins, a major component of TJs. Sphingomyelin with long-chain fatty acids and cholesterol were enriched in the TJ-containing PM fraction. Depletion of cholesterol abolished the formation of TJs. Conversely, addition of cholesterol restored TJ formation in α-catenin–KO cells. Collectively, we propose that AJs mediate the formation of TJs by increasing the level of cholesterol in the PM.
Collapse
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Ono
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan .,Agency for Medical Research and Development-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
34
|
Curto MÁ, Moro S, Yanguas F, Gutiérrez-González C, Valdivieso MH. The ancient claudin Dni2 facilitates yeast cell fusion by compartmentalizing Dni1 into a membrane subdomain. Cell Mol Life Sci 2018; 75:1687-1706. [PMID: 29134248 PMCID: PMC11105288 DOI: 10.1007/s00018-017-2709-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
Abstract
Dni1 and Dni2 facilitate cell fusion during mating. Here, we show that these proteins are interdependent for their localization in a plasma membrane subdomain, which we have termed the mating fusion domain. Dni1 compartmentation in the domain is required for cell fusion. The contribution of actin, sterol-dependent membrane organization, and Dni2 to this compartmentation was analysed, and the results showed that Dni2 plays the most relevant role in the process. In turn, the Dni2 exit from the endoplasmic reticulum depends on Dni1. These proteins share the presence of a cysteine motif in their first extracellular loop related to the claudin GLWxxC(8-10 aa)C signature motif. Structure-function analyses show that mutating each Dni1 conserved cysteine has mild effects, and that only simultaneous elimination of several cysteines leads to a mating defect. On the contrary, eliminating each single cysteine and the C-terminal tail in Dni2 abrogates Dni1 compartmentation and cell fusion. Sequence alignments show that claudin trans-membrane helixes bear small-XXX-small motifs at conserved positions. The fourth Dni2 trans-membrane helix tends to form homo-oligomers in Escherichia plasma membrane, and two concatenated small-XXX-small motifs are required for efficient oligomerization and for Dni2 export from the yeast endoplasmic reticulum. Together, our results strongly suggest that Dni2 is an ancient claudin that blocks Dni1 diffusion from the intercellular region where two plasma membranes are in close proximity, and that this function is required for Dni1 to facilitate cell fusion.
Collapse
Affiliation(s)
- M-Ángeles Curto
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Sandra Moro
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Carmen Gutiérrez-González
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain.
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
35
|
Almansour K, Taverner A, Eggleston IM, Mrsny RJ. Mechanistic studies of a cell-permeant peptide designed to enhance myosin light chain phosphorylation in polarized intestinal epithelia. J Control Release 2018; 279:208-219. [PMID: 29614254 DOI: 10.1016/j.jconrel.2018.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Tight junction (TJ) structures restrict the movement of solutes between adjacent epithelial cells to maintain homeostatic conditions. A peptide, termed PIP 640, with the capacity to regulate the transient opening of intestinal TJ structures through an endogenous mechanism involving the induction of myosin light chain (MLC) phosphorylation at serine 19 (MLC-pS19) has provided a promising new method to enhance the in vivo oral bioavailability of peptide therapeutics. PIP 640 is a decapeptide composed of all D-amino acids (rrdykvevrr-NH2) that contains a central sequence designed to emulates a specific domain of C-kinase potentiated protein phosphatase-1 inhibitor-17 kDa (CPI-17) surrounded by positively-charged amino acids that provide a cell penetrating peptide (CPP)-like character. Here, we examine compositional requirements of PIP 640 with regard to its actions on MLC phosphorylation, its intracellular localization to TJ structures, and its interactions with MLC phosphatase (MLCP) elements that correlate with enhanced solute uptake. These studies showed that a glutamic acid and tyrosine within this peptide are critical for PIP 640 to retain its ability to increase MLC-pS19 levels and enhance the permeability of macromolecular solutes of the size range of therapeutic peptides without detectable cytotoxicity. On the other hand, exchange of the aspartic acid for alanine and then arginine resulted in an increasingly greater bias toward protein phosphatase-1 (PP1) relative to MLCP inhibition, an outcome that resulted in increased paracellular permeability for solutes in the size range of therapeutic peptides, but with a significant increase in cytotoxicity. Together, these data further our understanding of the composition requirements of PIP 640 with respect to the desired goal of transiently altering the intestinal epithelial cell paracellular barrier properties through an endogenous mechanism, providing a novel approach to enhance the oral bioavailability of poorly absorbed therapeutic agents of < ~ 5 kDa.
Collapse
Affiliation(s)
- Khaled Almansour
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Alistair Taverner
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Ian M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
36
|
Ordiz MI, Davitt C, Stephenson K, Agapova S, Divala O, Shaikh N, Manary MJ. EB 2017 Article: Interpretation of the lactulose:mannitol test in rural Malawian children at risk for perturbations in intestinal permeability. Exp Biol Med (Maywood) 2018; 243:677-683. [PMID: 29597877 DOI: 10.1177/1535370218768508] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The dual sugar absorption test, specifically the lactulose:mannitol test, is used to assess gut health. Lactulose absorption is said to represent gut damage and mannitol absorption is used as a measure of normal small bowel function and serves as normalizing factor for lactulose. A underappreciated limitation of this common understanding of the lactulose:mannitol test is that mannitol is not absorbed to any substantial extent by a transcellular process. Additionally, this interpretation of lactulose:mannitol is not consistent with current understanding of paracellular pathways, where three pathway types exist: pore, leak, and unrestricted. Pore and leak pathways are regulated biological constructions of the small bowel barrier, and unrestricted pathways represent micropathological damage. We analyzed 2334 lactulose:mannitol measurements rigorously collected from 622 young rural Malawian children at high risk for poor gut health in light of the pathway model. An alternative method of normalizing for gut length utilizing autopsy data is described. In our population, absorbed lactulose and mannitol are strongly correlated, r = 0.68 P <0.0001, suggesting lactulose and mannitol are traversing the gut barrier via the same pathways. Considering measurements where pore pathways predominate, mannitol flux is about 14 times that of lactulose. As more leak pathways are present, this differential flux mannitol:lactulose falls to 8:1 and when increased numbers of unrestricted pathways are present, the differential flux of mannitol:lactulose is 6:1. There was no substantial correlation between the lactulose:mannitol and linear growth. Given that mannitol will always pass through a given pathway at a rate at least equal to that of lactulose, and lactulose absorption is a composite measure of flux through both physiologic and pathologic pathways, we question the utility of the lactulose:mannitol test. We suggest using lactulose alone is as informative as lactulose:mannitol in a sugar absorption testing in subclinical gut inflammation. Impact statement Our work integrates the standard interpretation of the lactulose:mannitol test (L:M), with mechanistic insight of intestinal permeability. There are three paracellular pathways in the gut epithelium; pore, leak, and unrestricted. Using thousands of L:M measurements from rural Malawian children at risk for increased intestinal permeability, we predict the differential flux of L and M through the pathways. Our findings challenge the traditional notions that little L is absorbed through a normal epithelial barrier and that M is a normalizing factor for L. Our observations are consistent with pore pathways allowing only M to pass. And that substantial amounts of L and M pass through leak pathways which are normal, regulated, cell-junctional adaptations. So M is a composite measure of all pathways, and L is not a measure solely of pathologic gut damage. Using L alone as a probe will yield more information about gut health than L:M.
Collapse
Affiliation(s)
- M Isabel Ordiz
- 1 Department of Pediatrics, Washington University at Saint Louis, St. Louis, MO 63110, USA
| | - Caroline Davitt
- 1 Department of Pediatrics, Washington University at Saint Louis, St. Louis, MO 63110, USA
| | - Kevin Stephenson
- 1 Department of Pediatrics, Washington University at Saint Louis, St. Louis, MO 63110, USA
| | - Sophia Agapova
- 1 Department of Pediatrics, Washington University at Saint Louis, St. Louis, MO 63110, USA
| | - Oscar Divala
- 2 School of Public Health and Family Medicine, University of Malawi, Blantyre 3, Malawi
| | - Nurmohammad Shaikh
- 1 Department of Pediatrics, Washington University at Saint Louis, St. Louis, MO 63110, USA
| | - Mark J Manary
- 1 Department of Pediatrics, Washington University at Saint Louis, St. Louis, MO 63110, USA.,2 School of Public Health and Family Medicine, University of Malawi, Blantyre 3, Malawi.,3 Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
37
|
Sarathy J, Detloff SJ, Ao M, Khan N, French S, Sirajuddin H, Nair T, Rao MC. The Yin and Yang of bile acid action on tight junctions in a model colonic epithelium. Physiol Rep 2018; 5:e13294. [PMID: 28554966 PMCID: PMC5449568 DOI: 10.14814/phy2.13294] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal epithelial barrier loss due to tight junction (TJ) dysfunction and bile acid‐induced diarrhea are common in patients with inflammatory diseases. Although excess colonic bile acids are known to alter mucosal permeability, few studies have compared the effects of specific bile acids on TJ function. We report that the primary bile acid, chenodeoxycholic acid (CDCA), and its 7α‐dehydroxylated derivative, lithocholic acid (LCA) have opposite effects on epithelial integrity in human colonic T84 cells. CDCA decreased transepithelial barrier resistance (pore) and increased paracellular 10 kDa dextran permeability (leak), effects that were enhanced by proinflammatory cytokines (PiC [ng/mL]: TNFα[10] + IL‐1ß[10] + IFNγ[30]). CDCA reversed the cation selectivity of the monolayer and decreased intercellular adhesion. In contrast, LCA alone did not alter any of these parameters, but attenuated the effects of CDCA ± PiC on paracellular permeability. CDCA, but not PiC, decreased occludin and not claudin‐2 protein expression; CDCA also decreased occludin localization. LCA ± CDCA had no effects on occludin or claudin expression/localization. While PiC and CDCA increased IL‐8 production, LCA reduced both basal and PiC ± CDCA‐induced IL‐8 production. TNFα + IL1ß increased IFNγ, which was enhanced by CDCA and attenuated by LCA. CDCA±PiC increased production of reactive oxygen species (ROS) that was attenuated by LCA. Finally, scavenging ROS attenuated CDCA's leak, but not pore actions, and LCA enhanced this effect. Thus, in T84 cells, CDCA plays a role in the inflammatory response causing barrier dysfunction, while LCA restores barrier integrity. Understanding the interplay of LCA, CDCA, and PiC could lead to innovative therapeutic strategies for inflammatory and diarrheal diseases.
Collapse
Affiliation(s)
- Jayashree Sarathy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.,Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Sally Jo Detloff
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Mei Ao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nabihah Khan
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Sydney French
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Hafsa Sirajuddin
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Tanushree Nair
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
38
|
Pearce SC, Al-Jawadi A, Kishida K, Yu S, Hu M, Fritzky LF, Edelblum KL, Gao N, Ferraris RP. Marked differences in tight junction composition and macromolecular permeability among different intestinal cell types. BMC Biol 2018; 16:19. [PMID: 29391007 PMCID: PMC5793346 DOI: 10.1186/s12915-018-0481-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mammalian small intestinal tight junctions (TJ) link epithelial cells to one another and function as a permselective barrier, strictly modulating the passage of ions and macromolecules through the pore and leak pathways, respectively, thereby preventing the absorption of harmful compounds and microbes while allowing regulated transport of nutrients and electrolytes. Small intestinal epithelial permeability is ascribed primarily to the properties of TJs between adjoining enterocytes (ENTs), because there is almost no information on TJ composition and the paracellular permeability of nonenterocyte cell types that constitute a small but significant fraction of the intestinal epithelia. RESULTS Here we directed murine intestinal crypts to form specialized organoids highly enriched in intestinal stem cells (ISCs), absorptive ENTs, secretory goblet cells, or Paneth cells. The morphological and morphometric characteristics of these cells in organoids were similar to those in vivo. The expression of certain TJ proteins varied with cell type: occludin and tricellulin levels were high in both ISCs and Paneth cells, while claudin-1, -2, and -7 expression was greatest in Paneth cells, ISCs, and ENTs, respectively. In contrast, the distribution of claudin-15, zonula occludens 1 (ZO-1), and E-cadherin was relatively homogeneous. E-cadherin and claudin-7 marked mainly the basolateral membrane, while claudin-2, ZO-1, and occludin resided in the apical membrane. Remarkably, organoids enriched in ENTs or goblet cells were over threefold more permeable to 4 and 10 kDa dextran compared to those containing stem and Paneth cells. The TJ-regulator larazotide prevented the approximately tenfold increases in dextran flux induced by the TJ-disrupter AT1002 into organoids of different cell types, indicating that this ZO toxin nonselectively increases permeability. Forced dedifferentiation of mature ENTs results in the reacquisition of ISC-like characteristics in TJ composition and dextran permeability, suggesting that the post-differentiation properties of TJs are not hardwired. CONCLUSIONS Differentiation of adult intestinal stem cells into mature secretory and absorptive cell types causes marked, but potentially reversible, changes in TJ composition, resulting in enhanced macromolecular permeability of the TJ leak pathway between ENTs and between goblet cells. This work advances our understanding of how cell differentiation affects the paracellular pathway of epithelia.
Collapse
Affiliation(s)
- Sarah C Pearce
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
- Present address: Performance Nutrition Team, Combat Feeding Directorate, US Army, 15 General Greene Ave, Natick, MA, 01760-5018, USA
| | - Arwa Al-Jawadi
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Kunihiro Kishida
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
- Present address: Department of Science and Technology on Food Safety, Kindai University, Wakayama, 649-6493, Japan
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Life Science Center, 225 University Avenue, Newark, NJ, 07102, USA
| | - Madeleine Hu
- Department of Pathology & Laboratory Medicine, Center for Inflammation and Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Luke F Fritzky
- Advanced Microscopic Imaging Core Facility, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Karen L Edelblum
- Department of Pathology & Laboratory Medicine, Center for Inflammation and Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Life Science Center, 225 University Avenue, Newark, NJ, 07102, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| |
Collapse
|
39
|
Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029314. [PMID: 28507021 DOI: 10.1101/cshperspect.a029314] [Citation(s) in RCA: 464] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mucosal surfaces are lined by epithelial cells. In the intestine, the epithelium establishes a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing intrusion by luminal materials. Intestinal epithelia therefore play a central role in regulating interactions between the mucosal immune system and luminal contents, which include dietary antigens, a diverse intestinal microbiome, and pathogens. The paracellular space is sealed by the tight junction, which is maintained by a complex network of protein interactions. Tight junction dysfunction has been linked to a variety of local and systemic diseases. Two molecularly and biophysically distinct pathways across the intestinal tight junction are selectively and differentially regulated by inflammatory stimuli. This review discusses the mechanisms underlying these events, their impact on disease, and the potential of using these as paradigms for development of tight junction-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Aaron Buckley
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Jerrold R Turner
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
40
|
Gradauer K, Iida M, Watari A, Kataoka M, Yamashita S, Kondoh M, Buckley ST. Dodecylmaltoside Modulates Bicellular Tight Junction Contacts To Promote Enhanced Permeability. Mol Pharm 2017; 14:4734-4740. [DOI: 10.1021/acs.molpharmaceut.7b00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- K. Gradauer
- Global
Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark
- Faculty
of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - M. Iida
- Graduate
School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - A. Watari
- Graduate
School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - M. Kataoka
- Faculty
of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - S. Yamashita
- Faculty
of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - M. Kondoh
- Graduate
School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - S. T. Buckley
- Global
Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| |
Collapse
|
41
|
Shashikanth N, Yeruva S, Ong MLDM, Odenwald MA, Pavlyuk R, Turner JR. Epithelial Organization: The Gut and Beyond. Compr Physiol 2017; 7:1497-1518. [DOI: 10.1002/cphy.c170003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Mongelli-Sabino BM, Canuto LP, Collares-Buzato CB. Acute and chronic exposure to high levels of glucose modulates tight junction-associated epithelial barrier function in a renal tubular cell line. Life Sci 2017; 188:149-157. [PMID: 28882647 DOI: 10.1016/j.lfs.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/13/2023]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) is one of the most prevalent diseases worldwide. Diabetic nephropathy (DN) is a complication of diabetes and the mechanisms underlying onset and progression of this disease are not fully understood. It has been shown that hyperglycemia is an independent factor to predict the development of DN in individuals with T2DM, however, a link between high plasma glucose levels and renal tubular injuries in DN remains unknown. In this study, we investigated the effect of high levels of glucose (i.e. 180 or 360mg/dL) for up to 24h (acute) or over 72h (chronic) upon tight junction (TJ)-mediated epithelial barrier integrity of the kidney tubular cell line, MDCK. METHODS/KEY FINDINGS High levels of glucose (180 and 360mg/dL) induced a decrease in transepithelial electrical resistance associated with an increase in TJ cation selectivity at 24h or in TJ permeability to a paracellular marker, Lucifer Yellow, at 72h-exposure when compared to control group (exposed to 100mg/dL glucose). Immunofluorescence analyses showed that glucose treatment induced a significant decrease in the tight junctional content of claudins-1 and -3 as well as a significant increase in claudin-2 (particularly at 24h-exposure) and a time-dependent change in occludin/ZO-1 junctional content. The analyses of total cell content of these junctional proteins by Western blot did not reveal significant changes, except in claudin-2 expression. SIGNIFICANCE Our data suggest that high levels of glucose induce time-dependence changes in TJ structure in MDCK monolayers, suggesting a possible link between hyperglycemia-induced tubular epithelial barrier disruption and diabetic nephropathy.
Collapse
Affiliation(s)
- B M Mongelli-Sabino
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - L P Canuto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - C B Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
43
|
Cuellar P, Hernández-Nava E, García-Rivera G, Chávez-Munguía B, Schnoor M, Betanzos A, Orozco E. Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium. Front Cell Infect Microbiol 2017; 7:372. [PMID: 28861400 PMCID: PMC5561765 DOI: 10.3389/fcimb.2017.00372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
During intestinal invasion, Entamoeba histolytica opens tight junctions (TJs) reflected by transepithelial electrical resistance (TEER) dropping. To explore the molecular mechanisms underlying this, we studied in vitro and in vivo the damage produced by the recombinant E. histolytica cysteine protease (rEhCP112) on TJ functions and proteins. rEhCP112 reduced TEER in Caco-2 cells in a dose- and time-dependent manner; and EhCP112-overexpressing trophozoites provoked major epithelial injury compared to control trophozoites. rEhCP112 penetrated through the intercellular space, and consequently the ion flux increased and the TJs fence function was disturbed. However, macromolecular flux was not altered. Functional in vitro assays revealed specific association of rEhCP112 with claudin-1 and claudin-2, that are both involved in regulating ion flux and fence function. Of note, rEhCP112 did not interact with occludin that is responsible for regulating macromolecular flux. Moreover, rEhCP112 degraded and delocalized claudin-1, thus affecting interepithelial adhesion. Concomitantly, expression of the leaky claudin-2 at TJ, first increased and then it was degraded. In vivo, rEhCP112 increased intestinal epithelial permeability in the mouse colon, likely due to apical erosion and claudin-1 and claudin-2 degradation. In conclusion, we provide evidence that EhCP112 causes epithelial dysfunction by specifically altering claudins at TJ. Thus, EhCP112 could be a potential target for therapeutic approaches against amoebiasis.
Collapse
Affiliation(s)
- Patricia Cuellar
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Elizabeth Hernández-Nava
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico.,Consejo Nacional de Ciencia y TecnologíaMexico, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| |
Collapse
|
44
|
Multiplex epithelium dysfunction due to CLDN10 mutation: the HELIX syndrome. Genet Med 2017; 20:190-201. [PMID: 28771254 DOI: 10.1038/gim.2017.71] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/11/2017] [Indexed: 01/28/2023] Open
Abstract
PurposeWe aimed to identify the genetic cause to a clinical syndrome encompassing hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX syndrome), and to comprehensively delineate the phenotype.MethodsWe performed homozygosity mapping, whole-genome sequencing, gene sequencing, expression studies, functional tests, protein bioinformatics, and histological characterization in two unrelated families with HELIX syndrome.ResultsWe identified biallelic missense mutations (c.386C>T, p.S131L and c.2T>C, p.M1T) in CLDN10B in six patients from two unrelated families. CLDN10B encodes Claudin-10b, an integral tight junction (TJ) membrane-spanning protein expressed in the kidney, skin, and salivary glands. All patients had hypohidrosis, renal loss of NaCl with secondary hyperaldosteronism and hypokalemia, as well as hypolacrymia, ichthyosis, xerostomia, and severe enamel wear. Functional testing revealed that patients had a decreased NaCl absorption in the thick ascending limb of the loop of Henle and a severely decreased secretion of saliva. Both mutations resulted in reduced or absent Claudin-10 at the plasma membrane of epithelial cells.ConclusionCLDN10 mutations cause a dysfunction in TJs in several tissues and, subsequently, abnormalities in renal ion transport, ectodermal gland homeostasis, and epidermal integrity.
Collapse
|
45
|
Abstract
Mucosal barriers separate self from non-self and are essential for life. These barriers, which are the first line of defense against external pathogens, are formed by epithelial cells and the substances they secrete. Rather than an absolute barrier, epithelia at mucosal surfaces must allow selective paracellular flux that discriminates between solutes and water while preventing the passage of bacteria and toxins. In vertebrates, tight junctions seal the paracellular space; flux across the tight junction can occur through two distinct routes that differ in selectivity, capacity, molecular composition and regulation. Dysregulation of either pathway can accompany disease. A third, tight-junction-independent route that reflects epithelial damage can also contribute to barrier loss during disease. In this Cell Science at a Glance article and accompanying poster, we present current knowledge on the molecular components and pathways that establish this selectively permeable barrier and the interactions that lead to barrier dysfunction during disease.
Collapse
Affiliation(s)
- Marion M France
- Department of Medicine (Gastroenterology, Hepatology, and Endoscopy), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA
| | - Jerrold R Turner
- Department of Medicine (Gastroenterology, Hepatology, and Endoscopy), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA
| |
Collapse
|
46
|
Abstract
A fundamental function of the intestinal epithelium is to act as a barrier that limits interactions between luminal contents such as the intestinal microbiota, the underlying immune system and the remainder of the body, while supporting vectorial transport of nutrients, water and waste products. Epithelial barrier function requires a contiguous layer of cells as well as the junctions that seal the paracellular space between epithelial cells. Compromised intestinal barrier function has been associated with a number of disease states, both intestinal and systemic. Unfortunately, most current clinical data are correlative, making it difficult to separate cause from effect in interpreting the importance of barrier loss. Some data from experimental animal models suggest that compromised epithelial integrity might have a pathogenic role in specific gastrointestinal diseases, but no FDA-approved agents that target the epithelial barrier are presently available. To develop such therapies, a deeper understanding of both disease pathogenesis and mechanisms of barrier regulation must be reached. Here, we review and discuss mechanisms of intestinal barrier loss and the role of intestinal epithelial barrier function in pathogenesis of both intestinal and systemic diseases. We conclude with a discussion of potential strategies to restore the epithelial barrier.
Collapse
Affiliation(s)
- Matthew A Odenwald
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, Illinois 60637, USA
| | - Jerrold R Turner
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, Illinois 60637, USA
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck Street, Thorn 1428, Boston, Massachusetts 02115, USA
| |
Collapse
|
47
|
Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 2016; 17:564-80. [PMID: 27353478 DOI: 10.1038/nrm.2016.80] [Citation(s) in RCA: 994] [Impact Index Per Article: 110.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelia and endothelia separate different tissue compartments and protect multicellular organisms from the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma-membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Recent advances have broadened our understanding of the molecular architecture and cellular functions of tight junctions.
Collapse
Affiliation(s)
- Ceniz Zihni
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Clare Mills
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
48
|
Affiliation(s)
- Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Atlanta, GA 30322, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
49
|
Kim B, Breton S. The MAPK/ERK-Signaling Pathway Regulates the Expression and Distribution of Tight Junction Proteins in the Mouse Proximal Epididymis. Biol Reprod 2016; 94:22. [PMID: 26658708 PMCID: PMC4809559 DOI: 10.1095/biolreprod.115.134965] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/18/2015] [Accepted: 12/04/2015] [Indexed: 12/20/2022] Open
Abstract
The initial segment (IS) in rodents is functionally and structurally distinct from other epididymal segments and plays an important role in sperm maturation. The MAPK/ERK1/2 pathway is maintained active in the IS by testicular luminal factors and plays crucial roles in the maintenance and differentiation of the IS epithelium. Tight junctions (TJs) are constituents of the blood-epididymis barrier, which mediates the paracellular transport of ions, solutes, and water and controls epithelial cell differentiation, thereby contributing to the establishment of a unique luminal environment. We examine here the role of the MAPK/ERK1/2 pathway in the regulation of TJ proteins in the IS. Inhibition of mitogen activated protein kinase kinase (MAPKK or MEK1/2) with PD325901, followed by reduction of ERK1/2 phosphorylation (pERK), decreased zonula occludens (ZO)-2 expression and increased ZO-3 expression in TJs but had no effect on ZO-1 expression. In control mice, in addition to being located in TJs, claudin (Cldn)-1, Cldn-3, and Cldn-4 were detected in the basolateral membrane of epithelial cells, with enriched expression of Cldn-1 and Cldn-4 in basal cells. PD325901 reduced the expression of Cldn-1 and Cldn-4 at all locations without affecting Cldn-3. Occludin was undetectable in the IS of control mice, but PD325901 triggered its expression in TJs. No effect was observed for any of the proteins examined in the other epididymal regions. Our results indicate the participation of the MAPK/ERK1/2 pathway in the regulation of cell-cell events that control the formation and maintenance of the blood-epididymis barrier.
Collapse
Affiliation(s)
- Bongki Kim
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|