1
|
Mazzei V, Sullivan KL, Loftin K. Phytoplankton assemblage structure, drivers, and thresholds with a focus on harmful algal bloom ecology in the Lake Okeechobee system, Florida, USA. HARMFUL ALGAE 2025; 142:102744. [PMID: 39947844 DOI: 10.1016/j.hal.2024.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 05/09/2025]
Abstract
Untangling the complexities of harmful algal bloom (HAB) dynamics is an ongoing effort that requires a fundamental understanding of spatiotemporal phytoplankton patterns and the environmental filters through which assemblages are structured. To this aim, monthly field surveys were conducted from 2019 to 2021 at 21 sites in Lake Okeechobee, Florida - a large, shallow, eutrophic, and heavily managed lake with coastal connectivity that experiences intense and recurrent HABs. Phytoplankton assemblages were strongly spatially structured forming 7 distinct lake zones with significant dissimilarity in composition and total abundance. While successional patterns were not apparent across seasons or wet/dry periods, total phytoplankton abundance was significantly greater towards the end of the wet season. Distance-based linear models using 16 abiotic variables were used to identify significant explanatory variables of spatial and temporal patterns. The spatial model explained 93 % of the variability suggesting deterministic processes largely control spatial patterns. The temporal model explained only 48 % of the temporal variability suggesting stochasticity in lake-wide shifts in assemblages over time. However, the strong spatial structuring of assemblages may preclude lake-wide succession patterns. Total algal abundance metrics were inversely related to nitrate, orthophosphate, and total alkalinity, the strongest explanatory variables of assemblage patterns, suggesting a lag between peak resources and peak abundance as phytoplankton cycle "boom-to-bust" phases. Consistent with this inverse relationship, Threshold Indicator Taxa Analysis returned almost exclusively negative responder indicator taxa for all three explanatory variable gradients. The assemblage-level threshold defined the gradient boundary between boom- and bust-associated indicator taxa. These data contribute novel information about HABs ecology pertinent to management strategies.
Collapse
Affiliation(s)
| | | | - Keith Loftin
- U.S. Geological Survey, Lawrence, KS, 66049, USA
| |
Collapse
|
2
|
Bao Z, Chen B, Yu K, Wei Y, Liang X, Yao H, Liao X, Xie W, Yin K. Microbiome dynamics and functional profiles in deep-sea wood-fall micro-ecosystem: insights into drive pattern of community assembly, biogeochemical processes, and lignocellulose degradation. Appl Environ Microbiol 2025; 91:e0216524. [PMID: 39641605 PMCID: PMC11784029 DOI: 10.1128/aem.02165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Wood-fall micro-ecosystems contribute to biogeochemical processes in the oligotrophic deep ocean. However, the community assembly processes and biogeochemical functions of microbiomes in wood fall remain unclear. This study investigated the diversity, community structure, assembly processes, and functional profiles of bacteria and fungi in a deep-sea wood fall from the South China Sea using physicochemical indices, amplicon sequencing, and metagenomics. The results showed that distinct wood-fall contact surfaces exhibit habitat heterogeneity. The bacterial community of all contact surfaces and the fungal community of seawater contact surface (SWCS) were affected by homogeneous selection. In SWCS and transition region (TR), bacterial communities were influenced by dispersal limitation, whereas fungal communities were affected by homogenizing dispersal. The Venn diagram visualization revealed that the shared fungal community between SWCS and TR was dominated by Aspergillaceae. Additionally, the bacterial community demonstrated a higher genetic potential for sulfur, nitrogen, and methane metabolism than fungi. The sediment contact surface enriched modules were associated with dissimilatory sulfate reduction and methanogenesis, whereas the modules related to nitrate reduction exhibited enrichment characteristics in TR. Moreover, fungi showed a stronger potential for lignocellulase production compared to bacteria, with Microascaceae and Nectriaceae identified as potential contributors to lignocellulose degradation. These results indicate that environmental filtering and organism exchange levels regulated the microbial community assembly of wood fall. The biogeochemical cycling of sulfur, nitrogen, and methane was mainly driven by the bacterial community. Nevertheless, the terrestrial fungi Microascaceae and Nectriaceae might degrade lignocellulose via the combined action of multiple lignocellulases.IMPORTANCEThe presence and activity of microbial communities may play a crucial role in the biogeochemical cycle of deep-sea wood-fall micro-ecosystems. Previous studies on wood falls have focused on the microbiome diversity, community composition, and environmental impact, while few have investigated wood-fall micro-ecosystems by distinguishing among distinct contact surfaces. Our study investigated the microbiome dynamics and functional profiles of bacteria and fungi among distinct wood-fall contact surfaces. We found that the microbiome community assembly was regulated by environmental filtering and organism exchange levels. Bacteria drive the biogeochemical cycling of sulfur, nitrogen, and methane in wood fall through diverse metabolic pathways, whereas fungi are crucial for lignocellulose degradation. Ultimately, this study provides new insights into the driving pattern of community assembly, biogeochemical processes, and lignocellulose degradation in the microbiomes of deep-sea wood-fall micro-ecosystems, enhancing our comprehension of the ecological impacts of organic falls on deep-sea oligotrophic environments.
Collapse
Affiliation(s)
- Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xinyue Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Huanting Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xianrun Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Wei Xie
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Kedong Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
3
|
Zhang FG, Wu K, Zhang S, Liang F, Du Z, Wang Y, Zhang QG. Immigration reduces selection in water microbial community assembly. Front Microbiol 2025; 15:1508136. [PMID: 39839097 PMCID: PMC11747843 DOI: 10.3389/fmicb.2024.1508136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
To investigate the influence of immigration on the selection in structuring local water bacterial communities, we conducted a new community assembly experiment using microcosms filled with sterile original water medium under outdoor conditions. We collected air particulate matter from dust pooled from samples collected at 10 locations across ~20 km in a warm temperate region in Linfen City (northern China). The immigration rates were increased by introducing air particulate matter into the microcosms. The diversity, structure, and composition of the bacterial community in the water were assessed using 16S rRNA gene amplicon sequencing on the 13th and 60th days after the start of the experiment. Our results showed that increasing immigration did not lead to significant changes in the overall diversity of the total bacterial community on the 13th day. However, on the 60th day, diversity significantly increased. The variation explained by the environment substantially decreased from the 13th to the 60th day. The amount decreased from the control to the high immigration treatments, with a range of 65.0 to 29.8% on the 13th day and 34.0 to 15.4% on the 60th day. The dominant phyla differed significantly. In the early stage, Proteobacteria (69.6%) accounted for a higher relative average abundance, while Firmicutes (4.6%), Cyanobacteria (6.0%), Planctomycetota (8.1%), Verrucomicrobiota (2.0%), and Halobacterota (0.9%) were more abundant in the late stage. Additionally, the late stage had an average of 33 phyla, compared to 15 phyla in the early stage. All the results suggested a minimal role of dispersal limitation in structuring water bacterial communities in the early stage, whereas, in the late stage, the bacterial communities might experience dispersal swamping in our study area. Variance partitioning indicated that throughout the experiment, increasing immigration weakened the signal of environmental selection in the water microbial community assembly. These results expand our understanding of the impact of immigration on environmental selection and provide insights into the varying importance of dispersal and selection on microbial community assembly at different stages of succession.
Collapse
Affiliation(s)
- Fen-Guo Zhang
- College of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Kefan Wu
- College of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Sanqing Zhang
- College of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Furong Liang
- College of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Zhihua Du
- College of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Yongji Wang
- College of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Vestergaard SZ, Dottorini G, Peces M, Murguz A, Dueholm MKD, Nierychlo M, Nielsen PH. Microbial core communities in activated sludge plants are strongly affected by immigration and geography. ENVIRONMENTAL MICROBIOME 2024; 19:63. [PMID: 39210447 PMCID: PMC11361056 DOI: 10.1186/s40793-024-00604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The microbiota in wastewater treatment plants (WWTPs) and incoming wastewater is critical for the treatment process, the preservation of natural ecosystems and human health, and for the recovery of resources and achievement of sustainability goals. Both core species and conditionally rare and abundant taxa (CRAT) are considered process-critical but little is known about identity as well as true functional and ecological importance. Here, we present a comprehensive investigation of the microbiota of 84 municipal activated sludge (AS) plants with nutrient removal treating ~ 70% of all wastewater within a confined geographical area, Denmark (43,000 km2). With the use of an ecosystem-specific database (MiDAS 5.2), species-level classification allowed us to investigate the core and CRAT species, whether they were active, and important factors determining their presence. RESULTS We established a comprehensive catalog of species with names or placeholder names showing each plant contained approx. 2,500 different species. Core and CRAT represented in total 258 species, constituting around 50% of all reads in every plant. However, not all core and CRAT could be regarded as process-critical as growth rate calculations revealed that 43% did not grow in the AS plants and were present only because of continuous immigration from the influent. Analyses of regional microbiota differences and distance decay patterns revealed a stronger effect for species than genera, demonstrating that geography had a clear effect on the AS microbiota, even across a limited geographical area such as Denmark (43,000 km2). CONCLUSIONS The study is the first comprehensive investigation of WWTPs in a confined geographical area providing new insights in our understanding of activated sludge microbiology by introducing a concept of combining immigration and growth calculation with identifying core and CRAT to reveal the true ecosystem-critical organisms. Additionally, the clear biogeographical pattern on this scale highlights the need for more region-level studies to find regional process-critical taxa (core and CRAT), especially at species and amplicon sequence variant (ASV) level.
Collapse
Affiliation(s)
- Sofie Zacho Vestergaard
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Giulia Dottorini
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Miriam Peces
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Admir Murguz
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Morten Kam Dahl Dueholm
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
5
|
Cheng M, Luo S, Zhang P, Xiong G, Chen K, Jiang C, Yang F, Huang H, Yang P, Liu G, Zhang Y, Ba S, Yin P, Xiong J, Miao W, Ning K. A genome and gene catalog of the aquatic microbiomes of the Tibetan Plateau. Nat Commun 2024; 15:1438. [PMID: 38365793 PMCID: PMC10873407 DOI: 10.1038/s41467-024-45895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
The Tibetan Plateau supplies water to nearly 2 billion people in Asia, but climate change poses threats to its aquatic microbial resources. Here, we construct the Tibetan Plateau Microbial Catalog by sequencing 498 metagenomes from six water ecosystems (saline lakes, freshwater lakes, rivers, hot springs, wetlands and glaciers). Our catalog expands knowledge of regional genomic diversity by presenting 32,355 metagenome-assembled genomes that de-replicated into 10,723 representative genome-based species, of which 88% were unannotated. The catalog contains nearly 300 million non-redundant gene clusters, of which 15% novel, and 73,864 biosynthetic gene clusters, of which 50% novel, thus expanding known functional diversity. Using these data, we investigate the Tibetan Plateau aquatic microbiome's biogeography along a distance of 2,500 km and >5 km in altitude. Microbial compositional similarity and the shared gene count with the Tibetan Plateau microbiome decline along with distance and altitude difference, suggesting a dispersal pattern. The Tibetan Plateau Microbial Catalog stands as a substantial repository for high-altitude aquatic microbiome resources, providing potential for discovering novel lineages and functions, and bridging knowledge gaps in microbiome biogeography.
Collapse
Affiliation(s)
- Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Luo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Peng Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China
| | - Guangzhou Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chuanqi Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fangdian Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China
| | - Hanhui Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxi Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Sang Ba
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China.
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China.
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Lappan R, Thakar J, Molares Moncayo L, Besser A, Bradley JA, Goordial J, Trembath-Reichert E, Greening C. The atmosphere: a transport medium or an active microbial ecosystem? THE ISME JOURNAL 2024; 18:wrae092. [PMID: 38804464 PMCID: PMC11214262 DOI: 10.1093/ismejo/wrae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The atmosphere may be Earth's largest microbial ecosystem. It is connected to all of Earth's surface ecosystems and plays an important role in microbial dispersal on local to global scales. Despite this grand scale, surprisingly little is understood about the atmosphere itself as a habitat. A key question remains unresolved: does the atmosphere simply transport microorganisms from one location to another, or does it harbour adapted, resident, and active microbial communities that overcome the physiological stressors and selection pressures the atmosphere poses to life? Advances in extreme microbiology and astrobiology continue to push our understanding of the limits of life towards ever greater extremes of temperature, pressure, salinity, irradiance, pH, and water availability. Earth's atmosphere stands as a challenging, but potentially surmountable, extreme environment to harbour living, active, resident microorganisms. Here, we confront the current understanding of the atmosphere as a microbial habitat, highlighting key advances and limitations. We pose major ecological and mechanistic questions about microbial life in the atmosphere that remain unresolved and frame the problems and technical pitfalls that have largely hindered recent developments in this space, providing evidence-based insights to drive future research in this field. New innovations supported by rigorous technical standards are needed to enable progress in understanding atmospheric microorganisms and their influence on global processes of weather, climate, nutrient cycling, biodiversity, and microbial connectivity, especially in the context of rapid global change.
Collapse
Affiliation(s)
- Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria 3800, Australia
- Securing Antarctica’s Environmental Future, Monash University, Clayton, Victoria 3800, Australia
| | - Jordan Thakar
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Laura Molares Moncayo
- School of Geography, Queen Mary University of London, London E1 4NS, United Kingdom
- Natural History Museum, London SW7 5BD, United Kingdom
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille 13009, France
| | - Alexi Besser
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, United States
| | - James A Bradley
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille 13009, France
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Jacqueline Goordial
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | | | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Securing Antarctica’s Environmental Future, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Gollnisch R, Ahrén D, Rengefors K. Single-cell genomics of a bloom-forming phytoplankton species reveals population genetic structure across continents. THE ISME JOURNAL 2024; 18:wrae045. [PMID: 38489771 PMCID: PMC11065318 DOI: 10.1093/ismejo/wrae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/30/2023] [Indexed: 03/17/2024]
Abstract
The study of microbial diversity over time and space is fundamental to the understanding of their ecology and evolution. The underlying processes driving these patterns are not fully resolved but can be studied using population genetic approaches. Here we investigated the population genetic structure of Gonyostomum semen, a bloom-forming phytoplankton species, across two continents. The species appears to be expanding in Europe, whereas similar trends are not observed in the USA. Our aim was to investigate if populations of Gonyostomum semen in Europe and in the USA are genetically differentiated, if there is population genetic structure within the continents, and what the potential drivers of differentiation are. To this end, we used a novel method based on single-amplified genomes combined with Restriction-site Associated DNA sequencing that allows de novo genotyping of natural single-cell isolates without the need for culturing. We amplified over 900 single-cell genomes from 25 lake populations across Europe and the USA and identified two distinct population clusters, one in Europe and another in the USA. Low genetic diversity in European populations supports the hypothesized recent expansion of Gonyostomum semen on this continent. Geographic population structure within each continent was associated with differences in environmental variables that may have led to ecological divergence of population clusters. Overall, our results show that single-amplified genomes combined with Restriction-site Associated DNA sequencing can be used to analyze microalgal population structure and differentiation based on single-cell isolates from natural, uncultured samples.
Collapse
Affiliation(s)
- Raphael Gollnisch
- Department of Biology, Aquatic Ecology, Lund University, 22362 Lund, Sweden
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| | - Dag Ahrén
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Karin Rengefors
- Department of Biology, Aquatic Ecology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
8
|
Molina-Pardines C, Haro-Moreno JM, López-Pérez M. Phosphate-related genomic islands as drivers of environmental adaptation in the streamlined marine alphaproteobacterial HIMB59. mSystems 2023; 8:e0089823. [PMID: 38054740 PMCID: PMC10734472 DOI: 10.1128/msystems.00898-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE These results shed light on the evolutionary strategies of microbes with streamlined genomes to adapt and survive in the oligotrophic conditions that dominate the surface waters of the global ocean. At the individual level, these microbes have been subjected to evolutionary constraints that have led to a more efficient use of nutrients, removing non-essential genes named as "streamlining theory." However, at the population level, they conserve a highly diverse gene pool in flexible genomic islands resulting in polyclonal populations on the same genomic background as an evolutionary response to environmental pressures. Localization of these islands at equivalent positions in the genome facilitates horizontal transfer between clonal lineages. This high level of environmental genomic heterogeneity could explain their cosmopolitan distribution. In the case of the order HIMB59 within the class Alphaproteobacteria, two factors exert evolutionary pressure and determine this intraspecific diversity: phages and the concentration of P in the environment.
Collapse
Affiliation(s)
- Carmen Molina-Pardines
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain
| | - Jose M. Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain
| |
Collapse
|
9
|
Fine DH, Schreiner H. Oral microbial interactions from an ecological perspective: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1229118. [PMID: 37771470 PMCID: PMC10527376 DOI: 10.3389/froh.2023.1229118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
Landscape ecology is a relatively new field of study within the sub-specialty of ecology that considers time and space in addition to structure and function. Landscape ecology contends that both the configuration (spatial pattern) and the composition (organisms both at the macro and or micro level) of an ecology can change over time. The oral cavity is an ideal place to study landscape ecology because of the variety of landscapes, the dynamic nature of plaque biofilm development, and the easy access to biofilm material. This review is intended to provide some specific clinical examples of how landscape ecology can influence the understanding of oral diseases and act as a supplement to diagnosis and treatment. The purpose of this review is two-fold; (1) to illustrate how landscape ecology can be used to clarify the two most prominent microbiologically induced infections in the oral cavity, and (2) how studies of oral microbiology can be used to enhance the understanding of landscape ecology. The review will distinguish between "habitat" and "niche" in a landscape and extend the concept that a "patch", is the demarcating unit of a habitat within a landscape. The review will describe how; (1) an individual patch, defined by its shape, edges and internal components can have an influence on species within the patch, (2) spatial dynamics over time within a patch can lead to variations or diversities of species within that patch space, and (3) an unwelcoming environment can promote species extinction or departure/dispersion into a more favorable habitat. Understanding this dynamic in relationship to caries and periodontal disease is the focus of this review.
Collapse
Affiliation(s)
- Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | | |
Collapse
|
10
|
Thiele S, Vader A, Thomson S, Saubrekka K, Petelenz E, Müller O, Bratbak G, Øvreås L. Seasonality of the bacterial and archaeal community composition of the Northern Barents Sea. Front Microbiol 2023; 14:1213718. [PMID: 37485507 PMCID: PMC10360405 DOI: 10.3389/fmicb.2023.1213718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
The Barents Sea is a transition zone between the Atlantic and the Arctic Ocean. The ecosystem in this region is highly variable, and a seasonal baseline of biological factors is needed to monitor the effects of global warming. In this study, we report the results from the investigations of the bacterial and archaeal community in late winter, spring, summer, and early winter along a transect through the northern Barents Sea into the Arctic Ocean east of Svalbard using 16S rRNA metabarcoding. Winter samples were dominated by members of the SAR11 clade and a community of nitrifiers, namely Cand. Nitrosopumilus and LS-NOB (Nitrospinia), suggest a prevalence of chemoautotrophic metabolisms. During spring and summer, members of the Gammaproteobacteria (mainly members of the SAR92 and OM60(NOR5) clades, Nitrincolaceae) and Bacteroidia (mainly Polaribacter, Formosa, and members of the NS9 marine group), which followed a succession based on their utilization of different phytoplankton-derived carbon sources, prevailed. Our results indicate that Arctic marine bacterial and archaeal communities switch from carbon cycling in spring and summer to nitrogen cycling in winter and provide a seasonal baseline to study the changes in these processes in response to the effects of climate change.
Collapse
Affiliation(s)
- Stefan Thiele
- Department of Biological Science, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, Bergen, Norway
| | - Anna Vader
- University Center in Svalbard (UNIS), Longyearbyen, Norway
| | - Stuart Thomson
- University Center in Svalbard (UNIS), Longyearbyen, Norway
| | | | - Elzbieta Petelenz
- Department of Biological Science, University of Bergen, Bergen, Norway
| | - Oliver Müller
- Department of Biological Science, University of Bergen, Bergen, Norway
| | - Gunnar Bratbak
- Department of Biological Science, University of Bergen, Bergen, Norway
| | - Lise Øvreås
- Department of Biological Science, University of Bergen, Bergen, Norway
- University Center in Svalbard (UNIS), Longyearbyen, Norway
| |
Collapse
|
11
|
Lemke M, DeSalle R. The Next Generation of Microbial Ecology and Its Importance in Environmental Sustainability. MICROBIAL ECOLOGY 2023; 85:781-795. [PMID: 36826587 PMCID: PMC10156817 DOI: 10.1007/s00248-023-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 05/04/2023]
Abstract
Collectively, we have been reviewers for microbial ecology, genetics and genomics studies that include environmental DNA (eDNA), microbiome studies, and whole bacterial genome biology for Microbial Ecology and other journals for about three decades. Here, we wish to point out trends and point to areas of study that readers, especially those moving into the next generation of microbial ecology research, might learn and consider. In this communication, we are not saying the work currently being accomplished in microbial ecology and restoration biology is inadequate. What we are saying is that a significant milestone in microbial ecology has been reached, and approaches that may have been overlooked or were unable to be completed before should be reconsidered in moving forward into a new more ecological era where restoration of the ecological trajectory of systems has become critical. It is our hope that this introduction, along with the papers that make up this special issue, will address the sense of immediacy and focus needed to move into the next generation of microbial ecology study.
Collapse
Affiliation(s)
- Michael Lemke
- Department of Biology, University of Illinois at Springfield, Springfield, IL, USA.
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| | - Rob DeSalle
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
12
|
Peris D, Ubbelohde EJ, Kuang MC, Kominek J, Langdon QK, Adams M, Koshalek JA, Hulfachor AB, Opulente DA, Hall DJ, Hyma K, Fay JC, Leducq JB, Charron G, Landry CR, Libkind D, Gonçalves C, Gonçalves P, Sampaio JP, Wang QM, Bai FY, Wrobel RL, Hittinger CT. Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. Nat Commun 2023; 14:690. [PMID: 36755033 PMCID: PMC9908912 DOI: 10.1038/s41467-023-36139-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Species is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years. Here, we show the geographies, hosts, substrates, and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering the complete genus with unprecedented breadth and depth. We generated and analyzed complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse strains. This dataset provides insights about genetic and phenotypic diversity within and between species and populations, quantifies reticulation and incomplete lineage sorting, and demonstrates how gene flow and selection have affected traits, such as galactose metabolism. These findings elevate the genus Saccharomyces as a model to understand biodiversity and evolution in microbial eukaryotes.
Collapse
Grants
- R01 GM080669 NIGMS NIH HHS
- T32 GM007133 NIGMS NIH HHS
- We thank the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing Illumina and Sanger sequencing facilities and services; Maria Sardi, Audrey Gasch, and Ursula Bond for providing strains; Sean McIlwain for providing guidance for genome ultra-scaffolding; Yury V. Bukhman for discussing applications of the Growth Curve Analysis Tool (GCAT); Mick McGee for HPLC analysis; Raúl Ortíz-Merino for assistance during YGAP annotations; Jessica Leigh for assistance with PopART; Cecile Ané for suggestions about BUCKy utilization and phylogenetic network analyses; Samina Naseeb and Daniela Delneri for sharing preliminary multi-locus Saccharomyces jurei data; and Branden Timm, Brian Kyle, and Dan Metzger for computational assistance. Some computations were performed on Tirant III of the Spanish Supercomputing Network (‘‘Servei d’Informàtica de la Universitat de València”) under the project BCV-2021-1-0001 granted to DP, while others were performed at the Wisconsin Energy Institute and the Center for High-Throughput Computing of the University of Wisconsin-Madison. During a portion of this project, DP was a researcher funded by the European Union’s Horizon 2020 research and innovation programme Marie Sklodowska-Curie, grant agreement No. 747775, the Research Council of Norway (RCN) grant Nos. RCN 324253 and 274337, and the Generalitat Valenciana plan GenT grant No. CIDEGENT/2021/039. DP is a recipient of an Illumina Grant for Illumina Sequencing Saccharomyces strains in this study. QKL was supported by the National Science Foundation under Grant No. DGE-1256259 (Graduate Research Fellowship) and the Predoctoral Training Program in Genetics, funded by the National Institutes of Health (5T32GM007133). This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494; the National Science Foundation under Grant Nos. DEB-1253634, DEB-1442148, and DEB-2110403; and the USDA National Institute of Food and Agriculture Hatch Project Number 1020204. C.T.H. is an H. I. Romnes Faculty Fellow, supported by the Office of the Vice Chancellor for Research and Graduate Education with funding from Wisconsin Alumni Research Foundation. QMW was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 31770018 and 31961133020. CRL holds the Canada Research Chair in Cellular Systems and Synthetic Biology, and his research on wild yeast is supported by a NSERC Discovery Grant.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain.
| | - Emily J Ubbelohde
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Meihua Christina Kuang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacek Kominek
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Marie Adams
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin A Koshalek
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Katie Hyma
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jean-Baptiste Leducq
- Departement des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Guillaume Charron
- Canada Natural Resources, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Carla Gonçalves
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Vanderbilt University, Department of Biological Sciences, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Qi-Ming Wang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Russel L Wrobel
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Montiel-Molina JAM, Sexton JP, Frank AC, Beman JM. Archaeal and Bacterial Diversity and Distribution Patterns in Mediterranean-Climate Vernal Pools of Mexico and the Western USA. MICROBIAL ECOLOGY 2023; 85:24-36. [PMID: 34970700 PMCID: PMC8718339 DOI: 10.1007/s00248-021-01941-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Biogeographic patterns in microorganisms are poorly understood, despite the importance of microbial communities for a range of ecosystem processes. Our knowledge of microbial ecology and biogeography is particularly deficient in rare and threatened ecosystems. We tested for three ecological patterns in microbial community composition within ephemeral wetlands-vernal pools-located across Baja California (Mexico) and California (USA): (1) habitat filtering; (2) a latitudinal diversity gradient; and (3) distance decay in community composition. Paired water and soil samples were collected along a latitudinal transect of vernal pools, and bacterial and archaeal communities were characterized using 16S rDNA sequencing. We identified two main microbial communities, with one community present in the soil matrix that included archaeal and bacterial soil taxa, and another community present in the overlying water that was dominated by common freshwater bacterial taxa. Aquatic microbial communities were more diverse in the north, and displayed a significant but inverted latitudinal diversity pattern. Aquatic communities also exhibited a significant distance-decay pattern, with geographic proximity, and precipitation explaining part of the community variation. Collectively these results indicate greater sensitivity to spatial and environmental variation in vernal pool aquatic microbial communities than in soil microbial communities. We conclude that vernal pool aquatic microbial communities can display distribution patterns similar to those exhibited by larger organisms, but differ in some key aspects, such as the latitudinal gradient in diversity.
Collapse
Affiliation(s)
- Jorge A Mandussí Montiel-Molina
- Environmental Systems, Department of Life and Environmental Science, University of California Merced, North Lake Road 5200, Merced, CA, 95343, USA.
- Nativos de Las Californias A.C, Cuarto Balcón 15901, Balcón Las Huertas, Tijuana, Baja California, 22116, México.
- Jardín Botánico de San Quintín A.C, Gral. Esteban Cantú 200, Nuevo Baja California, San Quintín-Lazaro Cárdenas, Baja California, 22930, México.
| | - Jason P Sexton
- Environmental Systems, Department of Life and Environmental Science, University of California Merced, North Lake Road 5200, Merced, CA, 95343, USA
| | - A Carolin Frank
- Environmental Systems, Department of Life and Environmental Science, University of California Merced, North Lake Road 5200, Merced, CA, 95343, USA
| | - J Michael Beman
- Environmental Systems, Department of Life and Environmental Science, University of California Merced, North Lake Road 5200, Merced, CA, 95343, USA
| |
Collapse
|
14
|
Cao H, Li S, He H, Sun Y, Wu Y, Huang Q, Cai P, Gao CH. Stronger linkage of diversity-carbon decomposition for rare rather than abundant bacteria in woodland soils. Front Microbiol 2023; 14:1115300. [PMID: 36937304 PMCID: PMC10017465 DOI: 10.3389/fmicb.2023.1115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Soil microbial diversity is important for maintaining ecosystem functions. However, the linkage between microbial diversity, especially rare and abundant bacterial diversity, and carbon decomposition remains largely unknown. In this study, we assessed the establishment and maintenance of rare and abundant bacterial α-diversities at the taxonomic and phylogenetic levels and their linkages with soil carbon decomposition separately in four Chinese woodlands. Compared to abundant bacteria, rare bacteria showed higher community diversity, tighter phylogenetic clustering, wider environmental breadth, stronger phylogenetic signals, and higher functional redundancy. The assembly of the abundant bacterial subcommunity was governed by stochastic (59.2%) and deterministic (41.8%) processes, whereas the assembly of the rare bacterial subcommunity was mainly dominated by deterministic processes (85.8%). Furthermore, total phosphorus, soil pH, and ammonium nitrogen balanced stochastic and deterministic processes in both rare and abundant bacterial subcommunities. Our results reveal that rare bacteria displayed stronger environmental adaptability and environmental constraint. Importantly, the α-diversities of rare taxa, rather than abundant taxa, were significantly related to carbon decomposition. This study provides a holistic understanding of biogeographic patterns of abundant and rare bacteria and their α-diversities in relation to carbon decomposition, thus helping us better predict and regulate carbon dynamics under the background of global climate change.
Collapse
|
15
|
Shaffer JP, Nothias LF, Thompson LR, Sanders JG, Salido RA, Couvillion SP, Brejnrod AD, Lejzerowicz F, Haiminen N, Huang S, Lutz HL, Zhu Q, Martino C, Morton JT, Karthikeyan S, Nothias-Esposito M, Dührkop K, Böcker S, Kim HW, Aksenov AA, Bittremieux W, Minich JJ, Marotz C, Bryant MM, Sanders K, Schwartz T, Humphrey G, Vásquez-Baeza Y, Tripathi A, Parida L, Carrieri AP, Beck KL, Das P, González A, McDonald D, Ladau J, Karst SM, Albertsen M, Ackermann G, DeReus J, Thomas T, Petras D, Shade A, Stegen J, Song SJ, Metz TO, Swafford AD, Dorrestein PC, Jansson JK, Gilbert JA, Knight R. Standardized multi-omics of Earth's microbiomes reveals microbial and metabolite diversity. Nat Microbiol 2022; 7:2128-2150. [PMID: 36443458 PMCID: PMC9712116 DOI: 10.1038/s41564-022-01266-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/10/2022] [Indexed: 11/30/2022]
Abstract
Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth's environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.
Collapse
Affiliation(s)
- Justin P Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Luke R Thompson
- Northern Gulf Institute, Mississippi State University, Starkville, MS, USA
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Rodolfo A Salido
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sneha P Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Asker D Brejnrod
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Franck Lejzerowicz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Niina Haiminen
- IBM Research, T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Holly L Lutz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Cameron Martino
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - James T Morton
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Smruthi Karthikeyan
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mélissa Nothias-Esposito
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kai Dührkop
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Sebastian Böcker
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Gyeonggi-do, Korea
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Wout Bittremieux
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Jeremiah J Minich
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - MacKenzie M Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karenina Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tara Schwartz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Greg Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yoshiki Vásquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Anupriya Tripathi
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Laxmi Parida
- IBM Research, T.J. Watson Research Center, Yorktown Heights, NY, USA
| | | | - Kristen L Beck
- IBM Research, Almaden Research Center, San Jose, CA, USA
| | - Promi Das
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Antonio González
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joshua Ladau
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Søren M Karst
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institute, Copenhagen, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Gail Ackermann
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jeff DeReus
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - James Stegen
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Se Jin Song
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Thomas O Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Austin D Swafford
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Liu Y, Xu Y, Cui X, Zhang B, Wang X, Qin X, Wang J, Li Y, Zhang W, Liu G, Chen T, Zhang G. Temporary Survival Increasing the Diversity of Culturable Heterotrophic Bacteria in the Newly Exposed Moraine at a Glacier Snout. BIOLOGY 2022; 11:biology11111555. [PMID: 36358257 PMCID: PMC9687651 DOI: 10.3390/biology11111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Laohugou Glacier No. 12 is located on the northern slope of the western Qilian Mountains with a temperate continental wet climate and an extremely cold winter. Bacteria in a newly exposed moraine have to cope with various pressures owing to deglaciation at the glacier snout. However, limited information is available regarding the high diversity and temporary survival of culturable heterotrophic bacteria under various environmental stresses. To examine the tolerance of extremophiles against varying environmental conditions in a newly exposed moraine, we simulated environmental stress in bacterial cultures. The results showed that the isolated strains belonged to actinobacteria, Proteobacteria, Bacteroidetes, Deinococcus-Thermus, and Firmicutes. Actinobacteria was the most abundant phylum, followed by Proteobacteria, at both high and low temperatures. Pseudarthrobacter was the most abundant genus, accounting for 14.2% of the total isolates. Although several microorganisms grew at 10 °C, the proportion of microorganisms that grew at 25 °C was substantially higher. In particular, 50% of all bacterial isolates grew only at a high temperature (HT), whereas 21.4% of the isolates grew at a low temperature (LT), and 38.6% of the isolates grew at both HT and LT. In addition, many radiation-resistant extremophiles were identified, which adapted to both cold and oxidative conditions. The nearest neighbors of approximately >90% of bacteria belonged to a nonglacial environment, such as oil-contaminated soil, rocks, and black sand, instead of glacial niches. This study provides insights into the ecological traits, stress responses, and temporary survival of culturable heterotrophic bacteria in a newly exposed moraine with variable environmental conditions and the relationship of these communities with the non-glacial environment. This study may help to understand the evolution, competition, and selective growth of bacteria in the transition regions between glaciers and retreats in the context of glacier melting and retreat owing to global warming.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Yeteng Xu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Xiaowen Cui
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
| | - Binglin Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Xinyue Wang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiang Qin
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Jinxiu Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanzhao Li
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Correspondence: (T.C.); (G.Z.)
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Correspondence: (T.C.); (G.Z.)
| |
Collapse
|
17
|
Cowan DA, Lebre PH, Amon C, Becker RW, Boga HI, Boulangé A, Chiyaka TL, Coetzee T, de Jager PC, Dikinya O, Eckardt F, Greve M, Harris MA, Hopkins DW, Houngnandan HB, Houngnandan P, Jordaan K, Kaimoyo E, Kambura AK, Kamgan-Nkuekam G, Makhalanyane TP, Maggs-Kölling G, Marais E, Mondlane H, Nghalipo E, Olivier BW, Ortiz M, Pertierra LR, Ramond JB, Seely M, Sithole-Niang I, Valverde A, Varliero G, Vikram S, Wall DH, Zeze A. Biogeographical survey of soil microbiomes across sub-Saharan Africa: structure, drivers, and predicted climate-driven changes. MICROBIOME 2022; 10:131. [PMID: 35996183 PMCID: PMC9396824 DOI: 10.1186/s40168-022-01297-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/15/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Top-soil microbiomes make a vital contribution to the Earth's ecology and harbor an extraordinarily high biodiversity. They are also key players in many ecosystem services, particularly in arid regions of the globe such as the African continent. While several recent studies have documented patterns in global soil microbial ecology, these are largely biased towards widely studied regions and rely on models to interpolate the microbial diversity of other regions where there is low data coverage. This is the case for sub-Saharan Africa, where the number of regional microbial studies is very low in comparison to other continents. RESULTS The aim of this study was to conduct an extensive biogeographical survey of sub-Saharan Africa's top-soil microbiomes, with a specific focus on investigating the environmental drivers of microbial ecology across the region. In this study, we sampled 810 sample sites across 9 sub-Saharan African countries and used taxonomic barcoding to profile the microbial ecology of these regions. Our results showed that the sub-Saharan nations included in the study harbor qualitatively distinguishable soil microbiomes. In addition, using soil chemistry and climatic data extracted from the same sites, we demonstrated that the top-soil microbiome is shaped by a broad range of environmental factors, most notably pH, precipitation, and temperature. Through the use of structural equation modeling, we also developed a model to predict how soil microbial biodiversity in sub-Saharan Africa might be affected by future climate change scenarios. This model predicted that the soil microbial biodiversity of countries such as Kenya will be negatively affected by increased temperatures and decreased precipitation, while the fungal biodiversity of Benin will benefit from the increase in annual precipitation. CONCLUSION This study represents the most extensive biogeographical survey of sub-Saharan top-soil microbiomes to date. Importantly, this study has allowed us to identify countries in sub-Saharan Africa that might be particularly vulnerable to losses in soil microbial ecology and productivity due to climate change. Considering the reliance of many economies in the region on rain-fed agriculture, this study provides crucial information to support conservation efforts in the countries that will be most heavily impacted by climate change. Video Abstract.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - P H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Cer Amon
- Institut National Polytechnique Houphouet-Boigny, Cote d'Ivoire, Yamoussoukro, South Africa
| | - R W Becker
- Biodiversity Research Centre, Department of Agriculture and Natural Resources Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - H I Boga
- Taita Taveta University, Voi, Kenya
| | - A Boulangé
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
- UMR InterTryp, CIRAD-IRD, 34398, Montpellier, France
| | - T L Chiyaka
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - T Coetzee
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - P C de Jager
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - O Dikinya
- Department of Environmental Science, University of Botswana, Gaborone, Botswana
| | - F Eckardt
- Department of Geography, University of Cape Town, Cape Town, South Africa
| | - M Greve
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - M A Harris
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - D W Hopkins
- Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - H B Houngnandan
- Université Nationale d'Agriculture, Porto-Novo, Benin (Laboratoire de Microbiologie Des Sols Et d'Ecologie Microbienne), Porto-Novo, Benin
| | - P Houngnandan
- Université Nationale d'Agriculture, Porto-Novo, Benin (Laboratoire de Microbiologie Des Sols Et d'Ecologie Microbienne), Porto-Novo, Benin
| | - K Jordaan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Departamento de Genética Molecular Y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Kaimoyo
- University of Zambia, Lusaka, Zambia
| | | | - G Kamgan-Nkuekam
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - T P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - E Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - H Mondlane
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - E Nghalipo
- Biodiversity Research Centre, Department of Agriculture and Natural Resources Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - B W Olivier
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - M Ortiz
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - L R Pertierra
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - J-B Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Departamento de Genética Molecular Y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Seely
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - I Sithole-Niang
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - A Valverde
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - G Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - S Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - D H Wall
- Department of Biology, Colorado State University, Fort Collins, USA
| | - A Zeze
- Institut National Polytechnique Houphouet-Boigny, Cote d'Ivoire, Yamoussoukro, South Africa
| |
Collapse
|
18
|
Jiménez DJ, Öztürk B, Wei R, Bugg TD, Amaya Gomez CV, Salcedo Galan F, Castro-Mayorga JL, Saldarriaga JF, Tarazona NA. Merging Plastics, Microbes, and Enzymes: Highlights from an International Workshop. Appl Environ Microbiol 2022; 88:e0072122. [PMID: 35762791 PMCID: PMC9317848 DOI: 10.1128/aem.00721-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the Anthropocene, plastic pollution is a worldwide concern that must be tackled from different viewpoints, bringing together different areas of science. Microbial transformation of polymers is a broad-spectrum research topic that has become a keystone in the circular economy of fossil-based and biobased plastics. To have an open discussion about these themes, experts in the synthesis of polymers and biodegradation of lignocellulose and plastics convened within the framework of The Transnational Network for Research and Innovation in Microbial Biodiversity, Enzymes Technology and Polymer Science (MENZYPOL-NET), which was recently created by early-stage scientists from Colombia and Germany. In this context, the international workshop "Microbial Synthesis and Degradation of Polymers: Toward a Sustainable Bioeconomy" was held on 27 September 2021 via Zoom. The workshop was divided into two sections, and questions were raised for discussion with panelists and expert guests. Several key points and relevant perspectives were delivered, mainly related to (i) the microbial evolution driven by plastic pollution; (ii) the relevance of and interplay between polymer structure/composition, enzymatic mechanisms, and assessment methods in plastic biodegradation; (iii) the recycling and valorization of plastic waste; (iv) engineered plastic-degrading enzymes; (v) the impact of (micro)plastics on environmental microbiomes; (vi) the isolation of plastic-degrading (PD) microbes and design of PD microbial consortia; and (vii) the synthesis and applications of biobased plastics. Finally, research priorities from these key points were identified within the microbial, enzyme, and polymer sciences.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ren Wei
- Junior Research Group Plastic Biodegradation, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Timothy D. Bugg
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | | - Felipe Salcedo Galan
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | | | | |
Collapse
|
19
|
Leyton-Carcaman B, Abanto M. Beyond to the Stable: Role of the Insertion Sequences as Epidemiological Descriptors in Corynebacterium striatum. Front Microbiol 2022; 13:806576. [PMID: 35126341 PMCID: PMC8811144 DOI: 10.3389/fmicb.2022.806576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, epidemiological studies of infectious agents have focused mainly on the pathogen and stable components of its genome. The use of these stable components makes it possible to know the evolutionary or epidemiological relationships of the isolates of a particular pathogen. Under this approach, focused on the pathogen, the identification of resistance genes is a complementary stage of a bacterial characterization process or an appendix of its epidemiological characterization, neglecting its genetic components’ acquisition or dispersal mechanisms. Today we know that a large part of antibiotic resistance is associated with mobile elements. Corynebacterium striatum, a bacterium from the normal skin microbiota, is also an opportunistic pathogen. In recent years, reports of infections and nosocomial outbreaks caused by antimicrobial multidrug-resistant C. striatum strains have been increasing worldwide. Despite the different existing mobile genomic elements, there is evidence that acquired resistance genes are coupled to insertion sequences in C. striatum. This perspective article reviews the insertion sequences linked to resistance genes, their relationship to evolutionary lineages, epidemiological characteristics, and the niches the strains inhabit. Finally, we evaluate the potential of the insertion sequences for their application as a descriptor of epidemiological scenarios, allowing us to anticipate the emergence of multidrug-resistant lineages.
Collapse
|
20
|
Liu Y, Chi Q, Cheng H, Ding H, Wen T, Zhao J, Feng X, Zhang J, Cai Z, Liu G. Comparative Microbial Nitrogen Functional Gene Abundances in the Topsoil vs. Subsoil of Three Grassland Habitats in Northern China. FRONTIERS IN PLANT SCIENCE 2022; 12:792002. [PMID: 35095965 PMCID: PMC8798409 DOI: 10.3389/fpls.2021.792002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The microbial groups of nitrogen fixers, ammonia oxidizers, and denitrifiers play vital roles in driving the nitrogen cycle in grassland ecosystems. However, the understanding of the abundance and distribution of these functional microorganisms as well as their driving factors were limited mainly to topsoil. In this study, the abundances of nitrogen functional genes (NFGs) involved in nitrogen fixation (nifH), ammonia oxidation (amoA), and denitrification (nirK, nirS, and nosZ) were investigated in both topsoil (0-10 cm, soil layer with concentrated root) and subsoil (30-40 cm, soil layer with spare root) of three grassland habitats in northern China. The abundance of NFGs decreased with soil depth except for the archaeal amoA gene and the distribution of nifH, archaeal amoA, nirK, and nirS gene was significantly impacted by grassland habitats. Moreover, the distribution of NFGs was more responsive to the vertical difference than horizontal spatial heterogeneity. Redundancy analysis revealed that the distribution pattern of overall NFGs was regulated by grassland habitats, and these regulations were more obvious in the subsoil than in the topsoil. Variance partitioning analysis further indicated that soil resource supply (e.g., organic matter) may control the vertical distribution of NFGs. Taken together, the findings in this study could fundamentally improve our understanding of the distribution of N cycling-associated microorganisms across a vertical scale, which would be useful for predicting the soil N availability and guiding the soil N management in grassland ecosystems.
Collapse
Affiliation(s)
- Yuqing Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences (CAS), Beijing, China
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Qiaodong Chi
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Hui Cheng
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Huanxin Ding
- Suzhou Station of Farmland Quality Protection, Suzhou, China
| | - Teng Wen
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Zhongke Clean Soil (Guangzhou) Technology Service Co., Ltd., Guangzhou, China
| | - Xiaojuan Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Zhongke Clean Soil (Guangzhou) Technology Service Co., Ltd., Guangzhou, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, China
- Zhongke Clean Soil (Guangzhou) Technology Service Co., Ltd., Guangzhou, China
- Key Laboratory of Virtual Geographical Environment, Ministry of Education, Nanjing Normal University, Nanjing, China
| | - Guohua Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
21
|
Westmeijer G, Mehrshad M, Turner S, Alakangas L, Sachpazidou V, Bunse C, Pinhassi J, Ketzer M, Åström M, Bertilsson S, Dopson M. Connectivity of Fennoscandian Shield terrestrial deep biosphere microbiomes with surface communities. Commun Biol 2022; 5:37. [PMID: 35017653 PMCID: PMC8752596 DOI: 10.1038/s42003-021-02980-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022] Open
Abstract
The deep biosphere is an energy constrained ecosystem yet fosters diverse microbial communities that are key in biogeochemical cycling. Whether microbial communities in deep biosphere groundwaters are shaped by infiltration of allochthonous surface microorganisms or the evolution of autochthonous species remains unresolved. In this study, 16S rRNA gene amplicon analyses showed that few groups of surface microbes infiltrated deep biosphere groundwaters at the Äspö Hard Rock Laboratory, Sweden, but that such populations constituted up to 49% of the microbial abundance. The dominant persisting phyla included Patescibacteria, Proteobacteria, and Epsilonbacteraeota. Despite the hydrological connection of the Baltic Sea with the studied groundwaters, infiltrating microbes predominantly originated from deep soil groundwater. Most deep biosphere groundwater populations lacked surface representatives, suggesting that they have evolved from ancient autochthonous populations. We propose that deep biosphere groundwater communities in the Fennoscandian Shield consist of selected infiltrated and indigenous populations adapted to the prevailing conditions. Westmeijer et al. employ high-throughput sequencing to investigate the connection between deep biosphere groundwaters and surface microbial communities. They suggest that the microbial communities of deep biosphere groundwaters in the Fennoscandian Shield are mostly comprised of autochthonous species, rather than migratory surface representatives.
Collapse
Affiliation(s)
- George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 39 231, Kalmar, Sweden.
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75 007, Uppsala, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 39 231, Kalmar, Sweden
| | - Linda Alakangas
- Swedish Nuclear Fuel and Waste Management Co (SKB), 57 229, Oskarshamn, Sweden
| | - Varvara Sachpazidou
- Department of Biology and Environmental Sciences, Linnaeus University, 39 231, Kalmar, Sweden
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 39 231, Kalmar, Sweden.,Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129, Oldenburg, Germany
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 39 231, Kalmar, Sweden
| | - Marcelo Ketzer
- Department of Biology and Environmental Sciences, Linnaeus University, 39 231, Kalmar, Sweden
| | - Mats Åström
- Department of Biology and Environmental Sciences, Linnaeus University, 39 231, Kalmar, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75 007, Uppsala, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 39 231, Kalmar, Sweden
| |
Collapse
|
22
|
Zhang SJ, Zeng YH, Zhu JM, Cai ZH, Zhou J. The structure and assembly mechanisms of plastisphere microbial community in natural marine environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126780. [PMID: 34358974 DOI: 10.1016/j.jhazmat.2021.126780] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 05/20/2023]
Abstract
The microbial colonization profiles on microplastics (MPs) in marine environments have recently sparked global interest. However, many studies have characterized plastisphere microbiomes without considering the ecological processes that underly microbiome assembly. Here, we carried out a three-timepoint exposure experiment at 1-, 4-, and 8-week and investigated the colonization dynamics for polyethylene, polypropylene, polystyrene, polyvinyl chloride, and acrylonitrile-butadiene-styrene MP pellets in natural coastal water. Using high-throughput sequencing of 16S rRNA, we found diversity and evenness were higher (p < 0.05) in the plastisphere communities than those in seawater, and microorganisms colonizing were co-influenced by environmental factors, polymer types, and exposure duration. Functional potential and co-occurrence network analysis revealed that MP exposure enriched the xenobiotic biodegradation potential and reduced the complexity of the MP microbial network. Simultaneously, null-model analyses indicated that stochastic processes contributed a bigger role than deterministic processes in shaping plastisphere microbial community structure with dispersal limitations contributing to a greater extent to microbial succession trajectories. These results implied the plastic surface had a more important role as a raft onto which microbes attach rather than selectively recruiting plastic-specific microbial colonizers. Our work strengthened the understanding of the ecological mechanisms by which microbial community patterns are controlled during colonization by plastic-associated microbes.
Collapse
Affiliation(s)
- Sheng-Jie Zhang
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
23
|
Bukharin OV, Andryushchenko SV, Perunova NB, Ivanova EV. Environmental Determination of Indigenous Bifidobacteria of the Human Intestine. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2022; 92:629-635. [PMID: 36340323 PMCID: PMC9628474 DOI: 10.1134/s1019331622050033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
The environmental determination of indigenous (constantly present) bifidobacteria of the human large intestine is considered in this review. Environmental determination (from the Latin determinere, "I determine") is understood as a set of natural phenomena of a habitat (biotope) that determine the role of indigenous microorganisms in the microbiocenosis. Using the symbiotic approach, an attempt is made to identify the environmental conditions for the habitat of bifidobacteria and their physiological effects in the microsymbiocenosis. The features of indigenous bifidobacteria in terms of their nature have been established: evolutionary-genetic (phylogenetic remoteness, genome conservation, metabolic specialization), biochemical (lysozyme resistance, constitutive acetate production), and physiological (microbial "friend-foe" identification, immunoregulation), which are important in adaptation (persistence) and the provision of mutualistic effects and stability of the bifidoflora in the population.
Collapse
Affiliation(s)
- O. V. Bukharin
- Institute for Cellular and Intracellular Symbiosis (ICIS), Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| | - S. V. Andryushchenko
- Institute for Cellular and Intracellular Symbiosis (ICIS), Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| | - N. B. Perunova
- Institute for Cellular and Intracellular Symbiosis (ICIS), Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| | - E. V. Ivanova
- Institute for Cellular and Intracellular Symbiosis (ICIS), Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
24
|
Chang Y, Chen F, Zhu Y, You Y, Cheng Y, Ma J. Influence of revegetation on soil microbial community and its assembly process in the open-pit mining area of the Loess Plateau, China. Front Microbiol 2022; 13:992816. [PMID: 36090080 PMCID: PMC9453671 DOI: 10.3389/fmicb.2022.992816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Vegetation recovery is an important marker of ecosystem health in the mining area. Clarifying the influence of vegetation recovery on the characteristics of soil microbial community and its assembly process can improve our understanding of the ecological resilience and self-maintaining mechanism in the open-pit mining area. For this purpose, we employed MiSeq high-throughput sequencing coupled with null model analysis to determine the composition, molecular ecological network characteristics, key bacterial and fungal clusters, and the assembly mechanism of the soil microbial communities in shrubs (BL), coniferous forest (CF), broad-leaved forests (BF), mixed forest (MF), and the control plot (CK, the poplar plantation nearby that had been continuously grown for over 30 a without disturbance). The results showed that the vegetation restoration model had a significant influence on the α-diversity of the microbial community (p < 0.05). Compared with CK, Sobs and Shannon index of MF and CF have increased by 35.29, 3.50, and 25.18%, 1.05%, respectively, whereas there was no significant difference in the α-diversity of fungal community among different vegetation restoration types, Actinobacteria, Chloroflexi, Proteobacteria, and Acidobacteria were the dominant phyla. The diversity of the first two phyla was significantly higher than those of CK. However, the diversity of the last two phyla was dramatically lower than those of CK (p < 0.05). Ascomycota and Basidiomycota were dominant phyla in the fungal community. The abundance and diversity of Ascomycota were significantly higher than those of CK, while the abundance and diversity of the latter were considerably lower than those of CK (p < 0.05). The stochastic process governed the assembly of the soil microbial community, and the contribution rate to the bacterial community construction of CK, CF, BF, and MF was 100.0%. Except for MF, where the soil fungal community assembly was governed by the deterministic process, all other fungal communities were governed by the stochastic process. Proteobacteria and Acidobacteria are key taxa of the bacterial network, while Mortierellales, Thelebolales, Chaetothyriales, and Hypocreales are the key taxa of the fungal network. All these results might provide the theoretical foundation for restoring the fragile ecosystem in the global mining region.
Collapse
Affiliation(s)
- Yuanyuan Chang
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou, China
| | - Fu Chen
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou, China
- School of Public Administration, Hohai University, Nanjing, China
- *Correspondence: Fu Chen,
| | - Yanfeng Zhu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, China
| | - Yunnan You
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Yanjun Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, China
| |
Collapse
|
25
|
Kou Y, Liu Y, Li J, Li C, Tu B, Yao M, Li X. Patterns and Drivers of nirK-Type and nirS-Type Denitrifier Community Assembly along an Elevation Gradient. mSystems 2021; 6:e0066721. [PMID: 34726497 PMCID: PMC8562487 DOI: 10.1128/msystems.00667-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
nirK-type and nirS-type denitrifier communities mediate the conversion of nitrite to nitric oxide, which is the key step in denitrification. Results of previous studies have indicated that nirK-type and nirS-type denitrifiers may occupy different niches; however, the mechanisms and drivers of their responses to environmental changes within community assembly are poorly understood. In this study, we evaluated the distribution and assembly of nirK-type and nirS-type denitrifier communities along an elevation gradient from 1,800 to 4,100 m at Mount Gongga, China. Results showed that elevational patterns of alpha diversity in nirK-type and nirS-type denitrifier communities followed hump-backed patterns along the elevation gradient. However, nirK-type denitrifier communities formed two distinct clusters that were primarily separated by elevation, whereas nirS-type denitrifier communities formed three distinct clusters that were primarily separated by forest type along the elevation gradient. Moreover, deterministic processes were dominant in governing the assemblages of nirK-type and nirS-type denitrifiers. Soil pH was a key factor influencing the alpha and beta diversity of the nirK-type denitrifier communities, whereas plant richness was a primary variable influencing nirS-type denitrifiers. Additionally, our work revealed that soil denitrification potential was mainly explained by the variation in the beta diversity of denitrifier communities rather than the alpha diversity of denitrifier communities or denitrifier abundances over a large elevation gradient, and nirK-type denitrifiers played more important roles in soil denitrification. These results may contribute to predicting the consequences of global changes on denitrifier communities and their ecological services. IMPORTANCE Mount Gongga is the highest peak in the Hengduan Mountain region and is located at the southeastern fringe of the Tibetan Plateau, Sichuan Province, southwest China. As a transitional zone between the Tibetan Plateau and Sichuan Basin, Gongga Mountain features particularly diverse topography, geology, climate, and biodiversity and is a globally significant hot spot of biodiversity. In this contribution, we comprehensively describe the diversity and assembly of denitrifier communities along an elevation gradient on Gongga Mountain. Our findings established for the first time that the distribution patterns of beta diversity and driving factors differed between nirK-type and nirS-type denitrifier communities, and deterministic processes were dominant in shaping communities of denitrifiers. Moreover, the beta diversity of denitrifier communities rather than alpha diversity or denitrifier abundance played an important role in explaining denitrification potential, and the beta diversity of nirK-type denitrifier communities was more important than nirS-type denitrifier communities in soil denitrification. This work provides crucial insights into the spatial distribution of denitrifier communities and their ecological function and increases our understanding of the mechanisms underlying spatial distribution of community assembly along large elevation gradients.
Collapse
Affiliation(s)
- Yongping Kou
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yanjiao Liu
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chaonan Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bo Tu
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Minjie Yao
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
26
|
Microbial Community Composition in Municipal Wastewater Treatment Bioreactors Follows a Distance Decay Pattern Primarily Controlled by Environmental Heterogeneity. mSphere 2021; 6:e0064821. [PMID: 34668755 PMCID: PMC8527990 DOI: 10.1128/msphere.00648-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding spatiotemporal patterns in microbial community composition is a central goal of microbial ecology. The objective of this study was to better understand the biogeography of activated sludge microbial communities, which are important for the protection of surface water quality. Monthly samples were collected from 20 facilities (25 bioreactors) within 442 km of each other for 1 year. Microbial community composition was characterized by sequencing of PCR-amplified 16S rRNA gene fragments. Statistically significant distance decay of community similarity was observed in these bioreactors independent of clustering method (operational taxonomic units [OTUs] at 97% similarity, genus-level phylotypes) and community dissimilarity metric (Sørensen, Bray-Curtis, and weighted Unifrac). Universal colonizers (i.e., detected in all samples) and ubiquitous genus-level phylotypes (i.e., detected in every facility at least once) also exhibited a significant distance decay relationship. Variation partitioning analysis of community composition showed that environmental characteristics (temperature, influent characteristics, etc.) explained more of the variance in community composition than geographic distance did, suggesting that environmental heterogeneity is more important than dispersal limitation as a mechanism for determining microbial community composition. Distance decay relationships also became stronger with increasing distance between facilities. Seasonal variation in community composition was also observed from selected bioreactors, but there was no clear seasonal pattern in the distance decay relationships. IMPORTANCE Understanding the spatiotemporal patterns of biodiversity is a central goal of ecology. The distance decay of community similarity is one of the spatial scaling patterns observed in many forms of life, including plants, animals, and microbial communities. Municipal wastewater treatment relies on microorganisms to prevent the release of excessive quantities of nutrients and other pollutants, but relatively few studies have explored distance decay relationships in wastewater treatment bioreactors. Our results demonstrate a strong distance decay pattern in wastewater treatment bioreactors, regardless of the sequence clustering method or the community dissimilarity metric. Our results suggest that microbial communities in wastewater treatment bioreactors are not randomly assembled but rather exhibit a statistically significant spatial pattern.
Collapse
|
27
|
Mungroo MR, Khan NA, Maciver S, Siddiqui R. Opportunistic free-living amoebal pathogens. Pathog Glob Health 2021; 116:70-84. [PMID: 34602025 DOI: 10.1080/20477724.2021.1985892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Pathogenic free-living amoebae affecting the central nervous system are known to cause granulomatous amoebic encephalitis (GAE) or primary amoebic meningoencephalitis (PAM). Although hosts with impaired immunity are generally at a higher risk of severe disease, amoebae such as Naegleria fowleri and Balamuthia mandrillaris can instigate disease in otherwise immunocompetent individuals, whereas Acanthamoeba species mostly infect immunocompromised people. Acanthamoeba also cause a sight-threatening eye infection, mostly in contact lens wearers. Although infections due to pathogenic amoebae are considered rare, recently, these deadly amoebae were detected in water supplies in the USA. This is of particular concern, especially with global warming further exacerbating the problem. Herein, we describe the epidemiology, presentation, diagnosis, and management of free-living amoeba infections.
Collapse
Affiliation(s)
- Mohammad Ridwane Mungroo
- Department of Clinical Sciences, College of Medicine, University City, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University City, Sharjah, United Arab Emirates.,Research Institute of Health and Medical Sciences, University of Sharjah, Sharjah, UAE
| | - Sutherland Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| |
Collapse
|
28
|
Rozanov AS, Korzhuk AV, Shekhovtsov SV, Vasiliev GV, Peltek SE. Microorganisms of Two Thermal Pools on Kunashir Island, Russia. BIOLOGY 2021; 10:924. [PMID: 34571800 PMCID: PMC8468003 DOI: 10.3390/biology10090924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Abstract
The Kuril Archipelago is a part of the Circum-Pacific Belt (Ring of Fire). These islands have numerous thermal springs. There are very few studies on these microbial communities, and none of them have been conducted by modern molecular biological methods. Here we performed the first metagenomic study on two thermophilic microbial communities of Kunashir Island. Faust Lake is hot (48 °C) and highly acidic (pH 2.0). We constructed 28 metagenome-assembled genomes as well as 17 16S ribosomal RNA sequences. We found that bottom sediments of Faust Lake are dominated by a single species of red algae belonging to the Cyanidiaceae family. Archaeans in Faust Lake are more diverse than bacteria but less abundant. The Tretyakovsky Thermal Spring is also hot (52 °C) but only weakly acidic (pH 6.0). It has much higher microbial diversity (233 metagenome-assembled genomes; 93 16S ribosomal RNAs) and is dominated by bacteria, with only several archaeans and one fungus. Despite their geographic proximity, these two thermal springs were found to not share any species. A comparison of these two lakes with other thermal springs of the Circum-Pacific Belt revealed that only a few members of the communities are shared among different locations.
Collapse
Affiliation(s)
- Aleksei S. Rozanov
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia; (S.V.S.); (G.V.V.); (S.E.P.)
| | - Anton V. Korzhuk
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia; (S.V.S.); (G.V.V.); (S.E.P.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergei V. Shekhovtsov
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia; (S.V.S.); (G.V.V.); (S.E.P.)
| | - Gennady V. Vasiliev
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia; (S.V.S.); (G.V.V.); (S.E.P.)
| | - Sergei E. Peltek
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia; (S.V.S.); (G.V.V.); (S.E.P.)
| |
Collapse
|
29
|
Nelson JM, Hauser DA, Li FW. The diversity and community structure of symbiotic cyanobacteria in hornworts inferred from long-read amplicon sequencing. AMERICAN JOURNAL OF BOTANY 2021; 108:1731-1744. [PMID: 34533221 DOI: 10.1002/ajb2.1729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Nitrogen-fixing endosymbioses with cyanobacteria have evolved independently in five very different plant lineages. Expanding knowledge of these symbioses promises to improve the understanding of symbiosis evolution and broaden the toolkit for agricultural engineering to reduce artificial fertilizer use. Here we focused on hornworts, a bryophyte lineage in which all members host cyanobacteria, and investigated factors shaping the diversity of their cyanobiont communities. METHODS We sampled hornworts and adjacent soils in upstate New York throughout the hornwort growing season. We included all three sympatric hornwort species in the area, allowing us to directly compare partner selectivity. To profile cyanobacteria communities, we established a metabarcoding protocol targeting rbcL-X with PacBio long reads. RESULTS The hornwort cyanobionts detected were phylogenetically diverse, including clades that do not contain other known plant symbionts. We found significant overlap between hornwort cyanobionts and soil cyanobacteria, a pattern not previously reported in other plant-cyanobacteria symbioses. Cyanobiont communities differed between host plants only centimeters apart, but we did not detect an effect of sampling time or host species on the cyanobacterial community structure. CONCLUSIONS This study expands the phylogenetic diversity of known symbiotic cyanobacteria. Our analyses suggest that hornwort cyanobionts have a tight connection to the soil background, and we found no evidence that time within growing season, host species, or distance at the scale of meters strongly govern cyanobacteria community assembly. This study provides a critical foundation for further study of the ecology, evolution, and interaction dynamics of plant-cyanobacteria symbiosis.
Collapse
Affiliation(s)
| | | | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| |
Collapse
|
30
|
Abstract
Wastewater treatment plants are engineering technologies used worldwide to protect the environment and human health. Microbial communities sustain these plants, so it is crucial to know the key factors responsible for the community assembly. We show, in contrast to existing understanding, that microbial immigration largely controls the community structure in these plants and that the fate (growth or death) of immigrating species in the plants is controlled by local factors. The community structure was quantitatively predicted by the immigrating microbial community, highlighting the need to revise the way we today understand, design, and manage microbial communities in wastewater treatment plants. The assembly of bacterial communities in wastewater treatment plants (WWTPs) is affected by immigration via wastewater streams, but the impact and extent of bacterial immigrants are still unknown. Here, we quantify the effect of immigration at the species level in 11 Danish full-scale activated sludge (AS) plants. All plants have different source communities but have very similar process design, defining the same overall environmental growth conditions. The AS community composition in each plant was strongly reflected by the corresponding influent wastewater (IWW) microbial composition. Most species in AS across the plants were detected and quantified in the corresponding IWW, allowing us to identify their fate in the AS: growing, disappearing, or surviving. Most of the abundant species in IWW disappeared in AS, so their presence in the AS biomass was only due to continuous mass-immigration. In AS, most of the abundant growing species were present in the IWW at very low abundances. We predicted the AS species abundances from their abundance in IWW by using a partial least square regression model. Some species in AS were predicted by their own abundance in IWW, while others by multiple species abundances. Detailed analyses of functional guilds revealed different prediction patterns for different species. We show, in contrast to the present understanding, that the AS microbial communities were strongly controlled by the IWW source community and could be quantitatively predicted by taking into account immigration. This highlights a need to revise the way we understand, design, and manage the microbial communities in WWTPs.
Collapse
|
31
|
Microeukaryotic Communities on the Fruit of Gardenia thunbergia Thunb. with a Focus on Pathogenic Fungi. Pathogens 2021; 10:pathogens10050555. [PMID: 34064327 PMCID: PMC8147784 DOI: 10.3390/pathogens10050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/24/2022] Open
Abstract
Woody fruit which stay on ornamental plants for a long time may present a risk of infection to other organisms due to the presence of pathogens on their surface. We compared the microbe communities on the fruit surfaces of garden ornamental Gardenia thunbergia Thunb. with those on other surfaces in the study region. As Gardenia fruit contain antifungal substances, the focus of this study was on the fungal communities that exist thereon. We used Illumina sequencing to identify Amplicon Sequence Variants (ASV) of the internal transcribed spacer 2 (ITS2) of the ribosomal RNA. The microbial communities of the Gardenia fruit are distinct from the communities from the surrounding environments, indicating a specialized microhabitat. We employed clustering methods to position unidentified ASVs relative to known ASVs. We identified a total of 56 ASVs representing high risk fungal species as putative plant pathogens exclusively found on the fruit of Gardenia. Additionally, we found several ASVs representing putative animal or human pathogens. Those pathogens were distributed over distinct fungi clades. The infection risk of the high diversity of putative pathogens represented on the Gardenia fruit needs to be elucidated in further investigations.
Collapse
|
32
|
Frühe L, Dully V, Forster D, Keeley NB, Laroche O, Pochon X, Robinson S, Wilding TA, Stoeck T. Global Trends of Benthic Bacterial Diversity and Community Composition Along Organic Enrichment Gradients of Salmon Farms. Front Microbiol 2021; 12:637811. [PMID: 33995296 PMCID: PMC8116884 DOI: 10.3389/fmicb.2021.637811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
The analysis of benthic bacterial community structure has emerged as a powerful alternative to traditional microscopy-based taxonomic approaches to monitor aquaculture disturbance in coastal environments. However, local bacterial diversity and community composition vary with season, biogeographic region, hydrology, sediment texture, and aquafarm-specific parameters. Therefore, without an understanding of the inherent variation contained within community complexes, bacterial diversity surveys conducted at individual farms, countries, or specific seasons may not be able to infer global universal pictures of bacterial community diversity and composition at different degrees of aquaculture disturbance. We have analyzed environmental DNA (eDNA) metabarcodes (V3-V4 region of the hypervariable SSU rRNA gene) of 138 samples of different farms located in different major salmon-producing countries. For these samples, we identified universal bacterial core taxa that indicate high, moderate, and low aquaculture impact, regardless of sampling season, sampled country, seafloor substrate type, or local farming and environmental conditions. We also discuss bacterial taxon groups that are specific for individual local conditions. We then link the metabolic properties of the identified bacterial taxon groups to benthic processes, which provides a better understanding of universal benthic ecosystem function(ing) of coastal aquaculture sites. Our results may further guide the continuing development of a practical and generic bacterial eDNA-based environmental monitoring approach.
Collapse
Affiliation(s)
- Larissa Frühe
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Verena Dully
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Dominik Forster
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Nigel B Keeley
- Biosecurity, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Institute of Marine Research, Bergen, Norway
| | - Olivier Laroche
- Biosecurity, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Xavier Pochon
- Biosecurity, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Shawn Robinson
- St. Andrews Biological Station, Department of Fisheries and Oceans, St. Andrews, NB, Canada
| | | | - Thorsten Stoeck
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
33
|
Zhang C, Du XP, Zeng YH, Zhu JM, Zhang SJ, Cai ZH, Zhou J. The communities and functional profiles of virioplankton along a salinity gradient in a subtropical estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143499. [PMID: 33203567 DOI: 10.1016/j.scitotenv.2020.143499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Viruses are the major drivers shaping microorganismal communities, and impact marine biogeochemical cycling. They are affected by various environmental parameters, such as salinity. Although the spatiotemporal distribution and dynamics of virioplankton have been extensively studied in saline environments, few detailed studies of community structure and function of viruses along salinity gradients have been conducted. Here, we used the 16S and 18S rRNA gene amplicon and metagenomic sequencing from a subtropical estuary (Pearl River Estuary, PRE; located in Shenzhen, Guangdong Province, China) to explore how viral community composition and function vary along a salinity gradient. Results showed that the detected viruses were mainly bacteriophages. The double-stranded DNA viruses were the most abundant (especially Siphoviridae, Myoviridae, Mimiviridae, Phycodnaviridae, and Podoviridae), followed by a small number of single-stranded DNA (Circoviridae) and RNA (Retroviridae) viruses. Viral biodiversity significantly declined and community structure varied greatly along the salinity gradient. The salinity, ammonium and dissolved oxygen were dominated factors influencing the community composition of viruses. Association network analysis showed that viruses had a negative effect on multiple host taxa (prokaryotic and eukaryotic species). Metagenomic data revealed that the main viral functional potential was involved in organic matter metabolism by carbohydrate-active enzymes (CAZymes). Deeper comparative functional analyses showed that viruses in the low-salinity environment had more carbohydrate-binding module and glycosidase hydrolases activities than those under high-salinity conditions. However, an opposite pattern was observed for carbohydrate esterases. These results suggest that virus-encoded CAZyme genes may alter the bacterial metabolism in estuaries. Overall, our results demonstrate that there is a spatial heterogeneity in the composition and function of virioplankton along a salinity gradient. This study enhances our understanding of viral distribution and their contribution to regulating carbon degradation throughout environments with varying salinities in subtropical estuaries.
Collapse
Affiliation(s)
- Chen Zhang
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; The School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu Province, PR China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Sheng-Jie Zhang
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
34
|
Del Moral Á, Garrido-Benavent I, Durán J, Lehmann JR, Rodríguez A, Heiðmarsson S, de Los Ríos A. Are recently deglaciated areas at both poles colonised by the same bacteria? FEMS Microbiol Lett 2021; 368:6122588. [PMID: 33507249 DOI: 10.1093/femsle/fnab011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Polar glacier forefields offer an unprecedented framework for studying community assembly processes in regions that are geographically and climatically isolated. Through amplicon sequence variant (ASV) inference, we compared the composition and structure of soil bacterial communities from glacier forefields in Iceland and Antarctica to assess overlap between communities and the impact of established cryptogamic covers on the uniqueness of their taxa. These pioneer microbial communities were found to share only 8% of ASVs and each taxonomic group's contribution to the shared ASV data subset was heterogeneous and independent of their relative abundance. Although the presence of ASVs specific to one glacier forefield and/or different cryptogam cover values confirms the existence of habitat specialist bacteria, our data show that the influence of cryptogams on the edaphic bacterial community structure also varied also depending on the taxonomic group. Hence, the establishment of distinct cryptogamic covers is probably not the only factor driving the uniqueness of bacterial communities at both poles. The structure of bacterial communities colonising deglaciated areas seems also conditioned by lineage-specific limitations in their dispersal capacity and/or their establishment and persistence in these isolated and hostile regions.
Collapse
Affiliation(s)
- Álvaro Del Moral
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, Serrano 115 dpdo, E-28006 Madrid, Spain.,AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, STEM Faculty, The Open University, Walton Hall, Kents Hill, MK7 6AA, Milton Keynes, UK
| | - Isaac Garrido-Benavent
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, Serrano 115 dpdo, E-28006 Madrid, Spain
| | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calzada Martin de Freitas, 3000-456 Coimbra, Portugal
| | - Jan R Lehmann
- Remote Sensing and Spatial Modelling, Institute of Landscape Ecology, University of Münster, Heisenbergstrasse 2, 48149 Münster, Germany
| | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calzada Martin de Freitas, 3000-456 Coimbra, Portugal
| | - Starri Heiðmarsson
- Icelandic Institute of Natural History, Borgir vio Noroursloo 600-Akureyri, Iceland
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, Serrano 115 dpdo, E-28006 Madrid, Spain
| |
Collapse
|
35
|
Higgins P, Grace CA, Lee SA, Goddard MR. Whole-genome sequencing from the New Zealand Saccharomyces cerevisiae population reveals the genomic impacts of novel microbial range expansion. G3-GENES GENOMES GENETICS 2021; 11:6044130. [PMID: 33561237 PMCID: PMC7849907 DOI: 10.1093/g3journal/jkaa027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/23/2020] [Indexed: 11/14/2022]
Abstract
Saccharomyces cerevisiae is extensively utilized for commercial fermentation, and is also an important biological model; however, its ecology has only recently begun to be understood. Through the use of whole-genome sequencing, the species has been characterized into a number of distinct subpopulations, defined by geographical ranges and industrial uses. Here, the whole-genome sequences of 104 New Zealand (NZ) S. cerevisiae strains, including 52 novel genomes, are analyzed alongside 450 published sequences derived from various global locations. The impact of S. cerevisiae novel range expansion into NZ was investigated and these analyses reveal the positioning of NZ strains as a subgroup to the predominantly European/wine clade. A number of genomic differences with the European group correlate with range expansion into NZ, including 18 highly enriched single-nucleotide polymorphism (SNPs) and novel Ty1/2 insertions. While it is not possible to categorically determine if any genetic differences are due to stochastic process or the operations of natural selection, we suggest that the observation of NZ-specific copy number increases of four sugar transporter genes in the HXT family may reasonably represent an adaptation in the NZ S. cerevisiae subpopulation, and this correlates with the observations of copy number changes during adaptation in small-scale experimental evolution studies.
Collapse
Affiliation(s)
- Peter Higgins
- The School of Life Sciences, College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Cooper A Grace
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.,Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Soon A Lee
- The School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Matthew R Goddard
- The School of Life Sciences, College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.,The School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
36
|
Vieira DC, Gallucci F, Corte GN, Checon HH, Zacagnini Amaral AC, Fonseca G. The relative contribution of non-selection and selection processes in marine benthic assemblages. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105223. [PMID: 33302155 DOI: 10.1016/j.marenvres.2020.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
We tested the hypothesis that the ubiquity of marine meiofaunal nematodes and their indiscriminate passive dispersal create assemblages that are less limited by its environment; whereas the relatively smaller population sizes of macrofauna, associated with their ability to track environmental conditions before settlement, renders their distribution more environmentally-restricted. We compared the empirical distribution of macrofauna and nematode species with that of communities simulated under different assumptions of selection (e.g. environmental filtering) and non-selection (e.g. dispersal limitation) processes. Selection processes were the prime driver of both meio- and macrofauna assemblages, with rare species strongly contributing to this component. The total number of species explained by non-selection processes was 27% higher in nematodes than in macrofauna. Our results underline the importance of a species-level approach to determine the contribution of selection and non-selection assembly processes. Moreover, they highlight the important yet overlooked role of dispersal and stochastic processes in determining species dynamics.
Collapse
Affiliation(s)
- Danilo Cândido Vieira
- Centro de Estudos Do Mar - Universidade Federal Do Paraná - Caixa Postal 50.002, 83255-000, Pontal Do Paraná, PR, Brazil; Universidade Federal de São Paulo, Av. Dona Ana Costa, 95 - CEP, 11060-001, Santos, SP, Brazil.
| | - Fabiane Gallucci
- Universidade Federal de São Paulo, Av. Dona Ana Costa, 95 - CEP, 11060-001, Santos, SP, Brazil
| | - Guilherme Nascimento Corte
- Instituto Oceanográfico, Universidade de São Paulo, Praça Do Oceanográfico, 191, São Paulo, SP - CEP, 05508-120, Brazil; Instituto de Biologia, Universidade Estadual de Campinas - Cidade Universitária "Zeferino Vaz", CEP, 13083-970, Campinas, SP, Brazil; Escola Do Mar, Ciência e Tecnologia, Universidade Do Vale Do Itajaí - Rua Uruguai, 458 - CEP 88, 302-202, Itajaí, SC, Brazil
| | - Helio Herminio Checon
- Instituto Oceanográfico, Universidade de São Paulo, Praça Do Oceanográfico, 191, São Paulo, SP - CEP, 05508-120, Brazil; Instituto de Biologia, Universidade Estadual de Campinas - Cidade Universitária "Zeferino Vaz", CEP, 13083-970, Campinas, SP, Brazil
| | - Antônia Cecília Zacagnini Amaral
- Instituto de Biologia, Universidade Estadual de Campinas - Cidade Universitária "Zeferino Vaz", CEP, 13083-970, Campinas, SP, Brazil
| | - Gustavo Fonseca
- Universidade Federal de São Paulo, Av. Dona Ana Costa, 95 - CEP, 11060-001, Santos, SP, Brazil
| |
Collapse
|
37
|
Vassileva M, Malusá E, Eichler-Löbermann B, Vassilev N. Aspegillus terreus: From Soil to Industry and Back. Microorganisms 2020; 8:microorganisms8111655. [PMID: 33113865 PMCID: PMC7692665 DOI: 10.3390/microorganisms8111655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Aspergillus terreus is an important saprophytic filamentous fungus that can be found in soils. Like many other soil microorganisms, A. terreus demonstrates multiple functions and offers various important metabolites, which can be used in different fields of human activity. The first application of A. terreus on an industrial level is the production of itaconic acid, which is now considered as one of the most important bioproducts in the Green Chemistry field. The general schemes for itaconic acid production have been studied, but in this mini-review some lines of future research are presented based on analysis of the published results. A. terreus is also intensively studied for its biocontrol activity and plant growth-promoting effect. However, this microorganism is also known to infect important crops such as, amongst others, rice, wheat, potato, sugar cane, maize, and soybean. It was suggested, however, that the balance between positive vs. negative effects is dependent on the soil-plant-inoculant dose system. A. terreus has frequently been described as an important human pathogen. Therefore, its safety manipulation in biotechnological processes for the production of itaconic acid and some drugs and its use in soil-plant systems should be carefully assessed. Some suggestions in this direction are discussed, particularly concerning the uses in crop production.
Collapse
Affiliation(s)
- Maria Vassileva
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain;
| | - Eligio Malusá
- Research Institute of Horticulture, 96-101 Skierniewice, Poland;
- CREA—Research Centre for Viticulture and Enology, via XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Bettina Eichler-Löbermann
- Institute of Land Use, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18051 Rostock, Germany;
| | - Nikolay Vassilev
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain;
- Institute of Biotechnology, University of Granada, 18071 Granada, Spain
- Correspondence:
| |
Collapse
|
38
|
Abstract
Global change is pressing forest pathologists to solve increasingly complex problems. We argue that understanding interactive effects between forest pathogens and global warming, globalization, and land-use changes may benefit from a functional ecology mindset. Traits can be more informative about ecological functions than species inventories and may deliver a more mechanistic description of forest disease. Myriad microbes with pathogenic potential interact with forest ecosystems at different organizational levels. Elucidation of functional traits may enable the microbial complexity to be reduced into manageable categories with predictive power. In this review, we propose guidelines that allow the research community to develop a functional forest pathology approach. We suggest new angles by which functional questions can be used to resolve burning issues on tree disease. Building up functional databases for pathogenicity is key to implementing these approaches.
Collapse
Affiliation(s)
- Jonàs Oliva
- Department of Crop and Forest Sciences, University of Lleida, 25198 Lleida, Spain
- Joint Research Unit CTFC-Agrotecnio, 25198 Lleida, Spain
| | - Miguel Ángel Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden;
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden;
| |
Collapse
|
39
|
Gilbert KJ, Bittleston LS, Naive MAK, Kiszewski AE, Buenavente PAC, Lohman DJ, Pierce NE. Investigation of an Elevational Gradient Reveals Strong Differences Between Bacterial and Eukaryotic Communities Coinhabiting Nepenthes Phytotelmata. MICROBIAL ECOLOGY 2020; 80:334-349. [PMID: 32291478 PMCID: PMC7371667 DOI: 10.1007/s00248-020-01503-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/25/2020] [Indexed: 05/24/2023]
Abstract
Elevation is an important determinant of ecological community composition. It integrates several abiotic features and leads to strong, repeatable patterns of community structure, including changes in the abundance and richness of numerous taxa. However, the influence of elevational gradients on microbes is understudied relative to plants and animals. To compare the influence of elevation on multiple taxa simultaneously, we sampled phytotelm communities within a tropical pitcher plant (Nepenthes mindanaoensis) along a gradient from 400 to 1200 m a.s.l. We use a combination of metabarcoding and physical counts to assess diversity and richness of bacteria, micro-eukaryotes, and arthropods, and compare the effect of elevation on community structure to that of regulation by a number of plant factors. Patterns of community structure differed between bacteria and eukaryotes, despite their living together in the same aquatic microhabitats. Elevation influences community composition of eukaryotes to a significantly greater degree than it does bacteria. When examining pitcher characteristics, pitcher dimorphism has an effect on eukaryotes but not bacteria, while variation in pH levels strongly influences both taxa. Consistent with previous ecological studies, arthropod abundance in phytotelmata decreases with elevation, but some patterns of abundance differ between living inquilines and prey.
Collapse
Affiliation(s)
- Kadeem J Gilbert
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA.
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA, 16802, USA.
| | - Leonora S Bittleston
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-290, Cambridge, MA, 02139, USA
- Department of Biological Sciences, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| | - Mark Arcebal K Naive
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Andres Bonifacio Ave, 9200, Iligan, Lanao del Norte, Philippines
| | - Anthony E Kiszewski
- Department of Natural and Applied Sciences, Bentley University, 175 Forest Street, Waltham, MA, 02452, USA
| | | | - David J Lohman
- Entomology Section, National Museum of Natural History, Manila, Philippines
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
| |
Collapse
|
40
|
Angell IL, Rudi K. A game theory model for gut bacterial nutrient utilization strategies during human infancy. Proc Biol Sci 2020; 287:20200824. [PMID: 32673553 PMCID: PMC7423673 DOI: 10.1098/rspb.2020.0824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the fact that infant gut colonization patterns have been extensively studied, we have limited knowledge about the underlying ecological processes. This particularly relates to the ecological choice of nutrient utilization strategies. The aim of the current study was therefore to compare empirically determined nutrient utilization strategies with that expected from a combinatorial game theory model. Observational analyses for 100 mother-child pairs suggested mother-child transmission of specialists with the potential to use few nutrients. Generalists, on the other hand, with the potential to use many nutrients, peaked at three months of age for the children. The level of generalists was gradually replaced with specialists up to 12 months of age. Game theory simulation revealed a competitive advantage of generalists in an expanding population, while more specialized bacteria were favoured with the maturation of the population. This suggests that the observed increase in generalists in the three-month-old children could be due to an immature, expanding gut microbiota population while the increase of specialists at 12 months could be due to population maturation. The simulated and empirical data also correspond with respect to an increased α diversity and a decreased β diversity with the number of simulations and age, respectively. Taken together, game theory simulation of nutrient utilization strategies can therefore provide novel insight into the maturation of the human gut microbiota during infancy.
Collapse
Affiliation(s)
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
41
|
Lehtinen S, Chewapreecha C, Lees J, Hanage WP, Lipsitch M, Croucher NJ, Bentley SD, Turner P, Fraser C, Mostowy RJ. Horizontal gene transfer rate is not the primary determinant of observed antibiotic resistance frequencies in Streptococcus pneumoniae. SCIENCE ADVANCES 2020; 6:eaaz6137. [PMID: 32671212 PMCID: PMC7314567 DOI: 10.1126/sciadv.aaz6137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
The extent to which evolution is constrained by the rate at which horizontal gene transfer (HGT) allows DNA to move between genetic lineages is an open question, which we address in the context of antibiotic resistance in Streptococcus pneumoniae. We analyze microbiological, genomic, and epidemiological data from the largest-to-date sequenced pneumococcal carriage study in 955 infants from a refugee camp on the Thailand-Myanmar border. Using a unified framework, we simultaneously test prior hypotheses on rates of HGT and a key evolutionary covariate (duration of carriage) as determinants of resistance frequencies. We conclude that in this setting, there is little evidence of HGT playing a major role in determining resistance frequencies. Instead, observed resistance frequencies are best explained as the outcome of selection acting on a pool of variants, irrespective of the rate at which resistance determinants move between genetic lineages.
Collapse
Affiliation(s)
- Sonja Lehtinen
- Big Data Institute, University of Oxford, Oxford, UK
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Claire Chewapreecha
- Wellcome Sanger Institute, Hinxton, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - John Lees
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nicholas J. Croucher
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Rafał J. Mostowy
- Big Data Institute, University of Oxford, Oxford, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
42
|
Sheth SN, Morueta-Holme N, Angert AL. Determinants of geographic range size in plants. THE NEW PHYTOLOGIST 2020; 226:650-665. [PMID: 31901139 DOI: 10.1111/nph.16406] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Geographic range size has long fascinated ecologists and evolutionary biologists, yet our understanding of the factors that cause variation in range size among species and across space remains limited. Not only does geographic range size inform decisions about the conservation and management of rare and nonindigenous species due to its relationship with extinction risk, rarity, and invasiveness, but it also provides insights into fundamental processes such as dispersal and adaptation. There are several features unique to plants (e.g. polyploidy, mating system, sessile habit) that may lead to distinct mechanisms explaining variation in range size. Here, we highlight key studies testing intrinsic and extrinsic hypotheses about geographic range size under contrasting scenarios where species' ranges are static or change over time. We then present results from a meta-analysis of the relative importance of commonly hypothesized determinants of range size in plants. We show that our ability to infer the relative importance of these determinants is limited, particularly for dispersal ability, mating system, ploidy, and environmental heterogeneity. We highlight avenues for future research that merge approaches from macroecology and evolutionary ecology to better understand how adaptation and dispersal interact to facilitate niche evolution and range expansion.
Collapse
Affiliation(s)
- Seema Nayan Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Naia Morueta-Holme
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Amy L Angert
- Departments of Botany and Zoology and Biodiversity Research Centre, University of British Columbia, 3520-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
43
|
Li J, Gu X, Gui Y. Prokaryotic Diversity and Composition of Sediments From Prydz Bay, the Antarctic Peninsula Region, and the Ross Sea, Southern Ocean. Front Microbiol 2020; 11:783. [PMID: 32411115 PMCID: PMC7198716 DOI: 10.3389/fmicb.2020.00783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The V3–V4 hypervariable regions of the 16S ribosomal RNA gene were analyzed to assess prokaryotic diversity and community compositions within 19 surface sediment samples collected from three different regions (depth: 250–3,548 m) of Prydz Bay, the Antarctic Peninsula region, and the Ross Sea. In our results, we characterized 1,079,709 clean tag sequences representing 43,227 operational taxonomic units (OTUs, 97% similarity). The prokaryotic community distribution exhibited obvious geographical differences, and the sequences formed three distinct clusters according to the samples’ origins. In general, the biodiversity of Prydz Bay was higher than those of the Antarctic Peninsula region and the Ross Sea, and there were similar prokaryotic communities in different geographic locations. The most dominant clades in the prokaryotic communities were Proteobacteria, Bacteroidetes, Thaumarchaeota, Oxyphotobacteria, Deinococcus-Thermus, Firmicutes, Acidobacteria, Fusobacteria, and Planctomycetes, but unique prokaryotic community compositions were found in each of the sampling regions. Our results also demonstrated that the prokaryotic diversity and community distribution were mainly influenced by geographical and physicochemical factors, such as Zn, V, Na, K, water depth, and especially geographical distance (longitude variation of sample location) and Ba ion content. Moreover, geochemical factors such as nutrient contents (TC, P, and Ca) also played important roles in prokaryotic diversity and community distribution. This represents the first report that Ba ion content has an obvious effect on prokaryotic diversity and community distribution in Southern Ocean sediments.
Collapse
Affiliation(s)
- Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Ministry of Natural Resources (MNR) Key Lab for Science & Technology of Marine Ecosystems, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xiaoqian Gu
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Ministry of Natural Resources (MNR) Key Lab for Science & Technology of Marine Ecosystems, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yuanyuan Gui
- College of Environmental Science and Engineering Qingdao University, Qingdao, China
| |
Collapse
|
44
|
Angell IL, Bergaust L, Hanssen JF, Aasen EM, Rudi K. Ecological Processes Affecting Long-Term Eukaryote and Prokaryote Biofilm Persistence in Nitrogen Removal from Sewage. Genes (Basel) 2020; 11:genes11040449. [PMID: 32326022 PMCID: PMC7230490 DOI: 10.3390/genes11040449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The factors affecting long-term biofilm stability in sewage treatment remain largely unexplored. We therefore analyzed moving bed bioreactors (MBBRs) biofilm composition and function two years apart from four reactors in a nitrogen-removal sewage treatment plant. Multivariate ANOVA revealed a similar prokaryote microbiota composition on biofilm carriers from the same reactors, where reactor explained 84.6% of the variance, and year only explained 1.5%. Eukaryotes showed a less similar composition with reactor explaining 56.8% of the variance and year 9.4%. Downstream effects were also more pronounced for eukaryotes than prokaryotes. For prokaryotes, carbon source emerged as a potential factor for deterministic assembly. In the two reactors with methanol as a carbon source, the bacterial genus Methylotenera dominated, with M. versatilis as the most abundant species. M. versatilis showed large lineage diversity. The lineages mainly differed with respect to potential terminal electron acceptor usage (nitrogen oxides and oxygen). Searches in the Sequence Read Archive (SRA) database indicate a global distribution of the M. versatilis strains, with methane-containing sediments as the main habitat. Taken together, our results support long-term prokaryote biofilm persistence, while eukaryotes were less persistent.
Collapse
|
45
|
Metaphylogenetic analysis of global sewage reveals that bacterial strains associated with human disease show less degree of geographic clustering. Sci Rep 2020; 10:3033. [PMID: 32080241 PMCID: PMC7033184 DOI: 10.1038/s41598-020-59292-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Knowledge about the difference in the global distribution of pathogens and non-pathogens is limited. Here, we investigate it using a multi-sample metagenomics phylogeny approach based on short-read metagenomic sequencing of sewage from 79 sites around the world. For each metagenomic sample, bacterial template genomes were identified in a non-redundant database of whole genome sequences. Reads were mapped to the templates identified in each sample. Phylogenetic trees were constructed for each template identified in multiple samples. The countries from which the samples were taken were grouped according to different definitions of world regions. For each tree, the tendency for regional clustering was determined. Phylogenetic trees representing 95 unique bacterial templates were created covering 4 to 71 samples. Varying degrees of regional clustering could be observed. The clustering was most pronounced for environmental bacterial species and human commensals, and less for colonizing opportunistic pathogens, opportunistic pathogens and pathogens. No pattern of significant difference in clustering between any of the organism classifications and country groupings according to income were observed. Our study suggests that while the same bacterial species might be found globally, there is a geographical regional selection or barrier to spread for individual clones of environmental and human commensal bacteria, whereas this is to a lesser degree the case for strains and clones of human pathogens and opportunistic pathogens.
Collapse
|
46
|
Fick SE, Day N, Duniway MC, Hoy‐Skubik S, Barger NN. Microsite enhancements for soil stabilization and rapid biocrust colonization in degraded drylands. Restor Ecol 2019. [DOI: 10.1111/rec.13071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephen E. Fick
- US Geological Survey Southwest Biological Science Center Moab UT U.S.A
- Department of Ecology and Evolutionary BiologyUniversity of Colorado Boulder CO U.S.A
| | - Natalie Day
- US Geological Survey Southwest Biological Science Center Moab UT U.S.A
| | | | - Sean Hoy‐Skubik
- US Geological Survey Southwest Biological Science Center Moab UT U.S.A
| | - Nichole N. Barger
- Department of Ecology and Evolutionary BiologyUniversity of Colorado Boulder CO U.S.A
| |
Collapse
|
47
|
Knight SJ, Karon O, Goddard MR. Small scale fungal community differentiation in a vineyard system. Food Microbiol 2019; 87:103358. [PMID: 31948613 DOI: 10.1016/j.fm.2019.103358] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 01/25/2023]
Abstract
Microbes influence the quality of agricultural commodities and contribute to their distinctive sensorial attributes. Increasingly studies have demonstrated not only differential geographic patterns in microbial communities and populations, but that these contribute to valuable regionally distinct agricultural product identities, the most well-known example being wine. However, little is understood about microbial geographic patterns at scales of less than 100 km. For wine, single vineyards are the smallest (and most valuable) scale at which wine is asserted to differ; however, it is unknown whether microbes play any role in agricultural produce differentiation at this scale. Here we investigate whether vineyard fungal communities and yeast populations driving the spontaneous fermentation of fruit from these same vineyards are differentiated using metagenomics and population genetics. Significant differentiation of fungal communities was revealed between four Central Otago (New Zealand) Pinot Noir vineyard sites. However, there was no vineyard demarcation between fermenting populations of S. cerevisiae. Overall, this provides evidence that vineyard microbiomes potentially contribute to vineyard specific attributes in wine. Understanding the scale at which microbial communities are differentiated, and how these communities influence food product attributes has direct economic implications for industry and could inform sustainable management practices that maintain and enhance microbial diversity.
Collapse
Affiliation(s)
- Sarah J Knight
- The School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand.
| | - Ophir Karon
- The School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Matthew R Goddard
- The School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand; The School of Life Sciences, The University of Lincoln, Lincoln, LN6 7DL, United Kingdom
| |
Collapse
|
48
|
Wainwright BJ, Zahn GL, Zushi J, Lee NLY, Ooi JLS, Lee JN, Huang D. Seagrass-associated fungal communities show distance decay of similarity that has implications for seagrass management and restoration. Ecol Evol 2019; 9:11288-11297. [PMID: 31641473 PMCID: PMC6802368 DOI: 10.1002/ece3.5631] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/18/2023] Open
Abstract
Marine fungal biodiversity remains vastly understudied, and even less is known of their biogeography and the processes responsible for driving these distributions in marine environments. We investigated the fungal communities associated with the seagrass Enhalus acoroides collected from Singapore and Peninsular Malaysia to test the hypothesis that fungal communities are homogeneous throughout the study area. Seagrass samples were separated into different structures (leaves, roots, and rhizomes), and a sediment sample was collected next to each plant. Amplicon sequencing of the fungal internal transcribed spacer 1 and subsequent analysis revealed significant differences in fungal communities collected from different locations and different structures. We show a significant pattern of distance decay, with samples collected close to each other having more similar fungal communities in comparison with those that are more distant, indicating dispersal limitations and/or differences in habitat type are contributing to the observed biogeographic patterns. These results add to our understanding of the seagrass ecosystem in an understudied region of the world that is also the global epicenter of seagrass diversity. This work has implications for seagrass management and conservation initiatives, and we recommend that fungal community composition be a consideration for any seagrass transplant or restoration programme.
Collapse
Affiliation(s)
- Benjamin J. Wainwright
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | | | - Joshua Zushi
- Biology DepartmentUtah Valley UniversityOremUTUSA
| | - Nicole Li Ying Lee
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Jillian Lean Sim Ooi
- Department of GeographyFaculty of Arts and Social SciencesUniversity of MalayaKuala LumpurMalaysia
| | - Jen Nie Lee
- Faculty of Science and Marine EnvironmentUniversity Malaysia TerengganuTerengganuMalaysia
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
- Tropical Marine Science InstituteNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
49
|
Craig RJ, Böndel KB, Arakawa K, Nakada T, Ito T, Bell G, Colegrave N, Keightley PD, Ness RW. Patterns of population structure and complex haplotype sharing among field isolates of the green algaChlamydomonas reinhardtii. Mol Ecol 2019; 28:3977-3993. [DOI: 10.1111/mec.15193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Rory J. Craig
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
| | - Katharina B. Böndel
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
- Institute of Plant Breeding, Seed Science and Population Genetics University of Hohenheim Stuttgart Germany
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
- Systems Biology Program Graduate School of Media and Governance Keio University Fujisawa Japan
| | - Takashi Nakada
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
- Systems Biology Program Graduate School of Media and Governance Keio University Fujisawa Japan
- Faculty of Environment and Information Sciences Yokohama National University Yokohama Japan
| | - Takuro Ito
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
- Systems Biology Program Graduate School of Media and Governance Keio University Fujisawa Japan
| | - Graham Bell
- Department of Biology McGill University Montreal QC Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Peter D. Keightley
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Rob W. Ness
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
| |
Collapse
|
50
|
A 1-Dimensional Sympagic–Pelagic–Benthic Transport Model (SPBM): Coupled Simulation of Ice, Water Column, and Sediment Biogeochemistry, Suitable for Arctic Applications. WATER 2019. [DOI: 10.3390/w11081582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Marine biogeochemical processes can strongly interact with processes occurring in adjacent ice and sediments. This is especially likely in areas with shallow water and frequent ice cover, both of which are common in the Arctic. Modeling tools are therefore required to simulate coupled biogeochemical systems in ice, water, and sediment domains. We developed a 1D sympagic–pelagic–benthic transport model (SPBM) which uses input from physical model simulations to describe hydrodynamics and ice growth and modules from the Framework for Aquatic Biogeochemical Models (FABM) to construct a user-defined biogeochemical model. SPBM coupled with a biogeochemical model simulates the processes of vertical diffusion, sinking/burial, and biogeochemical transformations within and between the three domains. The potential utility of SPBM is demonstrated herein with two test runs using modules from the European regional seas ecosystem model (ERSEM) and the bottom-redox model biogeochemistry (BROM-biogeochemistry). The first run simulates multiple phytoplankton functional groups inhabiting the ice and water domains, while the second simulates detailed redox biogeochemistry in the ice, water, and sediments. SPBM is a flexible tool for integrated simulation of ice, water, and sediment biogeochemistry, and as such may help in producing well-parameterized biogeochemical models for regions with strong sympagic–pelagic–benthic interactions.
Collapse
|