1
|
Wu S, Cheng P, Yang F. Study on the impact of digital transformation on green competitive advantage: The role of green innovation and government regulation. PLoS One 2024; 19:e0306603. [PMID: 39088476 PMCID: PMC11293740 DOI: 10.1371/journal.pone.0306603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/20/2024] [Indexed: 08/03/2024] Open
Abstract
Digital transformation enables small and medium enterprises (SMEs) to reduce or overcome their reliance on resources and energy, thereby minimizing their environmental impact and providing them with sustainable green competitive advantages. However, the reasons for this phenomenon are not yet clear. To further investigate this issue, we selected 391 Chinese SMEs to examine the relationships among green transformation, green innovation, government regulation, and green competitive advantages. Green innovation includes green product innovation and green process innovation, while government regulation includes incentive regulation, constraint regulation, and guidance regulation. The empirical results show that digital transformation can enhance SMEs' green competitive advantages. Additionally, the hypothesized mediating effect of green product innovation and green process innovation between digital transformation and green competitive advantages is supported, while the moderating effect of incentive regulation, constraint regulation, and guidance regulation on the relationship between digital transformation and green product innovation and green process innovation is also confirmed. The findings of this study may contribute to more effective management of digital transformation and green innovation in SMEs, thereby promoting their development.
Collapse
Affiliation(s)
- Shaoling Wu
- School of Economics and Management, Hubei University of Automotive Technology, Shiyan, Hubei, China
| | - Peng Cheng
- Dongfeng Commercial Vehicle Co., Ltd, After-Market Business Division, Shiyan, Hubei, China
| | - Fan Yang
- School of Foreign Languages, Hubei University of Automotive Technology, Shiyan, Hubei, China
| |
Collapse
|
2
|
Souto S, Lama R, Mérour E, Mehraz M, Bernard J, Lamoureux A, Massaad S, Frétaud M, Rigaudeau D, Millet JK, Langevin C, Biacchesi S. In vivo multiscale analyses of spring viremia of carp virus (SVCV) infection: From model organism to target species. PLoS Pathog 2024; 20:e1012328. [PMID: 39102417 PMCID: PMC11326706 DOI: 10.1371/journal.ppat.1012328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/15/2024] [Accepted: 06/07/2024] [Indexed: 08/07/2024] Open
Abstract
Spring viremia of carp virus (SVCV) has a broad fish host spectrum and is responsible for a disease that generally affects juvenile fishes with a mortality rate of up to 90%. In the absence of treatments or vaccines against SVCV, the search for prophylactic or therapeutic solutions is thus relevant, particularly to identify solutions compatible with mass vaccination. In addition to being a threat to aquaculture and ecosystems, SVCV is a unique pathogen to study virus-host interactions in the zebrafish model. Establishing the first reverse genetics system for SVCV and the design of recombinant SVCV (rSVCV) expressing fluorescent or bioluminescent proteins adds a new dimension for the study of these interactions using innovative imaging techniques. The infection by bath immersion of zebrafish larvae with rSVCV expressing mCherry allows us to define the first SVCV replication sites and the host innate immune responses using different transgenic lines of zebrafish. The fins were found as the main initial sites of infection in both zebrafish and carp, its natural host. Hence, new insights into the physiopathology of SVCV infection have been described. We report that neutrophils are recruited at the sites of infection and persist up to the death of the animal leading to an uncontrolled inflammation correlated with the expression of the pro-inflammatory cytokine IL1β. Tissue damage was observed at the site of initial replication, a likely consequence of virus-induced injury or the pro-inflammatory response. Interestingly, SVCV infection by bath immersion triggers a persistent pro-inflammatory response rather than activation of the antiviral IFN signaling pathway as observed following intravenous injection, highlighting the importance of the route of infection on the progression of pathogenicity. Thus, this model of zebrafish larvae infection by rSVCV offers new perspectives to study in detail virus-host interactions and to discover new prophylactic or therapeutic solutions.
Collapse
Affiliation(s)
- Sandra Souto
- Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Lama
- Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Emilie Mérour
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Manon Mehraz
- Université Paris-Saclay, INRAE, Infectiologie Expérimentale des Rongeurs et des Poissons, Jouy-en-Josas, France
| | - Julie Bernard
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Annie Lamoureux
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Sarah Massaad
- Université Paris-Saclay, INRAE, Infectiologie Expérimentale des Rongeurs et des Poissons, Jouy-en-Josas, France
| | - Maxence Frétaud
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Dimitri Rigaudeau
- Université Paris-Saclay, INRAE, Infectiologie Expérimentale des Rongeurs et des Poissons, Jouy-en-Josas, France
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Christelle Langevin
- Université Paris-Saclay, INRAE, Infectiologie Expérimentale des Rongeurs et des Poissons, Jouy-en-Josas, France
| | - Stéphane Biacchesi
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| |
Collapse
|
3
|
Fajar S, Dwi SP, Nur IS, Wahyu AP, Sukamto S M, Winda AR, Nastiti W, Andri F, Firzan N. Zebrafish as a model organism for virus disease research: Current status and future directions. Heliyon 2024; 10:e33865. [PMID: 39071624 PMCID: PMC11282986 DOI: 10.1016/j.heliyon.2024.e33865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Zebrafish (Danio rerio) have emerged as valuable models for investigating viral infections, providing insights into viral pathogenesis, host responses, and potential therapeutic interventions. This review offers a comprehensive synthesis of research on viral infections using zebrafish models, focusing on the molecular mechanisms of viral action and host-virus interactions. Zebrafish models have been instrumental in elucidating the replication dynamics, tissue tropism, and immune evasion strategies of various viruses, including Chikungunya virus, Dengue virus, Herpes Simplex Virus type 1, and Influenza A virus. Additionally, studies utilizing zebrafish have evaluated the efficacy of antiviral compounds and natural agents against emerging viruses such as SARS-CoV-2, Zika virus, and Dengue virus. The optical transparency and genetic tractability of zebrafish embryos enable real-time visualization of viral infections, facilitating the study of viral spread and immune responses. Despite challenges such as temperature compatibility and differences in host receptors, zebrafish models offer unique advantages, including cost-effectiveness, high-throughput screening capabilities, and conservation of key immune pathways. Importantly, zebrafish models complement existing animal models, providing a platform for rapid evaluation of potential therapeutics and a deeper understanding of viral pathogenesis. This review underscores the significance of zebrafish research in advancing our understanding of viral diseases and highlights future research directions to combat infectious diseases effectively.
Collapse
Affiliation(s)
- Sofyantoro Fajar
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sendi Priyono Dwi
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | - Mamada Sukamto S
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | | | - Wijayanti Nastiti
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Frediansyah Andri
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Nainu Firzan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| |
Collapse
|
4
|
Sinha S, Dhankani P, Nahiyera M, Singh KB, Singh D, Mugale MN, Sharma S, Kumaravelu J, Dikshit M, Kumar S. iNOS regulates hematopoietic stem and progenitor cells via mitochondrial signaling and is critical for bone marrow regeneration. Free Radic Biol Med 2024; 219:184-194. [PMID: 38636716 DOI: 10.1016/j.freeradbiomed.2024.04.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.
Collapse
Affiliation(s)
- Supriya Sinha
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Priyanka Dhankani
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Milind Nahiyera
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Krishna Bhan Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Divya Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Madhav Nilakanth Mugale
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sharad Sharma
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Jagavelu Kumaravelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
5
|
Kirchberger S, Shoeb MR, Lazic D, Wenninger-Weinzierl A, Fischer K, Shaw LE, Nogueira F, Rifatbegovic F, Bozsaky E, Ladenstein R, Bodenmiller B, Lion T, Traver D, Farlik M, Schöfer C, Taschner-Mandl S, Halbritter F, Distel M. Comparative transcriptomics coupled to developmental grading via transgenic zebrafish reporter strains identifies conserved features in neutrophil maturation. Nat Commun 2024; 15:1792. [PMID: 38413586 PMCID: PMC10899643 DOI: 10.1038/s41467-024-45802-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Neutrophils are evolutionarily conserved innate immune cells playing pivotal roles in host defense. Zebrafish models have contributed substantially to our understanding of neutrophil functions but similarities to human neutrophil maturation have not been systematically characterized, which limits their applicability to studying human disease. Here we show, by generating and analysing transgenic zebrafish strains representing distinct neutrophil differentiation stages, a high-resolution transcriptional profile of neutrophil maturation. We link gene expression at each stage to characteristic transcription factors, including C/ebp-β, which is important for late neutrophil maturation. Cross-species comparison of zebrafish, mouse, and human samples confirms high molecular similarity of immature stages and discriminates zebrafish-specific from pan-species gene signatures. Applying the pan-species neutrophil maturation signature to RNA-sequencing data from human neuroblastoma patients reveals association between metastatic tumor cell infiltration in the bone marrow and an overall increase in mature neutrophils. Our detailed neutrophil maturation atlas thus provides a valuable resource for studying neutrophil function at different stages across species in health and disease.
Collapse
Grants
- I 4162 Austrian Science Fund FWF
- TAI 454 Austrian Science Fund FWF
- TAI 732 Austrian Science Fund FWF
- St. Anna Kinderkrebsforschung (to S.T.M., R.L., F.H., and M.D.), the Austrian Research Promotion Agency (FFG) (project 7940628, Danio4Can to M.D.), a German Academic Exchange Service postdoctoral fellowship and an EMBO fellowship (to M.D.), the Austrian Science Fund (FWF) through grants TAI454 (to F.H. and M.D.), TAI732 (to F.H.), I4162 (ERA-NET/Transcan-2 LIQUIDHOPE; to S.T.M.), P35841 (MAPMET; to S.T.M.), P34152 (to T.L.), P 30642 (to C.S.) and the Alex’s Lemonade Stand Foundation for Childhood Cancer 20-17258 (to F.H. and M.D.), and the Swiss Government Excellence Scholarship (to D.L.), and the EC H2020 grant no. 826494 (PRIMAGE; to R.L.), and by the European Commission within the FP7 Framework program (Fungitect-Grant No 602125 to T.L.).
Collapse
Affiliation(s)
| | - Mohamed R Shoeb
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Kristin Fischer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Lisa E Shaw
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Filomena Nogueira
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia - Labordiagnostik GmbH, Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Vienna, Austria
| | | | - Eva Bozsaky
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Ruth Ladenstein
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Thomas Lion
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia - Labordiagnostik GmbH, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics, Vienna, Austria
| | - David Traver
- Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - Matthias Farlik
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Christian Schöfer
- Medical University of Vienna, Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Vienna, Austria
| | | | | | - Martin Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| |
Collapse
|
6
|
Luo G, Zeng D, Liu J, Li D, Takiff HE, Song S, Gao Q, Yan B. Temporal and cellular analysis of granuloma development in mycobacterial infected adult zebrafish. J Leukoc Biol 2024; 115:525-535. [PMID: 37982587 DOI: 10.1093/jleuko/qiad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023] Open
Abstract
Because granulomas are a hallmark of tuberculosis pathogenesis, the study of the dynamic changes in their cellular composition and morphological character can facilitate our understanding of tuberculosis pathogenicity. Adult zebrafish infected with Mycobacterium marinum form granulomas that are similar to the granulomas in human patients with tuberculosis and therefore have been used to study host-mycobacterium interactions. Most studies of zebrafish granulomas, however, have focused on necrotic granulomas, while a systematic description of the different stages of granuloma formation in the zebrafish model is lacking. Here, we characterized the stages of granulomas in M. marinum-infected zebrafish, including early immune cell infiltration, nonnecrotizing granulomas, and necrotizing granulomas, using corresponding samples from patients with pulmonary tuberculosis as references. We combined hematoxylin and eosin staining and in situ hybridization to identify the different immune cell types and follow their spatial distribution in the different stages of granuloma development. The macrophages in zebrafish granulomas were shown to belong to distinct subtypes: epithelioid macrophages, foamy macrophages, and multinucleated giant cells. By defining the developmental stages of zebrafish granulomas and the spatial distribution of the different immune cells they contain, this work provides a reference for future studies of mycobacterial granulomas and their immune microenvironments.
Collapse
Affiliation(s)
- Geyang Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, 130 Dongan Rd., Xuhui District, 200032 Shanghai, People's Republic of China
| | - Dong Zeng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Jianxin Liu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
- School of Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, 639 Manufacturing Bureau Rd., Huangpu District, 200011 Shanghai, People's Republic of China
| | - Duoduo Li
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Howard E Takiff
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas, 1020A, Venezuela
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, 130 Dongan Rd., Xuhui District, 200032 Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| |
Collapse
|
7
|
Leiba J, Sipka T, Begon-Pescia C, Bernardello M, Tairi S, Bossi L, Gonzalez AA, Mialhe X, Gualda EJ, Loza-Alvarez P, Blanc-Potard A, Lutfalla G, Nguyen-Chi ME. Dynamics of macrophage polarization support Salmonella persistence in a whole living organism. eLife 2024; 13:e89828. [PMID: 38224094 PMCID: PMC10830131 DOI: 10.7554/elife.89828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/14/2024] [Indexed: 01/16/2024] Open
Abstract
Numerous intracellular bacterial pathogens interfere with macrophage function, including macrophage polarization, to establish a niche and persist. However, the spatiotemporal dynamics of macrophage polarization during infection within host remain to be investigated. Here, we implement a model of persistent Salmonella Typhimurium infection in zebrafish, which allows visualization of polarized macrophages and bacteria in real time at high resolution. While macrophages polarize toward M1-like phenotype to control early infection, during later stages, Salmonella persists inside non-inflammatory clustered macrophages. Transcriptomic profiling of macrophages showed a highly dynamic signature during infection characterized by a switch from pro-inflammatory to anti-inflammatory/pro-regenerative status and revealed a shift in adhesion program. In agreement with this specific adhesion signature, macrophage trajectory tracking identifies motionless macrophages as a permissive niche for persistent Salmonella. Our results demonstrate that zebrafish model provides a unique platform to explore, in a whole organism, the versatile nature of macrophage functional programs during bacterial acute and persistent infections.
Collapse
Affiliation(s)
- Jade Leiba
- LPHI, Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Tamara Sipka
- LPHI, Université de Montpellier, CNRS, INSERMMontpellierFrance
| | | | - Matteo Bernardello
- ICFO - Institute of Photonic Sciences, The Barcelona Institute of Science and TechnologyCastelldefels, BarcelonaSpain
| | - Sofiane Tairi
- LPHI, Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Lionello Bossi
- Institute for Integrative Biology of the Cell-I2BC, Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Xavier Mialhe
- MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Emilio J Gualda
- ICFO - Institute of Photonic Sciences, The Barcelona Institute of Science and TechnologyCastelldefels, BarcelonaSpain
| | - Pablo Loza-Alvarez
- ICFO - Institute of Photonic Sciences, The Barcelona Institute of Science and TechnologyCastelldefels, BarcelonaSpain
| | | | | | | |
Collapse
|
8
|
Darroch H, Keerthisinghe P, Sung YJ, Rolland L, Prankerd-Gough A, Crosier PS, Astin JW, Hall CJ. Infection-experienced HSPCs protect against infections by generating neutrophils with enhanced mitochondrial bactericidal activity. SCIENCE ADVANCES 2023; 9:eadf9904. [PMID: 37672586 PMCID: PMC10482338 DOI: 10.1126/sciadv.adf9904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) respond to infection by proliferating and generating in-demand neutrophils through a process called emergency granulopoiesis (EG). Recently, infection-induced changes in HSPCs have also been shown to underpin the longevity of trained immunity, where they generate innate immune cells with enhanced responses to subsequent microbial threats. Using larval zebrafish to live image neutrophils and HSPCs, we show that infection-experienced HSPCs generate neutrophils with enhanced bactericidal functions. Transcriptomic analysis of EG neutrophils uncovered a previously unknown function for mitochondrial reactive oxygen species in elevating neutrophil bactericidal activity. We also reveal that driving expression of zebrafish C/EBPβ within infection-naïve HSPCs is sufficient to generate neutrophils with similarly enhanced bactericidal capacity. Our work suggests that this demand-adapted source of neutrophils contributes to trained immunity by providing enhanced protection toward subsequent infections. Manipulating demand-driven granulopoiesis may provide a therapeutic strategy to boost neutrophil function and treat infectious disease.
Collapse
Affiliation(s)
- Hannah Darroch
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pramuk Keerthisinghe
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yih Jian Sung
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Leah Rolland
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anneke Prankerd-Gough
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Jonathan W. Astin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
9
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
10
|
Elworthy S, Rutherford HA, Prajsnar TK, Hamilton NM, Vogt K, Renshaw SA, Condliffe AM. Activated PI3K delta syndrome 1 mutations cause neutrophilia in zebrafish larvae. Dis Model Mech 2023; 16:dmm049841. [PMID: 36805642 PMCID: PMC10655814 DOI: 10.1242/dmm.049841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
People with activated PI3 kinase delta syndrome 1 (APDS1) suffer from immune deficiency and severe bronchiectasis. APDS1 is caused by dominant activating mutations of the PIK3CD gene that encodes the PI3 kinase delta (PI3Kδ) catalytic subunit. Despite the importance of innate immunity defects in bronchiectasis, there has been limited investigation of neutrophils or macrophages in APDS1 patients or mouse models. Zebrafish embryos provide an ideal system to study neutrophils and macrophages. We used CRISPR-Cas9 and CRISPR-Cpf1, with oligonucleotide-directed homologous repair, to engineer zebrafish equivalents of the two most prevalent human APDS1 disease mutations. These zebrafish pik3cd alleles dominantly caused excessive neutrophilic inflammation in a tail-fin injury model. They also resulted in total body neutrophilia in the absence of any inflammatory stimulus but normal numbers of macrophages. Exposure of zebrafish to the PI3Kδ inhibitor CAL-101 reversed the total body neutrophilia. There was no apparent defect in neutrophil maturation or migration, and tail-fin regeneration was unimpaired. Overall, the finding is of enhanced granulopoeisis, in the absence of notable phenotypic change in neutrophils and macrophages.
Collapse
Affiliation(s)
- Stone Elworthy
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Holly A. Rutherford
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Tomasz K. Prajsnar
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Noémie M. Hamilton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Katja Vogt
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Alison M. Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
Hu YX, Jing Q. Zebrafish: a convenient tool for myelopoiesis research. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:2. [PMID: 36595106 PMCID: PMC9810781 DOI: 10.1186/s13619-022-00139-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/29/2022] [Indexed: 04/18/2023]
Abstract
Myelopoiesis is the process in which the mature myeloid cells, including monocytes/macrophages and granulocytes, are developed. Irregular myelopoiesis may cause and deteriorate a variety of hematopoietic malignancies such as leukemia. Myeloid cells and their precursors are difficult to capture in circulation, let alone observe them in real time. For decades, researchers had to face these difficulties, particularly in in-vivo studies. As a unique animal model, zebrafish possesses numerous advantages like body transparency and convenient genetic manipulation, which is very suitable in myelopoiesis research. Here we review current knowledge on the origin and regulation of myeloid development and how zebrafish models were applied in these studies.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
12
|
Sebo DJ, Fetsko AR, Phipps KK, Taylor MR. Functional identification of the zebrafish Interleukin-1 receptor in an embryonic model of Il-1β-induced systemic inflammation. Front Immunol 2022; 13:1039161. [PMID: 36389773 PMCID: PMC9643328 DOI: 10.3389/fimmu.2022.1039161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/01/2023] Open
Abstract
Interleukin-1β (IL-1β) is a potent proinflammatory cytokine that plays a vital role in the innate immune system. To observe the innate immune response in vivo, several transgenic zebrafish lines have been developed to model IL-1β-induced inflammation and to visualize immune cell migration and proliferation in real time. However, our understanding of the IL-1β response in zebrafish is limited due to an incomplete genome annotation and a lack of functional data for the cytokine receptors involved in the inflammatory process. Here, we use a combination of database mining, genetic analyses, and functional assays to identify zebrafish Interleukin-1 receptor, type 1 (Il1r1). We identified putative zebrafish il1r1 candidate genes that encode proteins with predicted structures similar to human IL1R1. To examine functionality of these candidates, we designed highly effective morpholinos to disrupt gene expression in a zebrafish model of embryonic Il-1β-induced systemic inflammation. In this double transgenic model, ubb:Gal4-EcR, uas:il1βmat , the zebrafish ubiquitin b (ubb) promoter drives expression of the modified Gal4 transcription factor fused to the ecdysone receptor (EcR), which in turn drives the tightly-regulated expression and secretion of mature Il-1β only in the presence of the ecdysone analog tebufenozide (Teb). Application of Teb to ubb:Gal4-EcR, uas:il1βmat embryos causes premature death, fin degradation, substantial neutrophil expansion, and generation of reactive oxygen species (ROS). To rescue these deleterious phenotypes, we injected ubb:Gal4-EcR, uas:il1βmat embryos with putative il1r1 morpholinos and found that knockdown of only one candidate gene prevented the adverse effects caused by Il-1β. Mosaic knockout of il1r1 using the CRISPR/Cas9 system phenocopied these results. Taken together, our study identifies the functional zebrafish Il1r1 utilizing a genetic model of Il-1β-induced inflammation and provides valuable new insights to study inflammatory conditions specifically driven by Il-1β or related to Il1r1 function in zebrafish.
Collapse
Affiliation(s)
- Dylan J. Sebo
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Audrey R. Fetsko
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Kallie K. Phipps
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
- Pharmacology and Toxicology Program, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Michael R. Taylor
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
- Pharmacology and Toxicology Program, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
13
|
Schipper K, Preusting LC, van Sorge NM, Pannekoek Y, van der Ende A. Meningococcal virulence in zebrafish embryos depends on capsule polysaccharide structure. Front Cell Infect Microbiol 2022; 12:1020201. [PMID: 36211969 PMCID: PMC9538531 DOI: 10.3389/fcimb.2022.1020201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis or the meningococcus, can cause devasting diseases such as sepsis and meningitis. Its polysaccharide capsule, on which serogrouping is based, is the most important virulence factor. Non-encapsulated meningococci only rarely cause disease, due to their sensitivity to the host complement system. How the capsular polysaccharide structure of N. meningitidis relates to virulence is largely unknown. Meningococcal virulence can be modeled in zebrafish embryos as the innate immune system of the zebrafish embryo resembles that of mammals and is fully functional two days post-fertilization. In contrast, the adaptive immune system does not develop before 4 weeks post-fertilization. We generated isogenic meningococcal serogroup variants to study how the chemical composition of the polysaccharide capsule affects N. meningitidis virulence in the zebrafish embryo model. H44/76 serogroup B killed zebrafish embryos in a dose-dependent manner, whereas the non-encapsulated variant was completely avirulent. Neutrophil depletion was observed after infection with encapsulated H44/76, but not with its non-encapsulated variant HB-1. The survival of embryos infected with isogenic capsule variants of H44/76 was capsule specific. The amount of neutrophil depletion differed accordingly. Both embryo killing capacity and neutrophil depletion after infection correlated with the number of carbons used per repeat unit of the capsule polysaccharide during its biosynthesis (indicative of metabolic cost).ConclusionMeningococcal virulence in the zebrafish embryo largely depends on the presence of the polysaccharide capsule but the extent of the contribution is determined by its structure. The observed differences between the meningococcal isogenic capsule variants in zebrafish embryo virulence may depend on differences in metabolic cost.
Collapse
|
14
|
Hariom SK, Nelson EJR. Effects of short-term hypergravity on hematopoiesis and vasculogenesis in embryonic zebrafish. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:21-29. [PMID: 35940686 DOI: 10.1016/j.lssr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Microgravity and hypergravity-induced changes affect both molecular and organismal responses as demonstrated in various animal models. In addition to its inherent advantages, zebrafish have been shown to be incredibly resilient to altered gravity conditions. To understand the effects of altered gravity on animal physiology, especially the cardiovascular system, we used 2 h centrifugations to simulate short-term hypergravity and investigated its effects on zebrafish development. Morphological and in situ hybridization observations show a comparable overall development in both control and treated embryos. Spatiotemporal analysis revealed varied gene expression patterns across different developmental times. Genes driving primitive hematopoiesis (tal1, gata1) and vascular specificity (vegf, etv2) displayed an early onset of expression following hypergravity exposure. Upregulated expression of hematopoiesis-linked genes, such as runx1, cmyb, nos, and pdgf family demonstrate short-term hypergravity to be a factor inducing definitive hematopoiesis through a combinatorial mechanism. We speculate that these short-term hypergravity-induced physiological changes in the developing zebrafish embryos constitute a rescue mechanism to regain homeostasis.
Collapse
Affiliation(s)
- Senthil Kumar Hariom
- SMV124A, Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632 014, India
| | - Everette Jacob Remington Nelson
- SMV124A, Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632 014, India.
| |
Collapse
|
15
|
Myllymäki H, Yu PP, Feng Y. Opportunities presented by zebrafish larval models to study neutrophil function in tissues. Int J Biochem Cell Biol 2022; 148:106234. [PMID: 35667555 DOI: 10.1016/j.biocel.2022.106234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
Appropriate neutrophil function is essential for innate immune defence and to avoid inflammatory pathology. Neutrophils can adapt their responses according to their environment and recently, the existence of multiple distinct neutrophil populations has been confirmed in both health and disease. However, the study of neutrophil functions in their tissue environment has remained challenging, and for instance, the relationship between neutrophil maturity and function is not fully understood. Many neutrophil morphological and functional features are highly conserved between mammals and non-mammalian vertebrates. This enables the use of the transparent and genetically tractable zebrafish larvae to study neutrophil biology. We review data on the development and function of zebrafish larval neutrophils and advances zebrafish have brought to studies of neutrophil biology. In addition, we discuss opportunities and aspects to be considered when using the larval zebrafish model to further enhance our understanding of neutrophil function in health and disease.
Collapse
Affiliation(s)
- Henna Myllymäki
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Peiyi Pearl Yu
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Yi Feng
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom.
| |
Collapse
|
16
|
Darroch H, Astin JW, Hall CJ. Towards a new model of trained immunity: Exposure to bacteria and β-glucan protects larval zebrafish against subsequent infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104400. [PMID: 35367515 DOI: 10.1016/j.dci.2022.104400] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Once thought to be a feature exclusive to lymphocyte-driven adaptive immunity, immune memory has also been shown to operate as part of the innate immune system following infection to provide an elevated host response to subsequent pathogenic challenge. This evolutionarily conserved process, termed 'trained immunity', enables cells of the innate immune system to 'remember' previous pathogen encounters and mount stronger responses to the same, or different, pathogens after returning to a non-activated state. Here we show that challenging larval zebrafish, that exclusively rely on innate immunity, with live or heat-killed Salmonella typhimurium provides protection to subsequent infection with either Salmonella typhimurium or Streptococcus iniae, that lasts for at least 12 days. We also show that larvae injected with β-glucan, the well-known trigger of trained immunity, demonstrate enhanced survival to similar live bacterial infections, a phenotype supported by increased cxcl8 expression and neutrophil recruitment to the infection site. These results support the conservation of a trained immunity-like phenotype in larval zebrafish and provide a foundation to exploit the experimental attributes of larval zebrafish to further understand this form of immunological memory.
Collapse
Affiliation(s)
- Hannah Darroch
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
17
|
Juste RA, Ferreras-Colino E, de la Fuente J, Domínguez M, Risalde MA, Domínguez L, Cabezas-Cruz A, Gortázar C. Heat inactivated mycobacteria, alpha-gal and zebra fish: insights gained from experiences with two promising trained immunity inductors and a validated animal model. Immunol Suppl 2022; 167:139-153. [PMID: 35752944 DOI: 10.1111/imm.13529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Trained immunity (TRAIM) may be defined as a form of memory where innate immune cells such as monocytes, macrophages, dendritic and natural killer (NK) cells undergo an epigenetic reprogramming that enhances their primary defensive capabilities. Cross-pathogen protective TRAIM can be triggered in different hosts by exposure to live microbes or microbe-derived products such as heat-inactivated Mycobacterium bovis or with the glycan α-Gal to elicit protective responses against several pathogens. We review the TRAIM paradigm using two models representing distinct scales of immune sensitization: the whole bacterial cell and one of its building blocks, the polysaccharides or glycans. Observations point out to macrophage lytic capabilities and cytokine regulation as two key components in nonspecific innate immune responses against infections. The study of the TRAIM response deserves attention to better characterize the evolution of host-pathogen cooperation both for identifying the etiology of some diseases and for finding new therapeutic strategies. In this field, the zebrafish provides a convenient and complete biological system that could help to deepen in the knowledge of TRAIM-mediated mechanisms in pathogen-host interactions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ramón A Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.,NySA. Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda km 2, 28220 Majadahonda, Madrid, Spain
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| |
Collapse
|
18
|
Maleski ALA, Rosa JGS, Bernardo JTG, Astray RM, Walker CIB, Lopes-Ferreira M, Lima C. Recapitulation of Retinal Damage in Zebrafish Larvae Infected with Zika Virus. Cells 2022; 11:1457. [PMID: 35563763 PMCID: PMC9100881 DOI: 10.3390/cells11091457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Zebrafish are increasingly being utilized as a model to investigate infectious diseases and to advance the understanding of pathogen-host interactions. Here, we take advantage of the zebrafish to recapitulate congenital ZIKV infection and, for the first time, demonstrate that it can be used to model infection and reinfection and monitor anti-viral and inflammatory immune responses, as well as brain growth and eye abnormalities during embryonic development. By injecting a Brazilian strain of ZIKV into the yolk sac of one-cell stage embryos, we confirmed that, after 72 h, ZIKV successfully infected larvae, and the physical condition of the virus-infected hosts included gross morphological changes in surviving embryos (84%), with a reduction in larval head size and retinal damage characterized by increased thickness of the lens and inner nuclear layer. Changes in locomotor activity and the inability to perceive visual stimuli are a result of changes in retinal morphology caused by ZIKV. Furthermore, we demonstrated the ability of ZIKV to replicate in zebrafish larvae and infect new healthy larvae, impairing their visual and neurological functions. These data reinforce the deleterious activity of ZIKV in the brain and visual structures and establish the zebrafish as a model to study the molecular mechanisms involved in the pathology of the virus.
Collapse
Affiliation(s)
- Adolfo Luis Almeida Maleski
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (A.L.A.M.); (J.G.S.R.); (J.T.G.B.); (M.L.-F.)
- Laboratory of Neuropharmacological Studies (LABEN), Post-Graduation Program of Pharmaceutical Science, Federal University of Sergipe, São Paulo 05503-009, Brazil;
| | - Joao Gabriel Santos Rosa
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (A.L.A.M.); (J.G.S.R.); (J.T.G.B.); (M.L.-F.)
| | - Jefferson Thiago Gonçalves Bernardo
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (A.L.A.M.); (J.G.S.R.); (J.T.G.B.); (M.L.-F.)
| | | | - Cristiani Isabel Banderó Walker
- Laboratory of Neuropharmacological Studies (LABEN), Post-Graduation Program of Pharmaceutical Science, Federal University of Sergipe, São Paulo 05503-009, Brazil;
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (A.L.A.M.); (J.G.S.R.); (J.T.G.B.); (M.L.-F.)
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (A.L.A.M.); (J.G.S.R.); (J.T.G.B.); (M.L.-F.)
| |
Collapse
|
19
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
20
|
Lanham KA, Nedden ML, Wise VE, Taylor MR. Genetically inducible and reversible zebrafish model of systemic inflammation. Biol Open 2022; 11:274172. [PMID: 35099005 PMCID: PMC8918989 DOI: 10.1242/bio.058559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
The inflammatory response is a vital defense mechanism against trauma and pathogen induced damage, but equally important is its appropriate resolution. In some instances of severe trauma or sustained infection, inappropriate and persistent activation of the immune response can occur resulting in a dangerous systemic inflammatory response. Untreated, this systemic inflammatory response can lead to tissue damage, organ shutdown, and death. Replicating this condition in tractable model organisms can provide insight into the mechanisms involved in the induction, maintenance, and resolution of inflammation. To that end, we developed a non-invasive, inducible, and reversible model of systemic inflammation in zebrafish. Using the Gal4-EcR/UAS system activated by the ecdysone analog tebufenozide, we generated transgenic zebrafish that allow for chemically-induced, ubiquitous secretion of the mature form of zebrafish interleukin-1β (Il-1βmat) in both larval and adult developmental stages. To ensure a robust immune response, we attached a strong signal peptide from the Gaussia princeps luciferase enzyme to promote active secretion of the cytokine. We observe a dose-dependent inflammatory response involving neutrophil expansion accompanied by tissue damage and reduced survival. Washout of tebufenozide permits inflammation resolution. We also establish the utility of this model for the identification of small molecule anti-inflammatory compounds by treatment with the immunosuppressant rapamycin. Taken together, these features make this model a valuable new tool that can aid in identifying potential new therapies while broadening our understanding of systemic inflammation, its impact on the immune system and its resolution.
Collapse
Affiliation(s)
- Kevin A Lanham
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Megan L Nedden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Virginia E Wise
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Michael R Taylor
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
21
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Ortiz-Severín J, Tandberg JI, Winther-Larsen HC, Chávez FP, Cambiazo V. Comparative Analysis of Salmon Cell Lines and Zebrafish Primary Cell Cultures Infection with the Fish Pathogen Piscirickettsia salmonis. Microorganisms 2021; 9:microorganisms9122516. [PMID: 34946119 PMCID: PMC8706985 DOI: 10.3390/microorganisms9122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Piscirickettsia salmonis is the etiologic agent of piscirickettsiosis, a disease that causes significant losses in the salmon farming industry. In order to unveil the pathogenic mechanisms of P. salmonis, appropriate molecular and cellular studies in multiple cell lines with different origins need to be conducted. Toward that end, we established a cell viability assay that is suitable for high-throughput analysis using the alamarBlue reagent to follow the distinct stages of the bacterial infection cycle. Changes in host cell viability can be easily detected using either an absorbance- or fluorescence-based plate reader. Our method accurately tracked the infection cycle across two different Atlantic salmon-derived cell lines, with macrophage and epithelial cell properties, and zebrafish primary cell cultures. Analyses were also carried out to quantify intracellular bacterial replication in combination with fluorescence microscopy to visualize P. salmonis and cellular structures in fixed cells. In addition, dual gene expression analysis showed that the pro-inflammatory cytokines IL-6, IL-12, and TNFα were upregulated, while the cytokines IL1b and IFNγ were downregulated in the three cell culture types. The expression of the P. salmonis metal uptake and heme acquisition genes, together with the toxin and effector genes ospD3, ymt, pipB2 and pepO, were upregulated at the early and late stages of infection regardless of the cell culture type. On the other hand, Dot/Icm secretion system genes as well as stationary state and nutrient scarcity-related genes were upregulated only at the late stage of P. salmonis intracellular infection. We propose that these genes encoding putative P. salmonis virulence factors and immune-related proteins could be suitable biomarkers of P. salmonis infection. The infection protocol and cell viability assay described here provide a reliable method to compare the molecular and cellular changes induced by P. salmonis in other cell lines and has the potential to be used for high-throughput screenings of novel antimicrobials targeting this important fish intracellular pathogen.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.O.-S.); (F.P.C.)
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830489, Chile
- Center of Integrative Microbiology and Evolution, University of Oslo, 0316 Oslo, Norway; (J.I.T.); (H.C.W.-L.)
| | - Julia I. Tandberg
- Center of Integrative Microbiology and Evolution, University of Oslo, 0316 Oslo, Norway; (J.I.T.); (H.C.W.-L.)
- Department of Pharmacology and Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Hanne C. Winther-Larsen
- Center of Integrative Microbiology and Evolution, University of Oslo, 0316 Oslo, Norway; (J.I.T.); (H.C.W.-L.)
- Department of Pharmacology and Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Francisco P. Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.O.-S.); (F.P.C.)
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830489, Chile
- Fondap Center for Genome Regulation, Universidad de Chile, Santiago 8370415, Chile
- Correspondence:
| |
Collapse
|
23
|
Pant DC, Nazarko TY. Selective autophagy: the rise of the zebrafish model. Autophagy 2021; 17:3297-3305. [PMID: 33228439 PMCID: PMC8632090 DOI: 10.1080/15548627.2020.1853382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Selective autophagy is a specific elimination of certain intracellular substrates by autophagic pathways. The most studied macroautophagy pathway involves tagging and recognition of a specific cargo by the autophagic membrane (phagophore) followed by the complete sequestration of targeted cargo from the cytosol by the double-membrane vesicle, autophagosome. Until recently, the knowledge about selective macroautophagy was minimal, but now there is a panoply of links elucidating how phagophores engulf their substrates selectively. The studies of selective autophagy processes have further stressed the importance of using the in vivo models to validate new in vitro findings and discover the physiologically relevant mechanisms. However, dissecting how the selective autophagy occurs yet remains difficult in living organisms, because most of the organelles are relatively inaccessible to observation and experimental manipulation in mammals. In recent years, zebrafish (Danio rerio) is widely recognized as an excellent model for studying autophagic processes in vivo because of its optical accessibility, genetic manipulability and translational potential. Several selective autophagy pathways, such as mitophagy, xenophagy, lipophagy and aggrephagy, have been investigated using zebrafish and still need to be studied further, while other selective autophagy pathways, such as pexophagy or reticulophagy, could also benefit from the use of the zebrafish model. In this review, we shed light on how zebrafish contributed to our understanding of these selective autophagy processes by providing the in vivo platform to study them at the organismal level and highlighted the versatility of zebrafish model in the selective autophagy field.Abbreviations: AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CMA: chaperone-mediated autophagy; CQ: chloroquine; HsAMBRA1: human AMBRA1; KD: knockdown; KO: knockout; LD: lipid droplet; MMA: methylmalonic acidemia; PD: Parkinson disease; Tg: transgenic.
Collapse
Affiliation(s)
- Devesh C. Pant
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
24
|
Sasaki Y, Guo YM, Goto T, Ubukawa K, Asanuma K, Kobayashi I, Sawada K, Wakui H, Takahashi N. IL-6 Generated from Human Hematopoietic Stem and Progenitor Cells through TLR4 Signaling Promotes Emergency Granulopoiesis by Regulating Transcription Factor Expression. THE JOURNAL OF IMMUNOLOGY 2021; 207:1078-1086. [PMID: 34341172 DOI: 10.4049/jimmunol.2100168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Emergency granulopoiesis, also known as demand-adapted granulopoiesis, is defined as the response of an organism to systemic bacterial infections, and it results in neutrophil mobilization from reservoir pools and increased myelopoiesis in the bone marrow. Indirect and direct initiating mechanisms of emergency granulopoiesis have been hypothesized. However, the detailed mechanism of hyperactive myelopoiesis in the bone marrow, which leads to granulocyte left shift, remains unknown. In this study, we report that TLR4 is expressed on granulo-monocytic progenitors, as well as mobilized human peripheral blood CD34+ cells, which account for 0.2% of monocytes in peripheral blood, and ∼ 10% in bone marrow. LPS, a component of Gram-negative bacteria that results in a systemic bacterial infection, induces the differentiation of peripheral blood CD34+ cells into myelocytes and monocytes in vitro via the TLR4 signaling pathway. Moreover, CD34+ cells directly responded to LPS stimulation by activating the MAPK and NF-κB signaling pathways, and they produced IL-6 that promotes emergency granulopoiesis by phosphorylating C/EBPα and C/EBPβ, and this effect was suppressed by the action of an IL-6 receptor inhibitor. This work supports the finding that TLR is expressed on human hematopoietic stem and progenitor cells, and it provides evidence that human hematopoietic stem and progenitor cells can directly sense pathogens and produce cytokines exerting autocrine and/or paracrine effects, thereby promoting differentiation.
Collapse
Affiliation(s)
- Yumi Sasaki
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Yong-Mei Guo
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan;
| | - Tatsufumi Goto
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Kumi Ubukawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Ken Asanuma
- Division of Radio Isotope, Bioscience Education and Research Support Center, Akita University School of Medicine, Akita, Japan; and
| | - Isuzu Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenichi Sawada
- Medical Corporation Hokubukai Utsukushigaoka Hospital, Hokkaido, Japan
| | - Hideki Wakui
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
25
|
C/EBPβ isoforms sequentially regulate regenerating mouse hematopoietic stem/progenitor cells. Blood Adv 2021; 4:3343-3356. [PMID: 32717031 DOI: 10.1182/bloodadvances.2018022913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
The transcription factor CCAAT enhancer-binding protein β (C/EBPβ) is required for stress-induced granulopoiesis at the level of hematopoietic stem/progenitor cells (HSPCs); however, its role and mechanisms of action in HSPCs are unknown. In this study, we assessed the regulation and functions of C/EBPβ in HSPCs, especially under stress conditions. After 5-fluorouracil treatment or bone marrow transplantation, Cebpb-/- HSPCs exhibited impaired cell-cycle activation and myeloid differentiation at the early and late phases of regeneration, respectively, whereas at steady state, Cebpb deficiency did not affect HSPCs. C/EBPβ was upregulated in response to hematopoietic stress, especially in CD150high long term-hematopoietic stem cells (LT-HSCs). Intracellular flow cytometric analysis that detected distinct domains of C/EBPβ revealed that, among the 3 isoforms of C/EBPβ, liver-enriched inhibitory protein (LIP) was upregulated in LT-HSCs prior to liver-enriched activating protein (LAP)/LAP* during regeneration. Early upregulation of LIP promoted cell-cycle entry of LT-HSCs by positively regulating Myc and expanded the HSPCs pool. Subsequent myeloid differentiation of amplified HSPCs was mediated by LAP/LAP*, which were upregulated at a later phase of regeneration. Collectively, our findings show that stress-induced sequential upregulation of C/EBPβ isoforms is critical for fine-tuning the proliferation and differentiation of regenerating HSPCs.
Collapse
|
26
|
Sadaf S, Nagarkoti S, Awasthi D, Singh AK, Srivastava RN, Kumar S, Barthwal MK, Dikshit M. nNOS induction and NOSIP interaction impact granulopoiesis and neutrophil differentiation by modulating nitric oxide generation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119018. [PMID: 33771575 DOI: 10.1016/j.bbamcr.2021.119018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO), a versatile free radical and a signalling molecule, plays an important role in the haematopoiesis, inflammation and infection. Impaired proliferation and differentiation of myeloid cells lead to malignancies and Hematopoietic deficiencies. This study was aimed to define the role of nNOS derived NO in neutrophil differentiation (in-vitro) and granulopoiesis (in-vivo) using multipronged approaches. The results obtained from nNOS over-expressing K562 cells revealed induction in C/EBPα derived neutrophil differentiation as evident by an increase in the expression of neutrophil specific cell surface markers, genes, transcription factors and functionality. nNOS mediated response also involved G-CSFR-STAT-3 axis during differentiation. Consistent increase in NO generation was observed during neutrophil differentiation of mice and human CD34+ HSPCs. Furthermore, granulopoiesis was abrogated in the nNOS inhibitor treated mice, depicting a decrease in the numbers of BM mature and progenitor neutrophils. Likewise, in vitro inhibition of nNOS in human CD34+ HSPCs indicated an indispensable role of nNOS in neutrophil differentiation. Expression of nNOS inhibitory protein, NOSIP was significantly and consistently decreased during the final stage of differentiation and was linked with the augmentation in NO release. Moreover, neutrophils from CML patients had more NOSIP and less NO generation as compared to the PMNs from healthy individuals. The present study thus indicates a critical role of nNOS, and its interaction with NOSIP during neutrophil differentiation. The study also highlights the importance of nNOS in the neutrophil progenitor proliferation and differentiation warranting investigations to assess its role in the haematopoiesis-related disorders.
Collapse
Affiliation(s)
- Samreen Sadaf
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana 121001, India.
| |
Collapse
|
27
|
Hümmer J, Kraus S, Brändle K, Lee-Thedieck C. Nitric Oxide in the Control of the in vitro Proliferation and Differentiation of Human Hematopoietic Stem and Progenitor Cells. Front Cell Dev Biol 2021; 8:610369. [PMID: 33634102 PMCID: PMC7900502 DOI: 10.3389/fcell.2020.610369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) transplantation is the best-studied cellular therapy and successful in vitro control of HSPCs has wide clinical implications. Nitric oxide (NO) is a central signaling molecule in vivo and has been implicated in HSPC mobilization to the blood stream in mice. The influence of NO on HSPC behavior in vitro is, however, largely obscure due to the variety of employed cell types, NO administration systems, and used concentration ranges in the literature. Additionally, most studies are based on murine cells, which do not necessarily mimic human HSPC behavior. Thus, the aim of the present study was the systematic, concentration-dependent evaluation of NO-mediated effects on human HSPC behavior in vitro. By culture in the presence of the long-term NO donor diethylenetriamine/nitric oxide adduct (DETA/NO) in a nontoxic concentration window, a biphasic role of NO in the regulation of HSPC behavior was identified: Low DETA/NO concentrations activated classical NO signaling, identified via increased intracellular cyclic guanosine monophosphate (cGMP) levels and proteinkinases G (PKG)-dependent vasodilator-stimulated phosphoprotein (VASP) phosphorylation and mediated a pro-proliferative response of HSPCs. In contrast, elevated NO concentrations slowed cell proliferation and induced HSPC differentiation. At high concentrations, s-nitrosylation levels were elevated, and myeloid differentiation was increased at the expense of lymphoid progenitors. Together, these findings hint at a central role of NO in regulating human HSPC behavior and stress the importance and the potential of the use of adequate NO concentrations for in vitro cultures of HSPCs, with possible implications for clinical application of in vitro expanded or differentiated HSPCs for cellular therapies.
Collapse
Affiliation(s)
- Julia Hümmer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Saskia Kraus
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Katharina Brändle
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
28
|
El-Son MAM, Elbahnaswy S, Ibrahim I. Molecular and histopathological characterization of Photobacterium damselae in naturally and experimentally infected Nile tilapia (Oreochromis niloticus). JOURNAL OF FISH DISEASES 2020; 43:1505-1517. [PMID: 32984991 DOI: 10.1111/jfd.13251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Mass mortality has occurred among cultured Nile tilapia, Oreochromis niloticus, on fish farms in Manzala, Dakahlia province, Egypt, in the summer season, 2019. Moribund fish were reported with deep ulcers, septicaemic lesions and sampled for bacterial isolation. In this study, most isolates were subjected to bacteriological examination, antibiotic sensitivity test, 16S rRNA gene sequencing and histopathological examination. Following isolate identification, intraperitoneal challenge of Nile tilapia with a bacterial suspension 2 × 106 CFU/ml was performed. Samples from liver, spleen and kidney were collected for histological and biochemical analysis. The results showed a high similarity (99%) to Photobacterium damselae strains using phylogenetic analysis of 16S rRNA. P. damselae exhibited resistance to amoxicillin and erythromycin, as well it was highly sensitive to chloramphenicol and doxycycline. Moreover, haemorrhage, oedema, hemosiderosis and melanomacrophage activation in the liver and head kidney of infected fish were detected by light and electron microscopy. Also, significant higher levels of CAT and SOD in the spleen and head kidney, as well as the serum levels of NO were observed in experimentally challenged O. niloticus, compared to the control fish. Our data identified P. damselae for the first time from infected Nile tilapia, describing its sensitivity to a variety of antibiotics, histopathological alterations and oxidative stress impact, and it could be useful indicators for understanding P. damselae pathogenesis, which might provide a preventive efficacy for P. damselae.
Collapse
Affiliation(s)
- Mai A M El-Son
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Samia Elbahnaswy
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Iman Ibrahim
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
29
|
Landgraf K, Klöting N, Gericke M, Maixner N, Guiu-Jurado E, Scholz M, Witte AV, Beyer F, Schwartze JT, Lacher M, Villringer A, Kovacs P, Rudich A, Blüher M, Kiess W, Körner A. The Obesity-Susceptibility Gene TMEM18 Promotes Adipogenesis through Activation of PPARG. Cell Rep 2020; 33:108295. [PMID: 33086065 DOI: 10.1016/j.celrep.2020.108295] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 01/14/2023] Open
Abstract
TMEM18 is the strongest candidate for childhood obesity identified from GWASs, yet as for most GWAS-derived obesity-susceptibility genes, the functional mechanism remains elusive. We here investigate the relevance of TMEM18 for adipose tissue development and obesity. We demonstrate that adipocyte TMEM18 expression is downregulated in children with obesity. Functionally, downregulation of TMEM18 impairs adipocyte formation in zebrafish and in human preadipocytes, indicating that TMEM18 is important for adipocyte differentiation in vivo and in vitro. On the molecular level, TMEM18 activates PPARG, particularly upregulating PPARG1 promoter activity, and this activation is repressed by inflammatory stimuli. The relationship between TMEM18 and PPARG1 is also evident in adipocytes of children and is clinically associated with obesity and adipocyte hypertrophy, inflammation, and insulin resistance. Our findings indicate a role of TMEM18 as an upstream regulator of PPARG signaling driving healthy adipogenesis, which is dysregulated with adipose tissue dysfunction and obesity.
Collapse
Affiliation(s)
- Kathrin Landgraf
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig 04103, Germany.
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany; Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 04103, Germany
| | - Martin Gericke
- Institute of Anatomy, University of Leipzig, Leipzig 04103, Germany
| | - Nitzan Maixner
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Esther Guiu-Jurado
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 04103, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig 04103, Germany; LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig 04103, Germany
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Julian T Schwartze
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig 04103, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig 04103, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 04103, Germany
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany; Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 04103, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig 04103, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig 04103, Germany.
| |
Collapse
|
30
|
Wei Z, Li C, Zhang Y, Lin C, Zhang Y, Shu L, Luo L, Zhuo J, Li L. Macrophage-Derived IL-1β Regulates Emergency Myelopoiesis via the NF-κB and C/ebpβ in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2020; 205:2694-2706. [PMID: 33077646 DOI: 10.4049/jimmunol.2000473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
Myeloid phagocytes, neutrophils in particular, are easily consumed when they fight against a large number of invading microbes. Hence, they require efficient and constant replenishment from their progenitors via the well-orchestrated emergency myelopoiesis in the hematopoietic organs. The cellular and molecular details of the danger-sensing and warning processes to activate the emergency myelopoiesis are still under debate. In this study, we set up a systemic infection model in zebrafish (Danio rerio) larvae via circulative administration of LPS. We focused on the cross-talk of macrophages with myeloid progenitors in the caudal hematopoietic tissue. We revealed that macrophages first detected LPS and sent out the emergency message via il1β The myeloid progenitors, rather than hematopoietic stem and progenitor cells, responded and fulfilled the demand to adapt myeloid expansion through the synergistic cooperation of NF-κB and C/ebpβ. Our study unveiled a critical role of macrophages as the early "whistle blowers" to initiate emergency myelopoiesis.
Collapse
Affiliation(s)
- Zongfang Wei
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Chenzheng Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Yangping Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Chenyu Lin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Liping Shu
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Science, Guizhou Medical University, Guiyang 550025, People's Republic of China; and
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian Zhuo
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, People's Republic of China
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
31
|
Schild Y, Mohamed A, Wootton EJ, Lewis A, Elks PM. Hif-1alpha stabilisation is protective against infection in zebrafish comorbid models. FEBS J 2020; 287:3925-3943. [PMID: 32485057 DOI: 10.1111/febs.15433] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 01/22/2023]
Abstract
Multi-drug-resistant tuberculosis is a worldwide problem, and there is an urgent need for host-derived therapeutic targets, circumventing emerging drug resistance. We have previously shown that hypoxia-inducible factor-1α (Hif-1α) stabilisation helps the host to clear mycobacterial infection via neutrophil activation. However, Hif-1α stabilisation has also been implicated in chronic inflammatory diseases caused by prolonged neutrophilic inflammation. Comorbid infection and inflammation can be found together in disease settings, and it remains unclear whether Hif-1α stabilisation would be beneficial in a holistic disease setting. Here, we set out to understand the effects of Hif-1α on neutrophil behaviour in a comorbid setting by combining two well-characterised in vivo zebrafish models - TB infection (Mycobacterium marinum infection) and sterile injury (tailfin transection). Using a local Mm infection near to the tailfin wound site caused neutrophil migration between the two sites that was reduced during Hif-1α stabilisation. During systemic Mm infection, wounding leads to increased infection burden, but the protective effect of Hif-1α stabilisation remains. Our data indicate that Hif-1α stabilisation alters neutrophil migration dynamics between comorbid sites and that the protective effect of Hif-1α against Mm is maintained in the presence of inflammation, highlighting its potential as a host-derived target against TB infection.
Collapse
Affiliation(s)
- Yves Schild
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Universität Duisburg Essen, Duisburg, Germany
| | - Abdirizak Mohamed
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Edward J Wootton
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Amy Lewis
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
32
|
C/EBPβ is a critical mediator of IFN-α-induced exhaustion of chronic myeloid leukemia stem cells. Blood Adv 2020; 3:476-488. [PMID: 30755436 DOI: 10.1182/bloodadvances.2018020503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/12/2019] [Indexed: 11/20/2022] Open
Abstract
Even in the era of ABL tyrosine kinase inhibitors, eradication of chronic myeloid leukemia (CML) stem cells is necessary for complete cure of the disease. Interferon-α (IFN-α) has long been used for the treatment of chronic-phase CML, but its mechanisms of action against CML stem cells remain unclear. We found that IFN-α upregulated CCAAT/enhancer binding protein β (C/EBPβ) in BCR-ABL-expressing mouse cells by activating STAT1 and STAT5, which were recruited to a newly identified 3' distal enhancer of Cebpb that contains tandemly aligned IFN-γ-activated site elements. Suppression or deletion of the IFN-γ-activated site elements abrogated IFN-α-dependent upregulation of C/EBPβ. IFN-α induced differentiation and exhaustion of CML stem cells, both in vitro and in vivo, in a C/EBPβ-dependent manner. In addition, IFN-α upregulated C/EBPβ and induced exhaustion of lineage- CD34+ cells from CML patients. Collectively, these results clearly indicate that C/EBPβ is a critical mediator of IFN-α-induced differentiation and exhaustion of CML stem cells.
Collapse
|
33
|
Basheer F, Liongue C, Ward AC. Zebrafish Bacterial Infection Assay to Study Host-Pathogen Interactions. Bio Protoc 2020; 10:e3536. [PMID: 33659510 DOI: 10.21769/bioprotoc.3536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 11/02/2022] Open
Abstract
The study of host-pathogen interactions has improved our understanding of both pathogenesis and the response of the host to infection, including both innate and adaptive responses. Neutrophils and macrophages represent the first line of innate host defense against any infection. The zebrafish is an ideal model to study the response of these cells to a variety of pathogens. Zebrafish possess both neutrophils and macrophages exhibiting similar defense mechanisms to their human counterparts. The transparency of zebrafish embryos greatly facilitates in vivo tracking of infection dynamics in a non-invasive manner at high-resolution using labelled pathogens, while immune cells can also be labelled transgenically to enable even more in-depth analysis. Here we describe a procedure for performing a bacterial infection assay in zebrafish embryos using fluorescently-labelled E. coli bacteria and demonstrate the monitoring and quantification of the infection kinetics. Of note, this procedure helps in understanding the functional role of genes that are important in driving the innate immune response.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
34
|
Lu XJ, Zhu K, Shen HX, Nie L, Chen J. CXCR4s in Teleosts: Two Paralogous Chemokine Receptors and Their Roles in Hematopoietic Stem/Progenitor Cell Homeostasis. THE JOURNAL OF IMMUNOLOGY 2020; 204:1225-1241. [DOI: 10.4049/jimmunol.1901100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
|
35
|
Rosowski EE. Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Dis Model Mech 2020; 13:13/1/dmm041889. [PMID: 31932292 PMCID: PMC6994940 DOI: 10.1242/dmm.041889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The specific roles of the two major innate immune cell types – neutrophils and macrophages – in response to infection and sterile inflammation are areas of great interest. The larval zebrafish model of innate immunity, and the imaging capabilities it provides, is a source of new research and discoveries in this field. Multiple methods have been developed in larval zebrafish to specifically deplete functional macrophages or neutrophils. Each of these has pros and cons, as well as caveats, that often make it difficult to directly compare results from different studies. The purpose of this Review is to (1) explore the pros, cons and caveats of each of these immune cell-depleted models; (2) highlight and place into a broader context recent key findings on the specific functions of innate immune cells using these models; and (3) explore future directions in which immune cell depletion methods are being expanded. Summary: Macrophages and neutrophils are distinct innate immune cells with diverse roles in diverse inflammatory contexts. Recent research in larval zebrafish using cell-specific depletion methods has revealed new insights into these cells' functions.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
36
|
Wang B, Huang C, Chen L, Xu D, Zheng G, Zhou Y, Wang X, Zhang X. The Emerging Roles of the Gaseous Signaling Molecules NO, H2S, and CO in the Regulation of Stem Cells. ACS Biomater Sci Eng 2019; 6:798-812. [PMID: 33464852 DOI: 10.1021/acsbiomaterials.9b01681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lijie Chen
- Department of Surgical Oncology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Van Dycke J, Ny A, Conceição-Neto N, Maes J, Hosmillo M, Cuvry A, Goodfellow I, Nogueira TC, Verbeken E, Matthijnssens J, de Witte P, Neyts J, Rocha-Pereira J. A robust human norovirus replication model in zebrafish larvae. PLoS Pathog 2019; 15:e1008009. [PMID: 31536612 PMCID: PMC6752765 DOI: 10.1371/journal.ppat.1008009] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/29/2019] [Indexed: 01/15/2023] Open
Abstract
Human noroviruses (HuNoVs) are the most common cause of foodborne illness, with a societal cost of $60 billion and 219,000 deaths/year. The lack of robust small animal models has significantly hindered the understanding of norovirus biology and the development of effective therapeutics. Here we report that HuNoV GI and GII replicate to high titers in zebrafish (Danio rerio) larvae; replication peaks at day 2 post infection and is detectable for at least 6 days. The virus (HuNoV GII.4) could be passaged from larva to larva two consecutive times. HuNoV is detected in cells of the hematopoietic lineage and the intestine, supporting the notion of a dual tropism. Antiviral treatment reduces HuNoV replication by >2 log10, showing that this model is suited for antiviral studies. Zebrafish larvae constitute a simple and robust replication model that will largely facilitate studies of HuNoV biology and the development of antiviral strategies.
Collapse
Affiliation(s)
- Jana Van Dycke
- KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Annelii Ny
- KU Leuven–Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Biodiscovery, Leuven, Belgium
| | - Nádia Conceição-Neto
- KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Jan Maes
- KU Leuven–Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Biodiscovery, Leuven, Belgium
| | - Myra Hosmillo
- University of Cambridge–Department of Pathology, Division of Virology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Arno Cuvry
- KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Ian Goodfellow
- University of Cambridge–Department of Pathology, Division of Virology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Tatiane C. Nogueira
- KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Erik Verbeken
- KU Leuven–Department of Imaging & Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Peter de Witte
- KU Leuven–Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Biodiscovery, Leuven, Belgium
| | - Johan Neyts
- KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
- Global Virus Network (GVN), Centers of Excellence
| | - Joana Rocha-Pereira
- KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
38
|
Bowes C, Redd M, Yousfi M, Tauzin M, Murayama E, Herbomel P. Coronin 1A depletion restores the nuclear stability and viability of Aip1/Wdr1-deficient neutrophils. J Cell Biol 2019; 218:3258-3271. [PMID: 31471458 PMCID: PMC6781450 DOI: 10.1083/jcb.201901024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Bowes et al. show that in zebrafish embryos deficient in the cofilin cofactor AIP1/Wdr1, neutrophils display F-actin as cytoplasmic aggregates, spatially uncoupled from active myosin, then undergo a progressive unwinding of their nucleus followed by eruptive cell death. This adverse phenotype is fully rescued by depletion of another cofilin cofactor, coronin 1A. Actin dynamics is central for cells, and especially for the fast-moving leukocytes. The severing of actin filaments is mainly achieved by cofilin, assisted by Aip1/Wdr1 and coronins. We found that in Wdr1-deficient zebrafish embryos, neutrophils display F-actin cytoplasmic aggregates and a complete spatial uncoupling of phospho-myosin from F-actin. They then undergo an unprecedented gradual disorganization of their nucleus followed by eruptive cell death. Their cofilin is mostly unphosphorylated and associated with F-actin, thus likely outcompeting myosin for F-actin binding. Myosin inhibition reproduces in WT embryos the nuclear instability and eruptive death of neutrophils seen in Wdr1-deficient embryos. Strikingly, depletion of the main coronin of leukocytes, coronin 1A, fully restores the cortical location of F-actin, nuclear integrity, viability, and mobility of Wdr1-deficient neutrophils in vivo. Our study points to an essential role of actomyosin contractility in maintaining the integrity of the nucleus of neutrophils and a new twist in the interplay of cofilin, Wdr1, and coronin in regulating F-actin dynamics.
Collapse
Affiliation(s)
- Charnese Bowes
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Michael Redd
- University of Utah, Huntsman Cancer Institute, Salt Lake City, UT
| | - Malika Yousfi
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Muriel Tauzin
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Emi Murayama
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France .,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| |
Collapse
|
39
|
Tyrkalska SD, Pérez-Oliva AB, Rodríguez-Ruiz L, Martínez-Morcillo FJ, Alcaraz-Pérez F, Martínez-Navarro FJ, Lachaud C, Ahmed N, Schroeder T, Pardo-Sánchez I, Candel S, López-Muñoz A, Choudhuri A, Rossmann MP, Zon LI, Cayuela ML, García-Moreno D, Mulero V. Inflammasome Regulates Hematopoiesis through Cleavage of the Master Erythroid Transcription Factor GATA1. Immunity 2019; 51:50-63.e5. [PMID: 31174991 DOI: 10.1016/j.immuni.2019.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/07/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Chronic inflammatory diseases are associated with altered hematopoiesis that could result in neutrophilia and anemia. Here we report that genetic or chemical manipulation of different inflammasome components altered the differentiation of hematopoietic stem and progenitor cells (HSPC) in zebrafish. Although the inflammasome was dispensable for the emergence of HSPC, it was intrinsically required for their myeloid differentiation. In addition, Gata1 transcript and protein amounts increased in inflammasome-deficient larvae, enforcing erythropoiesis and inhibiting myelopoiesis. This mechanism is evolutionarily conserved, since pharmacological inhibition of the inflammasome altered erythroid differentiation of human erythroleukemic K562 cells. In addition, caspase-1 inhibition rapidly upregulated GATA1 protein in mouse HSPC promoting their erythroid differentiation. Importantly, pharmacological inhibition of the inflammasome rescued zebrafish disease models of neutrophilic inflammation and anemia. These results indicate that the inflammasome plays a major role in the pathogenesis of neutrophilia and anemia of chronic diseases and reveal druggable targets for therapeutic interventions.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Lola Rodríguez-Ruiz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Francisco J Martínez-Morcillo
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | | | - Francisco J Martínez-Navarro
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Christophe Lachaud
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Irene Pardo-Sánchez
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Azucena López-Muñoz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Avik Choudhuri
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marlies P Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - María L Cayuela
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
40
|
Langevin C, Boudinot P, Collet B. IFN Signaling in Inflammation and Viral Infections: New Insights from Fish Models. Viruses 2019; 11:v11030302. [PMID: 30917538 PMCID: PMC6466407 DOI: 10.3390/v11030302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
The overarching structure of the type I interferon (IFN) system is conserved across vertebrates. However, the variable numbers of whole genome duplication events during fish evolution offer opportunities for the expansion, diversification, and new functionalization of the genes that are involved in antiviral immunity. In this review, we examine how fish models provide new insights about the implication of virus-driven inflammation in immunity and hematopoiesis. Mechanisms that have been discovered in fish, such as the strong adjuvant effect of type I IFN that is used with DNA vaccination, constitute good models to understand how virus-induced inflammatory mechanisms can interfere with adaptive responses. We also comment on new discoveries regarding the role of pathogen-induced inflammation in the development and guidance of hematopoietic stem cells in zebrafish. These findings raise issues about the potential interferences of viral infections with the establishment of the immune system. Finally, the recent development of genome editing provides new opportunities to dissect the roles of the key players involved in the antiviral response in fish, hence enhancing the power of comparative approaches.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Bertrand Collet
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| |
Collapse
|
41
|
Sadaf S, Singh AK, Awasthi D, Nagarkoti S, Agrahari AK, Srivastava RN, Jagavelu K, Kumar S, Barthwal MK, Dikshit M. Augmentation of iNOS expression in myeloid progenitor cells expedites neutrophil differentiation. J Leukoc Biol 2019; 106:397-412. [DOI: 10.1002/jlb.1a0918-349rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Samreen Sadaf
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | | | - Deepika Awasthi
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | - Sheela Nagarkoti
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | | | | | | | - Sachin Kumar
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | | | - Madhu Dikshit
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
42
|
M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion. Blood Adv 2019; 2:859-870. [PMID: 29666049 DOI: 10.1182/bloodadvances.2018015685] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022] Open
Abstract
Uncovering the cellular and molecular mechanisms by which hematopoietic stem cell (HSC) self-renewal is regulated can lead to the development of new strategies for promoting ex vivo HSC expansion. Here, we report the discovery that alternative (M2)-polarized macrophages (M2-MΦs) promote, but classical (M1)-polarized macrophages (M1-MΦs) inhibit, the self-renewal and expansion of HSCs from mouse bone marrow (BM) in vitro. The opposite effects of M1-MΦs and M2-MΦs on mouse BM HSCs were attributed to their differential expression of nitric oxide synthase 2 (NOS2) and arginase 1 (Arg1), because genetic knockout of Nos2 and Arg1 or inhibition of these enzymes with a specific inhibitor abrogated the differential effects of M1-MΦs and M2-MΦs. The opposite effects of M1-MΦs and M2-MΦs on HSCs from human umbilical cord blood (hUCB) were also observed when hUCB CD34+ cells were cocultured with M1-MΦs and M2-MΦs generated from hUCB CD34- cells. Importantly, coculture of hUCB CD34+ cells with human M2-MΦs for 8 days resulted in 28.7- and 6.6-fold increases in the number of CD34+ cells and long-term SCID mice-repopulating cells, respectively, compared with uncultured hUCB CD34+ cells. Our findings could lead to the development of new strategies to promote ex vivo hUCB HSC expansion to improve the clinical utility and outcome of hUCB HSC transplantation and may provide new insights into the pathogenesis of hematological dysfunctions associated with infection and inflammation that can lead to differential macrophage polarization.
Collapse
|
43
|
CXCR4 signaling regulates metastatic onset by controlling neutrophil motility and response to malignant cells. Sci Rep 2019; 9:2399. [PMID: 30787324 PMCID: PMC6382824 DOI: 10.1038/s41598-019-38643-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/18/2018] [Indexed: 01/24/2023] Open
Abstract
Developing tumors interact with the surrounding microenvironment. Myeloid cells exert both anti- and pro-tumor functions and chemokines are known to drive immune cell migration towards cancer cells. It is documented that CXCR4 signaling supports tumor metastasis formation in tissues where CXCL12, its cognate ligand, is abundant. On the other hand, the role of the neutrophilic CXCR4 signaling in driving cancer invasion and metastasis formation is poorly understood. Here, we use the zebrafish xenotransplantation model to study the role of CXCR4 signaling in driving the interaction between invasive human tumor cells and host neutrophils, supporting early metastasis formation. We found that zebrafish cxcr4 (cxcr4b) is highly expressed in neutrophils and experimental micrometastases fail to form in mutant larvae lacking a functional Cxcr4b. We demonstrated that Cxcr4b controls neutrophil number and motility and showed that Cxcr4b transcriptomic signature relates to motility and adhesion regulation in neutrophils in tumor-naïve larvae. Finally, Cxcr4b deficient neutrophils failed to interact with cancer cells initiating early metastatic events. In conclusion, we propose that CXCR4 signaling supports the interaction between tumor cells and host neutrophils in developing tumor metastases. Therefore, targeting CXCR4 on tumor cells and neutrophils could serve as a double bladed razor to limit cancer progression.
Collapse
|
44
|
Abstract
Humoral regulation by ligand/receptor interactions is a fundamental feature of vertebrate hematopoiesis. Zebrafish are an established vertebrate animal model of hematopoiesis, sharing with mammals conserved genetic, molecular and cell biological regulatory mechanisms. This comprehensive review considers zebrafish hematopoiesis from the perspective of the hematopoietic growth factors (HGFs), their receptors and their actions. Zebrafish possess multiple HGFs: CSF1 (M-CSF) and CSF3 (G-CSF), kit ligand (KL, SCF), erythropoietin (EPO), thrombopoietin (THPO/TPO), and the interleukins IL6, IL11, and IL34. Some ligands and/or receptor components have been duplicated by various mechanisms including the teleost whole genome duplication, adding complexity to the ligand/receptor interactions possible, but also providing examples of several different outcomes of ligand and receptor subfunctionalization or neofunctionalization. CSF2 (GM-CSF), IL3 and IL5 and their receptors are absent from zebrafish. Overall the humoral regulation of hematopoiesis in zebrafish displays considerable similarity with mammals, which can be applied in biological and disease modelling research.
Collapse
Affiliation(s)
- Vahid Pazhakh
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| | - Graham J Lieschke
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| |
Collapse
|
45
|
JMJD3 facilitates C/EBPβ-centered transcriptional program to exert oncorepressor activity in AML. Nat Commun 2018; 9:3369. [PMID: 30135572 PMCID: PMC6105679 DOI: 10.1038/s41467-018-05548-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
JMJD3, a stress-inducible H3K27 demethylase, plays a critical regulatory role in the initiation and progression of malignant hematopoiesis. However, how this histone modifier affects in a cell type-dependent manner remains unclear. Here, we show that in contrast to its oncogenic effect in preleukemia state and lymphoid malignancies, JMJD3 relieves the differentiation-arrest of certain subtypes (such as M2 and M3) of acute myeloid leukemia (AML) cells. RNA sequencing and ChIP−PCR analyses revealed that JMJD3 exerts anti-AML effect by directly modulating H3K4 and H3K27 methylation levels to activate the expression of a number of key myelopoietic regulatory genes. Mechanistic exploration identified a physical and functional association of JMJD3 with C/EBPβ that presides the regulatory network of JMJD3. Thus, the leukemia regulatory role of JMJD3 varies in a disease phase- and lineage-dependent manner, and acts as a potential oncorepressor in certain subsets of AML largely by coupling to C/EBPβ-centered myelopoietic program. Histone demethylase JMJD3 is known to be oncogenic in preleukemic states and T-cell acute lymphocytic leukemia. Here, the authors show that in some acute myeloid leukemia subsets, JMJD3 can actually act as a potential oncorepressor via mediation of C/EBPβ-centered transcriptional programming.
Collapse
|
46
|
Phan QT, Sipka T, Gonzalez C, Levraud JP, Lutfalla G, Nguyen-Chi M. Neutrophils use superoxide to control bacterial infection at a distance. PLoS Pathog 2018; 14:e1007157. [PMID: 30016370 PMCID: PMC6049935 DOI: 10.1371/journal.ppat.1007157] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023] Open
Abstract
Understanding the roles of neutrophils and macrophages in fighting bacterial infections is a critical issue in human pathologies. Although phagocytic killing has been extensively studied, little is known about how bacteria are eliminated extracellularly in live vertebrates. We have recently developed an infection model in the zebrafish embryo in which leukocytes cannot reach the injected bacteria. When Escherichia coli bacteria are injected within the notochord, both neutrophils and macrophages are massively recruited during several days, but do not infiltrate the infected tissue presumably because of its tough collagen sheath. Nevertheless, the bacteria are killed during the first 24 hours, and we report here that neutrophils, but not macrophages are involved in the control of the infection. Using genetic and chemical approaches, we show that even in absence of phagocytosis, the bactericidal action relies on NADPH oxidase-dependent production of superoxide in neutrophils. We thus reveal a host effector mechanism mediated by neutrophils that eliminates bacteria that cannot be reached by phagocytes and that is independent of macrophages, NO synthase or myeloperoxidase. Deciphering the defence mechanisms of leukocytes remains a challenge for public health. Although phagocytic killing has been extensively studied, little is known about how bacteria are eliminated extracellularly in live vertebrates. Herein we use the notochord infection model in the zebrafish embryo to describe how leukocytes eliminate distant bacteria that are inaccessible for phagocytosis. In this context neutrophils but not macrophages are instrumental for bacterial clearance and larva survival. We then found that neutrophil bactericidal action relies on the NADPH oxidase dependent production of superoxide and is independent of NO synthase or myeloperoxidase.
Collapse
Affiliation(s)
- Quang Tien Phan
- DIMNP, CNRS, Univ Montpellier, Montpellier, France.,Dept of Biological Sciences National University of Singapore, Singapore
| | - Tamara Sipka
- DIMNP, CNRS, Univ Montpellier, Montpellier, France
| | | | - Jean-Pierre Levraud
- Macrophages et Développement de l'Immunité, Institut Pasteur, Paris, France.,CNRS, UMR3738, Paris, France
| | | | | |
Collapse
|
47
|
Abstract
Emergency granulopoiesis is a hematopoietic program of stem cell-driven neutrophil production used to counteract immune cell exhaustion following infection. Shigella flexneri is a Gram-negative enteroinvasive pathogen controlled by neutrophils. In this study, we use a Shigella-zebrafish (Danio rerio) infection model to investigate emergency granulopoiesis in vivo. We show that stem cell-driven neutrophil production occurs in response to Shigella infection and requires macrophage-independent signaling by granulocyte colony-stimulating factor (Gcsf). To test whether emergency granulopoiesis can function beyond homoeostasis to enhance innate immunity, we developed a reinfection assay using zebrafish larvae that have not yet developed an adaptive immune system. Strikingly, larvae primed with a sublethal dose of Shigella are protected against a secondary lethal dose of Shigella in a type III secretion system (T3SS)-dependent manner. Collectively, these results highlight a new role for emergency granulopoiesis in boosting host defense and demonstrate that zebrafish larvae can be a valuable in vivo model to investigate innate immune memory. Shigella is an important human pathogen of the gut. Emergency granulopoiesis is the enhanced production of neutrophils by hematopoietic stem and progenitor cells (HSPCs) upon infection and is widely considered a homoeostatic mechanism for replacing exhausted leukocytes. In this study, we developed a Shigella-zebrafish infection model to investigate stem cell-driven emergency granulopoiesis. We discovered that zebrafish initiate granulopoiesis in response to Shigella infection, via macrophage-independent signaling of granulocyte colony-stimulating factor (Gcsf). Strikingly, larvae primed with a sublethal dose of Shigella are protected against a secondary lethal dose of Shigella in a type III secretion system (T3SS)-dependent manner. Taken together, we show that zebrafish infection can be used to capture Shigella-mediated stem cell-driven granulopoiesis and provide a new model system to study stem cell biology in vivo. Our results also highlight the potential of manipulating stem cell-driven granulopoiesis to boost innate immunity and combat infectious disease.
Collapse
|
48
|
Ellett F, Pazhakh V, Pase L, Benard EL, Weerasinghe H, Azabdaftari D, Alasmari S, Andrianopoulos A, Lieschke GJ. Macrophages protect Talaromyces marneffei conidia from myeloperoxidase-dependent neutrophil fungicidal activity during infection establishment in vivo. PLoS Pathog 2018; 14:e1007063. [PMID: 29883484 PMCID: PMC6010348 DOI: 10.1371/journal.ppat.1007063] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/20/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Neutrophils and macrophages provide the first line of cellular defence against pathogens once physical barriers are breached, but can play very different roles for each specific pathogen. This is particularly so for fungal pathogens, which can occupy several niches in the host. We developed an infection model of talaromycosis in zebrafish embryos with the thermally-dimorphic intracellular fungal pathogen Talaromyces marneffei and used it to define different roles of neutrophils and macrophages in infection establishment. This system models opportunistic human infection prevalent in HIV-infected patients, as zebrafish embryos have intact innate immunity but, like HIV-infected talaromycosis patients, lack a functional adaptive immune system. Importantly, this new talaromycosis model permits thermal shifts not possible in mammalian models, which we show does not significantly impact on leukocyte migration, phagocytosis and function in an established Aspergillus fumigatus model. Furthermore, the optical transparency of zebrafish embryos facilitates imaging of leukocyte/pathogen interactions in vivo. Following parenteral inoculation, T. marneffei conidia were phagocytosed by both neutrophils and macrophages. Within these different leukocytes, intracellular fungal form varied, indicating that triggers in the intracellular milieu can override thermal morphological determinants. As in human talaromycosis, conidia were predominantly phagocytosed by macrophages rather than neutrophils. Macrophages provided an intracellular niche that supported yeast morphology. Despite their minor role in T. marneffei conidial phagocytosis, neutrophil numbers increased during infection from a protective CSF3-dependent granulopoietic response. By perturbing the relative abundance of neutrophils and macrophages during conidial inoculation, we demonstrate that the macrophage intracellular niche favours infection establishment by protecting conidia from a myeloperoxidase-dependent neutrophil fungicidal activity. These studies provide a new in vivo model of talaromycosis with several advantages over previous models. Our findings demonstrate that limiting T. marneffei's opportunity for macrophage parasitism and thereby enhancing this pathogen's exposure to effective neutrophil fungicidal mechanisms may represent a novel host-directed therapeutic opportunity.
Collapse
Affiliation(s)
- Felix Ellett
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Luke Pase
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Erica L. Benard
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, Australia
| | - Denis Azabdaftari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| |
Collapse
|
49
|
Li C, Luo Y, Shao L, Meng A, Zhou D. NOS2 deficiency has no influence on the radiosensitivity of the hematopoietic system. Cell Biosci 2018; 8:33. [PMID: 29736233 PMCID: PMC5922011 DOI: 10.1186/s13578-018-0228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/12/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Previous studies have shown that inhibition of inducible NO synthase (NOS2 or iNOS) with an inhibitor can selectively protect several normal tissues against radiation during radiotherapy. However, the role of NOS2 in ionizing radiation (IR)-induced bone marrow (BM) suppression is unknown and thus was investigated in the present study using NOS2-/- and wild-type mice 14 days after they were exposed to a sublethal dose of total body irradiation (TBI). METHODS The effects of different doses of IR (1, 2 and 4 Gy) on the apoptosis and colony-forming ability of bone marrow cells from wild-type (WT) and NOS2-/- mice were investigated in vitro. In addition, we exposed NOS2-/- mice and WT mice to 6-Gy TBI or sham irradiation. They were euthanized 14 days after TBI for analysis of peripheral blood cell counts and bone marrow cellularity. Colony-forming unit-granulocyte and macrophage, burst-forming unit-erythroid and CFU-granulocyte, erythroid, macrophage in bone marrow cells from the mice were determined to evaluate the function of hematopoietic progenitor cells (HPCs), and the ability of hematopoietic stem cells (HSCs) to self-renew was analysed by the cobblestone area forming cell assay. The cell cycling of HPCs and HSCs were measured by flow cytometry. RESULTS Exposure to 2 and 4 Gy IR induced bone marrow cell apoptosis and inhibited the proliferation of HPCs in vitro. However, there was no difference between the cells from WT mice and NOS2-/- mice in response to IR exposure in vitro. Exposure of WT mice and NOS2-/- mice to 6 Gy TBI decreased the white blood cell, red blood cell, and platelet counts in the peripheral blood and bone marrow mononuclear cells, and reduced the colony-forming ability of HPCs (P < 0.05), damaged the clonogenic function of HSCs. However, these changes were not significantly different in WT and NOS2-/- mice. CONCLUSION These data suggest that IR induces BM suppression in a NOS2-independent manner.
Collapse
Affiliation(s)
- Chengcheng Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021 China
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Yi Luo
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Lijian Shao
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham, #607, Little Rock, AR 72205 USA
| | - Aimin Meng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021 China
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham, #607, Little Rock, AR 72205 USA
| |
Collapse
|
50
|
Abstract
Shigella is a leading cause of dysentery worldwide, responsible for up to 165 million cases of shigellosis each year. Shigella is also recognised as an exceptional model pathogen to study key issues in cell biology and innate immunity. Several infection models have been useful to explore Shigella biology; however, we still lack information regarding the events taking place during the Shigella infection process in vivo Here, we discuss a selection of mechanistic insights recently gained from studying Shigella infection of zebrafish (Danio rerio), with a focus on cytoskeleton rearrangements and cellular immunity. We also discuss how infection of zebrafish can be used to investigate new concepts underlying infection control, including emergency granulopoiesis and the use of predatory bacteria to combat antimicrobial resistance. Collectively, these insights illustrate how Shigella infection of zebrafish can provide fundamental advances in our understanding of bacterial pathogenesis and vertebrate host defence. This information should also provide vital clues for the discovery of new therapeutic strategies against infectious disease in humans.
Collapse
Affiliation(s)
- Gina M Duggan
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|