1
|
van Aken ESM, Devnani B, Castelo-Branco L, De Ruysscher D, Martins-Branco D, Marijnen CAM, Muoio B, Belka C, Lordick F, Kroeze S, Pentheroudakis G, Trapani D, Ricardi U, Gandhi AK, Prelaj A, O'Cathail SM, de Jong MC. ESMO-ESTRO framework for assessing the interactions and safety of combining radiotherapy with targeted cancer therapies or immunotherapy. Radiother Oncol 2025; 208:110910. [PMID: 40315996 DOI: 10.1016/j.radonc.2025.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025]
Abstract
With the emergence of targeted therapies and immunotherapy, various cellular pathways are utilized to improve tumor control and patient survival. In patients receiving these new agents, radiotherapy is commonly applied with both radical and palliative intent. Combining radiotherapy with targeted therapies or immunotherapy may improve treatment outcomes, but may also lead to increased toxicity. High-quality toxicity data and evidence-based guidelines regarding combined therapy are very limited. The present framework, developed by ESMO and ESTRO, explores the main biological effects and interaction mechanisms of radiotherapy combined with targeted agents or immunotherapy. It addresses general clinical factors to take into consideration when deciding on whether and/or how to combine radiotherapy with these agents. Furthermore, it provides pragmatic, biological mechanism-based, clinical considerations for combining radiotherapy with various targeted agents or immunotherapy.
Collapse
Affiliation(s)
- Evert S M van Aken
- Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Bharti Devnani
- Radiation Oncology Department, AIIMS - All India Institute of Medical Sciences, Jodhpur, India
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona, Switzerland
| | - Dirk De Ruysscher
- Radiation Oncology Department, Maastro Clinic, Maastricht, the Netherlands; Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Diogo Martins-Branco
- Scientific and Medical Division, ESMO - European Society for Medical Oncology, Lugano, Switzerland
| | - Corrie A M Marijnen
- Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Barbara Muoio
- Division of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Claus Belka
- Department of Radiation Oncology, University of Munich LMU, Munich, Germany
| | - Florian Lordick
- Department of Medicine II, University of Leipzig Medical Center, Cancer Center Central Germany (CCCG), Leipzig, Germany
| | - Stephanie Kroeze
- Radiation Oncology Center Mittelland, Cantonal Hospital Aarau, Aarau, Switzerland
| | - George Pentheroudakis
- Scientific and Medical Division, ESMO - European Society for Medical Oncology, Lugano, Switzerland
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Ajeet Kumar Gandhi
- Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Arsela Prelaj
- Oncologia Medica Toracica Dept., Fondazione IRCCS - Istituto Nazionale Dei Tumori, Milan, Italy
| | - Sean M O'Cathail
- School of Cancer Sciences, University of Glasgow, UK; CUH/UCC Cancer Centre, Cork University Hospital, Cork, Ireland
| | - Monique C de Jong
- Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Karankar VS, Awasthi S, Srivastava N. Peptide-driven strategies against lung cancer. Life Sci 2025; 366-367:123453. [PMID: 39923837 DOI: 10.1016/j.lfs.2025.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Lung cancer remains one of the most significant global health challenges, accounting for 18 % of all cancer-related deaths. While risk factors such as heavy metal exposure and cigarette smoking are well-known contributors, the limitations of conventional treatments including severe side effects and drug resistance highlight the urgent need for more targeted and safer therapeutic options. In this context, peptides have emerged as a novel, precise, and effective class of therapies for lung cancer treatment. They have shown promise in limiting lung cancer progression by targeting key molecular pathways involved in tumour growth. Anti-non-small cell lung cancer peptides that specifically target proteins such as EGFR, TP53, BRAF, MET, ROS1, and ALK have demonstrated potential in improving lung cancer outcomes. Additionally, anti-inflammatory and apoptosis-inducing peptides offer further therapeutic benefits. This review provides a comprehensive overview of the peptides currently in use or under investigation for the treatment of lung cancer, highlighting their mechanisms of action and therapeutic potential. As research continues to advance, peptides are poised to become a promising new therapeutic option in the fight against lung cancer.
Collapse
Affiliation(s)
- Vijayshree S Karankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Saurabh Awasthi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India.
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Wu P, Wen Z. ATM is associated with the prognosis of colorectal cancer: a systematic review. Front Oncol 2025; 15:1470939. [PMID: 40144209 PMCID: PMC11936800 DOI: 10.3389/fonc.2025.1470939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/12/2025] [Indexed: 03/28/2025] Open
Abstract
Objective Chemosensitivity and radiosensitivity are associated with the prognosis of colorectal cancer, and the expression of the ataxia-telangiectasia mutated (ATM) protein plays an essential role in these processes. The present study examined the relationship between ATM expression and the survival outcomes of colorectal cancer patients and explored the underlying mechanism and promising therapeutic strategies. Method A search including medical subject headings (MeSH), free terms, and combined words was conducted using Pubmed, EMBASE, and Cochrane. Studies had to meet the inclusion criteria as well as include processes such as data extraction and quality evaluation. The survival outcomes were assessed using hazard ratio (HR) and 95% confidence interval (CI). Heterogeneity, and publication bias were analyzed, and a P value <0.05 was considered statistically significant. Results Nine studies with 2883 patients were included in the meta-analysis. Low ATM expression level was related to poor overall survival (HR=0.542, 95% CI=0.447-0.637; P=0.000). Disease-free, progression-free, and recurrence-free survival rates were lower in patients with low ATM expression than in those with high ATM expression. There was no significant difference between Stage I-II and Stage III-IV colorectal cancer patients [risk ratio (RR)=1.173, 95% CI=0.970-1.417, P=0.690]. Conclusions Low ATM expression level may be a marker of poor survival in colorectal cancer and contributes to resistance to therapy. Targeting related factors in these pathways to sensitize tumors to treatment is a potential therapeutic strategy, and monitoring ATM status could be a valuable guide independent of the immunotherapy or chemotherapy strategy used.
Collapse
Affiliation(s)
- Pei Wu
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zelin Wen
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Garcia DA, Rathi S, Connors MA, Grams M, Vaubel RA, Bakken KK, Ott LL, Carlson BL, Hu Z, Decker PA, Eckel-Passow JE, Burgenske DM, Zhong W, Trzasko JD, Herman MG, Elmquist WF, Remmes NB, Sarkaria JN. Modeling the Acute Mucosal Toxicity of Fractionated Radiotherapy Combined with the ATM Inhibitor WSD0628. Mol Cancer Ther 2025; 24:299-309. [PMID: 39559836 PMCID: PMC11791477 DOI: 10.1158/1535-7163.mct-24-0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Ataxia Telangiectasia-mutated (ATM) inhibitors are being developed as radiosensitizers to improve the antitumor effects of radiotherapy, but ATM inhibition can also radiosensitize normal tissues. Therefore, understanding the elevated risk of normal tissue toxicities is critical for radiosensitizer development. This study focused on modeling the relationship between acute mucosal toxicity, radiation dose, fractionation schedule, and radiosensitizer exposure. The ATM inhibitor WSD0628 was combined with single or fractionated doses of radiation delivered to the oral cavity or esophagus of Friend Leukemia virus B (FVB) mice. The potentiation by WSD0628 was quantified by a sensitizer enhancement ratio (SER), which describes the changes in radiation tolerance for radiation combined with WSD0628 relative to radiation-only regimens. WSD0628 profoundly enhanced radiation-induced acute oral and esophageal toxicities. For oral mucosal toxicity, the enhancement by WSD0628 with 3 fractions of radiation resulted in an SER ranging from 1.3 (0.25 mg/kg) to 3.1 (7.5 mg/kg). For the 7.5 mg/kg combination, the SER increased with increasing number of fractions from 2.2 (1 fraction) to 4.3 (7 fractions) for oral toxicity and from 2.2 (1 fraction) to 3.6 (3 fractions) for esophageal toxicity, which reflects a loss of the normal tissue sparing benefit of fractionated radiation. These findings were used to develop a modified biologically effective dose model to determine alternative radiation schedules with or without WSD0628 that result in similar levels of toxicity. Successful radiosensitizer dose escalation to a maximally effective therapeutic dose will require careful deliberation of tumor site and reduction of radiation dose volume limits for organs at risk.
Collapse
Affiliation(s)
- Darwin A. Garcia
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | | | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Rachael A. Vaubel
- Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Lauren L. Ott
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Zeng Hu
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Paul A. Decker
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | | - Wei Zhong
- Wayshine Biopharm, Corona, California
| | | | | | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | | | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Ivanenkov YA, Malyshev AS, Terentiev VA, Korzhenevskaya AA, Evteev SA, Vatsadze SZ, Medved'ko AV, Shegai PV, Kaprin AD. Small molecule ATM inhibitors as potential cancer therapy: a patent review (2003-present). Expert Opin Ther Pat 2025; 35:111-136. [PMID: 39727182 DOI: 10.1080/13543776.2024.2446228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION The ataxia telangiectasia mutated kinase (ATM) is key in coordinating the DDR signaling network essential for responding to double-strand breaks (DSBs). Several ATM inhibitors are being investigated for potential anticancer treatment in clinical trials. AREAS COVERED This review aims to provide a comprehensive overview of patents and patent applications since 2003, with a particular focus on the structural properties, activity and efficacy of the claimed ATM kinase small-molecule inhibitors. The search was conducted using SciFinder, Cortellis Drug Discovery Intelligence Database, and Espacenet. After filtering, 44 records were identified for further analysis. This paper also discusses the recent progress in the clinical trials and development history. EXPERT OPINION ATM kinase is a promising target for cancer therapy. Small-molecule ATM kinase inhibitors hold significant potential in cancer treatment by enhancing the efficacy of existing DNA-damaging therapies. Patent analysis revealed that the majority of these compounds contain imidazo[4,5-c]quinolinone scaffold or its bioisosteric variations which are optimal in terms of good ATM inhibitory activity and selectivity over closely related enzymes. Clinical trials explore combinations with RT or DNA-targeted compounds like PARP inhibitors, which induce DSBs. The medicinal chemistry field anticipates that these therapeutic options will soon be available on the pharmaceutical market.
Collapse
Affiliation(s)
- Yan A Ivanenkov
- P. Hertsen Moscow Oncology Research Institute, Moscow, Russian Federation
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, Russian Federation
| | - Alexander S Malyshev
- P. Hertsen Moscow Oncology Research Institute, Moscow, Russian Federation
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, Russian Federation
| | - Victor A Terentiev
- P. Hertsen Moscow Oncology Research Institute, Moscow, Russian Federation
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, Russian Federation
| | | | - Sergei A Evteev
- P. Hertsen Moscow Oncology Research Institute, Moscow, Russian Federation
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, Russian Federation
| | - Sergey Z Vatsadze
- N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | | | - Petr V Shegai
- P. Hertsen Moscow Oncology Research Institute, Moscow, Russian Federation
| | - Andrey D Kaprin
- P. Hertsen Moscow Oncology Research Institute, Moscow, Russian Federation
- Peoples' Friendship University of Russia (RUDN), Moscow, Russian Federation
| |
Collapse
|
6
|
Amodio V, Vitiello PP, Bardelli A, Germano G. DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors. Br J Cancer 2024; 131:1576-1590. [PMID: 39271762 PMCID: PMC11554791 DOI: 10.1038/s41416-024-02848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of cancer death worldwide. Chemotherapy continues to serve as the primary treatment modality, while immunotherapy is largely ineffective for the majority of CRC patients. Seminal discoveries have emphasized that modifying DNA damage response (DDR) mechanisms confers both cell-autonomous and immune-related vulnerabilities across various cancers. In CRC, approximately 15% of tumours exhibit alterations in the mismatch repair (MMR) machinery, resulting in a high number of neoantigens and the activation of the type I interferon response. These factors, in conjunction with immune checkpoint blockades, collectively stimulate anticancer immunity. Furthermore, although less frequently, somatic alterations in the homologous recombination (HR) pathway are observed in CRC; these defects lead to genome instability and telomere alterations, supporting the use of poly (ADP-ribose) polymerase (PARP) inhibitors in HR-deficient CRC patients. Additionally, other DDR inhibitors, such as Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors, have shown some efficacy both in preclinical models and in the clinical setting, irrespective of MMR proficiency. The aim of this review is to elucidate how preexisting or induced vulnerabilities in DNA repair pathways represent an opportunity to increase tumour sensitivity to immune-based therapies in CRC.
Collapse
Affiliation(s)
- V Amodio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - P P Vitiello
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - A Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy.
| | - G Germano
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milano, 20133, Milan, Italy.
| |
Collapse
|
7
|
Federica G, Michela C, Giovanna D. Targeting the DNA damage response in cancer. MedComm (Beijing) 2024; 5:e788. [PMID: 39492835 PMCID: PMC11527828 DOI: 10.1002/mco2.788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
DNA damage response (DDR) pathway is the coordinated cellular network dealing with the identification, signaling, and repair of DNA damage. It tightly regulates cell cycle progression and promotes DNA repair to minimize DNA damage to daughter cells. Key proteins involved in DDR are frequently mutated/inactivated in human cancers and promote genomic instability, a recognized hallmark of cancer. Besides being an intrinsic property of tumors, DDR also represents a unique therapeutic opportunity. Indeed, inhibition of DDR is expected to delay repair, causing persistent unrepaired breaks, to interfere with cell cycle progression, and to sensitize cancer cells to several DNA-damaging agents, such as radiotherapy and chemotherapy. In addition, DDR defects in cancer cells have been shown to render these cells more dependent on the remaining pathways, which could be targeted very specifically (synthetic lethal approach). Research over the past two decades has led to the synthesis and testing of hundreds of small inhibitors against key DDR proteins, some of which have shown antitumor activity in human cancers. In parallel, the search for synthetic lethality interaction is broadening the use of DDR inhibitors. In this review, we discuss the state-of-art of ataxia-telangiectasia mutated, ataxia-telangiectasia-and-Rad3-related protein, checkpoint kinase 1, Wee1 and Polθ inhibitors, highlighting the results obtained in the ongoing clinical trials both in monotherapy and in combination with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Guffanti Federica
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Chiappa Michela
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Damia Giovanna
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
8
|
Qian C, Li X, Zhang J, Wang Y. Small Molecular Inhibitors That Target ATM for Drug Discovery: Current Research and Potential Prospective. J Med Chem 2024; 67:14742-14767. [PMID: 39149790 DOI: 10.1021/acs.jmedchem.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a constituent of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, exerting a pivotal influence on diverse cellular processes, notably the signaling of double-strand DNA breaks (DSB) and stress response. The dysregulation of ATM is implicated in the pathogenesis of cancer and other diseases such as neurodegeneration. Hence, ATM is deemed a promising candidate for potential therapeutic interventions across a spectrum of diseases. Presently, while ATM small molecule inhibitors are not commercially available, various selective inhibitors have progressed to the clinical research phase. Specifically, AZD1390, WSD0628, SYH2051, and ZN-B-2262 are under investigation in clinical studies pertaining to glioblastoma multiforme and advanced solid tumors, respectively. In this Perspective, we encapsulate the structure, biological functions, and disease relevance of ATM. Subsequently, we concentrate on the design concepts and structure-activity relationships (SAR) of ATM inhibitors, delineating potential avenues for the development of more efficacious ATM-targeted inhibitors.
Collapse
Affiliation(s)
- Chunlin Qian
- Department of Respiratory and Critical Care Medicine and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and State Key Laboratory of Respiratory Health and Multimorbidity and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and State Key Laboratory of Respiratory Health and Multimorbidity and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and State Key Laboratory of Respiratory Health and Multimorbidity and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan China
| |
Collapse
|
9
|
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat Rev 2024; 129:102808. [PMID: 39106770 DOI: 10.1016/j.ctrv.2024.102808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a pivotal role in orchestrating the DNA damage response, maintaining genomic stability, and regulating various cellular processes. This review provides a comprehensive analysis of ATM's structure, activation mechanisms, and various functions in cancer development, progression, and treatment. I discuss ATM's dual nature as both a tumor suppressor and potential promoter of cancer cell survival in certain contexts. The article explores the complex signaling pathways mediated by ATM, its interactions with other DNA repair mechanisms, and its influence on cell cycle checkpoints, apoptosis, and metabolism. I examine the clinical implications of ATM alterations, including their impact on cancer predisposition, prognosis, and treatment response. The review highlights recent advances in ATM-targeted therapies, discussing ongoing clinical trials of ATM inhibitors and their potential in combination with other treatment modalities. I also address the challenges in developing effective biomarkers for ATM activity and patient selection strategies for personalized cancer therapy. Finally, I outline future research directions, emphasizing the need for refined biomarker development, optimized combination therapies, and strategies to overcome potential resistance mechanisms. This comprehensive overview underscores the critical importance of ATM in cancer biology and its emerging potential as a therapeutic target in precision oncology.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
10
|
Galli M, Frigerio C, Colombo CV, Casari E, Longhese MP, Clerici M. Exo1 cooperates with Tel1/ATM in promoting recombination events at DNA replication forks. iScience 2024; 27:110410. [PMID: 39081288 PMCID: PMC11284563 DOI: 10.1016/j.isci.2024.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Tel1/ataxia telangiectasia mutated (ATM) kinase plays multiple functions in response to DNA damage, promoting checkpoint-mediated cell-cycle arrest and repair of broken DNA. In addition, Saccharomyces cerevisiae Tel1 stabilizes replication forks that arrest upon the treatment with the topoisomerase poison camptothecin (CPT). We discover that inactivation of the Exo1 nuclease exacerbates the sensitivity of Tel1-deficient cells to CPT and other agents that hamper DNA replication. Furthermore, cells lacking both Exo1 and Tel1 activities exhibit sustained checkpoint activation in the presence of CPT, indicating that Tel1 and Exo1 limit the activation of a Mec1-dependent checkpoint. The absence of Tel1 or its kinase activity enhances recombination between inverted DNA repeats induced by replication fork blockage in an Exo1-dependent manner. Thus, we propose that Exo1 processes intermediates arising at stalled forks in tel1 mutants to promote DNA replication recovery and cell survival.
Collapse
Affiliation(s)
- Michela Galli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Chiara Frigerio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Chiara Vittoria Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| |
Collapse
|
11
|
de Lima MC, de Castro CC, Aguiar KEC, Monte N, da Costa Nunes GG, da Costa ACA, Rodrigues JCG, Guerreiro JF, Ribeiro-dos-Santos Â, de Assumpção PP, Burbano RMR, Fernandes MR, dos Santos SEB, dos Santos NPC. Molecular Profile of Important Genes for Radiogenomics in the Amazon Indigenous Population. J Pers Med 2024; 14:484. [PMID: 38793065 PMCID: PMC11122349 DOI: 10.3390/jpm14050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Radiotherapy is focused on the tumor but also reaches healthy tissues, causing toxicities that are possibly related to genomic factors. In this context, radiogenomics can help reduce the toxicity, increase the effectiveness of radiotherapy, and personalize treatment. It is important to consider the genomic profiles of populations not yet studied in radiogenomics, such as the indigenous Amazonian population. Thus, our objective was to analyze important genes for radiogenomics, such as ATM, TGFB1, RAD51, AREG, XRCC4, CDK1, MEG3, PRKCE, TANC1, and KDR, in indigenous people and draw a radiogenomic profile of this population. The NextSeq 500® platform was used for sequencing reactions; for differences in the allelic frequency between populations, Fisher's Exact Test was used. We identified 39 variants, 2 of which were high impact: 1 in KDR (rs41452948) and another in XRCC4 (rs1805377). We found four modifying variants not yet described in the literature in PRKCE. We did not find any variants in TANC1-an important gene for personalized medicine in radiotherapy-that were associated with toxicities in previous cohorts, configuring a protective factor for indigenous people. We identified four SNVs (rs664143, rs1801516, rs1870377, rs1800470) that were associated with toxicity in previous studies. Knowing the radiogenomic profile of indigenous people can help personalize their radiotherapy.
Collapse
Affiliation(s)
- Milena Cardoso de Lima
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Cinthia Costa de Castro
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Kaio Evandro Cardoso Aguiar
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Natasha Monte
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Giovanna Gilioli da Costa Nunes
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Ana Caroline Alves da Costa
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Juliana Carla Gomes Rodrigues
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - João Farias Guerreiro
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
- Laboratory of Human and Medical Genetics, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | | | - Paulo Pimentel de Assumpção
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Rommel Mario Rodríguez Burbano
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Marianne Rodrigues Fernandes
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Sidney Emanuel Batista dos Santos
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
- Laboratory of Human and Medical Genetics, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Ney Pereira Carneiro dos Santos
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| |
Collapse
|
12
|
Zhang Q, Jiang L, Wang W, Huber AK, Valvo VM, Jungles KM, Holcomb EA, Pearson AN, The S, Wang Z, Parsels LA, Parsels JD, Wahl DR, Rao A, Sahai V, Lawrence TS, Green MD, Morgan MA. Potentiating the radiation-induced type I interferon antitumoral immune response by ATM inhibition in pancreatic cancer. JCI Insight 2024; 9:e168824. [PMID: 38376927 PMCID: PMC11063931 DOI: 10.1172/jci.insight.168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
Radiotherapy induces a type I interferon-mediated (T1IFN-mediated) antitumoral immune response that we hypothesized could be potentiated by a first-in-class ataxia telangiectasia mutated (ATM) inhibitor, leading to enhanced innate immune signaling, T1IFN expression, and sensitization to immunotherapy in pancreatic cancer. We evaluated the effects of AZD1390 or a structurally related compound, AZD0156, on innate immune signaling and found that both inhibitors enhanced radiation-induced T1IFN expression via the POLIII/RIG-I/MAVS pathway. In immunocompetent syngeneic mouse models of pancreatic cancer, ATM inhibitor enhanced radiation-induced antitumoral immune responses and sensitized tumors to anti-PD-L1, producing immunogenic memory and durable tumor control. Therapeutic responses were associated with increased intratumoral CD8+ T cell frequency and effector function. Tumor control was dependent on CD8+ T cells, as therapeutic efficacy was blunted in CD8+ T cell-depleted mice. Adaptive immune responses to combination therapy provided systemic control of contralateral tumors outside of the radiation field. Taken together, we show that a clinical candidate ATM inhibitor enhances radiation-induced T1IFN, leading to both innate and subsequent adaptive antitumoral immune responses and sensitization of otherwise resistant pancreatic cancer to immunotherapy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Radiation Oncology and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Kassidy M. Jungles
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Stephanie The
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | | | - Daniel R. Wahl
- Department of Radiation Oncology and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Arvind Rao
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Division of Hematology and Oncology, Department of Internal Medicine, and
| | - Theodore S. Lawrence
- Department of Radiation Oncology and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael D. Green
- Department of Radiation Oncology and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Meredith A. Morgan
- Department of Radiation Oncology and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Mangoli A, Wu S, Liu HQ, Aksu M, Jain V, Foreman BE, Regal JA, Weidenhammer LB, Stewart CE, Guerra Garcia ME, Hocke E, Abramson K, Williams NT, Luo L, Deland K, Attardi L, Abe K, Hashizume R, Ashley DM, Becher OJ, Kirsch DG, Gregory SG, Reitman ZJ. Ataxia-telangiectasia mutated ( Atm ) disruption sensitizes spatially-directed H3.3K27M/TP53 diffuse midline gliomas to radiation therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562892. [PMID: 37904990 PMCID: PMC10614905 DOI: 10.1101/2023.10.18.562892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress, which presents therapeutic opportunities. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce K27M in the native H3f3a allele in a lineage- and spatially-directed manner, yielding primary mouse DMGs. Genetic or pharmacologic disruption of the DNA damage response kinase Ataxia-telangiectasia mutated (ATM) enhanced the efficacy of focal brain irradiation, extending mouse survival. This finding suggests that targeting ATM will enhance the efficacy of radiation therapy for p53-mutant DMG but not p53-wildtype DMG. We used spatial in situ transcriptomics and an allelic series of primary murine DMG models with different p53 mutations to identify transactivation-independent p53 activity as a key mediator of such radiosensitivity. These studies deeply profile a genetically faithful and versatile model of a lethal brain tumor to identify resistance mechanisms for a therapeutic strategy currently in clinical trials.
Collapse
|
14
|
Li Q, Wang X, Liu J, Wu L, Xu S. POT1 involved in telomeric DNA damage repair and genomic stability of cervical cancer cells in response to radiation. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503670. [PMID: 37770150 DOI: 10.1016/j.mrgentox.2023.503670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023]
Abstract
Though telomeres play a crucial role in maintaining genomic stability in cancer cells and have emerged as attractive therapeutic targets in anticancer therapy, the relationship between telomere dysfunction and genomic instability induced by irradiation is still unclear. In this study, we identified that protection of telomeres 1 (POT1), a single-stranded DNA (ssDNA)-binding protein, was upregulated in γ-irradiated HeLa cells and in cancer patients who exhibit radiation tolerance. Knockdown of POT1 delayed the repair of radiation-induced telomeric DNA damage which was associated with enhanced H3K9 trimethylation and enhanced the radiosensitivity of HeLa cells. The depletion of POT1 also resulted in significant genomic instability, by showing a significant increase in end-to-end chromosomal fusions, and the formation of anaphase bridges and micronuclei. Furthermore, knockdown of POT1 disturbed telomerase recruitment to telomere, and POT1 could interact with phosphorylated ATM (p-ATM) and POT1 depletion decreased the levels of p-ATM induced by irradiation, suggesting that POT1 could regulate the telomerase recruitment to telomeres to repair irradiation-induced telomeric DNA damage of HeLa cells through interactions with p-ATM. The enhancement of radiosensitivity in cancer cells can be achieved through the combination of POT1 and telomerase inhibitors, presenting a potential approach for radiotherapy in cancer treatment.
Collapse
Affiliation(s)
- Qian Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Jie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Lijun Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
15
|
Liu T, Wang H, Chen Y, Wan Z, Du Z, Shen H, Yu Y, Ma S, Xu Y, Li Z, Yu N, Zhang F, Cao K, Cai J, Zhang W, Gao F, Yang Y. SENP5 promotes homologous recombination-mediated DNA damage repair in colorectal cancer cells through H2AZ deSUMOylation. J Exp Clin Cancer Res 2023; 42:234. [PMID: 37684630 PMCID: PMC10486113 DOI: 10.1186/s13046-023-02789-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/06/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neoadjuvant radiotherapy has been used as the standard treatment of colorectal cancer (CRC). However, radiotherapy resistance often results in treatment failure. To identify radioresistant genes will provide novel targets for combined treatments and prognostic markers. METHODS Through high content screening and tissue array from CRC patients who are resistant or sensitive to radiotherapy, we identified a potent resistant gene SUMO specific peptidase 5 (SENP5). Then, the effect of SENP5 on radiosensitivity was investigated by CCK8, clone formation, comet assay, immunofluorescence and flow cytometric analysis of apoptosis and cell cycle to investigate the effect of SENP5 on radiosensitivity. SUMO-proteomic mass spectrometry combined with co-immunoprecipitation assay were used to identify the targets of SENP5. Patient-derived organoids (PDO) and xenograft (PDX) models were used to explore the possibility of clinical application. RESULTS We identified SENP5 as a potent radioresistant gene through high content screening and CRC patients tissue array analysis. Patients with high SENP5 expression showed increased resistance to radiotherapy. In vitro and in vivo experiments demonstrated that SENP5 knockdown significantly increased radiosensitivity in CRC cells. SENP5 was further demonstrated essential for efficient DNA damage repair in homologous recombination (HR) dependent manner. Through SUMO mass spectrometry analysis, we characterized H2AZ as a deSUMOylation substrate of SENP5, and depicted the SUMOylation balance of H2AZ in HR repair and cancer resistance. By using PDO and PDX models, we found targeting SENP5 significantly increased the therapeutic efficacy of radiotherapy. CONCLUSION Our findings revealed novel role of SENP5 in HR mediated DNA damage repair and cancer resistance, which could be applied as potent prognostic marker and intervention target for cancer radiotherapy.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hang Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhijie Wan
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhipeng Du
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Shen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yue Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shengzhe Ma
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ying Xu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhuqing Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Nanxi Yu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangxiao Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
| |
Collapse
|
16
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
17
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
18
|
Doroudi A, Oliaei RSR, Khorsandi L, Tahmasebi Birgani MJ, Zarei Ahmady A. Green synthesis of 2,4-dinitro-substituted bischalcones using bifunctional magnetic nanocatalyst. MAIN GROUP CHEMISTRY 2023. [DOI: 10.3233/mgc-220085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Flavonoids have many biological properties, such as anticancer activity. Chalcones, one of their subunits, attribute their biological activity to their enone part. The presence of dinitrophenyl group in bischalcone because of its radiosensitivity property is important. Radiosensitivity property reduces radiation time in cancer patients and reduces damage to their healthy tissues. In this regard, 2,4-dinitrophenyl bischalcones were synthesized. The presence of 2,4-dinitrobenzaldehyde as a fixed component in synthesis pathway, leads to a reduction in yield of synthesis by common catalysts. Therefore, in this study, for bis-chalone synthesis, we used Graphene Oxide/Fe3O4/L-Proline nanocomposite as a green recoverable bifunctional organocatalyst. This catalyst was recovered simply by applying an external magnet and reused for eight runs. In this research, chalcones and asymmetric bis-chalcones have been synthesized with diverse substitutes in high yields (78–97%). Also, short reaction times (10–82 min), and simple experimental procedures with easy work-up are advantages of the introduced procedure. The synthesized compounds were characterized by melting point and analytical techniques. The chemical structures of synthesized compounds were confirmed by means of IR, 1HNMR, and 13CNMR.
Collapse
Affiliation(s)
- Alireza Doroudi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Raziye Saeidi Rashk Oliaei
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amanollah Zarei Ahmady
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Vaccaro S, Rossetti A, Porrazzo A, Camero S, Cassandri M, Pomella S, Tomaciello M, Macioce G, Pedini F, Barillari G, Marchese C, Rota R, Cenci G, Tombolini M, Newman RA, Yang P, Codenotti S, Fanzani A, Megiorni F, Festuccia C, Minniti G, Gravina GL, Vulcano F, Milazzo L, Marampon F. The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo. Front Pharmacol 2022; 13:1071176. [DOI: 10.3389/fphar.2022.1071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non‐Homologous End‐Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS.
Collapse
|
20
|
Abstract
ATM, a member of the PIKK-like protein family, plays a central role in responding to DNA double-strand breaks and other lesions to protect the genome against DNA damage. Loss of ATM's kinase function has been shown to increase the sensitivity of most cells to ionizing radiation. Therefore, ATM is thought to be a promising target for chemotherapy as a radiotherapy sensitizer. The mechanism of ATM in cancer treatment and the development of its inhibitors have become research hotspots. Here we present an overview of research concerning ATM protein domains, functions and inhibitors, as well as perspectives and insights for future development of ATM-targeting agents.
Collapse
|
21
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
22
|
Chen B, Li P, Liu M, Liu K, Zou M, Geng Y, Zhuang S, Xu H, Wang L, Chen T, Li Y, Zhao Z, Qi L, Gu Y. A genetic map of the chromatin regulators to drug response in cancer cells. J Transl Med 2022; 20:438. [PMID: 36180906 PMCID: PMC9523919 DOI: 10.1186/s12967-022-03651-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diverse drug vulnerabilities owing to the Chromatin regulators (CRs) genetic interaction across various cancers, but the identification of CRs genetic interaction remains challenging. METHODS In order to provide a global view of the CRs genetic interaction in cancer cells, we developed a method to identify potential drug response-related CRs genetic interactions for specific cancer types by integrating the screen of CRISPR-Cas9 and pharmacogenomic response datasets. RESULTS Totally, 625 drug response-related CRs synthetic lethality (CSL) interactions and 288 CRs synthetic viability (CSV) interactions were detected. Systematically network analysis presented CRs genetic interactions have biological function relationship. Furthermore, we validated CRs genetic interactions induce multiple omics deregulation in The Cancer Genome Atlas. We revealed the colon adenocarcinoma patients (COAD) with mutations of a CRs set (EP300, MSH6, NSD2 and TRRAP) mediate a better survival with low expression of MAP2 and could benefit from taxnes. While the COAD patients carrying at least one of the CSV interactions in Vorinostat CSV module confer a poor prognosis and may be resistant to Vorinostat treatment. CONCLUSIONS The CRs genetic interaction map provides a rich resource to investigate cancer-associated CRs genetic interaction and proposes a powerful strategy of biomarker discovery to guide the rational use of agents in cancer therapy.
Collapse
Affiliation(s)
- Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Pengfei Li
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Min Zou
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yiding Geng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuping Zhuang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Huanhuan Xu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Linzhu Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yawei Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhangxiang Zhao
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
23
|
Lazo PA. Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer? Cancers (Basel) 2022; 14:cancers14164050. [PMID: 36011043 PMCID: PMC9406467 DOI: 10.3390/cancers14164050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 12/18/2022] Open
Abstract
Synthetic lethality strategies are likely to be integrated in effective and specific cancer treatments. These strategies combine different specific targets, either in similar or cooperating pathways. Chromatin remodeling underlies, directly or indirectly, all processes of tumor biology. In this context, the combined targeting of proteins associated with different aspects of chromatin remodeling can be exploited to find new alternative targets or to improve treatment for specific individual tumors or patients. There are two major types of proteins, epigenetic modifiers of histones and nuclear or chromatin kinases, all of which are druggable targets. Among epigenetic enzymes, there are four major families: histones acetylases, deacetylases, methylases and demethylases. All these enzymes are druggable. Among chromatin kinases are those associated with DNA damage responses, such as Aurora A/B, Haspin, ATM, ATR, DNA-PK and VRK1-a nucleosomal histone kinase. All these proteins converge on the dynamic regulation chromatin organization, and its functions condition the tumor cell viability. Therefore, the combined targeting of these epigenetic enzymes, in synthetic lethality strategies, can sensitize tumor cells to toxic DNA-damage-based treatments, reducing their toxicity and the selective pressure for tumor resistance and increasing their immunogenicity, which will lead to an improvement in disease-free survival and quality of life.
Collapse
Affiliation(s)
- Pedro A. Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|