1
|
Lingadharini P, Maji D. Eco-sustainable point-of-care devices: Progress in paper and fabric based electrochemical and colorimetric biosensors. Talanta 2025; 285:127397. [PMID: 39700723 DOI: 10.1016/j.talanta.2024.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Monitoring real-time health conditions is a rinsing demand in a pandemic prone era. Wearable Point-of-Care (POC) devices with paper and fabric-based sensors are emerging as simple, low-cost, portable, and disposable analytical tools for development of green POC devices (GPOCDs). Capabilities of passive fluid transportation, compatibility with biochemical analytes, disposability and high degree of tunability using vivid device fabrication strategies enables development of highly sensitive and economically feasible POC sensors in particularly post COVID-19 pandemic outbreak. Herein we focus mainly on development of biosensors for testing body fluids in the last 5 years using microfluidic technique through electrochemical and colorimetric principle which forms the two most competing sensing techniques providing quantitative and qualitative assessment modalities respectively and forms almost 80 % of the diagnostic platform worldwide. Present review highlights use of these popular substrates as well as various fabrication strategies for realization of GPOCDs ranging from costly and highly sophisticated photolithography to low cost, non conventional techniques like use of correction ink or marker based devices to even novel pop-up/origami induced patterning techniques. Insights into the advancements in colorimetric technique like distance, count or even text based semi-quantitative read-out modality as a on-hand diagnostic information has also been provided. Finally, future outlooks with other interdisciplinary modalities like use of novel materials, incorporation of digital tools like artificial intelligence (AI), machine learning (ML) and strategies for sensitivity and reliability improvement of future GPOCDs have also been discussed.
Collapse
Affiliation(s)
- P Lingadharini
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India
| | - Debashis Maji
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Saweres-Argüelles C, Sánchez-Calvo A, Serrano-Pertierra E, Matos M, Blanco-López MC. Nanolabels for biosensors based on lateral flow immunoassays. Anal Chim Acta 2025; 1340:343597. [PMID: 39863307 DOI: 10.1016/j.aca.2024.343597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
The COVID-19 outbreak was an important turning point in the development of a new generation of biosensing technologies. The synergistic combination of an immunochromatographic test (lateral flow immunoassays, LFIA) and signal transducers provides enhanced sensitivity and the ability to quantify in the rapid tests. This is possible due to the variety of nanoparticles that can be used as reporter labels. In this review, we first present an overview on the principles of a LFIA and its different formats. We analyze cutting-edge work on these platforms based on different types of nanoparticles used as labels and on the highly sensitive transducers to which they can be coupled. The works discussed herein have a beneficial impact on the fields of clinical analysis, food safety or environmental control, thus highlighting the relevance of the biosensors. Last, we provide insights into the barriers that need to be overcome when designing laboratory prototypes accessible to the society.
Collapse
Affiliation(s)
- C Saweres-Argüelles
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - A Sánchez-Calvo
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - E Serrano-Pertierra
- Department of Biochemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - M Matos
- Department of Chemical and Environmental Engineering & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - M C Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain.
| |
Collapse
|
3
|
Sonwal S, Gupta VK, Shukla S, Umapathi R, Ghoreishian SM, Han S, Bajpai VK, Cho Y, Huh YS. Panoramic view of artificial fruit ripening agents sensing technologies and the exigency of developing smart, rapid, and portable detection devices: A review. Adv Colloid Interface Sci 2024; 331:103199. [PMID: 38909548 DOI: 10.1016/j.cis.2024.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
Recently, the availability of point-of-care sensor systems has led to the rapid development of smart and portable devices for the detection of hazardous analytes. The rapid flow of artificially ripened fruits into the market is associated with an elevated risk to human life, agriculture, and the ecosystem due to the use of artificial fruit ripening agents (AFRAs). Accordingly, there is a need for the development of "Point-of-care Sensors" to detect AFRAs due to several advantages, such as simple operation, promising detection mechanism, higher selectivity and sensitivity, compact, and portable. Traditional detection approaches are time-consuming and inappropriate for on-the-spot analyses. Presented comprehensive review aimed to reveal how such technology has systematically evolved over time (through conventional, advanced, and portable smart techniques) detection detect AFRA, till date. Moreover, focuses and highlights a framework of initiatives undertaken for technological advancements in the development of smart the portable detection techniques (kits) for the onsite detection of AFRAs in fruits with in-depth discussion over sensing mechanism and analytical performance of the sensing technology. Notably, colorimetric detection methods have the greatest potential for real-time monitoring of AFRA and its residues because they are easy to assemble, have a high level of selectivity and sensitivity, and can be read by the human eye independently. This study sought to differentiate between traditional credible strategies by presenting new prospects, perceptions, and challenges related to portable devices. This review provides systematic framework of advances in portable field recognition strategies for the on-spot AFRA detection in fruits and critical information for development of new paper-based portable sensors for fruit diagnostic sectors.
Collapse
Affiliation(s)
- Sonam Sonwal
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Shruti Shukla
- Department of Nanotechnology, North-Eastern Hill University (NEHU), East Khasi Hills, Shillong, Meghalaya 793022, India
| | - Reddicherla Umapathi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | | | - Soobin Han
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Vivek Kumar Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Youngjin Cho
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
4
|
Liang R, Fan A, Wang F, Niu Y. Optical lateral flow assays in early diagnosis of SARS-CoV-2 infection. ANAL SCI 2024; 40:1571-1591. [PMID: 38758251 DOI: 10.1007/s44211-024-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
So far, the 2019 novel coronavirus (COVID-19) is spreading widely worldwide. The early diagnosis of infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is essential to provide timely treatment and prevent its further spread. Lateral flow assays (LFAs) have the advantages of rapid detection, simple operation, low cost, ease of mass production, and no need for special devices and professional operators, which make them suitable for self-testing at home. This review focuses on the early diagnosis of SARS-CoV-2 infection based on optical LFAs including colorimetric, fluorescent (FL), chemiluminescent (CL), and surface-enhanced Raman scattering (SERS) LFAs for the detection of SARS-CoV-2 antigens and nucleic acids. The types of recognition components, detection modes used for antigen detection, labels employed in different optical LFAs, and strategies to improve the detection sensitivity of LFAs were reviewed. Meanwhile, LFAs coupled with different nucleic acid amplification techniques and CRISPR-Cas systems for the detection of SARS-CoV-2 nucleic acids were summarized. We hope this review provides research mentalities for developing highly sensitive LFAs that can be used in home self-testing for the early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, People's Republic of China.
| |
Collapse
|
5
|
Wang SJ, Gupta R, Benegal A, Avula R, Huang YY, Vahey MD, Chakrabarty RK, Pappu RV, Singamaneni S, Puthussery JV, King MR. A High-Avidity, Thermostable, and Low-Cost Synthetic Capture for Ultrasensitive Detection and Quantification of Viral Antigens and Aerosols. ACS Sens 2024; 9:3096-3104. [PMID: 38753414 DOI: 10.1021/acssensors.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Lateral flow assays (LFAs) are currently the most popular point-of-care diagnostics, rapidly transforming disease diagnosis from expensive doctor checkups and laboratory-based tests to potential on-the-shelf commodities. Yet, their sensitive element, a monoclonal antibody, is expensive to formulate, and their long-term storage depends on refrigeration technology that cannot be met in resource-limited areas. In this work, LCB1 affibodies (antibody mimetic miniproteins) were conjugated to bovine serum albumin (BSA) to afford a high-avidity synthetic capture (LCB1-BSA) capable of detecting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and virus like particles (VLPs). Substituting the monoclonal antibody 2B04 for LCB1-BSA (stable up to 60 °C) significantly improved the thermal stability, shelf life, and affordability of plasmonic-fluor-based LFAs (p-LFAs). Furthermore, this substitution significantly improved the sensitivity of p-LFAs toward the spike protein and VLPs with precise quantitative ability over 2 and 3 orders of magnitude, respectively. LCB1-BSA sensors could detect VLPs at 100-fold lower concentrations, and this improvement, combined with their robust nature, enabled us to develop an aerosol sampling technology to detect aerosolized viral particles. Synthetic captures like LCB1-BSA can increase the ultrasensitivity, availability, sustainability, and long-term accuracy of LFAs while also decreasing their manufacturing costs.
Collapse
Affiliation(s)
- Sean J Wang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ananya Benegal
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rohan Avula
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yin-Yuan Huang
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael D Vahey
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rajan K Chakrabarty
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Joseph V Puthussery
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Matthew R King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
6
|
Kumar S, Kaushal JB, Lee HP. Sustainable Sensing with Paper Microfluidics: Applications in Health, Environment, and Food Safety. BIOSENSORS 2024; 14:300. [PMID: 38920604 PMCID: PMC11202065 DOI: 10.3390/bios14060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
This manuscript offers a concise overview of paper microfluidics, emphasizing its sustainable sensing applications in healthcare, environmental monitoring, and food safety. Researchers have developed innovative sensing platforms for detecting pathogens, pollutants, and contaminants by leveraging the paper's unique properties, such as biodegradability and affordability. These portable, low-cost sensors facilitate rapid diagnostics and on-site analysis, making them invaluable tools for resource-limited settings. This review discusses the fabrication techniques, principles, and applications of paper microfluidics, showcasing its potential to address pressing challenges and enhance human health and environmental sustainability.
Collapse
Affiliation(s)
- Sanjay Kumar
- Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, Scott Campus, Omaha, NE 68182-0816, USA
| | - Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore;
| |
Collapse
|
7
|
Liu G, Wang J, Wang J, Cui X, Wang K, Chen M, Yang Z, Gao A, Shen Y, Zhang Q, Gao G, Cui D. Deep-learning assisted zwitterionic magnetic immunochromatographic assays for multiplex diagnosis of biomarkers. Talanta 2024; 273:125868. [PMID: 38458085 DOI: 10.1016/j.talanta.2024.125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Magnetic nanoparticle (MNP)-based immunochromatographic tests (ICTs) display long-term stability and an enhanced capability for multiplex biomarker detection, surpassing conventional gold nanoparticles (AuNPs) and fluorescence-based ICTs. In this study, we innovatively developed zwitterionic silica-coated MNPs (MNP@Si-Zwit/COOH) with outstanding antifouling capabilities and effectively utilised them for the simultaneous identification of the nucleocapsid protein (N protein) of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) and influenza A/B. The carboxyl-functionalised MNPs with 10% zwitterionic ligands (MNP@Si-Zwit 10/COOH) exhibited a wide linear dynamic detection range and the most pronounced signal-to-noise ratio when used as probes in the ICT. The relative limit of detection (LOD) values were achieved in 12 min by using a magnetic assay reader (MAR), with values of 0.0062 ng/mL for SARS-CoV-2 and 0.0051 and 0.0147 ng/mL, respectively, for the N protein of influenza A and influenza B. By integrating computer vision and deep learning to enhance the image processing of immunoassay results for multiplex detection, a classification accuracy in the range of 0.9672-0.9936 was achieved for evaluating the three proteins at concentrations of 0, 0.1, 1, and 10 ng/mL. The proposed MNP-based ICT for the multiplex diagnosis of biomarkers holds substantial promise for applications in both medical institutions and self-administered diagnostic settings.
Collapse
Affiliation(s)
- Guan Liu
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Junhao Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Jiulin Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Xinyuan Cui
- Radiology Department of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, PR China
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Mingrui Chen
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Ziyang Yang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Ang Gao
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Yulan Shen
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, PR China.
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China.
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China; National Engineering Research Center for Nanotechnology, Shanghai, 200241, PR China; Henan Medical School, Henan University, Henan, 475004, PR China.
| |
Collapse
|
8
|
Thongmee P, Ngernpimai S, Srichaiyapol O, Mongmonsin U, Teerasong S, Charoensri N, Wongwattanakul M, Lulitanond A, Kuwatjanakul W, Wonglakorn L, Kendal RP, Chompoosor A, Daduang J, Tippayawat P. The Evaluation of a Lateral Flow Strip Based on the Covalently Fixed "End-On" Orientation of an Antibody for Listeria monocytogenes Detection. Anal Chem 2024; 96:8543-8551. [PMID: 38748432 PMCID: PMC11140673 DOI: 10.1021/acs.analchem.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
In this study, the covalently fixed "end-on" orientation of a monoclonal Listeria monocytogenes antibody (mAb-Lis) to amino terminated oligo (ethylene glycol)-capped gold nanoparticles (NH2-TEG-AuNPs) was used to fabricate an in-house lateral flow strip (LFS), namely, the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS. The aim was to evaluate the performance of the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS in detecting L. monocytogenes. The proposed LFS enabled the sensitive detection of L. monocytogenes in 15 min with a visual limit of detection of 102 CFU/mL. Quantitative analysis indicated an LOD at 10 CFU/mL. The fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS showed no cross-reactivity with other pathogenic bacteria and practical performance across different food matrices, including human blood, milk, and mushroom samples. Furthermore, the clinical performance of the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS for detecting L. monocytogenes was evaluated by using 12 clinical samples validated by the hemoculture method. It demonstrated excellent concordance with the reference methods, with no false-positive or false-negative results observed. Therefore, the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS serves as a promising candidate for a point-of-care test (POCT), enabling the rapid, precise, and highly sensitive detection of L. monocytogenes in clinical samples and contaminated food.
Collapse
Affiliation(s)
- Patsara Thongmee
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawinee Ngernpimai
- Centre
for Innovation and Standard for Medical Technology and Physical Therapy,
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranee Srichaiyapol
- Centre
for Innovation and Standard for Medical Technology and Physical Therapy,
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Urairat Mongmonsin
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saowapak Teerasong
- Department
of Chemistry and Applied Analytical Chemistry Research Unit, School
of Science, King Mongkut’s Institute
of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nicha Charoensri
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Molin Wongwattanakul
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonlug Lulitanond
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Waewta Kuwatjanakul
- Clinical
Microbiology Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lumyai Wonglakorn
- Clinical
Microbiology Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Apiwat Chompoosor
- Department
of Chemistry and Centre of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Jureerut Daduang
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Tippayawat
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
9
|
Tekin YS, Kul SM, Sagdic O, Rodthongkum N, Geiss B, Ozer T. Optical biosensors for diagnosis of COVID-19: nanomaterial-enabled particle strategies for post pandemic era. Mikrochim Acta 2024; 191:320. [PMID: 38727849 PMCID: PMC11087243 DOI: 10.1007/s00604-024-06373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
The COVID-19 pandemic underlines the need for effective strategies for controlling virus spread and ensuring sensitive detection of SARS-CoV-2. This review presents the potential of nanomaterial-enabled optical biosensors for rapid and low-cost detection of SARS-CoV-2 biomarkers, demonstrating a comprehensive analysis including colorimetric, fluorescence, surface-enhanced Raman scattering, and surface plasmon resonance detection methods. Nanomaterials including metal-based nanomaterials, metal-organic frame-based nanoparticles, nanorods, nanoporous materials, nanoshell materials, and magnetic nanoparticles employed in the production of optical biosensors are presented in detail. This review also discusses the detection principles, fabrication methods, nanomaterial synthesis, and their applications for the detection of SARS-CoV-2 in four categories: antibody-based, antigen-based, nucleic acid-based, and aptamer-based biosensors. This critical review includes reports published in the literature between the years 2021 and 2024. In addition, the review offers critical insights into optical nanobiosensors for the diagnosis of COVID-19. The integration of artificial intelligence and machine learning technologies with optical nanomaterial-enabled biosensors is proposed to improve the efficiency of optical diagnostic systems for future pandemic scenarios.
Collapse
Affiliation(s)
- Yusuf Samil Tekin
- Department of Biomedical Engineering, Graduate Education Institute, Malatya Turgut Ozal University, 44210, Battalgazi, Malatya, Turkey
| | - Seyda Mihriban Kul
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Bangkok, 10330, Patumwan, Thailand
| | - Brian Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1019, USA.
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220, Istanbul, Turkey.
| |
Collapse
|
10
|
Xiao Y, Dong H, Wu C, Zhang K, Jiang X, Chen J, Wang H, Xu S, Zhang F, Gu L. Nanobody in a Double "Y"-Shaped Assembly: A Promising Candidate for Lateral Flow Immunoassays. Anal Chem 2024; 96:7130-7137. [PMID: 38679866 DOI: 10.1021/acs.analchem.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Derived from camelid heavy-chain antibodies, nanobodies (Nbs) are the smallest natural antibodies and are an ideal tool in biological studies because of their simple structure, high yield, and low cost. Nbs possess significant potential for developing highly specific and user-friendly diagnostic assays. Despite offering considerable advantages in detection applications, knowledge is limited regarding the exclusive use of Nbs in lateral flow immunoassay (LFIA) detection. Herein, we present a novel double "Y" architecture, achieved by using the SpyTag/SpyCatcher and Im7/CL7 systems. The double "Y" assemblies exhibited a significantly higher affinity for their epitopes, as particularly evident in the reduced dissociation rate. An LFIA employing double "Y" assemblies was effectively used to detect the severe acute respiratory syndrome coronavirus-2 N protein, with a detection limit of at least 500 pg/mL. This study helps broaden the array of tools available for the development of Nb-based diagnostic techniques.
Collapse
Affiliation(s)
- Yumeng Xiao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibaizhong Road, Jining 272033, P. R. China
| | - Cancan Wu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiaoqiong Jiang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Junyu Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| |
Collapse
|
11
|
Kim MJ, Haizan I, Ahn MJ, Park DH, Choi JH. Recent Advances in Lateral Flow Assays for Viral Protein Detection with Nanomaterial-Based Optical Sensors. BIOSENSORS 2024; 14:197. [PMID: 38667190 PMCID: PMC11048458 DOI: 10.3390/bios14040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Controlling the progression of contagious diseases is crucial for public health management, emphasizing the importance of early viral infection diagnosis. In response, lateral flow assays (LFAs) have been successfully utilized in point-of-care (POC) testing, emerging as a viable alternative to more traditional diagnostic methods. Recent advancements in virus detection have primarily leveraged methods such as reverse transcription-polymerase chain reaction (RT-PCR), reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and the enzyme-linked immunosorbent assay (ELISA). Despite their proven effectiveness, these conventional techniques are often expensive, require specialized expertise, and consume a significant amount of time. In contrast, LFAs utilize nanomaterial-based optical sensing technologies, including colorimetric, fluorescence, and surface-enhanced Raman scattering (SERS), offering quick, straightforward analyses with minimal training and infrastructure requirements for detecting viral proteins in biological samples. This review describes the composition and mechanism of and recent advancements in LFAs for viral protein detection, categorizing them into colorimetric, fluorescent, and SERS-based techniques. Despite significant progress, developing a simple, stable, highly sensitive, and selective LFA system remains a formidable challenge. Nevertheless, an advanced LFA system promises not only to enhance clinical diagnostics but also to extend its utility to environmental monitoring and beyond, demonstrating its potential to revolutionize both healthcare and environmental safety.
Collapse
Affiliation(s)
- Min Jung Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
| | - Izzati Haizan
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Min Ju Ahn
- Department of Biotechnology, Jeonbuk National University, 79 Gobongro, Iksan-si 54596, Jeollabuk-do, Republic of Korea;
| | - Dong-Hyeok Park
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
| | - Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
12
|
Gao S, Niu L, Zhou R, Wang C, Zheng X, Zhang D, Huang X, Guo Z, Zou X. Significance of the antibody orientation for the lateral flow immunoassays: A mini-review. Int J Biol Macromol 2024; 257:128621. [PMID: 38070797 DOI: 10.1016/j.ijbiomac.2023.128621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
Lateral flow immunoassays (LFIAs) are well-established and broadly commercialized tools in the field of point-of-care testing due to their simplicity, rapidity, cost-effectiveness, and low requirements for users and equipment. However, the insensitivity and the possibility of producing inaccurate results associated with conventional LFIAs have impeded their wide-ranging implementation, especially for monitoring ultra-trace level of analytes. Moreover, the heterogeneous distribution of amino acids on the surface of antibody (Ab) results in a lack of precise control over their orientation, which ultimately leads to unsatisfactory detection performance. To address those concerns, herein we provide an overview of the emerging efforts to prepare well-established LFIAs from the perspective of orientation manipulation of immobilized Abs on the nanoprobes or membranes. The preparation of excellent nanoprobes with Abs being oriented immobilized, consisting of the nanoprobe types, Ab types, and their conjugation chemistries, are reviewed. Followed by the introduction of efforts highlight the importance of directionally immobilized Ab on the membrane. The effects of Ab orientation on the analytical performance of LFIA platforms in terms of sensitivity, specificity, rapidity, reliability, cost-effectiveness, and stability are also summarized. Finally, the future development and challenges of Ab-oriented immobilization-assisted LFIAs are also discussed.
Collapse
Affiliation(s)
- Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lidan Niu
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Ruiyun Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xianliang Huang
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Yu X, Wang Y, Wang K, Zhu Z, Xiao L, Huang Y, Song Y, Liu D. Enhanced portable detection for Sars-CoV-2 utilizing DNA tetrahedron-tethered aptamers and a pressure meter. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:639-644. [PMID: 38205650 DOI: 10.1039/d3ay02100a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Tethering oligonucleotide aptamers to a DNA tetrahedron structure can enhance the recognition of SARS-CoV-2 spike protein to effectively overcome challenges with its detection in current diagnostic assays. Building on this framework, we have developed a unique portable detection method for COVID-19 that provides exceptional sensitivity and selectivity via pressure meter readout. This innovative assay streamlines the detection process, providing a rapid, sensitive, cost-effective, and user-friendly diagnostic tool. This point-of-care test exhibits high sensitivity and specificity, achieving an impressive detection limit of 0.1 pg mL-1 for the spike protein. The effectiveness of this method was validated using pseudoviruses and oropharyngeal swab samples, and its utility for environmental monitoring is demonstrated by testing sewage samples. With a wide linear range and strong potential for clinical or home application, our assay represents a major innovation in point-of-care diagnostics and provides a vital contribution to the current toolkit for controlling the impacts of COVID-19.
Collapse
Affiliation(s)
- Xingbo Yu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, China.
| | - Ying Wang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, China.
| | - Kun Wang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, China.
| | - Ziyuan Zhu
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China.
| | - Lu Xiao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, China.
| | - Yishun Huang
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China.
| | - Yanling Song
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Dan Liu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, China.
| |
Collapse
|
14
|
Ding H, Zhang W, Wang SA, Li C, Li W, Liu J, Yu F, Tao Y, Cheng S, Xie H, Chen Y. A semi-quantitative upconversion nanoparticle-based immunochromatographic assay for SARS-CoV-2 antigen detection. Front Microbiol 2023; 14:1289682. [PMID: 38149276 PMCID: PMC10750388 DOI: 10.3389/fmicb.2023.1289682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
The unprecedented public health and economic impact of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been met with an equally unprecedented scientific response. Sensitive point-of-care methods to detect SARS-CoV-2 antigens in clinical specimens are urgently required for the rapid screening of individuals with viral infection. Here, we developed an upconversion nanoparticle-based lateral flow immunochromatographic assay (UCNP-LFIA) for the high-sensitivity detection of SARS-CoV-2 nucleocapsid (N) protein. A pair of rabbit SARS-CoV-2 N-specific monoclonal antibodies was conjugated to UCNPs, and the prepared UCNPs were then deposited into the LFIA test strips for detecting and capturing the N protein. Under the test conditions, the limit of detection (LOD) of UCNP-LFIA for the N protein was 3.59 pg/mL, with a linear range of 0.01-100 ng/mL. Compared with that of the current colloidal gold-based LFIA strips, the LOD of the UCNP-LFIA-based method was increased by 100-fold. The antigen recovery rate of the developed method in the simulated pharyngeal swab samples ranged from 91.1 to 117.3%. Furthermore, compared with the reverse transcription-polymerase chain reaction, the developed UCNP-LFIA method showed a sensitivity of 94.73% for 19 patients with COVID-19. Thus, the newly established platform could serve as a promising and convenient fluorescent immunological sensing approach for the efficient screening and diagnosis of COVID-19.
Collapse
Affiliation(s)
- Hai Ding
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanying Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu-an Wang
- Department of Clinic Nutrition, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chuang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanting Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Liu
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Fang Yu
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Yanru Tao
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Siyun Cheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Lee S, Bi L, Chen H, Lin D, Mei R, Wu Y, Chen L, Joo SW, Choo J. Recent advances in point-of-care testing of COVID-19. Chem Soc Rev 2023; 52:8500-8530. [PMID: 37999922 DOI: 10.1039/d3cs00709j] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Advances in microfluidic device miniaturization and system integration contribute to the development of portable, handheld, and smartphone-compatible devices. These advancements in diagnostics have the potential to revolutionize the approach to detect and respond to future pandemics. Accordingly, herein, recent advances in point-of-care testing (POCT) of coronavirus disease 2019 (COVID-19) using various microdevices, including lateral flow assay strips, vertical flow assay strips, microfluidic channels, and paper-based microfluidic devices, are reviewed. However, visual determination of the diagnostic results using only microdevices leads to many false-negative results due to the limited detection sensitivities of these devices. Several POCT systems comprising microdevices integrated with portable optical readers have been developed to address this issue. Since the outbreak of COVID-19, effective POCT strategies for COVID-19 based on optical detection methods have been established. They can be categorized into fluorescence, surface-enhanced Raman scattering, surface plasmon resonance spectroscopy, and wearable sensing. We introduced next-generation pandemic sensing methods incorporating artificial intelligence that can be used to meet global health needs in the future. Additionally, we have discussed appropriate responses of various testing devices to emerging infectious diseases and prospective preventive measures for the post-pandemic era. We believe that this review will be helpful for preparing for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Liyan Bi
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, 264003, China
| | - Hao Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Dong Lin
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
16
|
Li X, Yu D, Li H, Sun R, Zhang Z, Zhao T, Guo G, Zeng J, Wen CY. High-density Au nanoshells assembled onto Fe 3O 4 nanoclusters for integrated enrichment and photothermal/colorimetric dual-mode detection of SARS-CoV-2 nucleocapsid protein. Biosens Bioelectron 2023; 241:115688. [PMID: 37714062 DOI: 10.1016/j.bios.2023.115688] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Traditional lateral flow immunoassays (LFIA) suffer from insufficient sensitivity, difficulty for quantitation, and susceptibility to complex substrates, limiting their practical application. Herein, we developed a polyethylenimine (PEI)-mediated approach for assembling high-density Au nanoshells onto Fe3O4 nanoclusters (MagAushell) as LFIA labels for integrated enrichment and photothermal/colorimetric dual-mode detection of SARS-CoV-2 nucleocapsid protein (N protein). PEI layer served not only as "binders" to Fe3O4 nanoclusters and Au nanoshells, but also "barriers" to ambient environment. Thus, MagAushell not only combined magnetic and photothermal properties, but also showed good stability. With MagAushell, N protein was first separated and enriched from complex samples, and then loaded to the strip for detection. By observation of the color stripes, qualitative detection was performed with naked eye, and by measuring the temperature change under laser irradiation, quantification was attained free of sophisticated instruments. The introduction of Fe3O4 nanoclusters facilitated target purification and enrichment before LFIA, which greatly improved the anti-interference ability and increased the detection sensitivity by 2 orders compared with those without enrichment. Moreover, the high loading density of Au nanoshells on one Fe3O4 nanocluster enhanced the photothermal signal of the nanoprobe significantly, which could further increase the detection sensitivity. The photothermal detection limit reached 43.64 pg/mL which was 1000 times lower than colloidal gold strips. Moreover, this method was successfully applied to real samples, showing great application potential in practice. We envision that this LFIA could serve not only for SARS-CoV-2 detection but also as a general test platform for other biotargets in clinical samples.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Dong Yu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Huiwen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Ruichang Sun
- Huangdao Customs of the People's Republic of China, 266580, PR China
| | - Zhuoran Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Tianyu Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Gengchen Guo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| | - Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
17
|
Omidfar K, Riahi F, Kashanian S. Lateral Flow Assay: A Summary of Recent Progress for Improving Assay Performance. BIOSENSORS 2023; 13:837. [PMID: 37754072 PMCID: PMC10526804 DOI: 10.3390/bios13090837] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow tests are one of the most important types of paper-based point-of-care (POCT) diagnostic tools. It shows great potential as an implement for improving the rapid screening and management of infections in global pandemics or other potential health disorders by using minimally expert staff in locations where no sophisticated laboratory services are accessible. They can detect different types of biomarkers in various biological samples and provide the results in a little time at a low price. An important challenge regarding conventional LFAs is increasing their sensitivity and specificity. There are two main approaches to increase sensitivity and specificity, including assay improvement and target enrichment. Assay improvement comprises the assay optimization and signal amplification techniques. In this study, a summarize of various sensitivity and specificity enhancement strategies with an objective evaluation are presented, such as detection element immobilization, capillary flow rate adjusting, label evolution, sample extraction and enrichment, etc. and also the key findings in improving the LFA performance and solving their limitations are discussed along with numerous examples.
Collapse
Affiliation(s)
- Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
| | - Fatemeh Riahi
- Biosensor Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
| |
Collapse
|
18
|
Guzman NA, Guzman DE, Blanc T. Advancements in portable instruments based on affinity-capture-migration and affinity-capture-separation for use in clinical testing and life science applications. J Chromatogr A 2023; 1704:464109. [PMID: 37315445 DOI: 10.1016/j.chroma.2023.464109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
The shift from testing at centralized diagnostic laboratories to remote locations is being driven by the development of point-of-care (POC) instruments and represents a transformative moment in medicine. POC instruments address the need for rapid results that can inform faster therapeutic decisions and interventions. These instruments are especially valuable in the field, such as in an ambulance, or in remote and rural locations. The development of telehealth, enabled by advancements in digital technologies like smartphones and cloud computing, is also aiding in this evolution, allowing medical professionals to provide care remotely, potentially reducing healthcare costs and improving patient longevity. One notable POC device is the lateral flow immunoassay (LFIA), which played a major role in addressing the COVID-19 pandemic due to its ease of use, rapid analysis time, and low cost. However, LFIA tests exhibit relatively low analytical sensitivity and provide semi-quantitative information, indicating either a positive, negative, or inconclusive result, which can be attributed to its one-dimensional format. Immunoaffinity capillary electrophoresis (IACE), on the other hand, offers a two-dimensional format that includes an affinity-capture step of one or more matrix constituents followed by release and electrophoretic separation. The method provides greater analytical sensitivity, and quantitative information, thereby reducing the rate of false positives, false negatives, and inconclusive results. Combining LFIA and IACE technologies can thus provide an effective and economical solution for screening, confirming results, and monitoring patient progress, representing a key strategy in advancing diagnostics in healthcare.
Collapse
Affiliation(s)
- Norberto A Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, United States of America.
| | - Daniel E Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, United States of America; Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Timothy Blanc
- Eli Lilly and Company, Branchburg, NJ 08876, United States of America
| |
Collapse
|
19
|
Ionescu RE. Updates on the Biofunctionalization of Gold Nanoparticles for the Rapid and Sensitive Multiplatform Diagnosis of SARS-CoV-2 Virus and Its Proteins: From Computational Models to Validation in Human Samples. Int J Mol Sci 2023; 24:ijms24119249. [PMID: 37298201 DOI: 10.3390/ijms24119249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Since the outbreak of the pandemic respiratory virus SARS-CoV-2 (COVID-19), academic communities and governments/private companies have used several detection techniques based on gold nanoparticles (AuNPs). In this emergency context, colloidal AuNPs are highly valuable easy-to-synthesize biocompatible materials that can be used for different functionalization strategies and rapid viral immunodiagnosis. In this review, the latest multidisciplinary developments in the bioconjugation of AuNPs for the detection of SARS-CoV-2 virus and its proteins in (spiked) real samples are discussed for the first time, with reference to the optimal parameters provided by three approaches: one theoretical, via computational prediction, and two experimental, using dry and wet chemistry based on single/multistep protocols. Overall, to achieve high specificity and low detection limits for the target viral biomolecules, optimal running buffers for bioreagent dilutions and nanostructure washes should be validated before conducting optical, electrochemical, and acoustic biosensing investigations. Indeed, there is plenty of room for improvement in using gold nanomaterials as stable platforms for ultrasensitive and simultaneous "in vitro" detection by the untrained public of the whole SARS-CoV-2 virus, its proteins, and specific developed IgA/IgM/IgG antibodies (Ab) in bodily fluids. Hence, the lateral flow assay (LFA) approach is a quick and judicious solution to combating the pandemic. In this context, the author classifies LFAs according to four generations to guide readers in the future development of multifunctional biosensing platforms. Undoubtedly, the LFA kit market will continue to improve, adapting researchers' multidetection platforms for smartphones with easy-to-analyze results, and establishing user-friendly tools for more effective preventive and medical treatments.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie, CS 42060, CEDEX, 10004 Troyes, France
| |
Collapse
|