1
|
Azevedo LM, de Oliveira RR, Dos Reis GL, de Campos Rume G, Alvarenga JP, Gutiérrez RM, de Carvalho Costa J, Chalfun-Junior A. Hormonal crosstalk during the reproductive stage of Coffea arabica: interactions among gibberellin, abscisic acid, and ethylene. PLANTA 2025; 261:110. [PMID: 40223003 DOI: 10.1007/s00425-025-04679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
MAIN CONCLUSION The application of gibberellin and abscisic acid in coffee plants resulted in increased floral bud formation and fruit production by regulating key genes involved in flowering and hormonal biosynthesis pathways. Despite ongoing efforts, understanding hormonal regulation in perennial and woody species with complex phenological cycles, such as Coffea arabica L., remains limited. Given the global importance of coffee, identifying the main regulators of reproductive development is crucial to guarantee production, especially in face of climate change. This study investigated the effects of gibberellin (GA) and abscisic acid (ABA) at different concentrations (5, 25 and 100 ppm) in the reproductive development of C. arabica. Phenological analyses, molecular identification of genes involved in GA and ABA biosynthesis, degradation, and signaling, as well as gene expression profiling in leaves and floral buds during floral induction and development, were conducted. Promoter analysis of CaFT, quantification of 1-aminocyclopropane-1-carboxylate (ACC), enzymatic activity of ACC oxidase (ACO), and ethylene content were also assessed. Results showed that GA irrespective of concentration and ABA at 25 ppm applied during the main period of floral induction (March) significantly increased the number of floral buds, with ABA also accelerating the development. Similarly, applying these regulators in plants with floral buds at more advanced stages (August) increased the number of floral buds and fruit production in the GA (5 and 100 ppm) and ABA (25 and 100 ppm) treatments. Phylogenetic and molecular analyses identified genes related to GA and ABA biosynthesis, degradation, and signaling in coffee plants. GA and ABA treatments affected the expression of genes related to floral induction and organ formation, such as CaDELLA in March, which may relate to the increased number of floral buds. Moreover, in August, plants treated with 5 and 100 ppm GA and 100 ppm ABA showed up-regulation of CaFT1 expression, likely due to the down-regulation of CaCO during this period. In addition to GA-ABA interactions, our results suggest that GA promotes ACC accumulation in leaves in August, which may act as a mobile signal transported to floral buds, where its conversion to ethylene could regulate anthesis, highlighting a GA-ACC-ethylene interaction in coffee flowering. However, no significant differences in ethylene biosynthesis were observed in March with the application of these hormones, underscoring the incipient role of ethylene during floral induction in coffee. These results suggest reciprocal regulation of floral development by GA-ABA pathways in a dose-dependent manner and interacting with other hormonal pathways such as the ethylene biosynthesis in leaves and floral buds. These findings provide new insights into the hormonal regulation of coffee flowering, guiding field practices and breeding programs to maximize coffee production.
Collapse
Affiliation(s)
- Lillian Magalhães Azevedo
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Gabriel Lasmar Dos Reis
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Gabriel de Campos Rume
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Joyce Pereira Alvarenga
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Robert Márquez Gutiérrez
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Júlia de Carvalho Costa
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Gou J, Sang X, Liu L, Cao J, Liu Y, Ren C, Zhang Z, Jue D, Shi S. Genome-wide identification and functional analysis of the longan CONSTANS (CO) family. BMC PLANT BIOLOGY 2025; 25:418. [PMID: 40175884 PMCID: PMC11963673 DOI: 10.1186/s12870-025-06451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Longans are among the most economically important subtropical fruits. Its flowering is sensitive to the photoperiod, and flowering time has a significant influence on yield and quality. CONSTANS-like (COL) gene plays a key role in regulating induced flowering in longans. However, the specific role of the COL gene family in the regulation of flowering remains unknown. In this study, 10 DlCOL genes were identified in longans using comprehensive bioinformatics analysis and named based on their physical chromosomal locations. Phylogenetic tree analysis showed that DlCOL genes were divided into three subfamilies, each with a conserved domain. When combined with collinearity analysis, we found DlCOL genes were more closely related to COL genes of dicotyledons. DlCOL family genes are differentially expressed in various longan organs, with DlCOL1, DlCOL3, and DlCOL9 expressed in all organs, with the highest expression levels in floral buds. In the differential expression at different flowering induction stages of 'Sijimi' ('SJ') or 'Shixia' longan ('SX'), DlCOL4 expression was upregulated by 3-fold at the "T1-T2" flowering induction stage in 'SJ', but there was no expression during the three flowering induction stages in 'SX'. Subcellular localization analysis indicated that DlCOL4 is localized in the nucleus. Heterologous transformation of Arabidopsis indicated that DlCOL4 can negatively regulate flowering in transgenic plants. The qRT-PCR (Quantitative real-time PCR) results related to flowering genes indicated that DICOL4 may inhibit flowering by interacting with AtTFL and AtCOL. This study demonstrates the potential functional role of the DlCOL gene and the key role of DlCOL4 in regulating longan flowering.
Collapse
Affiliation(s)
- Jinlin Gou
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Xuelian Sang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Liqin Liu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Jiasui Cao
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Yao Liu
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Ci Ren
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Zhixin Zhang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Dengwei Jue
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Shengyou Shi
- National Key Laboratory for Tropical Crop Breeding, College of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Sanya, 572025, China.
| |
Collapse
|
3
|
Li W, Huang S, Yang X, Xie Y, Meng X, Xu Z, Li Z, Zhou W, Zhang W, Wang S, Jin L, Jin N, Lyu J, Yu J. Identification of the SP gene family and transcription factor SlSP5G promotes the high-temperature tolerance of tomatoes. Int J Biol Macromol 2025; 298:140043. [PMID: 39828177 DOI: 10.1016/j.ijbiomac.2025.140043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Some members of the SELF PRUNING (SP) gene family have been shown to play critical roles in developmental processes and stress responses across a wide range of plant species. The study identifies 13 members that can be divided into three subfamilies based on evolutionary analysis. Cis-Acting element analysis of the promoter regions indicated the presence of numerous stress- and hormone-responsive elements in the SlSP family. Subcellular localization analysis showed that the SlSP family proteins are localized in the cell membrane, nucleus, and chloroplasts. Notably, the expression of SELF PRUNING 5G (SlSP5G) was significantly induced by high-temperature stress. Silencing SlSP5G reduced tolerance to high-temperature stress. Conversely, its overexpression in stable transgenic lines enhanced heat tolerance, as demonstrated by improved membrane stability, elevated antioxidant enzyme activity, and reduced reactive oxygen species (ROS) accumulation. In contrast, SlSP5G knockout lines were more susceptible to high-temperature stress. This study provides a comprehensive analysis of the SlSP gene family, offering novel insights into the mechanism of SlSP5G-mediated heat stress tolerance in tomato.
Collapse
Affiliation(s)
- Wei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuchao Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiting Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yandong Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin Meng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiqi Xu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaozhuang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenhao Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lyu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Bao X, Zhu Y, Li G, Liu L. Regulation of storage organ formation by long-distance tuberigen signals in potato. HORTICULTURE RESEARCH 2025; 12:uhae360. [PMID: 40070401 PMCID: PMC11894528 DOI: 10.1093/hr/uhae360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025]
Abstract
Potatoes are valued as reliable crops due to their high carbohydrate content and relatively low farming demands. Consequently, significant attention has been directed towards understanding and controlling the life cycle of potato tubers in recent years. Notably, recent studies have identified self-pruning 6A (StSP6A) as a key component of the tuberigen, the mobile signal for tuber formation, produced in leaves and then transported underground to induce tuber formation in potatoes. Recent progress in comprehending the signaling mechanisms that regulate StSP6A by photoperiod and ambient temperature components, its long-distance transport into underground tissue, and its involvement in regulating stolon tuberization has advanced significantly. Consequently, the modulation of StSP6A and other possible tuberigen signals, along with their regulatory pathways, significantly impacts potato domestication and crop yield. This progress highlights the differential regulation of tuberigen signals and their potential functions in promoting tuber formation.
Collapse
Affiliation(s)
- Xinru Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yunke Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Guangcun Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Lu Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
5
|
Tian Y, Wang J, Wang X, Wang D, Wang X, Liu J, Zhang H, Zhang J, Yu L. Genome-wide identification, phylogeny, and expression analysis of PEBP gene family in Castanea mollissima. Front Genet 2025; 16:1530910. [PMID: 40206507 PMCID: PMC11979240 DOI: 10.3389/fgene.2025.1530910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
The phosphatidylethanolamine binding protein (PEBP) family plays an important part in growth and development of plants. Castanea mollissima is an economic plant with significant financial value and has become an important food source in the Northern Hemisphere. However, the PEBP genes in C. mollissima have not been studied yet. In this study, six PEBP genes (CmPEBP1 ∼ CmPEBP6) were identified in C. mollissima and comprehensively analyzed in terms of physicochemical properties, phylogeny, gene structures, cis-regulatory elements (CREs), transcription factor interaction, and expression profiles. The six CmPEBP genes were categorized into three subfamilies according to the phylogeny analysis, and all of them share extremely similar gene and protein structures. A total of 136 CREs were identified in the promoter regions of the CmPEBP genes, mainly related to growth and development, environmental stress, hormone response, and light response. Comparative genomic analysis indicated that the expansion of the CmPEBP genes was mainly driven by dispersed duplication, and the CmPEBP3/CmPEBP5 derived from eudicot common hexaploidization (ECH) events retained orthologous genes in all species studied. A total of 259 transcription factors (TFs) belonging to 39 families were predicted to be regulators of CmPEBP genes, and CmPEBP4 was predicted to interact with the most TFs. The RNA-seq data analysis indicated the potential roles of CmPEBP genes in the ovule, bud, and flower development of C. mollissima, as well as in the response to temperature stress, drought stress, and the gall wasp Dryocosmus kuriphilus (GWDK) infestation. Additionally, the expression of CmPEBP genes in C. mollissima seed kernel development and their response to temperature stress were confirmed by RT-qPCR assays. This study gives references and directions for future in-depth studies of PEBP genes.
Collapse
Affiliation(s)
- Yujuan Tian
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jinxin Wang
- Shijiazhuang Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiangyu Wang
- The Office of Scientific Research, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Dongsheng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Xuan Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jing Liu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Haie Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Liyang Yu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| |
Collapse
|
6
|
Zhang Y, Liu H, Wang Y, Si X, Pan Y, Guo M, Wu M, Li Y, Liu H, Zhang X, Hou J, Li T, Hao C. TaFT-D1 positively regulates grain weight by acting as a coactivator of TaFDL2 in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40100647 DOI: 10.1111/pbi.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
FLOWERING LOCUS T (FT), a multifunctional regulator in crops, modulates multiple key agronomic traits such as flowering time or heading date and plant height; however, its role in grain development regulation is unclear. Herein, through genome-wide association studies (GWAS), we identified TaFT-D1, which encodes a phosphatidylethanolamine-binding protein (PEBP), as a candidate gene for grain weight in wheat. A one-bp insertion/deletion (InDel) (G/-) in the third exon of TaFT-D1, resulting in different protein lengths, was significantly associated with grain weight. TaFT-D1 knockout via the CRISPR-Cas9 system reduced grain size and weight, and TaFT-D1 increased grain size by promoting cell proliferation and starch synthesis. Transcriptome analysis revealed a significant decrease in the expression of cell cycle- and starch synthesis-related genes, including TaNAC019-3A, TaSWEET15-like-7B, TaCYCD4;1 and TaCYCD3;2, in the taft-d1 knockout line. TaFT-D1 interacted with the bZIP transcription factor TaFDL2, and the tafdl2 mutant presented relatively small grains, suggesting that TaFDL2 is a positive regulator of grain size. Moreover, TaFDL2 bound to the promoters of downstream cell cycle- and starch synthesis-related genes, activating their expression, whereas TaFT-D1 increased this activation via TaFDL2. Interaction assays demonstrated that TaFT-D1, Ta14-3-3A and TaFDL2 formed a regulatory complex. Furthermore, the TaFT-D1(G) allele was significantly correlated with greater thousand-grain weight and earlier heading. This favourable allele has undergone strong positive selection during wheat breeding in China. Our findings provide novel insights into how TaFT-D1 regulates grain weight and highlight its potential application for yield improvement in wheat.
Collapse
Affiliation(s)
- Yinhui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaojia Wang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemei Si
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjiao Guo
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meijuan Wu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhao Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Azevedo LM, de Oliveira RR, Chalfun-Junior A. The Role of FT/ TFL1 Clades and Their Hormonal Interactions to Modulate Plant Architecture and Flowering Time in Perennial Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:923. [PMID: 40265831 PMCID: PMC11944798 DOI: 10.3390/plants14060923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Human nutrition is inherently associated with the cultivation of vegetables, grains, and fruits, underscoring the critical need to understand and manipulate the balance between vegetative and reproductive development in plants. Despite the vast diversity within the plant kingdom, these developmental processes share conserved and interconnected pathways among angiosperms, predominantly involving age, vernalization, gibberellin, temperature, photoperiod, and autonomous pathways. These pathways interact with environmental cues and orchestrate the transition from vegetative growth to reproductive stages. Related to this, there are two key genes belonging to the same Phosphatidylethanolamine-binding proteins family (PEBP), the FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1), which activate and repress the floral initiation, respectively, in different plant species. They compete for transcription factors such as FLOWERING LOCUS D (FD) and 14-3-3 to form floral activation complexes (FAC) and floral repression complexes (FRC). The FT/TFL1 mechanism plays a pivotal role in meristem differentiation, determining developmental outcomes as determinate or indeterminate. This review aims to explore the roles of FT and TFL1 in plant architecture and floral induction of annual and perennial species, together with their interactions with plant hormones. In this context, we propose that plant development can be modulated by the response of FT and/or TFL1 to plant growth regulators (PGRs), which emerge as potential tools for mitigating the adverse effects of environmental changes on plant reproductive processes. Thus, understanding these mechanisms is crucial to address the challenges of agricultural practices, especially in the face of climate change.
Collapse
Affiliation(s)
- Lillian Magalhães Azevedo
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.M.A.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.M.A.); (R.R.d.O.)
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.M.A.); (R.R.d.O.)
| |
Collapse
|
8
|
Bhattacharjee S, Paul K, Raman KV, Tilgam J, Kumari P, Baaniya M, Sreevathsa R, Anand A, Prashat GR, Pattanayak D. Constitutive expression of CEN-like protein 2, a TFL1 ortholog of pigeon pea ( Cajanus cajan [L.] Millspaugh) delays flowering in transgenic tobacco plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:419-433. [PMID: 40256274 PMCID: PMC12006589 DOI: 10.1007/s12298-025-01572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 04/22/2025]
Abstract
CEN-like protein 2 of pigeon pea, a candidate anti-florigen gene and a close homolog of AtTFL1 (Arabidopsis Terminal Flower1) of the PEBP family has been characterized through constitutive expression in tobacco. In-silico analysis helped to demonstrate the absence of a nuclear binding domain and the conserveness of substrate binding sites of this protein across angiosperms. Transgenic tobacco lines with 2-eightfold higher expressions of CEN-like protein 2 showed delayed flowering (26-32 days) along with significant morphological changes, including vegetative vigour, number and size of flowers, fruit setting, etc. Together, these findings showed that CEN-like protein 2 not only delays floral transition through repression but also regulates a variety of developmental traits. Expression profiling of upstream and downstream interacting pathway genes explained that their expression modulation led to a prolonged vegetative phase of over-expressed lines. Floral inducer genes like APETALA1 and LEAFY were drastically down-regulated in transgenic lines, reconfirming the role of the CEN-like 2 gene in floral regulation. In conclusion, precisely controlling CcCEN-like 2 gene expression may prove useful for refining pigeon pea breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01572-8.
Collapse
Affiliation(s)
- Sougata Bhattacharjee
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Krishnayan Paul
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - K. Venkat Raman
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jyotsana Tilgam
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Priyanka Kumari
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Mahi Baaniya
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Anjali Anand
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - G. Rama Prashat
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Debasis Pattanayak
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| |
Collapse
|
9
|
Wang J, Liu X, Wang Q, Shi M, Li C, Hou H, Lim KJ, Wang Z, Yang Z. Characterization of pecan PEBP family genes and the potential regulation role of CiPEBP-like1 in fatty acid synthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112326. [PMID: 39580031 DOI: 10.1016/j.plantsci.2024.112326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Phosphatidyl ethanolamine-binding protein (PEBP) plays important roles in plant growth and development. However, few studies have investigated the PEBP gene family in pecan (Carya illinoinensis), particularly the function of the PEBP-like subfamily. In this study, we identified 12 PEBP genes from the pecan genome and classified them into four subfamilies: MFT-like, FT-like, TFL1-like and PEBP-like. Multiple sequence alignment, gene structure, and conserved motif analyses indicated that pecan PEBP subfamily genes were highly conserved. Cis-element analysis revealed that many light responsive elements and plant hormone-responsive elements are found in CiPEBPs promoters. Additionally, RNA-seq and RT-qPCR showed that CiPEBP-like1 was highly expressed during kernel filling stage. GO and KEGG enrichment analysis further indicated that CiPEBP-like1 was involved in fatty acid biosynthesis and metabolism progress. Overexpression of CiPEBP-like1 led to earlier flowering and altered fatty acid composition in Arabidopsis seeds. RT-qPCR confirmed that CiPEBP-like1 promoted fatty acid synthesis by regulating the expression of key genes. Overall, this study contributes to a comprehensive understanding of the potential functions of the PEBP family genes and lay a foundation to modifying fatty acid composition in pecan kernel.
Collapse
Affiliation(s)
- Jiani Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Xinyao Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Qiaoyan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Miao Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Caiyun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Huating Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China.
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
10
|
Wang M, Huang J, Zeng Y, Song S, Zeng Y, Shen Y, Wu J, Ouyang P, Jin H, Wang H, Chang Z. The FLOWERING LOCUS T-like genes from patchouli (Pogostemon cablin) antagonistically regulate flowering time. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109394. [PMID: 39675256 DOI: 10.1016/j.plaphy.2024.109394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Flowering is crucial for the reproductive success of plants. Patchouli (Pogostemon cablin), a widely utilized medicinal and aromatic plant from the Lamiaceae family, exhibits rare flowering and fails to produce seeds, thereby posing a challenge for plant evolution and breeding improvement. However, the mechanism underlying flowering in patchouli has not been investigated. FLOWERING LOCUS T (FT) serves as a central integrator of flowering signals. Here, we identified 13 patchouli FT-like genes (PatFTs). In patchouli leaves, PatFT10-13 displayed continuous expression, with a decline noted at the flowering stage, while PatFT1-3 were activated exclusively at the flowering stage, and PatFT4-9 were hardly expressed. Overexpression of PatFT2 in Arabidopsis induced early flowering, while overexpression of PatFT10-13 resulted in delayed flowering. These results suggested that PatFT1-3, differing by one to two unique residues in the non-conserved region, might function as floral inducers, while PatFT10-13 likely act as floral repressors. Both PatFT2 and PatFT11 interacted with patchouli FD-like proteins. Transient expression of PatFT11 in protoplasts reduced the ability of PatFT2 to activate downstream flowering genes, suggesting a competitive antagonism between these proteins for shared interactors. Amino acid swapping analysis indicated that specific conserved residues was responsible for the functional switch in PatFTs. Furthermore, we revealed that the evolution of antagonistic FT-like modules might represent a common strategy for Lamiaceae plants to fine-tune flowering time. In summary, these findings provide new insights into the expansion and functional diversity of FT-like genes in patchouli.
Collapse
Affiliation(s)
- Manchun Wang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jierong Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yunping Zeng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - ShiShi Song
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Zeng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanting Shen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Puyue Ouyang
- School of Traditional Chinese Medicine, Guangdong Food and Drug Vocational College, Guangzhou, 510520, China
| | - Honglei Jin
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Hongbin Wang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zhenyi Chang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Xue R, Liu Y, Feng M, Huang Y, Zhao Y, Chen J, Li T, Zhong C, Ge W. Genome-wide characterization of PEBP genes in Mung bean (Vigna radiata L.) with functional analysis of VrFT1 in relation to photoperiod. Sci Rep 2024; 14:26413. [PMID: 39488543 PMCID: PMC11531570 DOI: 10.1038/s41598-024-73936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024] Open
Abstract
Mung bean (Vigna radiata L.), a widely cultivated legume, belongs to the Fabaceae family's Papilionoideae subfamily. Although Phosphatidylethanolamine-binding protein (PEBP) genes have been identified in several plant species, their presence and function in mung bean remain largely unexplored. In this study, we identified seven VrPEBP genes from mung bean and classified them into four clades: FT, MFT, TFL and FT-like. Cis-regulatory element analysis revealed that VrPEBP genes may play a role in light, hormone, and stress responses. Quantitative real-time PCR (qRT-PCR) analysis indicated that VrPEBPs were constitutively expressed in various tissues. However, tissue-specific expression patterns were observed among VrPEBP genes. Under short-day (SD) conditions, VrFT1 and VrMFT1 exhibited significantly higher expression levels than under long-day (LD) conditions at 8 and 4 h, respectively. Conversely, VrTFL2 and VrTFL3 showed significantly higher expression levels under LD conditions compared to SD conditions at 8 and 12 h, respectively. The varied expression patterns of these genes under different photoperiod suggest their potential involvement in the photoperiodic regulation of flowering in mung bean. Additionally, phenotypic analysis of transgenic Arabidopsis plants overexpressing VrFT1 revealed higher expression levels under SD conditions and predicted its role in promoting flowering. These results provide valuable insights into the evolution and function of PEBP genes in mung bean and lay the foundation for further research on their regulatory mechanisms and potential applications in mung bean improvement.
Collapse
Affiliation(s)
- Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110000, China
| | - Ming Feng
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Yuning Huang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Yang Zhao
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Jian Chen
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Tao Li
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110000, China.
| | - Weide Ge
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China.
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China.
| |
Collapse
|
12
|
Bellinazzo F, Nadal Bigas J, Hogers RAH, Kodde J, van der Wal F, Kokkinopoulou P, Duijts KTM, Angenent GC, van Dijk ADJ, van Velzen R, Immink RGH. Evolutionary origin and functional investigation of the widely conserved plant PEBP gene STEPMOTHER OF FT AND TFL1 (SMFT). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1410-1420. [PMID: 39364782 DOI: 10.1111/tpj.17057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Genes of the family PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBP) have been intensely studied in plants for their role in cell (re)programming and meristem differentiation. Recently, sporadic reports of the presence of a new type of PEBP in plants became available, highly similar to the YY-PEBPs of prokaryotes. A comprehensive investigation of their spread, origin, and function revealed conservation across the plant kingdom. The YY-PEBP clade in plants seems to have resulted from a single Horizontal Gene Transfer (HGT) episode from a prokaryotic organism to an ancestral streptophyte. YY-PEBPs are also present in other eukaryotes, such as certain fungi, diatoms, and rotifers, and these cases derive from independent HGT events. Reciprocally, the occurrence of the eukaryotic CETS/RKIP type PEBPs (CR-PEBPs) was noticed in bacteria of the genus Nocardia, showing that HGT has occurred as well from eukaryotes to prokaryotes. Based on these observations, we propose that the current model of the PEBP family in plants needs to be updated with the clade STEPMOTHER OF FT AND TFL1 (SMFT). SMFT genes not only share high sequence conservation but also show specific expression in homologous plant structures that serve as propagules. Functional analysis of Arabidopsis smft mutant lines pointed to a function for this gene in regulating seed germination, both concerning primary dormancy release and in response to adverse high-temperature conditions. Overall, our study reveals an increasing complexity in the evolutionary history of the PEBP gene family, unlocking new potential in understanding the evolution and functional spectrum of these important key regulatory genes.
Collapse
Affiliation(s)
- Francesca Bellinazzo
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Judit Nadal Bigas
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Rensco A H Hogers
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Jan Kodde
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Froukje van der Wal
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Pinelopi Kokkinopoulou
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Kilian T M Duijts
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Robin van Velzen
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Zlobin IE. Tree post-drought recovery: scenarios, regulatory mechanisms and ways to improve. Biol Rev Camb Philos Soc 2024; 99:1595-1612. [PMID: 38581143 DOI: 10.1111/brv.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Efficient post-drought recovery of growth and assimilation enables a plant to return to its undisturbed state and functioning. Unlike annual plants, trees suffer not only from the current drought, but also from cumulative impacts of consecutive water stresses which cause adverse legacy effects on survival and performance. This review provides an integrated assessment of ecological, physiological and molecular evidence on the recovery of growth and photosynthesis in trees, with a view to informing the breeding of trees with a better ability to recover from water stress. Suppression of recovery processes can result not only from stress damage but also from a controlled downshift of recovery as part of tree acclimation to water-limited conditions. In the latter case, recovery processes could potentially be activated by turning off the controlling mechanisms, but several obstacles make this unlikely. Tree phenology, and specifically photoperiodic constraints, can limit post-drought recovery of growth and photosynthesis, and targeting these constraints may represent a promising way to breed trees with an enhanced ability to recover post-drought. The mechanisms of photoperiod-dependent regulation of shoot, secondary and root growth and of assimilation processes are reviewed. Finally, the limitations and trade-offs of altering the photoperiodic regulation of growth and assimilation processes are discussed.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| |
Collapse
|
14
|
Susila H, Gawarecka K, Youn G, Jurić S, Jeong H, Ahn JH. THYLAKOID FORMATION 1 interacts with FLOWERING LOCUS T and modulates temperature-responsive flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:60-75. [PMID: 39136360 DOI: 10.1111/tpj.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/25/2024] [Indexed: 09/27/2024]
Abstract
The intracellular localization of the florigen FLOWERING LOCUS T (FT) is important for its long-distance transport toward the shoot apical meristem. However, the mechanisms regulating the FT localization remain poorly understood. Here, we discovered that in Arabidopsis thaliana, the chloroplast-localized protein THYLAKOID FORMATION 1 (THF1) physically interacts with FT, sequestering FT in the outer chloroplast envelope. Loss of THF1 function led to temperature-insensitive flowering, resulting in early flowering, especially under low ambient temperatures. THF1 mainly acts in the leaf vasculature and shoot apex to prevent flowering. Mutation of CONSTANS or FT completely suppressed the early flowering of thf1-1 mutants. FT and THF1 interact via their anion binding pocket and coiled-coil domain (CCD), respectively. Deletion of the CCD in THF1 by gene editing caused temperature-insensitive early flowering similar to that observed in the thf1-1 mutant. FT levels in the outer chloroplast envelope decreased in the thf1-1 mutant, suggesting that THF1 is important for sequestering FT. Furthermore, THF1 protein levels decreased in seedlings grown at high ambient temperature, suggesting an explanation for its role in plant responses to ambient temperature. A thf1-1 phosphatidylglycerolphosphate synthase 1 (pgp1) double mutant exhibited additive acceleration of flowering at 23 and 16°C, compared to the single mutants, indicating that THF1 and phosphatidylglycerol (PG) act as independent but synergistic regulators of temperature-responsive flowering. Collectively, our results provide an understanding of the genetic pathway involving THF1 and its role in temperature-responsive flowering and reveal a previously unappreciated additive interplay between THF1 and PG in temperature-responsive flowering.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, 6201, Australia
| | - Katarzyna Gawarecka
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Geummin Youn
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Snježana Jurić
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hyewon Jeong
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hoon Ahn
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
15
|
Lu Y, Wang K, Ngea GLN, Godana EA, Ackah M, Dhanasekaran S, Zhang Y, Su Y, Yang Q, Zhang H. Recent advances in the multifaceted functions of Cys2/His2-type zinc finger proteins in plant growth, development, and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5501-5520. [PMID: 38912636 DOI: 10.1093/jxb/erae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Recent research has highlighted the importance of Cys2/His2-type zinc finger proteins (C2H2-ZFPs) in plant growth and in responses to various stressors, and the complex structures of C2H2-ZFP networks and the molecular mechanisms underlying their responses to stress have received considerable attention. Here, we review the structural characteristics and classification of C2H2-ZFPs, and consider recent research advances in their functions. We systematically introduce the roles of these proteins across diverse aspects of plant biology, encompassing growth and development, and responses to biotic and abiotic stresses, and in doing so hope to lay the foundations for further functional studies of C2H2-ZFPs in the future.
Collapse
Affiliation(s)
- Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | | | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yingying Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Lavie O, Buxdorf K, Eshed Williams L. Optimizing cannabis cultivation: an efficient in vitro system for flowering induction. PLANT METHODS 2024; 20:141. [PMID: 39267047 PMCID: PMC11397071 DOI: 10.1186/s13007-024-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cannabis sativa L. is a versatile medicinal plant known for its therapeutic properties, derived from its diverse array of secondary metabolites synthesized primarily in female flower organs. Breeding cannabis is challenging due to its dioecious nature, strict regulatory requirements, and the need for photoperiod control to trigger flowering, coupled with highly dispersible pollen that can easily contaminate nearby female flowers. This study aimed to develop a protocol for in vitro flowering in cannabis, investigate factors affecting in vitro flower production, and generate viable in vitro seeds, potentially offering a method for producing sterile cannabinoids or advancing breeding techniques. RESULTS We show that the life cycle of cannabis can be fully completed in tissue culture; plantlets readily produce inflorescences and viable seeds in vitro. Our findings highlight the superior performance of DKW medium with 2% sucrose in a filtered vessel and emphasize the need for low light intensity during flower induction to optimize production. The improved performance in filtered vessels suggests that plants conduct photosynthesis in vitro, highlighting the need for future investigations into the effects of forced ventilation to refine this system. All tested lines readily developed inflorescences upon induction, with a 100% occurrence rate, including male flowering. We revealed the non-dehiscent trait of in vitro anthers, which is advantageous as it allows for multiple crosses to be conducted in vitro without concerns about cross-contamination. CONCLUSION The current work developed and optimized an effective protocol for in vitro flowering and seed production in cannabis, potentially providing a platform for sterile cannabinoid production and an efficient tool for breeding programs. This system allows for the full and consistent control of plant growth conditions year-round, potentially offering the reliable production of sterile molecules suitable for pharmacological use. As a breeding strategy, this method overcomes the complex challenges of breeding cannabis, such as the need for large facilities, by enabling the production of hundreds of lines in a small facility. By offering precise control over factors such as plant growth regulators, light intensity, photoperiod, and temperature, this system also serves as a valuable tool for studying flowering aspects in cannabis.
Collapse
Affiliation(s)
- Orly Lavie
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Kobi Buxdorf
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
17
|
Jiang Z, Zhao Y, Gao B, Wei X, Jiao P, Zhang H, Liu S, Guan S, Ma Y. ZmARF16 Regulates ZCN12 to Promote the Accumulation of Florigen and Accelerate Flowering. Int J Mol Sci 2024; 25:9607. [PMID: 39273554 PMCID: PMC11395262 DOI: 10.3390/ijms25179607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Auxin response factors(ARFs) are a class of transcription factors that regulate the expression of auxin response genes and play a crucial role in plant growth and development. Florigen plays a crucial role in the process of flowering. However, the process by which auxin regulates the accumulation of florigen remains largely unclear. This study found that the expression of ZmARF16 in maize increases during flowering, and the genetic transformation of ZmARF16 accelerates the flowering process in Arabidopsis and maize. Furthermore, ZmARF16 was found to be positively correlated with the transcription of the ZCN12 gene. Similarly, the FT-like gene ZCN12 in maize rescues the late flowering phenotype of the FT mutation in Arabidopsis. Moreover, ZCN12 actively participates in the accumulation of florigen and the flowering process. Further research revealed that ZmARF16 positively responds to the auxin signal, and that the interaction between ZmARF16 and the ZCN12 promoter, as well as the subsequent promotion of ZCN12 gene expression, leads to early flowering. This was confirmed through a yeast one-hybrid and dual-luciferase assay. Therefore, the study provides evidence that the ZmARF16-ZCN12 module plays a crucial role in regulating the flowering process of maize.
Collapse
Affiliation(s)
- Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
| | - Yang Zhao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Bai Gao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiaotong Wei
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Honglin Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
18
|
Koshiyama T, Higashiyama Y, Mochizuki I, Yamada T, Kanekatsu M. Ergothioneine Improves Seed Yield and Flower Number through FLOWERING LOCUS T Gene Expression in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2487. [PMID: 39273971 PMCID: PMC11397572 DOI: 10.3390/plants13172487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Biostimulants are a new category of materials that improve crop productivity by maximizing their natural abilities. Out of these biostimulants, those that increase seed production are considered to be particularly important as they contribute directly to the increase in the yield of cereals and legumes. Ergothioneine (EGT) is a natural, non-protein amino acid with antioxidant effects that is used in pharmaceuticals, cosmetics, and foods. However, EGT has not been used in agriculture. This study investigated the effect of EGT on seed productivity in Arabidopsis thaliana. Compared with an untreated control, the application of EGT increased the seed yield by 66%. However, EGT had no effect on seed yield when applied during or after bolting and did not promote the growth of vegetative organs. On the other hand, both the number of flowers and the transcript levels of FLOWERING LOCUS T (FT), a key gene involved in flowering, were increased significantly by the application of EGT. The results suggest that EGT improves seed productivity by increasing flower number through the physiological effects of the FT protein. Furthermore, the beneficial effect of EGT on flower number is expected to make it a potentially useful biostimulant not only in crops where seeds are harvested, but also in horticultural crops such as ornamental flowering plants, fruits, vegetables.
Collapse
Affiliation(s)
- Tatsuyuki Koshiyama
- New Business Division, Kureha Corporation, Chuo-ku, Tokyo 103-8552, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | - Izumi Mochizuki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Yamada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Motoki Kanekatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
19
|
Cai K, Zhu S, Jiang Z, Xu K, Sun X, Li X. Biological macromolecules mediated by environmental signals affect flowering regulation in plants: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108931. [PMID: 39003975 DOI: 10.1016/j.plaphy.2024.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Flowering time is a crucial developmental stage in the life cycle of plants, as it determines the reproductive success and overall fitness of the organism. The precise regulation of flowering time is influenced by various internal and external factors, including genetic, environmental, and hormonal cues. This review provided a comprehensive overview of the molecular mechanisms and regulatory pathways of biological macromolecules (e.g. proteins and phytohormone) and environmental factors (e.g. light and temperature) involved in the control of flowering time in plants. We discussed the key proteins and signaling pathways that govern the transition from vegetative growth to reproductive development, highlighting the intricate interplay between genetic networks, environmental cues, and phytohormone signaling. Additionally, we explored the impact of flowering time regulation on plant adaptation, crop productivity, and agricultural practices. Moreover, we summarized the similarities and differences of flowering mechanisms between annual and perennial plants. Understanding the mechanisms underlying flowering time control is not only essential for fundamental plant biology research but also holds great potential for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Kefan Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Siting Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zeyu Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
20
|
Tao N, Cheng B, Ma Y, Liu P, Chai H, Zhao Y, Chen W. Characterization of PEBP-like Genes and Function of Capebp1 and Capebp5 in Fruiting Body Regeneration in Cyclocybe aegerita. J Fungi (Basel) 2024; 10:537. [PMID: 39194863 DOI: 10.3390/jof10080537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Phosphatidylethanolamine-binding proteins (PEBPs) play a crucial role in the growth and development of various organisms. Due to the low sequence similarity compared to plants, humans, and animals, the study of pebp genes in fungi has not received significant attention. The redifferentiation of fruiting bodies is exceedingly rare in fungal development. Hitherto, only a few studies have identified the Capebp2 gene as being associated with this phenomenon in Cyclocybe aegerita. Thus, exploring the role of pebp genes in fruiting body development is imperative. In the present study, four Capebp genes (Capebp1, Capebp3, Capebp4, and Capebp5) were cloned from the AC0007 strain of C. aegerita based on genome sequencing and gene prediction. The findings indicate that the pebp family, in C. aegerita, comprises a total of five genes. Moreover, the sequence similarity was low across the five CAPEBP protein sequences in C. aegerita, and only a few conserved sequences, such as HRY and RHF, were identical. Expression analyses revealed that, similarly to Capebp2, the four Capebp genes exhibit significantly higher expression levels in the fruiting bodies than in the mycelium. Furthermore, overexpressed and RNA interference Capebp1 or Capebp5 transformants were analyzed. The results demonstrate that overexpression of Capebp1 or Capebp5 could induce the regeneration of the lamella or fruiting body, whereas the knockdown of Capebp1 or Capebp5 could lead to the accelerated aging of fruiting bodies. These findings highlight a significant role of Capebp genes in the generation of C. aegerita fruiting bodies and provide a foundation for further exploration into their involvement in basidiomycete growth and development.
Collapse
Affiliation(s)
- Nan Tao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Bopu Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Yuanhao Ma
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Ping Liu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Hongmei Chai
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Yongchang Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Weimin Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| |
Collapse
|
21
|
Zhao JX, Wang S, Wen J, Zhou SZ, Jiang XD, Zhong MC, Liu J, Dong X, Deng Y, Hu JY, Li DZ. Evolution of FLOWERING LOCUS T-like genes in angiosperms: a core Lamiales-specific diversification. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3946-3958. [PMID: 38642399 DOI: 10.1093/jxb/erae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Plant life history is determined by two transitions, germination and flowering time, in which the phosphatidylethanolamine-binding proteins (PEBPs) FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) play key regulatory roles. Compared with the highly conserved TFL1-like genes, FT-like genes vary significantly in copy numbers in gymnosperms, and monocots within the angiosperms, while sporadic duplications can be observed in eudicots. Here, via a systematic analysis of the PEBPs in angiosperms with a special focus on 12 representative species featuring high-quality genomes in the order Lamiales, we identified a successive lineage-specific but systematic expansion of FT-like genes in the families of core Lamiales. The first expansion event generated FT1-like genes mainly via a core Lamiales-specific whole-genome duplication (cL-WGD), while a likely random duplication produced the FT2-like genes in the lineages containing Scrophulariaceae and the rest of the core Lamiales. Both FT1- and FT2-like genes were further amplified tandemly in some families. These expanded FT-like genes featured highly diverged expression patterns and structural variation, indicating functional diversification. Intriguingly, some core Lamiales contained the relict MOTHER OF FT AND TFL1 like 2 (MFT2) that probably expanded in the common ancestor of angiosperms. Our data showcase the highly dynamic lineage-specific expansion of the FT-like genes, and thus provide important and fresh evolutionary insights into the gene regulatory network underpinning flowering time diversity in Lamiales and, more generally, in angiosperms.
Collapse
Affiliation(s)
- Jiu-Xia Zhao
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shu Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Jing Wen
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Zhao Zhou
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Dong Jiang
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Mi-Cai Zhong
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jie Liu
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Dong
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunfei Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Jin-Yong Hu
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
22
|
Dowling CA, Shi J, Toth JA, Quade MA, Smart LB, McCabe PF, Schilling S, Melzer R. A FLOWERING LOCUS T ortholog is associated with photoperiod-insensitive flowering in hemp (Cannabis sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:383-403. [PMID: 38625758 DOI: 10.1111/tpj.16769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Hemp (Cannabis sativa L.) is an extraordinarily versatile crop, with applications ranging from medicinal compounds to seed oil and fibre products. Cannabis sativa is a short-day plant, and its flowering is highly controlled by photoperiod. However, substantial genetic variation exists for photoperiod sensitivity in C. sativa, and photoperiod-insensitive ("autoflower") cultivars are available. Using a bi-parental mapping population and bulked segregant analysis, we identified Autoflower2, a 0.5 Mbp locus significantly associated with photoperiod-insensitive flowering in hemp. Autoflower2 contains an ortholog of the central flowering time regulator FLOWERING LOCUS T (FT) from Arabidopsis thaliana which we termed CsFT1. We identified extensive sequence divergence between alleles of CsFT1 from photoperiod-sensitive and insensitive cultivars of C. sativa, including a duplication of CsFT1 and sequence differences, especially in introns. Furthermore, we observed higher expression of one of the CsFT1 copies found in the photoperiod-insensitive cultivar. Genotyping of several mapping populations and a diversity panel confirmed a correlation between CsFT1 alleles and photoperiod response, affirming that at least two independent loci involved in the photoperiodic control of flowering, Autoflower1 and Autoflower2, exist in the C. sativa gene pool. This study reveals the multiple independent origins of photoperiod insensitivity in C. sativa, supporting the likelihood of a complex domestication history in this species. By integrating the genetic relaxation of photoperiod sensitivity into novel C. sativa cultivars, expansion to higher latitudes will be permitted, thus allowing the full potential of this versatile crop to be reached.
Collapse
Affiliation(s)
- Caroline A Dowling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Jiaqi Shi
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Jacob A Toth
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Michael A Quade
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Machado R, Muchut SE, Dezar C, Reutemann AG, Alesso CA, Günthardt MM, Vegetti AC, Vogel J, Uberti Manassero NG. BdRCN4, a Brachypodium distachyon TFL1 homologue, is involved in regulation of apical meristem fate. PLANT MOLECULAR BIOLOGY 2024; 114:81. [PMID: 38940986 DOI: 10.1007/s11103-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.
Collapse
Affiliation(s)
- Rodrigo Machado
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Concordia, Santa Fe, Argentina
| | - Sebastián Elias Muchut
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, 3080, Argentina
| | - Carlos Dezar
- ICiAgro Litoral, FCA, UNL-CONICET, Esperanza, Santa Fe, 3080, Argentina
| | | | | | - María Margarita Günthardt
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, 3080, Argentina
| | | | - John Vogel
- DOE Joint Genome Institute, Walnut Creek, CA, 94595, USA
| | - Nora G Uberti Manassero
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, 3080, Argentina.
| |
Collapse
|
24
|
Lee N, Shim JS, Kang MK, Kwon M. Insight from expression profiles of FT orthologs in plants: conserved photoperiodic transcriptional regulatory mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1397714. [PMID: 38887456 PMCID: PMC11180818 DOI: 10.3389/fpls.2024.1397714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Floral transition from the vegetative to the reproductive stages is precisely regulated by both environmental and endogenous signals. Among these signals, photoperiod is one of the most important environmental factors for onset of flowering. A florigen, FLOWERING LOCUS T (FT) in Arabidopsis, has thought to be a major hub in the photoperiod-dependent flowering time regulation. Expression levels of FT likely correlates with potence of flowering. Under long days (LD), FT is mainly synthesized in leaves, and FT protein moves to shoot apical meristem (SAM) where it functions and in turns induces flowering. Recently, it has been reported that Arabidopsis grown under natural LD condition flowers earlier than that grown under laboratory LD condition, in which a red (R)/far-red (FR) ratio of light sources determines FT expression levels. Additionally, FT expression profile changes in response to combinatorial effects of FR light and photoperiod. FT orthologs exist in most of plants and functions are thought to be conserved. Although molecular mechanisms underlying photoperiodic transcriptional regulation of FT orthologs have been studied in several plants, such as rice, however, dynamics in expression profiles of FT orthologs have been less spotlighted. This review aims to revisit previously reported but overlooked expression information of FT orthologs from various plant species and classify these genes depending on the expression profiles. Plants, in general, could be classified into three groups depending on their photoperiodic flowering responses. Thus, we discuss relationship between photoperiodic responsiveness and expression of FT orthologs. Additionally, we also highlight the expression profiles of FT orthologs depending on their activities in flowering. Comparative analyses of diverse plant species will help to gain insight into molecular mechanisms for flowering in nature, and this can be utilized in the future for crop engineering to improve yield by controlling flowering time.
Collapse
Affiliation(s)
- Nayoung Lee
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
25
|
Gutiérrez RM, de Oliveira RR, Ribeiro THC, de Oliveira KKP, Silva JVN, Alves TC, do Amaral LR, de Souza Gomes M, de Souza Gomes M, Chalfun-Junior A. Unveiling the phenology and associated floral regulatory pathways of Humulus lupulus L. in subtropical conditions. PLANTA 2024; 259:150. [PMID: 38727772 DOI: 10.1007/s00425-024-04428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION The hop phenological cycle was described in subtropical condition of Brazil showing that flowering can happen at any time of year and this was related to developmental molecular pathways. Hops are traditionally produced in temperate regions, as it was believed that vernalization was necessary for flowering. Nevertheless, recent studies have revealed the potential for hops to flower in tropical and subtropical climates. In this work, we observed that hops in the subtropical climate of Minas Gerais, Brazil grow and flower multiple times throughout the year, independently of the season, contrasting with what happens in temperate regions. This could be due to the photoperiod consistently being inductive, with daylight hours below the described threshold (16.5 h critical). We observed that when the plants reached 7-9 nodes, the leaves began to transition from heart-shaped to trilobed-shaped, which could be indicative of the juvenile to adult transition. This could be related to the fact that the 5th node (in plants with 10 nodes) had the highest expression of miR156, while two miR172s increased in the 20th node (in plants with 25 nodes). Hop flowers appeared later, in the 25th or 28th nodes, and the expression of HlFT3 and HlFT5 was upregulated in plants between 15 and 20 nodes, while the expression of HlTFL3 was upregulated in plants with 20 nodes. These results indicate the role of axillary meristem age in regulating this process and suggest that the florigenic signal should be maintained until the hop plants bloom. In addition, it is possible that the expression of TFL is not sufficient to inhibit flowering in these conditions and promote branching. These findings suggest that the reproductive transition in hop under inductive photoperiodic conditions could occur in plants between 15 and 20 nodes. Our study sheds light on the intricate molecular mechanisms underlying hop floral development, paving the way for potential advancements in hop production on a global scale.
Collapse
Affiliation(s)
- Robert Márquez Gutiérrez
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - Kellen Kauanne Pimenta de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - João Victor Nunes Silva
- Institute of Genetics and Biochemistry (INGEB), Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU), Campus Patos de Minas, Patos de Minas, Minas Gerais, Brazil
| | - Tamires Caixeta Alves
- Institute of Genetics and Biochemistry (INGEB), Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU), Campus Patos de Minas, Patos de Minas, Minas Gerais, Brazil
| | - Laurence Rodrigues do Amaral
- Institute of Genetics and Biochemistry (INGEB), Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU), Campus Patos de Minas, Patos de Minas, Minas Gerais, Brazil
| | - Marcos de Souza Gomes
- Institute of Genetics and Biochemistry (INGEB), Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU), Campus Patos de Minas, Patos de Minas, Minas Gerais, Brazil
| | - Matheus de Souza Gomes
- Institute of Genetics and Biochemistry (INGEB), Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU), Campus Patos de Minas, Patos de Minas, Minas Gerais, Brazil
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras, Lavras, MG, Brazil.
| |
Collapse
|
26
|
Jin S, Youn G, Kim SY, Kang T, Shin HY, Jung JY, Seo PJ, Ahn JH. The CUL3A-LFH1-UBC15 ubiquitin ligase complex mediates SHORT VEGETATIVE PHASE degradation to accelerate flowering at high ambient temperature. PLANT COMMUNICATIONS 2024; 5:100814. [PMID: 38213026 PMCID: PMC11009155 DOI: 10.1016/j.xplc.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/15/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Ambient temperature affects flowering time in plants, and the MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) plays a crucial role in the response to changes in ambient temperature. SVP protein stability is regulated by the 26S proteasome pathway and decreases at high ambient temperature, but the details of SVP degradation are unclear. Here, we show that SVP degradation at high ambient temperature is mediated by the CULLIN3-RING E3 ubiquitin ligase (CRL3) complex in Arabidopsis thaliana. We identified a previously uncharacterized protein that interacts with SVP at high ambient temperature and contains a BTB/POZ domain. We named this protein LATE FLOWERING AT HIGH TEMPERATURE 1 (LFH1). Single mutants of LFH1 or CULLIN3A (CUL3A) showed late flowering specifically at 27°C. LFH1 protein levels increased at high ambient temperature. We found that LFH1 interacts with CUL3A in the cytoplasm and is important for SVP-CUL3A complex formation. Mutations in CUL3A and/or LFH1 led to increased SVP protein stability at high ambient temperature, suggesting that the CUL3-LFH1 complex functions in SVP degradation. Screening E2 ubiquitin-conjugating enzymes (UBCs) using RING-BOX PROTEIN 1 (RBX1), a component of the CRL3 complex, as bait identified UBC15. ubc15 mutants also showed late flowering at high ambient temperature. In vitro and in vivo ubiquitination assays using recombinant CUL3A, LFH1, RBX1, and UBC15 showed that SVP is highly ubiquitinated in an ATP-dependent manner. Collectively, these results indicate that the degradation of SVP at high ambient temperature is mediated by a CRL3 complex comprising CUL3A, LFH1, and UBC15.
Collapse
Affiliation(s)
- Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sun Young Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Taewook Kang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun-Young Shin
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Yul Jung
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
27
|
Li X, Zheng Y, Luo L, Chen Q, Yang T, Yang Y, Qiao Q, Kong X, Yang Y. The evolution and functional divergence of FT-related genes in controlling flowering time in Brassica rapa ssp. rapa. PLANT CELL REPORTS 2024; 43:86. [PMID: 38453734 PMCID: PMC10920429 DOI: 10.1007/s00299-024-03166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
KEY MESSAGE The BrrFT paralogues exhibit distinct expression patterns and play different roles in regulating flowering time, and BrrFT4 competes with BrrFT1 and BrrFT2 to interact with BrrFD proteins. Flowering time is an important agricultural trait for Brassica crops, and early bolting strongly affects the yield and quality of Brassica rapa ssp. rapa. Flowering Locus T paralogues play an important role in regulating flowering time. In this study, we identified FT-related genes in turnip by phylogenetic classification, and four BrrFT homoeologs that shared with high identities with BraFT genes were isolated. The different gene structures, promoter binding sites, and expression patterns observed indicated that these genes may play different roles in flowering time regulation. Further genetic and biochemical experiments showed that as for FT-like paralogues, BrrFT2 acted as the key floral inducer, and BrrFT1 seems to act as a mild 'florigen' protein. However, BrrFT4 acts as a floral repressor and antagonistically regulates flowering time by competing with BrrFT1 and BrrFT2 to bind BrrFD proteins. BrrFT3 may have experienced loss of function via base shift mutation. Our results revealed the potential roles of FT-related genes in flowering time regulation in turnip.
Collapse
Affiliation(s)
- Xieshengyang Li
- School of Agriculture, Yunnan University, Kunming, 650091, Yunnan, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yan Zheng
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Landi Luo
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Qian Chen
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Tianyu Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Xiangxiang Kong
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| | - Yongping Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| |
Collapse
|
28
|
Li X, Chen Z, Li H, Yue L, Tan C, Liu H, Hu Y, Yang Y, Yao X, Kong L, Huang X, Yu B, Zhang C, Guan Y, Liu B, Kong F, Hou X. Dt1 inhibits SWEET-mediated sucrose transport to regulate photoperiod-dependent seed weight in soybean. MOLECULAR PLANT 2024; 17:496-508. [PMID: 38341616 DOI: 10.1016/j.molp.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Soybean is a photoperiod-sensitive short-day crop whose reproductive period and yield are markedly affected by day-length changes. Seed weight is one of the key traits determining the soybean yield; however, the prominent genes that control the final seed weight of soybean and the mechanisms underlying the photoperiod's effect on this trait remain poorly understood. In this study, we identify SW19 as a major locus controlling soybean seed weight by QTL mapping and determine Dt1, an orthologous gene of Arabidopsis TFL1 that is known to govern the soybean growth habit, as the causal gene of the SW19 locus. We showed that Dt1 is highly expressed in developing seeds and regulates photoperiod-dependent seed weight in soybean. Further analyses revealed that the Dt1 protein physically interacts with the sucrose transporter GmSWEET10a to negatively regulate the import of sucrose from seed coat to the embryo, thus modulating seed weight under long days. However, Dt1 does not function in seed development under short days due to its very low expression. Importantly, we discovered a novel natural allelic variant of Dt1 (H4 haplotype) that decouples its pleiotropic effects on seed size and growth habit; i.e., this variant remains functional in seed development but fails to regulate the stem growth habit of soybean. Collectively, our findings provide new insights into how soybean seed development responds to photoperiod at different latitudes, offering an ideal genetic component for improving soybean's yield by manipulating its seed weight and growth habit.
Collapse
Affiliation(s)
- Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghui Chen
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lin Yue
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Cuirong Tan
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjie Liu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilong Hu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuhua Yang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiani Yao
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingping Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiang Huang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyu Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Tani E, Xanthopoulou A, Bazakos C. Editorial: Advances on genomics and genetics of horticultural crops and their contribution to breeding efforts - volume II. FRONTIERS IN PLANT SCIENCE 2024; 15:1385217. [PMID: 38476687 PMCID: PMC10927967 DOI: 10.3389/fpls.2024.1385217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Eleni Tani
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
30
|
Guerrero C, Cerezo S, Feito I, Rodríguez L, Samach A, Mercado JA, Pliego-Alfaro F, Palomo-Ríos E. Effect of heterologous expression of FT gene from Medicago truncatula in growth and flowering behavior of olive plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1323087. [PMID: 38455727 PMCID: PMC10917891 DOI: 10.3389/fpls.2024.1323087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
Olive (Olea europaea L. subsp. europaea) is one of the most important crops of the Mediterranean Basin and temperate areas worldwide. Obtaining new olive varieties adapted to climatic changing conditions and to modern agricultural practices, as well as other traits such as biotic and abiotic stress resistance and increased oil quality, is currently required; however, the long juvenile phase, as in most woody plants, is the bottleneck in olive breeding programs. Overexpression of genes encoding the 'florigen' Flowering Locus T (FT), can cause the loss of the juvenile phase in many perennials including olives. In this investigation, further characterization of three transgenic olive lines containing an FT encoding gene from Medicago truncatula, MtFTa1, under the 35S CaMV promoter, was carried out. While all three lines flowered under in vitro conditions, one of the lines stopped flowering after acclimatisation. In soil, all three lines exhibited a modified plant architecture; e.g., a continuous branching behaviour and a dwarfing growth habit. Gene expression and hormone content in shoot tips, containing the meristems from which this phenotype emerged, were examined. Higher levels of OeTFL1, a gene encoding the flowering repressor TERMINAL FLOWER 1, correlated with lack of flowering. The branching phenotype correlated with higher content of salicylic acid, indole-3-acetic acid and isopentenyl adenosine, and lower content of abscisic acid. The results obtained confirm that heterologous expression of MtFTa1 in olive induced continuous flowering independently of environmental factors, but also modified plant architecture. These phenotypical changes could be related to the altered hormonal content in transgenic plants.
Collapse
Affiliation(s)
- Consuelo Guerrero
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Spanish National Research Council (IHSM-UMA-CSIC), Málaga, Spain
| | - Sergio Cerezo
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Spanish National Research Council (IHSM-UMA-CSIC), Málaga, Spain
| | - Isabel Feito
- Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias, Finca Experimental “La Mata”, Grado, Spain
| | - Lucía Rodríguez
- Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias, Finca Experimental “La Mata”, Grado, Spain
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - José A. Mercado
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Spanish National Research Council (IHSM-UMA-CSIC), Málaga, Spain
| | - Fernando Pliego-Alfaro
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Spanish National Research Council (IHSM-UMA-CSIC), Málaga, Spain
| | - Elena Palomo-Ríos
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Spanish National Research Council (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
31
|
Kaur H, Manchanda P, Sidhu GS, Chhuneja P. Genome-wide identification and characterization of flowering genes in Citrus sinensis (L.) Osbeck: a comparison among C. Medica L., C. Reticulata Blanco, C. Grandis (L.) Osbeck and C. Clementina. BMC Genom Data 2024; 25:20. [PMID: 38378481 PMCID: PMC10880302 DOI: 10.1186/s12863-024-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Flowering plays an important role in completing the reproductive cycle of plants and obtaining next generation of plants. In case of citrus, it may take more than a year to achieve progeny. Therefore, in order to fasten the breeding processes, the juvenility period needs to be reduced. The juvenility in plants is regulated by set of various flowering genes. The citrus fruit and leaves possess various medicinal properties and are subjected to intensive breeding programs to produce hybrids with improved quality traits. In order to break juvenility in Citrus, it is important to study the role of flowering genes. The present study involved identification of genes regulating flowering in Citrus sinensis L. Osbeck via homology based approach. The structural and functional characterization of these genes would help in targeting genome editing techniques to induce mutations in these genes for producing desirable results. RESULTS A total of 43 genes were identified which were located on all the 9 chromosomes of citrus. The in-silico analysis was performed to determine the genetic structure, conserved motifs, cis-regulatory elements (CREs) and phylogenetic relationship of the genes. A total of 10 CREs responsible for flowering were detected in 33 genes and 8 conserved motifs were identified in all the genes. The protein structure, protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to study the functioning of these genes which revealed the involvement of flowering proteins in circadian rhythm pathways. The gene ontology (GO) and gene function analysis was performed to functionally annotate the genes. The structure of the genes and proteins were also compared among other Citrus species to study the evolutionary relationship among them. The expression study revealed the expression of flowering genes in floral buds and ovaries. The qRT-PCR analysis revealed that the flowering genes were highly expressed in bud stage, fully grown flower and early stage of fruit development. CONCLUSIONS The findings suggested that the flowering genes were highly conserved in citrus species. The qRT-PCR analysis revealed the tissue specific expression of flowering genes (CsFT, CsCO, CsSOC, CsAP, CsSEP and CsLFY) which would help in easy detection and targeting of genes through various forward and reverse genetic approaches.
Collapse
Affiliation(s)
- Harleen Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India.
| | - Gurupkar S Sidhu
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| |
Collapse
|
32
|
Graci S, Barone A. Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. FRONTIERS IN PLANT SCIENCE 2024; 14:1245661. [PMID: 38259925 PMCID: PMC10800405 DOI: 10.3389/fpls.2023.1245661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Climate change and global warming represent the main threats for many agricultural crops. Tomato is one of the most extensively grown and consumed horticultural products and can survive in a wide range of climatic conditions. However, high temperatures negatively affect both vegetative growth and reproductive processes, resulting in losses of yield and fruit quality traits. Researchers have employed different parameters to evaluate the heat stress tolerance, including evaluation of leaf- (stomatal conductance, net photosynthetic rate, Fv/Fm), flower- (inflorescence number, flower number, stigma exertion), pollen-related traits (pollen germination and viability, pollen tube growth) and fruit yield per plant. Moreover, several authors have gone even further, trying to understand the plants molecular response mechanisms to this stress. The present review focused on the tomato molecular response to heat stress during the reproductive stage, since the increase of temperatures above the optimum usually occurs late in the growing tomato season. Reproductive-related traits directly affects the final yield and are regulated by several genes such as transcriptional factors, heat shock proteins, genes related to flower, flowering, pollen and fruit set, and epigenetic mechanisms involving DNA methylation, histone modification, chromatin remodelling and non-coding RNAs. We provided a detailed list of these genes and their function under high temperature conditions in defining the final yield with the aim to summarize the recent findings and pose the attention on candidate genes that could prompt on the selection and constitution of new thermotolerant tomato plant genotypes able to face this abiotic challenge.
Collapse
Affiliation(s)
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
33
|
Gawarecka K, Ahn JH. RuBisCO Depletion and Subcellular Fractionation for Enhanced Florigen Detection in Arabidopsis. Methods Mol Biol 2024; 2795:227-238. [PMID: 38594542 DOI: 10.1007/978-1-0716-3814-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In plants, complex signaling networks monitor and respond to environmental cues to determine the optimal time for the transition from the vegetative to reproductive phase. Understanding these networks requires robust tools to examine the levels and subcellular localization of key factors. The florigen FLOWERING LOCUS T (FT) is a crucial regulator of flowering time and occurs in soluble and membrane-bound forms. At low ambient temperatures, the ratio of these forms of FT undergoes a significant shift, which leads to a delay in the onset of flowering. To investigate these changes in FT localization, epitope-tagged FT protein can be isolated from plants by subcellular fractionation and its localization examined by immunoblot analysis of the resulting fractions. However, the highly abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) can interfere with methods to detect and characterize low-abundance proteins such as FT. In this chapter, we present a method for analyzing the ratio of HA-tagged FT (HA:FT) in different subcellular fractions while mitigating the interference from RuBisCO by using protamine sulfate (PS) to deplete RuBisCO during protein purification, thereby enhancing HA:FT detection in fractionated samples.
Collapse
Affiliation(s)
| | - Ji Hoon Ahn
- Department of Molecular Life Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
34
|
Zhang MM, Zhao X, He X, Zheng Q, Huang Y, Li Y, Ke S, Liu ZJ, Lan S. Genome-Wide Identification of PEBP Gene Family in Two Dendrobium Species and Expression Patterns in Dendrobium chrysotoxum. Int J Mol Sci 2023; 24:17463. [PMID: 38139293 PMCID: PMC10743876 DOI: 10.3390/ijms242417463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The PEBP gene family plays a significant role in regulating flower development and formation. To understand its function in Dendrobium chrysotoxum and D. nobile flowering, we identified 22 PEBP genes (11 DchPEBPs and 11 DnoPEBPs) from both species. We conducted analyses on their conserved domains and motifs, phylogenetic relationships, chromosome distribution, collinear correlation, and cis elements. The classification results showed that the 22 PEBPs were mainly divided into three clades, as follows: FT, MFT, and TFL1. A sequence analysis showed that most PEBP proteins contained five conserved domains, while a gene structure analysis revealed that 77% of the total PEBP genes contained four exons and three introns. The promoter regions of the 22 PEBPs contained several cis elements related to hormone induction and light response. This suggests these PEBPs could play a role in regulating flower development by controlling photoperiod and hormone levels. Additionally, a collinearity analysis revealed three pairs of duplicate genes in the genomes of both D. chrysotoxum and D. nobile. Furthermore, RT-qPCR has found to influence the regulatory effect of DchPEBPs on the development of flower organs (sepals, petals, lip, ovary, and gynostemium) during the flowering process (bud, transparent stage, and initial bloom). The results obtained imply that DchPEBP8 and DchPEBP9 play a role in the initial bloom and that DchPEBP7 may inhibit flowering processes. Moreover, DchPEBP9 may potentially be involved in the development of reproductive functionality. PEBPs have regulatory functions that modulate flowering. FT initiates plant flowering by mediating photoperiod and temperature signals, while TFL1 inhibits flowering processes. These findings provide clues for future studies on flower development in Dendrobium.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Shijie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| |
Collapse
|
35
|
Wei Y, Jin J, Lin Z, Lu C, Gao J, Li J, Xie Q, Zhu W, Zhu G, Yang F. Genome-Wide Identification, Expression, and Molecular Characterization of the CONSTANS-like Gene Family in Seven Orchid Species. Int J Mol Sci 2023; 24:16825. [PMID: 38069148 PMCID: PMC10706594 DOI: 10.3390/ijms242316825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The orchid is one of the most distinctive and highly valued flowering plants. Nevertheless, the CONSTANS-like (COL) gene family plays significant roles in the control of flowering, and its functions in Orchidaceae have been minimally explored. This research identified 68 potential COL genes within seven orchids' complete genome, divided into three groups (groups I, II, and III) via a phylogenetic tree. The modeled three-dimensional structure and the conserved domains exhibited a high degree of similarity among the orchid COL proteins. The selection pressure analysis showed that all orchid COLs suffered a strong purifying selection. Furthermore, the orchid COL genes exhibited functional and structural heterogeneity in terms of collinearity, gene structure, cis-acting elements within their promoters, and expression patterns. Moreover, we identified 50 genes in orchids with a homology to those involved in the COL transcriptional regulatory network in Arabidopsis. Additionally, the first overexpression of CsiCOL05 and CsiCOL09 in Cymbidium sinense protoplasts suggests that they may antagonize the regulation of flowering time and gynostemium development. Our study will undoubtedly provide new resources, ideas, and values for the modern breeding of orchids and other plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.J.); (Z.L.); (C.L.); (J.G.); (J.L.); (Q.X.); (W.Z.); (G.Z.)
| |
Collapse
|
36
|
Shemesh-Mayer E, Faigenboim A, Sherman A, Gao S, Zeng Z, Liu T, Kamenetsky-Goldstein R. Deprivation of Sexual Reproduction during Garlic Domestication and Crop Evolution. Int J Mol Sci 2023; 24:16777. [PMID: 38069099 PMCID: PMC10706073 DOI: 10.3390/ijms242316777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Garlic, originating in the mountains of Central Asia, has undergone domestication and subsequent widespread introduction to diverse regions. Human selection for adaptation to various climates has resulted in the development of numerous garlic varieties, each characterized by specific morphological and physiological traits. However, this process has led to a loss of fertility and seed production in garlic crops. In this study, we conducted morpho-physiological and transcriptome analyses, along with whole-genome resequencing of 41 garlic accessions from different regions, in order to assess the variations in reproductive traits among garlic populations. Our findings indicate that the evolution of garlic crops was associated with mutations in genes related to vernalization and the circadian clock. The decline in sexual reproduction is not solely attributed to a few mutations in specific genes, but is correlated with extensive alterations in the genetic regulation of the annual cycle, stress adaptations, and environmental requirements. The regulation of flowering ability, stress response, and metabolism occurs at both the genetic and transcriptional levels. We conclude that the migration and evolution of garlic crops involve substantial and diverse changes across the entire genome landscape. The construction of a garlic pan-genome, encompassing genetic diversity from various garlic populations, will provide further insights for research into and the improvement of garlic crops.
Collapse
Affiliation(s)
- Einat Shemesh-Mayer
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Zheng Zeng
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Touming Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| |
Collapse
|
37
|
Zhang X, Ouyang Y, Zhao L, Li Z, Zhang H, Wei Y. Genome-wide identification of PEBP gene family in pineapple reveal its potential functions in flowering. FRONTIERS IN PLANT SCIENCE 2023; 14:1277436. [PMID: 37965004 PMCID: PMC10641017 DOI: 10.3389/fpls.2023.1277436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Phosphatidylethanolamine binding protein (PEBP) plays an important role in regulating flowering time and morphogenesis of plants. However, the identification and functional analysis of PEBP gene in pineapple (AcPEBP) have not been systematically studied. The pineapple genome contained 11 PEBP family members, which were subsequently classified into three subfamilies (FT-like, TFL-like and MFT-like) based on phylogenetic relationships. The arrangement of these 11 shows an unequal pattern across the six chromosomes of pineapple the pineapple genome. The anticipated outcomes of the promoter cis-acting elements indicate that the PEBP gene is subject to regulation by diverse light signals and endogenous hormones such as ethylene. The findings from transcriptome examination and quantitative real-time polymerase chain reaction (qRT-PCR) indicate that FT-like members AcFT3 and AcFT4 display a heightened expression level, specifically within the floral structures. The expression of AcFT3 and AcFT4 increases sharply and remains at a high level after 4 days of ethylene induction, while the expression of AcFT7 and AcMFT1 decreases gradually during the flowering process. Additionally, AcFT3, AcFT4 and AcFT7 show specific expression in different floral organs of pineapple. These outcomes imply that members belonging to the FT-like subfamily may have a significant impact on the process of bud differentiation and flower development. Through transcriptional activation analysis, it was determined that AcFT4 possesses transcriptional activation capability and is situated in the nucleus and peripheral cytoplasm. Overexpression of AcFT4 in Arabidopsis resulted in the promotion of early flowering by 6-7 days. The protein interaction prediction network identified potential flower regulators, including CO, AP1, LFY and SOC1, that may interact with PEBP proteins. This study explores flower development in pineapple, thereby serving as a valuable reference for future research endeavors in this domain.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yanwei Ouyang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Lei Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Ziqiong Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Hongna Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| |
Collapse
|
38
|
DeMell A, Alvarado V, Scholthof HB. Molecular perspectives on age-related resistance of plants to (viral) pathogens. THE NEW PHYTOLOGIST 2023; 240:80-91. [PMID: 37507820 DOI: 10.1111/nph.19131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Age-related resistance to microbe invasion is a commonly accepted concept in plant pathology. However, the impact of such age-dependent interactive phenomena is perhaps not yet sufficiently recognized by the broader plant science community. Toward cataloging an understanding of underlying mechanisms, this review explores recent molecular studies and their relevance to the concept. Examples describe differences in genetic background, transcriptomics, hormonal balances, protein-mediated events, and the contribution by short RNA-controlled gene silencing events. Throughout, recent findings with viral systems are highlighted as an illustration of the complexity of the interactions. It will become apparent that instead of uncovering a unifying explanation, we unveiled only trends. Nevertheless, with a degree of confidence, we propose that the process of plant age-related defenses is actively regulated at multiple levels. The overarching goal of this control for plants is to avoid a constitutive waste of resources, especially at crucial metabolically draining early developmental stages.
Collapse
Affiliation(s)
- April DeMell
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Veria Alvarado
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
39
|
Yang J, Ning C, Liu Z, Zheng C, Mao Y, Wu Q, Wang D, Liu M, Zhou S, Yang L, He L, Liu Y, He C, Chen J, Liu J. Genome-Wide Characterization of PEBP Gene Family and Functional Analysis of TERMINAL FLOWER 1 Homologs in Macadamia integrifolia. PLANTS (BASEL, SWITZERLAND) 2023; 12:2692. [PMID: 37514306 PMCID: PMC10385423 DOI: 10.3390/plants12142692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Edible Macadamia is one of the most important commercial nut trees cultivated in many countries, but its large tree size and long juvenile period pose barriers to commercial cultivation. The short domestication period and well-annotated genome of Macadamia integrifolia create great opportunities to breed commercial varieties with superior traits. Recent studies have shown that members of the phosphatidylethanolamine binding protein (PEBP) family play pivotal roles in regulating plant architecture and flowering time in various plants. In this study, thirteen members of MiPEBP were identified in the genome of M. integrifolia, and they are highly similarity in both motif and gene structure. A phylogenetic analysis divided the MiPEBP genes into three subfamilies: MFT-like, FT-like and TFL1-like. We subsequently identified two TERMINAL FLOWER 1 homologues from the TFL1-like subfamily, MiTFL1 and MiTFL1-like, both of which were highly expressed in stems and vegetative shoots, while MiTFL1-like was highly expressed in young leaves and early flowers. A subcellular location analysis revealed that both MiTFL1 and MiTFL1-like are localized in the cytoplasm and nucleus. The ectopic expression of MiTFL1 can rescue the early-flowering and terminal-flower phenotypes in the tfl1-14 mutant of Arabidopsis thaliana, and it indicates the conserved functions in controlling the inflorescence architecture and flowering time. This study will provide insight into the isolation of PEBP family members and the key targets for breeding M. integrifolia with improved traits in plant architecture and flowering time.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Conghui Ning
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Ziyan Liu
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | - Cheng Zheng
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mingli Liu
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Liling Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Chengzhong He
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| |
Collapse
|
40
|
Lee N, Ozaki Y, Hempton AK, Takagi H, Purusuwashi S, Song YH, Endo M, Kubota A, Imaizumi T. The FLOWERING LOCUS T gene expression is controlled by high-irradiance response and external coincidence mechanism in long days in Arabidopsis. THE NEW PHYTOLOGIST 2023; 239:208-221. [PMID: 37084001 PMCID: PMC10244125 DOI: 10.1111/nph.18932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
In natural long days, the florigen gene FLOWERING LOCUS T (FT) shows a bimodal expression pattern with morning and dusk peaks in Arabidopsis. This pattern differs from the one observed in the laboratory, and little is known about underlying mechanisms. A red : far-red (R : FR) ratio difference between sunlight and fluorescent light causes this FT pattern mismatch. We showed that bimodal FT expression patterns were induced in a day longer than 14 h with sunlight R : FR (= c. 1) conditions. By circadian gating experiments, we found that cumulative exposure of R : FR-adjusted light (R : FR ratio was adjusted to 1 with FR supplement) spanning from the afternoon to the next morning required full induction of FT in the morning. Conversely, only 2 h of R : FR adjustment in the late afternoon was sufficient for FT induction at dusk. We identified that phytochrome A (phyA) is required for the morning FT expression in response to the R : FR adjustment on the previous day. As a part of this mechanism, we showed that PHYTOCHROME-INTERACTING FACTOR 7 contributes to FT regulation. Our results suggest that phyA-mediated high-irradiance response and the external coincidence mechanism contribute to morning FT induction under natural long-day conditions.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yusuke Ozaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Savita Purusuwashi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Young Hun Song
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
41
|
Cheng B, Tao N, Ma Y, Chai H, Liu P, Chen W, Zhao Y. Overexpression of the Capebp2 Gene Encoding the PEBP-like Protein Promotes the Cap Redifferentiation in Cyclocybe aegerita. J Fungi (Basel) 2023; 9:657. [PMID: 37367593 DOI: 10.3390/jof9060657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Phosphatidylethanolamine-binding protein (PEBP) is widely involved in various physiological behaviors, such as the transition from vegetative growth to reproductive growth in plants, tumorigenesis in the human, etc. However, few functional studies have examined pebp genes affecting the development of fungi. In this study, Capebp2 was cloned from Cyclocybe aegerita AC0007 strains based on the genome sequence and gene prediction, and the sequence alignment of CaPEBP2 with other PEBP proteins from other biological sources including plant, animal, fungi, and bacteria indicated that PEBP had low sequence similarity in fungi, whereas all protein sequences had some conserved motifs such as DPDAP and HRY. Expression analysis showed the transcription level of Capebp2 increased approximately 20-fold in fruiting bodies compared with mycelia. To uncover the function of Capebp2 in C. aegetita development, Capebp2 was cloned into a pATH vector driven by the actin promoter for obtaining overexpression transformant lines. Fruiting experiments showed the transformed strains overexpressing Capebp2 exhibited redifferentiation of the cap on their surface, including intact fruiting bodies or partial lamella during fruiting development stage, and the longitudinal section indicated that all regenerated bodies or lamella sprouted from the flesh and shared the epidermis with the mother fruiting bodies. In summary, the sequence characterization of Capebp2, expression level during different development stages, and function on fruiting body development were documented in this study, and these findings provided a reference to study the role of pebp in the development process of basidiomycetes. Importantly, gene mining of pebp, function characterization, and the regulating pathways involved need to be uncovered in further studies.
Collapse
Affiliation(s)
- Bopu Cheng
- College of Life Science, Southwest Forestry University, Kunming 650224, China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Nan Tao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Yuanhao Ma
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Hongmei Chai
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Ping Liu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Weimin Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Yongchang Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| |
Collapse
|
42
|
Sheng X, Mahendra RA, Wang CT, Brunner AM. CRISPR/Cas9 mutants delineate roles of Populus FT and TFL1/CEN/BFT family members in growth, dormancy release and flowering. TREE PHYSIOLOGY 2023; 43:1042-1054. [PMID: 36892416 DOI: 10.1093/treephys/tpad027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/21/2023] [Indexed: 06/11/2023]
Abstract
Vegetative and reproductive phase change and phenology are economically and ecologically important traits. Trees typically require several years of growth before flowering and, once mature, seasonal control of the transition to flowering and flower development is necessary to maintain vegetative meristems and for reproductive success. Members of two related gene subfamilies, FLOWERING LOCUST (FT) and TERMINAL FLOWER1 (TFL1)/CENTRORADIALIS (CEN)/BROTHER OF FT AND TFL1 (BFT), have antagonistic roles in flowering in diverse species and roles in vegetative phenology in trees, but many details of their functions in trees have yet to be resolved. Here, we used CRISPR/Cas9 to generate single and double mutants involving the five Populus FT and TFL1/CEN/BFT genes. The ft1 mutants exhibited wild-type-like phenotypes in long days and short days, but after chilling, to release dormancy, they showed delayed bud flush and GA3 could compensate for the ft1 mutation. After rooting and generating some phytomers in tissue culture, both cen1 and cen1ft1 mutants produced terminal as well as axillary flowers, indicating that the cen1 flowering phenotype is independent of FT1. The CEN1 showed distinct circannual expression patterns in vegetative and reproductive tissues and comparison with the expression patterns of FT1 and FT2 suggests that the relative levels of CEN1 compared with FT1 and FT2 regulate multiple phases of vegetative and reproductive seasonal development.
Collapse
Affiliation(s)
- Xiaoyan Sheng
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA 24061, USA
| | - R Ayeshan Mahendra
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA 24061, USA
| | - Chieh-Ting Wang
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA 24061, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
43
|
Zhang S, Zhou Q, Yang X, Wang J, Jiang J, Sun M, Liu Y, Nie C, Bao M, Liu G. Functional characterization of three TERMINAL FLOWER 1-like genes from Platanus acerifolia. PLANT CELL REPORTS 2023; 42:1071-1088. [PMID: 37024635 DOI: 10.1007/s00299-023-03014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE TFL1-like genes of the basal eudicot Platanus acerifolia have conserved roles in maintaining vegetative growth and inhibiting flowering, but may act through distinct regulatory mechanism. Three TERMINAL FLOWER 1 (TFL1)-like genes were isolated and characterized from London plane tree (Platanus acerifolia). All genes have conserved genomic organization and characteristic of the phosphatidylethanolamine-binding protein (PEBP) family. Sequence alignment and phylogenetic analysis indicated that two genes belong to the TFL1 clade, designated as PlacTFL1a and PlacTFL1b, while another one was grouped in the BFT clade, named as PlacBFT. qRT-PCR analysis showed that all three genes primarily expressed in vegetative phase, but the expression of PlacTFL1a was much higher and wider than that of PlacTFL1b, with the latter only detected at relatively low expression levels in apical and lateral buds in April. PlacBFT was mainly expressed in young stems of adult trees followed by juvenile tissues. Ectopic expression of any TFL1-like gene in Arabidopsis showed phenotypes of delayed or repressed flowering. Furthermore, overexpression of PlacTFL1a gene in petunia also resulted in extremely delayed flowering. In non-flowering 35:PlacTFL1a transgenic petunia plants, the FT-like gene (PhFT) gene was significantly upregulated and AP1 homologues PFG, FBP26 and FBP29 were significantly down-regulated in leaves. Yeast two-hybrid analysis indicated that only weak interactions were detected between PlacTFL1a and PlacFDL, and PlacTFL1a showed no interaction with PhFDL1/2. These results indicated that the TFL1-like genes of Platanus have conserved roles in repressing flowering, but probably via a distinct regulatory mechanism.
Collapse
Affiliation(s)
- Sisi Zhang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Jianqiang Wang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Jie Jiang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Miaomiao Sun
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, Guangdong, China
| | - Yanjun Liu
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Chaoren Nie
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guofeng Liu
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
44
|
Sharma V, Gangurde SS, Nayak SN, Gowda AS, Sukanth B, Mahadevaiah SS, Manohar SS, Choudhary RS, Anitha T, Malavalli SS, Srikanth S, Bajaj P, Sharma S, Varshney RK, Latha P, Janila P, Bhat RS, Pandey MK. Genetic mapping identified three hotspot genomic regions and candidate genes controlling heat tolerance-related traits in groundnut. FRONTIERS IN PLANT SCIENCE 2023; 14:1182867. [PMID: 37287715 PMCID: PMC10243373 DOI: 10.3389/fpls.2023.1182867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 06/09/2023]
Abstract
Groundnut productivity and quality have been impeded by rising temperatures in semi-arid environments. Hence, understanding the effects and molecular mechanisms of heat stress tolerance will aid in tackling yield losses. In this context, a recombinant inbred line (RIL) population was developed and phenotyped for eight seasons at three locations for agronomic, phenological, and physiological traits under heat stress. A genetic map was constructed using genotyping-by-sequencing with 478 single-nucleotide polymorphism (SNP) loci spanning a map distance of 1,961.39 cM. Quantitative trait locus (QTL) analysis using phenotypic and genotypic data identified 45 major main-effect QTLs for 21 traits. Intriguingly, three QTL clusters (Cluster-1-Ah03, Cluster-2-Ah12, and Cluster-3-Ah20) harbor more than half of the major QTLs (30/45, 66.6%) for various heat tolerant traits, explaining 10.4%-38.6%, 10.6%-44.6%, and 10.1%-49.5% of phenotypic variance, respectively. Furthermore, important candidate genes encoding DHHC-type zinc finger family protein (arahy.J0Y6Y5), peptide transporter 1 (arahy.8ZMT0C), pentatricopeptide repeat-containing protein (arahy.4A4JE9), Ulp1 protease family (arahy.X568GS), Kelch repeat F-box protein (arahy.I7X4PC), FRIGIDA-like protein (arahy.0C3V8Z), and post-illumination chlorophyll fluorescence increase (arahy.92ZGJC) were the underlying three QTL clusters. The putative functions of these genes suggested their involvement in seed development, regulating plant architecture, yield, genesis and growth of plants, flowering time regulation, and photosynthesis. Our results could provide a platform for further fine mapping, gene discovery, and developing markers for genomics-assisted breeding to develop heat-tolerant groundnut varieties.
Collapse
Affiliation(s)
- Vinay Sharma
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, India
| | - Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Anjan S. Gowda
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B.S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | | | - Surendra S. Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - T. Anitha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - S.N. Srikanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Putta Latha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Ramesh S. Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| |
Collapse
|
45
|
Yang C, Liu C, Li S, Zhang Y, Zhang Y, Wang X, Xiang W. The Transcription Factors WRKY41 and WRKY53 Mediate Early Flowering Induced by the Novel Plant Growth Regulator Guvermectin in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24098424. [PMID: 37176133 PMCID: PMC10178944 DOI: 10.3390/ijms24098424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Flowering is a crucial stage for plant reproductive success; therefore, the regulation of plant flowering has been widely researched. Although multiple well-defined endogenous and exogenous flowering regulators have been reported, new ones are constantly being discovered. Here, we confirm that a novel plant growth regulator guvermectin (GV) induces early flowering in Arabidopsis. Interestingly, our genetic experiments newly demonstrated that WRKY41 and its homolog WRKY53 were involved in GV-accelerated flowering as positive flowering regulators. Overexpression of WRKY41 or WRKY53 resulted in an early flowering phenotype compared to the wild type (WT). In contrast, the w41/w53 double mutants showed a delay in GV-accelerated flowering. Gene expression analysis showed that flowering regulatory genes SOC1 and LFY were upregulated in GV-treated WT, 35S:WRKY41, and 35S:WRKY53 plants, but both declined in w41/w53 mutants with or without GV treatment. Meanwhile, biochemical assays confirmed that SOC1 and LFY were both direct targets of WRKY41 and WRKY53. Furthermore, the early flowering phenotype of 35S:WRKY41 lines was abolished in the soc1 or lfy background. Together, our results suggest that GV plays a function in promoting flowering, which was co-mediated by WRKY41 and WRKY53 acting as new flowering regulators by directly activating the transcription of SOC1 and LFY in Arabidopsis.
Collapse
Affiliation(s)
- Chenyu Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Shanshan Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Zhang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Wensheng Xiang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| |
Collapse
|
46
|
Engelen C, Wechsler T, Bakhshian O, Smoly I, Flaks I, Friedlander T, Ben-Ari G, Samach A. Studying Parameters Affecting Accumulation of Chilling Units Required for Olive Winter Flower Induction. PLANTS (BASEL, SWITZERLAND) 2023; 12:1714. [PMID: 37111937 PMCID: PMC10143890 DOI: 10.3390/plants12081714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
With global warming, mean winter temperatures are predicted to increase. Therefore, understanding how warmer winters will affect the levels of olive flower induction is essential for predicting the future sustainability of olive oil production under different climactic scenarios. Here, we studied the effect of fruit load, forced drought in winter, and different winter temperature regimes on olive flower induction using several cultivars. We show the necessity of studying trees with no previous fruit load as well as provide evidence that soil water content during winter does not significantly affect the expression of an FT-encoding gene in leaves and the subsequent rate of flower induction. We collected yearly flowering data for 5 cultivars for 9 to 11 winters, altogether 48 data sets. Analyzing hourly temperatures from these winters, we made initial attempts to provide an efficient method to calculate accumulated chill units that are then correlated with the level of flower induction in olives. While the new models tested here appear to predict the positive contribution of cold temperatures, they lack in accurately predicting the reduction in cold units caused by warm temperatures occurring during winter.
Collapse
Affiliation(s)
- Chaim Engelen
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Tahel Wechsler
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Ortal Bakhshian
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Ilan Smoly
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Idan Flaks
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Tamar Friedlander
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7528809, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| |
Collapse
|
47
|
Ta KN, Shimizu-Sato S, Agata A, Yoshida Y, Taoka KI, Tsuji H, Akagi T, Tanizawa Y, Sano R, Nosaka-Takahashi M, Suzuki T, Demura T, Toyoda A, Nakamura Y, Sato Y. A leaf-emanated signal orchestrates grain size and number in response to maternal resources. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36994645 DOI: 10.1111/tpj.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
In plants, variations in seed size and number are outcomes of different reproductive strategies. Both traits are often environmentally influenced, suggesting that a mechanism exists to coordinate these phenotypes in response to available maternal resources. Yet, how maternal resources are sensed and influence seed size and number is largely unknown. Here, we report a mechanism that senses maternal resources and coordinates grain size and number in the wild rice Oryza rufipogon, a wild progenitor of Asian cultivated rice. We showed that FT-like 9 (FTL9) regulates both grain size and number and that maternal photosynthetic assimilates induce FTL9 expression in leaves to act as a long-range signal that increases grain number and reduces size. Our findings highlight a strategy that benefits wild plants to survive in a fluctuating environment. In this strategy, when maternal resources are sufficient, wild plants increase their offspring number while preventing an increase in offspring size by the action of FTL9, which helps expand their habitats. In addition, we found that a loss-of-function allele (ftl9) is prevalent among wild and cultivated populations, offering a new scenario in the history of rice domestication.
Collapse
Affiliation(s)
- Kim Nhung Ta
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Vietnam Japan University, Vietnam National University, Hanoi, Vietnam
| | - Sae Shimizu-Sato
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ayumi Agata
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yuri Yoshida
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ken-Ichiro Taoka
- Kihara Institute for Biological Research, Yokohama City University, 244-0813, Yokohama, 641-12 Maioka, Totsuka, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, 244-0813, Yokohama, 641-12 Maioka, Totsuka, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yasuhiro Tanizawa
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Misuzu Nosaka-Takahashi
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Toshiya Suzuki
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yutaka Sato
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| |
Collapse
|
48
|
Lee A, Jung H, Park HJ, Jo SH, Jung M, Kim YS, Cho HS. Their C-termini divide Brassica rapa FT-like proteins into FD-interacting and FD-independent proteins that have different effects on the floral transition. FRONTIERS IN PLANT SCIENCE 2023; 13:1091563. [PMID: 36714709 PMCID: PMC9878124 DOI: 10.3389/fpls.2022.1091563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Members of the FLOWERING LOCUS T (FT)-like clade of phosphatidylethanolamine-binding proteins (PEBPs) induce flowering by associating with the basic leucine zipper (bZIP) transcription factor FD and forming regulatory complexes in angiosperm species. However, the molecular mechanism of the FT-FD heterocomplex in Chinese cabbage (Brassica rapa ssp. pekinensis) is unknown. In this study, we identified 12 BrPEBP genes and focused our functional analysis on four BrFT-like genes by overexpressing them individually in an FT loss-of-function mutant in Arabidopsis thaliana. We determined that BrFT1 and BrFT2 promote flowering by upregulating the expression of floral meristem identity genes, whereas BrTSF and BrBFT, although close in sequence to their Arabidopsis counterparts, had no clear effect on flowering in either long- or short-day photoperiods. We also simultaneously genetically inactivated BrFT1 and BrFT2 in Chinese cabbage using CRISPR/Cas9-mediated genome editing, which revealed that BrFT1 and BrFT2 may play key roles in inflorescence organogenesis as well as in the transition to flowering. We show that BrFT-like proteins, except for BrTSF, are functionally divided into FD interactors and non-interactors based on the presence of three specific amino acids in their C termini, as evidenced by the observed interconversion when these amino acids are mutated. Overall, this study reveals that although BrFT-like homologs are conserved, they may have evolved to exert functionally diverse functions in flowering via their potential to be associated with FD or independently from FD in Brassica rapa.
Collapse
Affiliation(s)
- Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Min Jung
- Department of Biotechnology, NongWoo Bio, Anseong, Republic of Korea
| | - Youn-Sung Kim
- Department of Biotechnology, Jenong S&T, Anseong, Republic of Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
49
|
Susila H, Purwestri YA. PEBP Signaling Network in Tubers and Tuberous Root Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:264. [PMID: 36678976 PMCID: PMC9865765 DOI: 10.3390/plants12020264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Tubers and tuberous root crops are essential carbohydrate sources and staple foods for humans, second only to cereals. The developmental phase transition, including floral initiation and underground storage organ formation, is controlled by complex signaling processes involving the integration of environmental and endogenous cues. FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1/CENTRORADIALIS (TFL1/CEN), members of the phosphatidylethanolamine-binding protein (PEBP) gene family, play a central role in this developmental phase transition process. FT and FT-like proteins have a function to promote developmental phase transition, while TFL1/CEN act oppositely. The balance between FT and TFL1/CEN is critical to ensure a successful plant life cycle. Here, we present a summarized review of the role and signaling network of PEBP in floral initiation and underground storage organ formation, specifically in tubers and tuberous root crops. Lastly, we point out several questions that need to be answered in order to have a more complete understanding of the PEBP signaling network, which is crucial for the agronomical improvement of tubers and tuberous crops.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yekti Asih Purwestri
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
50
|
Nerva L, Dalla Costa L, Ciacciulli A, Sabbadini S, Pavese V, Dondini L, Vendramin E, Caboni E, Perrone I, Moglia A, Zenoni S, Michelotti V, Micali S, La Malfa S, Gentile A, Tartarini S, Mezzetti B, Botta R, Verde I, Velasco R, Malnoy MA, Licciardello C. The Role of Italy in the Use of Advanced Plant Genomic Techniques on Fruit Trees: State of the Art and Future Perspectives. Int J Mol Sci 2023; 24:977. [PMID: 36674493 PMCID: PMC9861864 DOI: 10.3390/ijms24020977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.
Collapse
Affiliation(s)
- Luca Nerva
- Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Angelo Ciacciulli
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Vera Pavese
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Luca Dondini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Elisa Vendramin
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Emilia Caboni
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Vania Michelotti
- Research Center for Genomics and Bioinformatics, Council for Agricultural Research and Economics, 29017 Fiorenzuola D’Arda, Italy
| | - Sabrina Micali
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Stefano La Malfa
- Department of Biotechnology, University of Catania, 95124 Catania, Italy
| | - Alessandra Gentile
- Department of Biotechnology, University of Catania, 95124 Catania, Italy
| | - Stefano Tartarini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Roberto Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Ignazio Verde
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Riccardo Velasco
- Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy
| | - Mickael Arnaud Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| |
Collapse
|