1
|
Fernkorn M, Schröter C. Med12 cooperates with multiple differentiation signals to facilitate efficient lineage transitions in embryonic stem cells. J Cell Sci 2025; 138:jcs263794. [PMID: 40237177 PMCID: PMC12079664 DOI: 10.1242/jcs.263794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Cell differentiation results from coordinated changes in gene transcription in response to combinations of signals. Fibroblast growth factor (FGF), Wnt and mammalian target of rapamycin (mTOR) signals regulate the differentiation of pluripotent mammalian cells towards embryonic and extraembryonic lineages, but how these signals cooperate with general transcriptional regulators is not fully resolved. Here, we report a genome-wide CRISPR screen that reveals both signaling components and general transcriptional regulators for differentiation-associated gene expression in mouse embryonic stem cells (mESCs). Focusing on the Mediator subunit-encoding Med12 gene as one of the strongest hits in the screen, we show that it regulates gene expression in parallel to FGF and mTOR signals. Loss of Med12 is compatible with differentiation along both the embryonic epiblast and the extraembryonic primitive endoderm lineage but impairs pluripotency gene expression and slows down transitions between pluripotency states. These findings suggest that Med12 helps pluripotent cells to efficiently execute transcriptional changes during differentiation, thereby modulating the effects of a broad range of signals.
Collapse
Affiliation(s)
- Max Fernkorn
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
2
|
Bhole R, Shinkar J, Labhade S, Karwa P, Kapare H. MED12 dysregulation: insights into cancer and therapeutic resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04006-0. [PMID: 40105922 DOI: 10.1007/s00210-025-04006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025]
Abstract
MED12, a critical subunit of the mediator (MED) complex, plays a central role in transcriptional regulation by bridging signal-dependent transcription factors and RNA polymerase II. Dysregulation of MED12, often through mutation, has emerged as a significant driver in various cancers, including uterine leiomyomas, breast cancer (B.C.), and prostate cancer (P.C.). These mutations disrupt normal transcriptional processes by impairing the mediator complex's ability to properly regulate gene expression, which activates oncogenic pathways such as Wnt/β-catenin and TGF-β signaling, promoting tumorigenesis and drug resistance. Specifically, mutations in the MED12 gene lead to altered interactions with the transcriptional machinery, fostering aberrant activation of oncogenic networks. MED12 alterations have also been implicated in chemoresistance, particularly to therapies targeting EGFR, ALK, and BRAF, highlighting its role as a barrier to effective treatment. This review explores the mechanisms underlying MED12 dysregulation, its impact on cancer progression, and its association with therapeutic resistance. By examining its potential as a predictive biomarker and a therapeutic target, the article underscores the importance of MED12 in advancing precision oncology. Understanding MED12-mediated mechanisms offers insights into overcoming therapeutic resistance and paves the way for innovative, personalized cancer treatments.
Collapse
Affiliation(s)
- Ritesh Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India.
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Jagruti Shinkar
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Sonali Labhade
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Pawan Karwa
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Harshad Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| |
Collapse
|
3
|
Arce MM, Umhoefer JM, Arang N, Kasinathan S, Freimer JW, Steinhart Z, Shen H, Pham MTN, Ota M, Wadhera A, Dajani R, Dorovskyi D, Chen YY, Liu Q, Zhou Y, Swaney DL, Obernier K, Shy BR, Carnevale J, Satpathy AT, Krogan NJ, Pritchard JK, Marson A. Central control of dynamic gene circuits governs T cell rest and activation. Nature 2025; 637:930-939. [PMID: 39663454 PMCID: PMC11754113 DOI: 10.1038/s41586-024-08314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
The ability of cells to maintain distinct identities and respond to transient environmental signals requires tightly controlled regulation of gene networks1-3. These dynamic regulatory circuits that respond to extracellular cues in primary human cells remain poorly defined. The need for context-dependent regulation is prominent in T cells, where distinct lineages must respond to diverse signals to mount effective immune responses and maintain homeostasis4-8. Here we performed CRISPR screens in multiple primary human CD4+ T cell contexts to identify regulators that control expression of IL-2Rα, a canonical marker of T cell activation transiently expressed by pro-inflammatory effector T cells and constitutively expressed by anti-inflammatory regulatory T cells where it is required for fitness9-11. Approximately 90% of identified regulators of IL-2Rα had effects that varied across cell types and/or stimulation states, including a subset that even had opposite effects across conditions. Using single-cell transcriptomics after pooled perturbation of context-specific screen hits, we characterized specific factors as regulators of overall rest or activation and constructed state-specific regulatory networks. MED12 - a component of the Mediator complex - serves as a dynamic orchestrator of key regulators, controlling expression of distinct sets of regulators in different T cell contexts. Immunoprecipitation-mass spectrometry revealed that MED12 interacts with the histone methylating COMPASS complex. MED12 was required for histone methylation and expression of genes encoding key context-specific regulators, including the rest maintenance factor KLF2 and the versatile regulator MYC. CRISPR ablation of MED12 blunted the cell-state transitions between rest and activation and protected from activation-induced cell death. Overall, this work leverages CRISPR screens performed across conditions to define dynamic gene circuits required to establish resting and activated T cell states.
Collapse
Affiliation(s)
- Maya M Arce
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences graduate program, University of California, San Francisco, CA, USA
| | - Jennifer M Umhoefer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences graduate program, University of California, San Francisco, CA, USA
| | - Nadia Arang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
| | - Sivakanthan Kasinathan
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob W Freimer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zachary Steinhart
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Haolin Shen
- Biomedical Sciences graduate program, University of California, San Francisco, CA, USA
| | - Minh T N Pham
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mineto Ota
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anika Wadhera
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Rama Dajani
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Dmytro Dorovskyi
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Yan Yi Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Qi Liu
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Brian R Shy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Julia Carnevale
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Tang Y, Tang S, Yang W, Zhang Z, Wang T, Wu Y, Xu J, Pilarsky C, Mazzone M, Wang LW, Sun Y, Tian R, Tang Y, Wang Y, Wang C, Xue J. MED12 loss activates endogenous retroelements to sensitise immunotherapy in pancreatic cancer. Gut 2024; 73:1999-2011. [PMID: 39216984 DOI: 10.1136/gutjnl-2024-332350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal cancers, marked by its lethality and limited treatment options, including the utilisation of checkpoint blockade (ICB) immunotherapy. Epigenetic dysregulation is a defining feature of tumourigenesis that is implicated in immune surveillance, but remains elusive in PDAC. DESIGN To identify the factors that modulate immune surveillance, we employed in vivo epigenetic-focused CRISPR-Cas9 screen in mouse PDAC tumour models engrafted in either immunocompetent or immunodeficient mice. RESULTS Here, we identified MED12 as a top hit, emerging as a potent negative modulator of immune tumour microenviroment (TME) in PDAC. Loss of Med12 significantly promoted infiltration and cytotoxicity of immune cells including CD8+ T cells, natural killer (NK) and NK1.1+ T cells in tumours, thereby heightening the sensitivity of ICB treatment in a mouse model of PDAC. Mechanistically, MED12 stabilised heterochromatin protein HP1A to repress H3K9me3-marked endogenous retroelements. The derepression of retrotransposons induced by MED12 loss triggered cytosolic nucleic acid sensing and subsequent activation of type I interferon pathways, ultimately leading to robust inflamed TME . Moreover, we uncovered a negative correlation between MED12 expression and immune resposne pathways, retrotransposon levels as well as the prognosis of patients with PDAC undergoing ICB therapy. CONCLUSION In summary, our findings underscore the pivotal role of MED12 in remodelling immnue TME through the epigenetic silencing of retrotransposons, offering a potential therapeutic target for enhancing tumour immunogenicity and overcoming immunotherapy resistance in PDAC.
Collapse
Affiliation(s)
- Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijie Tang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Wenjuan Yang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Yuyun Wu
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Junyi Xu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - Lei-Wei Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongwei Sun
- Department of Biliary and Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Ruijun Tian
- Shenzhen Key Laboratory of Functional Proteomics, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Hangzhou, China
- Biomedical and Health Translational Research Centre, Zhejiang University, Zhejiang, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Strong A, March ME, Cardinale CJ, Liu Y, Battig MR, Finoti LS, Matsuoka LS, Watson D, Sridhar S, Jarrett JF, Cannon I, Li D, Bhoj E, Zackai EH, Rand EB, Wenger T, Lerman BB, Shikany A, Weaver KN, Hakonarson H. Novel insights into the phenotypic spectrum and pathogenesis of Hardikar syndrome. Genet Med 2024; 26:101222. [PMID: 39045790 PMCID: PMC11456378 DOI: 10.1016/j.gim.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE Hardikar syndrome (HS, MIM #301068) is a female-specific multiple congenital anomaly syndrome characterized by retinopathy, orofacial clefting, aortic coarctation, biliary dysgenesis, genitourinary malformations, and intestinal malrotation. We previously showed that heterozygous nonsense and frameshift variants in MED12 cause HS. The phenotypic spectrum of disease and the mechanism by which MED12 variants cause disease is unknown. We aim to expand the phenotypic and molecular landscape of HS and elucidate the mechanism by which MED12 variants cause disease. METHODS We clinically assembled and molecularly characterized a cohort of 11 previously unreported individuals with HS. Additionally, we studied the effect of MED12 deficiency on ciliary biology, hedgehog, and yes-associated protein (YAP) signaling; pathways implicated in diseases with phenotypic overlap with HS. RESULTS We report novel phenotypes associated with HS, including cardiomyopathy, arrhythmia, and vascular anomalies, and expand the molecular landscape of HS to include splice site variants. We additionally demonstrate that MED12 deficiency causes decreased cell ciliation, and impairs hedgehog and YAP signaling. CONCLUSION Our data support updating HS standard-of-care to include regular cardiac imaging, arrhythmia screening, and vascular imaging. We further propose that dysregulation of ciliogenesis and YAP and hedgehog signaling contributes to the pathogenesis of HS.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mark R Battig
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Livia Sertori Finoti
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leticia S Matsuoka
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Deborah Watson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sindura Sridhar
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - James F Jarrett
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - India Cannon
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elizabeth B Rand
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Gastroenterology and Hepatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tara Wenger
- Division of Genetic Medicine, University of Washington, Seattle, WA
| | - Bruce B Lerman
- Department of Medicine, Division of Cardiology, Greenberg Institute for Cardiac Electrophysiology, Cornell University Medical Center, New York, NY
| | - Amy Shikany
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.
| |
Collapse
|
6
|
Zuo H, Wu A, Wang M, Hong L, Wang H. tRNA m 1A modification regulate HSC maintenance and self-renewal via mTORC1 signaling. Nat Commun 2024; 15:5706. [PMID: 38977676 PMCID: PMC11231335 DOI: 10.1038/s41467-024-50110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Haematopoietic stem cells (HSCs) possess unique physiological adaptations to sustain blood cell production and cope with stress responses throughout life. To maintain these adaptations, HSCs rely on maintaining a tightly controlled protein translation rate. However, the mechanism of how HSCs regulate protein translation remains to be fully elucidated. In this study, we investigate the role of transfer RNA (tRNA) m1A58 'writer' proteins TRMT6 and TRMT61A in regulating HSCs function. Trmt6 deletion promoted HSC proliferation through aberrant activation of mTORC1 signaling. TRMT6-deficient HSCs exhibited an impaired self-renewal ability in competitive transplantation assay. Mechanistically, single cell RNA-seq analysis reveals that the mTORC1 signaling pathway is highly upregulated in HSC-enriched cell populations after Trmt6 deletion. m1A-tRNA-seq and Western blot analysis suggest that TRMT6 promotes methylation modification of specific tRNA and expression of TSC1, fine-tuning mTORC1 signaling levels. Furthermore, Pharmacological inhibition of the mTORC1 pathway rescued functional defect in TRMT6-deficient HSCs. To our knowledge, this study is the first to elucidate a mechanism by which TRMT6-TRMT61A complex-mediated tRNA-m1A58 modification regulates HSC homeostasis.
Collapse
Affiliation(s)
- Hongna Zuo
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingwei Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Liquan Hong
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Kolonay DW, Sattler KM, Strawser C, Rafael-Fortney J, Mihaylova MM, Miller KE, Lepper C, Baskin KK. Temporal regulation of the Mediator complex during muscle proliferation, differentiation, regeneration, aging, and disease. Front Cell Dev Biol 2024; 12:1331563. [PMID: 38690566 PMCID: PMC11058648 DOI: 10.3389/fcell.2024.1331563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Genesis of skeletal muscle relies on the differentiation and fusion of mono-nucleated muscle progenitor cells into the multi-nucleated muscle fiber syncytium. The temporally-controlled cellular and morphogenetic changes underlying this process are initiated by a series of highly coordinated transcription programs. At the core, the myogenic differentiation cascade is driven by muscle-specific transcription factors, i.e., the Myogenic Regulatory Factors (MRFs). Despite extensive knowledge on the function of individual MRFs, very little is known about how they are coordinated. Ultimately, highly specific coordination of these transcription programs is critical for their masterfully timed transitions, which in turn facilitates the intricate generation of skeletal muscle fibers from a naïve pool of progenitor cells. The Mediator complex links basal transcriptional machinery and transcription factors to regulate transcription and could be the integral component that coordinates transcription factor function during muscle differentiation, growth, and maturation. In this study, we systematically deciphered the changes in Mediator complex subunit expression in skeletal muscle development, regeneration, aging, and disease. We incorporated our in vitro and in vivo experimental results with analysis of publicly available RNA-seq and single nuclei RNA-seq datasets and uncovered the regulation of Mediator subunits in different physiological and temporal contexts. Our experimental results revealed that Mediator subunit expression during myogenesis is highly dynamic. We also discovered unique temporal patterns of Mediator expression in muscle stem cells after injury and during the early regeneration period, suggesting that Mediator subunits may have unique contributions to directing muscle stem cell fate. Although we observed few changes in Mediator subunit expression in aging muscles compared to younger muscles, we uncovered extensive heterogeneity of Mediator subunit expression in dystrophic muscle nuclei, characteristic of chronic muscle degeneration and regeneration cycles. Taken together, our study provides a glimpse of the complex regulation of Mediator subunit expression in the skeletal muscle cell lineage and serves as a springboard for mechanistic studies into the function of individual Mediator subunits in skeletal muscle.
Collapse
Affiliation(s)
- Dominic W. Kolonay
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kristina M. Sattler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Corinne Strawser
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jill Rafael-Fortney
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Katherine E. Miller
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kedryn K. Baskin
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
9
|
Hao M, Jiang H, Zhao Y, Li C, Jiang J. Identification of potential biomarkers for aging diagnosis of mesenchymal stem cells derived from the aged donors. Stem Cell Res Ther 2024; 15:87. [PMID: 38520027 PMCID: PMC10960456 DOI: 10.1186/s13287-024-03689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The clinical application of human bone-marrow derived mesenchymal stem cells (MSCs) for the treatment of refractory diseases has achieved remarkable results. However, there is a need for a systematic evaluation of the quality and safety of MSCs sourced from donors. In this study, we sought to assess one potential factor that might impact quality, namely the age of the donor. METHODS We downloaded two data sets from each of two Gene Expression Omnibus (GEO), GSE39035 and GSE97311 databases, namely samples form young (< 65 years of age) and old (> 65) donor groups. Through, bioinformatics analysis and experimental validation to these retrieved data, we found that MSCs derived from aged donors can lead to differential expression of gene profiles compared with those from young donors, and potentially affect the function of MSCs, and may even induce malignant tumors. RESULTS We identified a total of 337 differentially expressed genes (DEGs), including two upregulated and eight downregulated genes from the databases of both GSE39035 and GSE97311. We further identified 13 hub genes. Six of them, TBX15, IGF1, GATA2, PITX2, SNAI1 and VCAN, were highly expressed in many human malignancies in Human Protein Atlas database. In the MSCs in vitro senescent cell model, qPCR analysis validated that all six hub genes were highly expressed in senescent MSCs. Our findings confirm that aged donors of MSCs have a significant effect on gene expression profiles. The MSCs from old donors have the potential to cause a variety of malignancies. These TBX15, IGF1, GATA2, PITX2, SNAI1, VCAN genes could be used as potential biomarkers to diagnosis aging state of donor MSCs, and evaluate whether MSCs derived from an aged donor could be used for therapy in the clinic. Our findings provide a diagnostic basis for the clinical use of MSCs to treat a variety of diseases. CONCLUSIONS Therefore, our findings not only provide guidance for the safe and standardized use of MSCs in the clinic for the treatment of various diseases, but also provide insights into the use of cell regeneration approaches to reverse aging and support rejuvenation.
Collapse
Affiliation(s)
- Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, 130000, Changchun, Jilin, China
| | - Hongyu Jiang
- Life Spring AKY Pharmaceuticals, 130000, Changchun, Jilin, China
| | - Yuan Zhao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, 130000, Changchun, Jilin, China
| | - Chunyi Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, 130000, Changchun, Jilin, China.
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130000, Changchun, Jilin, China.
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, 130000, Changchun, Jilin, China.
| |
Collapse
|
10
|
Kao YR, Chen J, Kumari R, Ng A, Zintiridou A, Tatiparthy M, Ma Y, Aivalioti MM, Moulik D, Sundaravel S, Sun D, Reisz JA, Grimm J, Martinez-Lopez N, Stransky S, Sidoli S, Steidl U, Singh R, D'Alessandro A, Will B. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024; 31:378-397.e12. [PMID: 38402617 PMCID: PMC10939794 DOI: 10.1016/j.stem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Ng
- Karches Center for Oncology Research, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Madhuri Tatiparthy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Deeposree Moulik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juliane Grimm
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Britta Will
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Sun L, Zhou J, Xu X, Liu Y, Ma N, Liu Y, Nie W, Zou L, Deng XW, He H. Mapping nucleosome-resolution chromatin organization and enhancer-promoter loops in plants using Micro-C-XL. Nat Commun 2024; 15:35. [PMID: 38167349 PMCID: PMC10762229 DOI: 10.1038/s41467-023-44347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
Although chromatin organizations in plants have been dissected at the scales of compartments and topologically associating domain (TAD)-like domains, there remains a gap in resolving fine-scale structures. Here, we use Micro-C-XL, a high-throughput chromosome conformation capture (Hi-C)-based technology that involves micrococcal nuclease (instead of restriction enzymes) and long cross-linkers, to dissect single nucleosome-resolution chromatin organization in Arabidopsis. Insulation analysis reveals more than 14,000 boundaries, which mostly include chromatin accessibility, epigenetic modifications, and transcription factors. Micro-C-XL reveals associations between RNA Pols and local chromatin organizations, suggesting that gene transcription substantially contributes to the establishment of local chromatin domains. By perturbing Pol II both genetically and chemically at the gene level, we confirm its function in regulating chromatin organization. Visible loops and stripes are assigned to super-enhancers and their targeted genes, thus providing direct insights for the identification and mechanistic analysis of distal CREs and their working modes in plants. We further investigate possible factors regulating these chromatin loops. Subsequently, we expand Micro-C-XL to soybean and rice. In summary, we use Micro-C-XL for analyses of plants, which reveal fine-scale chromatin organization and enhancer-promoter loops and provide insights regarding three-dimensional genomes in plants.
Collapse
Affiliation(s)
- Linhua Sun
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Jingru Zhou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China
| | - Xiao Xu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China
| | - Yi Liu
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Ni Ma
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yutong Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China
| | - Wenchao Nie
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, 430075, China
| | - Ling Zou
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, 430075, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China.
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China.
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Benyoucef A, Haigh JJ, Brand M. Unveiling the complexity of transcription factor networks in hematopoietic stem cells: implications for cell therapy and hematological malignancies. Front Oncol 2023; 13:1151343. [PMID: 37441426 PMCID: PMC10333584 DOI: 10.3389/fonc.2023.1151343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The functionality and longevity of hematopoietic tissue is ensured by a tightly controlled balance between self-renewal, quiescence, and differentiation of hematopoietic stem cells (HSCs) into the many different blood lineages. Cell fate determination in HSCs is influenced by signals from extrinsic factors (e.g., cytokines, irradiation, reactive oxygen species, O2 concentration) that are translated and integrated by intrinsic factors such as Transcription Factors (TFs) to establish specific gene regulatory programs. TFs also play a central role in the establishment and/or maintenance of hematological malignancies, highlighting the need to understand their functions in multiple contexts. TFs bind to specific DNA sequences and interact with each other to form transcriptional complexes that directly or indirectly control the expression of multiple genes. Over the past decades, significant research efforts have unraveled molecular programs that control HSC function. This, in turn, led to the identification of more than 50 TF proteins that influence HSC fate. However, much remains to be learned about how these proteins interact to form molecular networks in combination with cofactors (e.g. epigenetics factors) and how they control differentiation, expansion, and maintenance of cellular identity. Understanding these processes is critical for future applications particularly in the field of cell therapy, as this would allow for manipulation of cell fate and induction of expansion, differentiation, or reprogramming of HSCs using specific cocktails of TFs. Here, we review recent findings that have unraveled the complexity of molecular networks controlled by TFs in HSCs and point towards possible applications to obtain functional HSCs ex vivo for therapeutic purposes including hematological malignancies. Furthermore, we discuss the challenges and prospects for the derivation and expansion of functional adult HSCs in the near future.
Collapse
Affiliation(s)
- Aissa Benyoucef
- Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Jody J. Haigh
- Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Ilchuk LA, Kubekina MV, Okulova YD, Silaeva YY, Tatarskiy VV, Filatov MA, Bruter AV. Genetically Engineered Mice Unveil In Vivo Roles of the Mediator Complex. Int J Mol Sci 2023; 24:ijms24119330. [PMID: 37298278 DOI: 10.3390/ijms24119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The Mediator complex is a multi-subunit protein complex which plays a significant role in the regulation of eukaryotic gene transcription. It provides a platform for the interaction of transcriptional factors and RNA polymerase II, thus coupling external and internal stimuli with transcriptional programs. Molecular mechanisms underlying Mediator functioning are intensively studied, although most often using simple models such as tumor cell lines and yeast. Transgenic mouse models are required to study the role of Mediator components in physiological processes, disease, and development. As constitutive knockouts of most of the Mediator protein coding genes are embryonically lethal, conditional knockouts and corresponding activator strains are needed for these studies. Recently, they have become more easily available with the development of modern genetic engineering techniques. Here, we review existing mouse models for studying the Mediator, and data obtained in corresponding experiments.
Collapse
Affiliation(s)
- Leonid A Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia Yu Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health of the Russian Federation, Kashirskoe Sh. 24, 115478 Moscow, Russia
| |
Collapse
|
14
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Vasileva AV, Boldyreva AV, Burenin AG, Skirda AM, Nikitin PI, Orlova NN. Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells 2023; 12:cells12081191. [PMID: 37190100 DOI: 10.3390/cells12081191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements of the human genome that have been widely discussed since the discovery and origin of the term. Super-enhancers have been shown to be strongly associated with the expression of genes crucial for cell differentiation, cell stability maintenance, and tumorigenesis. Our goal was to systematize research studies dedicated to the investigation of structure and functions of super-enhancers as well as to define further perspectives of the field in various applications, such as drug development and clinical use. We overviewed the fundamental studies which provided experimental data on various pathologies and their associations with particular super-enhancers. The analysis of mainstream approaches for SE search and prediction allowed us to accumulate existing data and propose directions for further algorithmic improvements of SEs' reliability levels and efficiency. Thus, here we provide the description of the most robust algorithms such as ROSE, imPROSE, and DEEPSEN and suggest their further use for various research and development tasks. The most promising research direction, which is based on topic and number of published studies, are cancer-associated super-enhancers and prospective SE-targeted therapy strategies, most of which are discussed in this review.
Collapse
Affiliation(s)
- Ekaterina V Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
| | - German A Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Marina G Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anastasiia V Vasileva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anna V Boldyreva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Alexandr G Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Natalia N Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
15
|
Di Giorgio E, Benetti R, Kerschbamer E, Xodo L, Brancolini C. Super-enhancer landscape rewiring in cancer: The epigenetic control at distal sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:97-148. [PMID: 37657861 DOI: 10.1016/bs.ircmb.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Super-enhancers evolve as elements at the top of the hierarchical control of gene expression. They are important end-gatherers of signaling pathways that control stemness, differentiation or adaptive responses. Many epigenetic regulations focus on these regions, and not surprisingly, during the process of tumorigenesis, various alterations can account for their dysfunction. Super-enhancers are emerging as key drivers of the aberrant gene expression landscape that sustain the aggressiveness of cancer cells. In this review, we will describe and discuss about the structure of super-enhancers, their epigenetic regulation, and the major changes affecting their functionality in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Roberta Benetti
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Emanuela Kerschbamer
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Luigi Xodo
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy.
| |
Collapse
|
16
|
Zhu Y, Wang Z, Li Y, Peng H, Liu J, Zhang J, Xiao X. The Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies. Cancers (Basel) 2023; 15:cancers15041219. [PMID: 36831561 PMCID: PMC9953837 DOI: 10.3390/cancers15041219] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Disordered histone acetylation has emerged as a key mechanism in promoting hematological malignancies. CREB-binding protein (CREBBP) and E1A-binding protein P300 (EP300) are two key acetyltransferases and transcriptional cofactors that regulate gene expression by regulating the acetylation levels of histone proteins and non-histone proteins. CREBBP/EP300 dysregulation and CREBBP/EP300-containing complexes are critical for the initiation, progression, and chemoresistance of hematological malignancies. CREBBP/EP300 also participate in tumor immune responses by regulating the differentiation and function of multiple immune cells. Currently, CREBBP/EP300 are attractive targets for drug development and are increasingly used as favorable tools in preclinical studies of hematological malignancies. In this review, we summarize the role of CREBBP/EP300 in normal hematopoiesis and highlight the pathogenic mechanisms of CREBBP/EP300 in hematological malignancies. Moreover, the research basis and potential future therapeutic implications of related inhibitors were also discussed from several aspects. This review represents an in-depth insight into the physiological and pathological significance of CREBBP/EP300 in hematology.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Zi Wang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Yanan Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Ji Zhang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (J.Z.); (X.X.); Tel.: +86-734-8279050 (J.Z.); +86-731-84805449 (X.X.)
| | - Xiaojuan Xiao
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
- Correspondence: (J.Z.); (X.X.); Tel.: +86-734-8279050 (J.Z.); +86-731-84805449 (X.X.)
| |
Collapse
|
17
|
Fortin J, Chiang MF, Meydan C, Foox J, Ramachandran P, Leca J, Lemonnier F, Li WY, Gams MS, Sakamoto T, Chu M, Tobin C, Laugesen E, Robinson TM, You-Ten A, Butler DJ, Berger T, Minden MD, Levine RL, Guidos CJ, Melnick AM, Mason CE, Mak TW. Distinct and opposite effects of leukemogenic Idh and Tet2 mutations in hematopoietic stem and progenitor cells. Proc Natl Acad Sci U S A 2023; 120:e2208176120. [PMID: 36652477 PMCID: PMC9942850 DOI: 10.1073/pnas.2208176120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in IDH1, IDH2, and TET2 are recurrently observed in myeloid neoplasms. IDH1 and IDH2 encode isocitrate dehydrogenase isoforms, which normally catalyze the conversion of isocitrate to α-ketoglutarate (α-KG). Oncogenic IDH1/2 mutations confer neomorphic activity, leading to the production of D-2-hydroxyglutarate (D-2-HG), a potent inhibitor of α-KG-dependent enzymes which include the TET methylcytosine dioxygenases. Given their mutual exclusivity in myeloid neoplasms, IDH1, IDH2, and TET2 mutations may converge on a common oncogenic mechanism. Contrary to this expectation, we observed that they have distinct, and even opposite, effects on hematopoietic stem and progenitor cells in genetically engineered mice. Epigenetic and single-cell transcriptomic analyses revealed that Idh2R172K and Tet2 loss-of-function have divergent consequences on the expression and activity of key hematopoietic and leukemogenic regulators. Notably, chromatin accessibility and transcriptional deregulation in Idh2R172K cells were partially disconnected from DNA methylation alterations. These results highlight unanticipated divergent effects of IDH1/2 and TET2 mutations, providing support for the optimization of genotype-specific therapies.
Collapse
Affiliation(s)
- Jerome Fortin
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- 2To whom correspondence may be addressed. , , or
| | - Ming-Feng Chiang
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Cem Meydan
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- cThe HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
- dWorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY10065
| | - Jonathan Foox
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- cThe HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
| | | | - Julie Leca
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - François Lemonnier
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- eInstitut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil94010, France
| | - Wanda Y. Li
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- fCentre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Miki S. Gams
- gDepartment of Immunology, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ONM5G 0A4, Canada
| | - Takashi Sakamoto
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- hDepartment of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Mandy Chu
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Chantal Tobin
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Eric Laugesen
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Troy M. Robinson
- iHuman Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- jLouis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Annick You-Ten
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Daniel J. Butler
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
| | - Thorsten Berger
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Mark D. Minden
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Ross L. Levine
- iHuman Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- kCenter for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY10065
- lCenter for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Cynthia J. Guidos
- gDepartment of Immunology, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ONM5G 0A4, Canada
| | - Ari M. Melnick
- mDepartment of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY10021
| | - Christopher E. Mason
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- cThe HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
- dWorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY10065
| | - Tak W. Mak
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- fCentre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- nDepartment of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- 2To whom correspondence may be addressed. , , or
| |
Collapse
|
18
|
Haque F, Honjo T, Begum NA. XLID syndrome gene Med12 promotes Ig isotype switching through chromatin modification and enhancer RNA regulation. SCIENCE ADVANCES 2022; 8:eadd1466. [PMID: 36427307 PMCID: PMC9699684 DOI: 10.1126/sciadv.add1466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transcriptional coactivator Med12 regulates gene expression through its kinase module. Here, we show a kinase module-independent function of Med12 in CSR. Med12 is essential for super-enhancer activation by collaborating with p300-Jmjd6/Carm1 coactivator complexes. Med12 loss decreases H3K27 acetylation and eRNA transcription with concomitant impairment of AID-induced DNA breaks, S-S synapse formation, and 3'RR-Eμ interaction. CRISPR-dCas9-mediated enhancer activation reestablishes the epigenomic and transcriptional hallmarks of the super-enhancer and fully restores the Med12 depletion defects. Moreover, 3'RR-derived eRNAs are critical for promoting S region epigenetic regulation, synapse formation, and recruitment of Med12 and AID to the IgH locus. We find that XLID syndrome-associated Med12 mutations are defective in both 3'RR eRNA transcription and CSR, suggesting that B and neuronal cells may have cell-specific super-enhancer dysfunctions. We conclude that Med12 is essential for IgH 3'RR activation/eRNA transcription and plays a central role in AID-induced antibody gene diversification and genomic instability in B cells.
Collapse
Affiliation(s)
- Farazul Haque
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Freitas KA, Belk JA, Sotillo E, Quinn PJ, Ramello MC, Malipatlolla M, Daniel B, Sandor K, Klysz D, Bjelajac J, Xu P, Burdsall KA, Tieu V, Duong VT, Donovan MG, Weber EW, Chang HY, Majzner RG, Espinosa JM, Satpathy AT, Mackall CL. Enhanced T cell effector activity by targeting the Mediator kinase module. Science 2022; 378:eabn5647. [PMID: 36356142 PMCID: PMC10335827 DOI: 10.1126/science.abn5647] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
T cells are the major arm of the immune system responsible for controlling and regressing cancers. To identify genes limiting T cell function, we conducted genome-wide CRISPR knockout screens in human chimeric antigen receptor (CAR) T cells. Top hits were MED12 and CCNC, components of the Mediator kinase module. Targeted MED12 deletion enhanced antitumor activity and sustained the effector phenotype in CAR- and T cell receptor-engineered T cells, and inhibition of CDK8/19 kinase activity increased expansion of nonengineered T cells. MED12-deficient T cells manifested increased core Meditator chromatin occupancy at transcriptionally active enhancers-most notably for STAT and AP-1 transcription factors-and increased IL2RA expression and interleukin-2 sensitivity. These results implicate Mediator in T cell effector programming and identify the kinase module as a target for enhancing potency of antitumor T cell responses.
Collapse
Affiliation(s)
- Katherine A. Freitas
- Immunology Graduate Program, Stanford University School of
Medicine, Stanford, CA, USA
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: KAF and JAB
| | - Julia A. Belk
- Department of Computer Science, Stanford University,
Stanford, CA, USA
- These authors contributed equally: KAF and JAB
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick J. Quinn
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
| | - Maria C. Ramello
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
| | - Meena Malipatlolla
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
| | - Bence Daniel
- Center for Personal Dynamic Regulomes, Stanford University,
Stanford, CA, USA
- Department of Pathology, Stanford University School of
Medicine, Stanford, CA, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University School of
Medicine, Stanford, CA, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
| | - Jeremy Bjelajac
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative
Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
| | - Kylie A. Burdsall
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
| | - Victor Tieu
- Department of Bioengineering, Stanford University School of
Medicine, Stanford, CA, USA
| | - Vandon T. Duong
- Department of Bioengineering, Stanford University School of
Medicine, Stanford, CA, USA
| | - Micah G. Donovan
- Department of Pharmacology, University of Colorado
Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evan W. Weber
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco,
CA, USA
- Present address: Department of Pediatrics, University of
Pennsylvania, Philadelphia, PA 19104, USA
| | - Howard Y. Chang
- Parker Institute for Cancer Immunotherapy, San Francisco,
CA, USA
- Center for Personal Dynamic Regulomes, Stanford University,
Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University,
Stanford, CA, USA
| | - Robbie G. Majzner
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
- Division of Pediatric Hematology/Oncology/Stem Cell
Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University
School of Medicine, Stanford, CA, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado
Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of
Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ansuman T. Satpathy
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco,
CA, USA
- Department of Pathology, Stanford University School of
Medicine, Stanford, CA, USA
- These authors contributed equally: ATS and CLM
| | - Crystal L. Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco,
CA, USA
- Division of Pediatric Hematology/Oncology/Stem Cell
Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University
School of Medicine, Stanford, CA, USA
- Division of BMT and Cell Therapy, Department of Medicine,
Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: ATS and CLM
| |
Collapse
|
20
|
Richter WF, Nayak S, Iwasa J, Taatjes DJ. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat Rev Mol Cell Biol 2022; 23:732-749. [PMID: 35725906 PMCID: PMC9207880 DOI: 10.1038/s41580-022-00498-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
The Mediator complex, which in humans is 1.4 MDa in size and includes 26 subunits, controls many aspects of RNA polymerase II (Pol II) function. Apart from its size, a defining feature of Mediator is its intrinsic disorder and conformational flexibility, which contributes to its ability to undergo phase separation and to interact with a myriad of regulatory factors. In this Review, we discuss Mediator structure and function, with emphasis on recent cryogenic electron microscopy data of the 4.0-MDa transcription preinitiation complex. We further discuss how Mediator and sequence-specific DNA-binding transcription factors enable enhancer-dependent regulation of Pol II function at distal gene promoters, through the formation of molecular condensates (or transcription hubs) and chromatin loops. Mediator regulation of Pol II reinitiation is also discussed, in the context of transcription bursting. We propose a working model for Mediator function that combines experimental results and theoretical considerations related to enhancer-promoter interactions, which reconciles contradictory data regarding whether enhancer-promoter communication is direct or indirect. We conclude with a discussion of Mediator's potential as a therapeutic target and of future research directions.
Collapse
Affiliation(s)
- William F Richter
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Shraddha Nayak
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
21
|
Role of reactive oxygen species in regulating 27-hydroxycholesterol-induced apoptosis of hematopoietic progenitor cells and myeloid cell lines. Cell Death Dis 2022; 13:916. [PMID: 36316327 PMCID: PMC9622808 DOI: 10.1038/s41419-022-05360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Oxysterols are oxygenated derivatives of cholesterol that contain an additional hydroxy, epoxide, or ketone group in the sterol nucleus and/or a hydroxyl group in the side chain of the cholesterol molecule. 27-Hydroxycholesterol (27HC) is a side-chain oxysterol that is oxygenated at the 27th carbon atom of cholesterol. The oxysterol (27HC) is produced via oxidation by sterol 27-hydroxylase (CYP27A1) and metabolized via oxysterol 7a-hydroxylase (CYP7B1) for bile acid synthesis in the liver. A previous study has demonstrated that treatment with the alternative Estrogen receptor alpha (ERα) ligand 27HC induces ERα-dependent hematopoietic stem cell (HSC) mobilization. In addition, Cyp27a1-deficient mice demonstrate significantly reduced 27HC levels and HSC mobilization. Here, we report that exogenous 27HC treatment leads to a substantial reduction in the hematopoietic stem and progenitor cell (HSPC) population owing to significantly increased reactive oxygen species (ROS) levels and apoptosis in the bone marrow (BM). However, 27HC does not influence the population of mature hematopoietic cells in the BM. Furthermore, exogenous 27HC treatment suppresses cell growth and promotes ROS production and apoptosis in leukemic cells. Moreover, acute myeloid leukemia (AML) patients with high CYP7B1 expression (expected to have inhibition of 27HC) had significantly shorter survival than those with low CYP7B1 expression (expected to have an elevation of 27HC). Single-cell RNA-sequencing (scRNA seq) analysis revealed that the expression of CYP7B1 was significantly increased in AML patients. Thus, our study suggests that 27HC may serve as a potent agent for regulating pools of HSPCs and may have an application as a novel therapeutic target for hematological malignancies. Collectively, pharmacological inhibition of CYP7B1 (expected to have an elevation of 27HC) would potentially have fewer long-term hematological side effects, particularly when used in combination with chemotherapy or radiation for the treatment of leukemia patients.
Collapse
|
22
|
Dannappel MV, Zhu D, Sun X, Chua HK, Poppelaars M, Suehiro M, Khadka S, Lim Kam Sian TC, Sooraj D, Loi M, Gao H, Croagh D, Daly RJ, Faridi P, Boyer TG, Firestein R. CDK8 and CDK19 regulate intestinal differentiation and homeostasis via the chromatin remodeling complex SWI/SNF. J Clin Invest 2022; 132:158593. [PMID: 36006697 PMCID: PMC9566890 DOI: 10.1172/jci158593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Initiation and maintenance of transcriptional states are critical for controlling normal tissue homeostasis and differentiation. The cyclin dependent kinases CDK8 and CDK19 (Mediator kinases) are regulatory components of Mediator, a highly conserved complex that orchestrates enhancer-mediated transcriptional output. While Mediator kinases have been implicated in the transcription of genes necessary for development and growth, its function in mammals has not been well defined. Using genetically defined models and pharmacological inhibitors, we showed that CDK8 and CDK19 function in a redundant manner to regulate intestinal lineage specification in humans and mice. The Mediator kinase module bound and phosphorylated key components of the chromatin remodeling complex switch/sucrose non-fermentable (SWI/SNF) in intestinal epithelial cells. Concomitantly, SWI/SNF and MED12-Mediator colocalized at distinct lineage-specifying enhancers in a CDK8/19-dependent manner. Thus, these studies reveal a transcriptional mechanism of intestinal cell specification, coordinated by the interaction between the chromatin remodeling complex SWI/SNF and Mediator kinase.
Collapse
Affiliation(s)
- Marius V Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Danxi Zhu
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Xin Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Hui Kheng Chua
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Marle Poppelaars
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Monica Suehiro
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Subash Khadka
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Terry Cc Lim Kam Sian
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology
| | - Dhanya Sooraj
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Melissa Loi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Hugh Gao
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | | | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| |
Collapse
|
23
|
Yang Q, Ciebiera M, Bariani MV, Ali M, Elkafas H, Boyer TG, Al-Hendy A. Comprehensive Review of Uterine Fibroids: Developmental Origin, Pathogenesis, and Treatment. Endocr Rev 2022; 43:678-719. [PMID: 34741454 PMCID: PMC9277653 DOI: 10.1210/endrev/bnab039] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 11/24/2022]
Abstract
Uterine fibroids are benign monoclonal neoplasms of the myometrium, representing the most common tumors in women worldwide. To date, no long-term or noninvasive treatment option exists for hormone-dependent uterine fibroids, due to the limited knowledge about the molecular mechanisms underlying the initiation and development of uterine fibroids. This paper comprehensively summarizes the recent research advances on uterine fibroids, focusing on risk factors, development origin, pathogenetic mechanisms, and treatment options. Additionally, we describe the current treatment interventions for uterine fibroids. Finally, future perspectives on uterine fibroids studies are summarized. Deeper mechanistic insights into tumor etiology and the complexity of uterine fibroids can contribute to the progress of newer targeted therapies.
Collapse
Affiliation(s)
- Qiwei Yang
- Qiwei Yang, Ph.D. Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, M167, Billings, Chicago, IL 60637, USA.
| | - Michal Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, ul. Cegłowska 80, 01-809, Warsaw, Poland
| | | | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Hoda Elkafas
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmacology and Toxicology, Egyptian Drug Authority, formerly National Organization for Drug Control and Research, Cairo 35521, Egypt
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Ayman Al-Hendy
- Correspondence: Ayman Al-Hendy, MD, Ph.D. Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, N112, Peck Pavilion, Chicago, IL 60637. USA.
| |
Collapse
|
24
|
Zhi X, Pu L, Wu B, Cui Y, Yu C, Dong Y, Li D, Cai C. Identification of two aberrant transcripts by RNA sequencing for a novel variant c.3354 + 5 G > A of MED12 in a Chinese girl with non-syndromic intellectual disability. Clin Chim Acta 2022; 532:137-144. [PMID: 35690084 DOI: 10.1016/j.cca.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Missense variants in MED12 are associated with MED12-related disorders. We aimed to clarify the molecular level changes and underlying pathogenic mechanism of a female patient in our study. METHODS We reported a Chinese girl with clinical characteristics similar to MED12-related disorders. Trio whole exome sequencing (WES) was performed to identify related pathogenic variant(s) and RNA sequencing (RNA-seq) was subsequently applied to evaluate the effect of identified variant(s) on mRNA splicing. Moreover, X-chromosome inactivation (XCI) assay based on AR and RP2 was performed to reveal the XCI pattern of the female patient. RESULTS The proband manifested mainly as mental retardation and language impairment. Trio WES revealed a novel heterozygous variant c.3354 + 5 G > A in intron 23 of MED12. RNA-seq identified two aberrant transcripts. XCI assay on AR revealed a homozygous result, while XCI based on RP2 showed random pattern in peripheral blood. CONCLUSION In conclusion, we identified a novel variant c.3354 + 5 G > A by WES combined with RNA-seq, which extends the spectrum of MED12 variants and provide a basis for further genetic counseling. According to the result of two aberrant transcripts by RNA-seq, we speculate that our patient's milder clinical feature may be the consequence of multiple different transcripts.
Collapse
Affiliation(s)
- Xiufang Zhi
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Linjie Pu
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Bo Wu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Department of Neurology, Tianjin Children's Hospital, No. 238 Longyan Road, eichen District, Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Changshun Yu
- Tianjin Kingmed Center for Clinical Laboratory Co. Ltd, Haitai Huake 5th Rd, Huayuan Industrial Park, High Tech Zone, Xiqing District, Tianjin 300392, China
| | - Yan Dong
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Dong Li
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Department of Neurology, Tianjin Children's Hospital, No. 238 Longyan Road, eichen District, Tianjin 300134, China.
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin 300134, China.
| |
Collapse
|
25
|
XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell 2022; 185:2164-2183.e25. [PMID: 35597241 DOI: 10.1016/j.cell.2022.04.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/10/2022] [Accepted: 04/27/2022] [Indexed: 12/27/2022]
Abstract
X inactivation (XCI) is triggered by upregulation of XIST, which coats the chromosome in cis, promoting formation of a heterochromatic domain (Xi). XIST role beyond initiation of XCI is only beginning to be elucidated. Here, we demonstrate that XIST loss impairs differentiation of human mammary stem cells (MaSCs) and promotes emergence of highly tumorigenic and metastatic carcinomas. On the Xi, XIST deficiency triggers epigenetic changes and reactivation of genes overlapping Polycomb domains, including Mediator subunit MED14. MED14 overdosage results in increased Mediator levels and hyperactivation of the MaSC enhancer landscape and transcriptional program, making differentiation less favorable. We further demonstrate that loss of XIST and Xi transcriptional instability is common among human breast tumors of poor prognosis. We conclude that XIST is a gatekeeper of human mammary epithelium homeostasis, thus unveiling a paradigm in the control of somatic cell identity with potential consequences for our understanding of gender-specific malignancies.
Collapse
|
26
|
An Q, Dong Y, Cao Y, Pan X, Xue Y, Zhou Y, Zhang Y, Ma F. Myh9 Plays an Essential Role in the Survival and Maintenance of Hematopoietic Stem/Progenitor Cells. Cells 2022; 11:cells11121865. [PMID: 35740994 PMCID: PMC9221478 DOI: 10.3390/cells11121865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Myosin heavy chain 9 (MYH9) gene encodes a protein named non-muscle heavy chain IIA (NMHC IIA), interacting with actin and participating in various biological processes. Mutations in MYH9 cause an array of autosomal dominant disorders, known as MYH9-related diseases (MYH9-RD). However, the role of MYH9 in normal hematopoiesis remains largely unexplored. By using Mx1-cre Myh9 conditional knockout mice, we established an inducible system to precisely inactivate Myh9 function in hematopoietic cells in vivo. The results showed that deletion of Myh9 led to severe defects in hematopoiesis, characterized by pancytopenia, drastic decreases of hematopoietic stem/progenitor cells (HSPC), and bone marrow failure, causing early lethality in mice. The defect in hematopoiesis caused by Myh9 ablation is cell autonomous. In addition, Myh9 deletion impairs HSPC repopulation capacity and increases apoptosis. RNA sequencing results revealed significant alterations in the expression of genes related to HSC self-renewal and maintenance, while multiple signal pathways were also involved, including genes for HSC and myeloid cell development, intrinsic apoptosis, targets of mTOR signaling, and maturity of hematopoietic cells. Our present study suggests an essential role for Myh9 in the survival and maintenance of HSPC in normal hematopoiesis.
Collapse
Affiliation(s)
- Quanming An
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yang Cao
- Institute of Molecular Medicine, School of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China;
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yuan Xue
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
- Correspondence: (Y.Z.); (F.M.)
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
- Correspondence: (Y.Z.); (F.M.)
| |
Collapse
|
27
|
HDACs and the epigenetic plasticity of cancer cells: Target the complexity. Pharmacol Ther 2022; 238:108190. [PMID: 35430294 DOI: 10.1016/j.pharmthera.2022.108190] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells must adapt to the hostile conditions of the microenvironment in terms of nutrition, space, and immune system attack. Mutations of DNA are the drivers of the tumorigenic process, but mutations must be able to hijack cellular functions to sustain the spread of mutant genomes. Transcriptional control is a key function in this context and is controlled by the rearrangement of the epigenome. Unlike genomic mutations, the epigenome of cancer cells can in principle be reversed. The discovery of the first epigenetic drugs triggered a contaminating enthusiasm. Unfortunately, the complexity of the epigenetic machinery has frustrated this enthusiasm. To develop efficient patient-oriented epigenetic therapies, we need to better understand the nature of this complexity. In this review, we will discuss recent advances in understanding the contribution of HDACs to the maintenance of the transformed state and the rational for their selective targeting.
Collapse
|
28
|
Venigalla S, Straub J, Idigo O, Rinderle C, Stephens JM, Newman JJ. MED12 Regulates Human Adipose-Derived Stem Cell Adipogenesis and Mediator Kinase Subunit Expression in Murine Adipose Depots. Stem Cells Dev 2022; 31:119-131. [PMID: 35018809 PMCID: PMC9206493 DOI: 10.1089/scd.2021.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mediator kinase module plays a critical role in the regulation of transcription during metabolic processes. Here we demonstrate that in human adipose-derived stem cells (hASCs), kinase module subunits have distinct mRNA and protein expression profiles during different stages of adipogenesis. In addition, siRNA-mediated loss of MED12 results in decreased adipogenesis as evident through decreased lipid accumulation and decreased expression of PPARγ, a master regulator of adipogenesis. Moreover, the decrease in adipogenesis and reduced PPARγ expression are observed only during the early stages of MED12 knockdown. At later stages, knockdown of MED12 did not have any significant effects on adipogenesis or PPARγ expression. We also observed that MED12 was present in a protein complex with PPARγ and C/EBPα during all stages of adipogenesis in hASCs. In 3T3-L1 preadipocytes and adipocytes, MED12 is present in protein complexes with PPARγ1, C/EBPα, and STAT5A. CDK8, another member of the kinase module, was only found to interact with C/EBPα. We found that the expression of all kinase module subunits decreased in inguinal, gonadal, and retroperitoneal white adipose tissue (WAT) depots in the fed state after an overnight fast, whereas the expression of kinase module subunits remained consistent in mesenteric WAT (mWAT) and brown adipose tissue. These data demonstrate that the kinase module undergoes physiologic regulation during fasting and feeding in specific mouse adipose tissue depots, and that MED12 likely plays a specific role in initiating and maintaining adipogenesis.
Collapse
Affiliation(s)
- Sree Venigalla
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Joseph Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Onyekachi Idigo
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Caroline Rinderle
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | | | - Jamie J. Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA.,Address correspondence to: Dr. Jamie J. Newman, School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
29
|
Benbarche S, Lopez CK, Salataj E, Aid Z, Thirant C, Laiguillon MC, Lecourt S, Belloucif Y, Vaganay C, Antonini M, Hu J, da Silva Babinet A, Ndiaye-Lobry D, Pardieu B, Petit A, Puissant A, Chaumeil J, Mercher T, Lobry C. Screening of ETO2-GLIS2-induced Super Enhancers identifies targetable cooperative dependencies in acute megakaryoblastic leukemia. SCIENCE ADVANCES 2022; 8:eabg9455. [PMID: 35138899 PMCID: PMC8827662 DOI: 10.1126/sciadv.abg9455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Super Enhancers (SEs) are clusters of regulatory elements associated with cell identity and disease. However, whether these elements are induced by oncogenes and can regulate gene modules cooperating for cancer cell transformation or maintenance remains elusive. To address this question, we conducted a genome-wide CRISPRi-based screening of SEs in ETO2-GLIS2+ acute megakaryoblastic leukemia. This approach revealed SEs essential for leukemic cell growth and survival that are induced by ETO2-GLIS2 expression. In particular, we identified a de novo SE specific of this leukemia subtype and regulating expression of tyrosine kinase-associated receptors KIT and PDGFRA. Combined expression of these two receptors was required for leukemic cell growth, and CRISPRi-mediated inhibition of this SE or treatment with tyrosine kinase inhibitors impaired progression of leukemia in vivo in patient-derived xenografts experiments. Our results show that fusion oncogenes, such as ETO2-GLIS2, can induce activation of SEs regulating essential gene modules synergizing for leukemia progression.
Collapse
Affiliation(s)
- Salima Benbarche
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Cécile K. Lopez
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | - Eralda Salataj
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris F-75014, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | | | - Séverine Lecourt
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Yannis Belloucif
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Camille Vaganay
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Marion Antonini
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Jiang Hu
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | | | | | - Bryann Pardieu
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Arnaud Petit
- Hôpital Trousseau, Sorbonne Université, Assistance Publique - Hôpitaux de Paris CONECT-AML, Paris F-75012, France
| | - Alexandre Puissant
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Julie Chaumeil
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris F-75014, France
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
- Corresponding author. (C.L.); (T.M.)
| | - Camille Lobry
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
- Corresponding author. (C.L.); (T.M.)
| |
Collapse
|
30
|
The Mediator kinase module: an interface between cell signaling and transcription. Trends Biochem Sci 2022; 47:314-327. [DOI: 10.1016/j.tibs.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
|
31
|
Genome-wide screens identify specific drivers of mutant hTERT promoters. Proc Natl Acad Sci U S A 2022; 119:2105171119. [PMID: 35027447 PMCID: PMC8784157 DOI: 10.1073/pnas.2105171119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
Mutations in hTERT promoter are seen in over 19% of human cancers, irrespective of the cancer type. Understanding the molecular players that regulate Mut-hTERT promoters may help the design of effective targeting strategies to inhibit telomerase reactivation specifically in cancer cells. Our work uses genome-wide functional screens to identify 30 specific regulators of Mut-hTERT promoters. These candidates identified from the screening serve as an excellent resource to understand how telomerase is reactivated and as targets for making inhibitors to telomerase, a key driver of cancer. Cancer-specific hTERT promoter mutations reported in 19% of cancers result in enhanced telomerase activity. Understanding the distinctions between transcriptional regulation of wild-type (WT) and mutant (Mut) hTERT promoters may open up avenues for development of inhibitors which specially block hTERT expression in cancer cells. To comprehensively identify physiological regulators of WT- or Mut-hTERT promoters, we generated several isogenic reporter cells driven by endogenous hTERT loci. Genome-wide CRISPR-Cas9 and small interfering RNA screens using these isogenic reporter lines identified specific regulators of Mut-hTERT promoters. We validate and characterize one of these hits, namely, MED12, a kinase subunit of mediator complex. We demonstrate that MED12 specifically drives expression of hTERT from the Mut-hTERT promoter by mediating long-range chromatin interaction between the proximal Mut-hTERT promoter and T-INT1 distal regulatory region 260 kb upstream. Several hits identified in our screens could serve as potential therapeutic targets, inhibition of which may specifically block Mut-hTERT promoter driven telomerase reactivation in cancers.
Collapse
|
32
|
Belloucif Y, Lobry C. Super-Enhancers Dysregulations in Hematological Malignancies. Cells 2022; 11:196. [PMID: 35053311 PMCID: PMC8774084 DOI: 10.3390/cells11020196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
Hematological malignancies affecting either the lymphoid or the myeloid lineages involve epigenetic mutations or dysregulation in the majority of cases. These epigenetic abnormalities can affect regulatory elements in the genome and, particularly, enhancers. Recently, large regulatory elements known as super-enhancers, initially identified for their critical roles in cell-type specific expression regulation of genes controlling cell identity, have been shown to also be involved in tumorigenesis in many cancer types and hematological malignancies via the regulation of numerous oncogenes, including MYC. In this review, we highlight the existing links between super-enhancers and hematological malignancies, with a particular focus on acute myeloid leukemia, a clonal hematopoietic neoplasm with dismal outcomes, resulting in an uncontrolled proliferation of myeloblasts, abnormally blocked during differentiation and accumulating within the patient's bone marrow. We report recent works, performed during the last few years, treating this subject and consider the possibility of targeting oncogenic regulatory elements, as well as the effectiveness and limitations reported so far for such strategies.
Collapse
Affiliation(s)
| | - Camille Lobry
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France;
| |
Collapse
|
33
|
Sooraj D, Sun C, Doan A, Garama DJ, Dannappel MV, Zhu D, Chua HK, Mahara S, Wan Hassan WA, Tay YK, Guanizo A, Croagh D, Prodanovic Z, Gough DJ, Wan C, Firestein R. MED12 and BRD4 cooperate to sustain cancer growth upon loss of mediator kinase. Mol Cell 2022; 82:123-139.e7. [PMID: 34910943 DOI: 10.1016/j.molcel.2021.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/27/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022]
Abstract
Mediator kinases (CDK8/19) are transcriptional regulators broadly implicated in cancer. Despite their central role in fine-tuning gene-expression programs, we find complete loss of CDK8/19 is tolerated in colorectal cancer (CRC) cells. Using orthogonal functional genomic and pharmacological screens, we identify BET protein inhibition as a distinct vulnerability in CDK8/19-depleted cells. Combined CDK8/19 and BET inhibition led to synergistic growth retardation in human and mouse models of CRC. Strikingly, depletion of CDK8/19 in these cells led to global repression of RNA polymerase II (Pol II) promoter occupancy and transcription. Concurrently, loss of Mediator kinase led to a profound increase in MED12 and BRD4 co-occupancy at enhancer elements and increased dependence on BET proteins for the transcriptional output of cell-essential genes. In total, this work demonstrates a synthetic lethal interaction between Mediator kinase and BET proteins and exposes a therapeutic vulnerability that can be targeted using combination therapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Binding Sites
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation/drug effects
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/enzymology
- Colorectal Neoplasms/genetics
- Cyclin-Dependent Kinase 8/genetics
- Cyclin-Dependent Kinase 8/metabolism
- Cyclin-Dependent Kinases/genetics
- Cyclin-Dependent Kinases/metabolism
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- HCT116 Cells
- Humans
- Male
- Mediator Complex/antagonists & inhibitors
- Mediator Complex/genetics
- Mediator Complex/metabolism
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Burden
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Dhanya Sooraj
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Claire Sun
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Anh Doan
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Daniel J Garama
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Marius V Dannappel
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Danxi Zhu
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Hui K Chua
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Sylvia Mahara
- Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Wan Amir Wan Hassan
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Yeng Kwang Tay
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Aleks Guanizo
- Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Daniel Croagh
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Zdenka Prodanovic
- Department of Pathology, Monash Medical Centre, Clayton, VIC, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Chunhua Wan
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Ron Firestein
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
34
|
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 2021; 9:microorganisms9102152. [PMID: 34683473 PMCID: PMC8540245 DOI: 10.3390/microorganisms9102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.
Collapse
|
35
|
Ottema S, Mulet-Lazaro R, Erpelinck-Verschueren C, van Herk S, Havermans M, Arricibita Varea A, Vermeulen M, Beverloo HB, Gröschel S, Haferlach T, Haferlach C, J. Wouters B, Bindels E, Smeenk L, Delwel R. The leukemic oncogene EVI1 hijacks a MYC super-enhancer by CTCF-facilitated loops. Nat Commun 2021; 12:5679. [PMID: 34584081 PMCID: PMC8479123 DOI: 10.1038/s41467-021-25862-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Chromosomal rearrangements are a frequent cause of oncogene deregulation in human malignancies. Overexpression of EVI1 is found in a subgroup of acute myeloid leukemia (AML) with 3q26 chromosomal rearrangements, which is often therapy resistant. In AMLs harboring a t(3;8)(q26;q24), we observed the translocation of a MYC super-enhancer (MYC SE) to the EVI1 locus. We generated an in vitro model mimicking a patient-based t(3;8)(q26;q24) using CRISPR-Cas9 technology and demonstrated hyperactivation of EVI1 by the hijacked MYC SE. This MYC SE contains multiple enhancer modules, of which only one recruits transcription factors active in early hematopoiesis. This enhancer module is critical for EVI1 overexpression as well as enhancer-promoter interaction. Multiple CTCF binding regions in the MYC SE facilitate this enhancer-promoter interaction, which also involves a CTCF binding site upstream of the EVI1 promoter. We hypothesize that this CTCF site acts as an enhancer-docking site in t(3;8) AML. Genomic analyses of other 3q26-rearranged AML patient cells point to a common mechanism by which EVI1 uses this docking site to hijack enhancers active in early hematopoiesis.
Collapse
Affiliation(s)
- Sophie Ottema
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Roger Mulet-Lazaro
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Claudia Erpelinck-Verschueren
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Stanley van Herk
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Marije Havermans
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Andrea Arricibita Varea
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Michael Vermeulen
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - H. Berna Beverloo
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan Gröschel
- grid.7497.d0000 0004 0492 0584A380, German Cancer Research Center, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Torsten Haferlach
- grid.420057.40000 0004 7553 8497Munich Leukemia Laboratory, Munich, Germany
| | - Claudia Haferlach
- grid.420057.40000 0004 7553 8497Munich Leukemia Laboratory, Munich, Germany
| | - Bas J. Wouters
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Eric Bindels
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Leonie Smeenk
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Ruud Delwel
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| |
Collapse
|
36
|
van de Plassche SR, de Brouwer APM. MED12-Related (Neuro)Developmental Disorders: A Question of Causality. Genes (Basel) 2021; 12:663. [PMID: 33925166 PMCID: PMC8146938 DOI: 10.3390/genes12050663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
MED12 is a member of the Mediator complex that is involved in the regulation of transcription. Missense variants in MED12 cause FG syndrome, Lujan-Fryns syndrome, and Ohdo syndrome, as well as non-syndromic intellectual disability (ID) in hemizygous males. Recently, female patients with de novo missense variants and de novo protein truncating variants in MED12 were described, resulting in a clinical spectrum centered around ID and Hardikar syndrome without ID. The missense variants are found throughout MED12, whether they are inherited in hemizygous males or de novo in females. They can result in syndromic or nonsyndromic ID. The de novo nonsense variants resulting in Hardikar syndrome that is characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, are found more N-terminally, whereas the more C-terminally positioned variants are de novo protein truncating variants that cause a severe, syndromic phenotype consisting of ID, facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties, and variable other abnormalities. This broad range of distinct phenotypes calls for a method to distinguish between pathogenic and non-pathogenic variants in MED12. We propose an isogenic iNeuron model to establish the unique gene expression patterns that are associated with the specific MED12 variants. The discovery of these patterns would help in future diagnostics and determine the causality of the MED12 variants.
Collapse
Affiliation(s)
| | - Arjan P. M. de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
37
|
Wang E, Zhou H, Nadorp B, Cayanan G, Chen X, Yeaton AH, Nomikou S, Witkowski MT, Narang S, Kloetgen A, Thandapani P, Ravn-Boess N, Tsirigos A, Aifantis I. Surface antigen-guided CRISPR screens identify regulators of myeloid leukemia differentiation. Cell Stem Cell 2021; 28:718-731.e6. [PMID: 33450187 PMCID: PMC8145876 DOI: 10.1016/j.stem.2020.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Lack of cellular differentiation is a hallmark of many human cancers, including acute myeloid leukemia (AML). Strategies to overcome such a differentiation blockade are an approach for treating AML. To identify targets for differentiation-based therapies, we applied an integrated cell surface-based CRISPR platform to assess genes involved in maintaining the undifferentiated state of leukemia cells. Here we identify the RNA-binding protein ZFP36L2 as a critical regulator of AML maintenance and differentiation. Mechanistically, ZFP36L2 interacts with the 3' untranslated region of key myeloid maturation genes, including the ZFP36 paralogs, to promote their mRNA degradation and suppress terminal myeloid cell differentiation. Genetic inhibition of ZFP36L2 restores the mRNA stability of these targeted transcripts and ultimately triggers myeloid differentiation in leukemia cells. Epigenome profiling of several individuals with primary AML revealed enhancer modules near ZFP36L2 that associated with distinct AML cell states, establishing a coordinated epigenetic and post-transcriptional mechanism that shapes leukemic differentiation.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| | - Hua Zhou
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Geraldine Cayanan
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Xufeng Chen
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Anna H Yeaton
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Sofia Nomikou
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Matthew T Witkowski
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Sonali Narang
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Andreas Kloetgen
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Palaniraja Thandapani
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Niklas Ravn-Boess
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA; Institute for Computational Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
38
|
Altered microRNA expression links IL6 and TNF-induced inflammaging with myeloid malignancy in humans and mice. Blood 2021; 135:2235-2251. [PMID: 32384151 DOI: 10.1182/blood.2019003105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Aging is associated with significant changes in the hematopoietic system, including increased inflammation, impaired hematopoietic stem cell (HSC) function, and increased incidence of myeloid malignancy. Inflammation of aging ("inflammaging") has been proposed as a driver of age-related changes in HSC function and myeloid malignancy, but mechanisms linking these phenomena remain poorly defined. We identified loss of miR-146a as driving aging-associated inflammation in AML patients. miR-146a expression declined in old wild-type mice, and loss of miR-146a promoted premature HSC aging and inflammation in young miR-146a-null mice, preceding development of aging-associated myeloid malignancy. Using single-cell assays of HSC quiescence, stemness, differentiation potential, and epigenetic state to probe HSC function and population structure, we found that loss of miR-146a depleted a subpopulation of primitive, quiescent HSCs. DNA methylation and transcriptome profiling implicated NF-κB, IL6, and TNF as potential drivers of HSC dysfunction, activating an inflammatory signaling relay promoting IL6 and TNF secretion from mature miR-146a-/- myeloid and lymphoid cells. Reducing inflammation by targeting Il6 or Tnf was sufficient to restore single-cell measures of miR-146a-/- HSC function and subpopulation structure and reduced the incidence of hematological malignancy in miR-146a-/- mice. miR-146a-/- HSCs exhibited enhanced sensitivity to IL6 stimulation, indicating that loss of miR-146a affects HSC function via both cell-extrinsic inflammatory signals and increased cell-intrinsic sensitivity to inflammation. Thus, loss of miR-146a regulates cell-extrinsic and -intrinsic mechanisms linking HSC inflammaging to the development of myeloid malignancy.
Collapse
|
39
|
Wang Z, Wang P, Li Y, Peng H, Zhu Y, Mohandas N, Liu J. Interplay between cofactors and transcription factors in hematopoiesis and hematological malignancies. Signal Transduct Target Ther 2021; 6:24. [PMID: 33468999 PMCID: PMC7815747 DOI: 10.1038/s41392-020-00422-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system.
Collapse
Affiliation(s)
- Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| | - Pan Wang
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Yanan Li
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
40
|
Zhou Q, Yu M, Tirado-Magallanes R, Li B, Kong L, Guo M, Tan ZH, Lee S, Chai L, Numata A, Benoukraf T, Fullwood MJ, Osato M, Ren B, Tenen DG. ZNF143 mediates CTCF-bound promoter-enhancer loops required for murine hematopoietic stem and progenitor cell function. Nat Commun 2021; 12:43. [PMID: 33397967 PMCID: PMC7782510 DOI: 10.1038/s41467-020-20282-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022] Open
Abstract
CCCTC binding factor (CTCF) is an important factor in the maintenance of chromatin-chromatin interactions, yet the mechanism regulating its binding to chromatin is unknown. We demonstrate that zinc finger protein 143 (ZNF143) is a key regulator for CTCF-bound promoter-enhancer loops. In the murine genome, a large percentage of CTCF and ZNF143 DNA binding motifs are distributed 37 bp apart in the convergent orientation. Furthermore, deletion of ZNF143 leads to loss of CTCF binding on promoter and enhancer regions associated with gene expression changes. CTCF-bound promoter-enhancer loops are also disrupted after excision of ZNF143. ZNF143-CTCF-bound promoter-enhancer loops regulate gene expression patterns essential for maintenance of murine hematopoietic stem and progenitor cell integrity. Our data suggest a common feature of gene regulation is that ZNF143 is a critical factor for CTCF-bound promoter-enhancer loops.
Collapse
Affiliation(s)
- Qiling Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- YLL School of Medicine, National University of Singapore, 119228, Singapore, Singapore
| | - Miao Yu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Roberto Tirado-Magallanes
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Bin Li
- Ludwig Institute for Cancer Research, La Jolla, CA, 92093, USA
| | - Lingshi Kong
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Mingrui Guo
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- YLL School of Medicine, National University of Singapore, 119228, Singapore, Singapore
| | - Zi Hui Tan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Sanghoon Lee
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Akihiko Numata
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, 92093, USA
- Department of Cellular & Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Straub J, Venigalla S, Newman JJ. Mediator's Kinase Module: A Modular Regulator of Cell Fate. Stem Cells Dev 2020; 29:1535-1551. [PMID: 33161841 DOI: 10.1089/scd.2020.0164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selective gene expression is crucial in maintaining the self-renewing and multipotent properties of stem cells. Mediator is a large, evolutionarily conserved, multi-subunit protein complex that modulates gene expression by relaying signals from cell type-specific transcription factors to RNA polymerase II. In humans, this complex consists of 30 subunits arranged in four modules. One critical module of the Mediator complex is the kinase module consisting of four subunits: MED12, MED13, CDK8, and CCNC. The kinase module exists in variable association with the 26-subunit Mediator core and affects transcription through phosphorylation of transcription factors and by controlling Mediator structure and function. Many studies have shown the kinase module to be a key player in the maintenance of stem cells that is distinct from a general role in transcription. Genetic studies have revealed that dysregulation of this kinase subunit contributes to the development of many human diseases. In this review, we discuss the importance of the Mediator kinase module by examining how this module functions with the more recently identified transcriptional super-enhancers, how changes in the kinase module and its activity can lead to the development of human disease, and the role of this unique module in directing and maintaining cell state. As we look to use stem cells to understand human development and treat human disease through both cell-based therapies and tissue engineering, we need to remain aware of the on-going research and address critical gaps in knowledge related to the molecular mechanisms that control cell fate.
Collapse
Affiliation(s)
- Joseph Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Sree Venigalla
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Jamie J Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| |
Collapse
|
42
|
De novo loss-of-function variants in X-linked MED12 are associated with Hardikar syndrome in females. Genet Med 2020; 23:637-644. [PMID: 33244166 DOI: 10.1038/s41436-020-01031-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Hardikar syndrome (MIM 612726) is a rare multiple congenital anomaly syndrome characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, but with preserved cognition. Only four patients have been reported previously, and none had a molecular diagnosis. Our objective was to identify the genetic basis of Hardikar syndrome (HS) and expand the phenotypic spectrum of this disorder. METHODS We performed exome sequencing on two previously reported and five unpublished female patients with a clinical diagnosis of HS. X-chromosome inactivation (XCI) studies were also performed. RESULTS We report clinical features of HS with previously undescribed phenotypes, including a fatal unprovoked intracranial hemorrhage at age 21. We additionally report the discovery of de novo pathogenic nonsense and frameshift variants in MED12 in these seven individuals and evidence of extremely skewed XCI in all patients with informative testing. CONCLUSION Pathogenic missense variants in the X-chromosome gene MED12 have previously been associated with Opitz-Kaveggia syndrome, Lujan syndrome, Ohdo syndrome, and nonsyndromic intellectual disability, primarily in males. We propose a fifth, female-specific phenotype for MED12, and suggest that nonsense and frameshift loss-of-function MED12 variants in females cause HS. This expands the MED12-associated phenotype in females beyond intellectual disability.
Collapse
|
43
|
Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem 2020; 213:113043. [PMID: 33257171 DOI: 10.1016/j.ejmech.2020.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.
Collapse
Affiliation(s)
- Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei, 238000, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
44
|
Karmakar S, Rauth S, Nallasamy P, Perumal N, Nimmakalaya RK, Leon F, Gupta R, Barkeer S, Venkata RC, Raman V, Rachagani S, Ponnusamy MP, Batra SK. RNA Polymerase II-Associated Factor 1 Regulates Stem Cell Features of Pancreatic Cancer Cells, Independently of the PAF1 Complex, via Interactions With PHF5A and DDX3. Gastroenterology 2020; 159:1898-1915.e6. [PMID: 32781084 PMCID: PMC7680365 DOI: 10.1053/j.gastro.2020.07.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS It is not clear how pancreatic cancer stem cells (CSCs) are regulated, resulting in ineffective treatments for pancreatic cancer. PAF1, a RNA polymerase II-associated factor 1 complex (PAF1C) component, maintains pluripotency of stem cells, by unclear mechanisms, and is a marker of CSCs. We investigated mechanisms by which PAF1 maintains CSCs and contributes to development of pancreatic tumors. METHODS Pancreatic cancer cell lines were engineered to knockdown PAF1 using inducible small hairpin RNAs. These cells were grown as orthotopic tumors in athymic nude mice and PAF1 knockdown was induced by administration of doxycycline in drinking water. Tumor growth and metastasis were monitored via IVIS imaging. CSCs were isolated from pancreatic cancer cell populations using flow cytometry and characterized by tumor sphere formation, tumor formation in nude mice, and expression of CSC markers. Isolated CSCs were depleted of PAF1 using the CRISPR/Cas9 system. PAF1-regulated genes in CSCs were identified via RNA-seq and PCR array analyses of cells with PAF1 knockdown. Proteins that interact with PAF1 in CSCs were identified by immunoprecipitations and mass spectrometry. We performed chromatin immunoprecipitation sequencing of CSCs to confirm the binding of the PAF1 sub-complex to target genes. RESULTS Pancreatic cancer cells depleted of PAF1 formed smaller and fewer tumor spheres in culture and orthotopic tumors and metastases in mice. Isolated CSCs depleted of PAF1 downregulated markers of self-renewal (NANOG, SOX9, and β-CATENIN), of CSCs (CD44v6, and ALDH1), and the metastasis-associated gene signature, compared to CSCs without knockdown of PAF1. The role of PAF1 in CSC maintenance was independent of its RNA polymerase II-associated factor 1 complex component identity. We identified DDX3 and PHF5A as proteins that interact with PAF1 in CSCs and demonstrated that the PAF1-PHF5A-DDX3 sub-complex bound to the promoter region of Nanog, whose product regulates genes that control stemness. Levels of the PAF1-DDX3 and PAF1-PHF5A were increased and co-localized in human pancreatic tumor specimens, human pancreatic tumor-derived organoids, and organoids derived from tumors of KPC mice, compared with controls. Binding of DDX3 and PAF1 to the Nanog promoter, and the self-renewal capacity of CSCs, were decreased in cells incubated with the DDX3 inhibitor RK-33. CSCs depleted of PAF1 downregulated genes that regulate stem cell features (Flot2, Taz, Epcam, Erbb2, Foxp1, Abcc5, Ddr1, Muc1, Pecam1, Notch3, Aldh1a3, Foxa2, Plat, and Lif). CONCLUSIONS In pancreatic CSCs, PAF1 interacts with DDX3 and PHF5A to regulate expression of NANOG and other genes that regulate stemness. Knockdown of PAF1 reduces the ability of orthotopic pancreatic tumors to develop and progress in mice and their numbers of CSCs. Strategies to target the PAF1-PHF5A-DDX3 complex might be developed to slow or inhibit progression of pancreatic cancer.
Collapse
Affiliation(s)
- Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Rama Krishna Nimmakalaya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | | | - Venu Raman
- Departments of Radiology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Correspondence: Surinder K. Batra, Ph.D., or Moorthy P. Ponnusamy, Ph.D. Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A. Phone: 402-559-5455, Fax: 402-559-6650, or
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Correspondence: Surinder K. Batra, Ph.D., or Moorthy P. Ponnusamy, Ph.D. Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A. Phone: 402-559-5455, Fax: 402-559-6650, or
| |
Collapse
|
45
|
Zhang N, Song Y, Xu Y, Liu J, Shen Y, Zhou L, Yu J, Yang M. MED13L integrates Mediator-regulated epigenetic control into lung cancer radiosensitivity. Am J Cancer Res 2020; 10:9378-9394. [PMID: 32802198 PMCID: PMC7415817 DOI: 10.7150/thno.48247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
To date, efforts to improve non-small-cell lung cancer (NSCLC) outcomes with increased radiation dose have not been successful. Identification of novel druggable targets that are capable to modulate NSCLC radiosensitivity may provide a way forward. Mediator complex is implicated in gene expression control, but it remains unclear how Mediator dysfunction is involved in cancer radiotherapy. Methods: The biologic functions of miR-4497, MED13L and PRKCA in NSCLC radiosensitivity were examined through biochemical assays including gene expression profilling, cell proliferation assay, colony formation assay, wound healing assay, transwell assay, dual luciferase reporter assay, xenograft models, immunoprecipitation, and chromatin immunoprecipitation sequencing. Clinical implications of miR-4497, MED13L and PRKCA in radiosensitivity were evaluated in NSCLC patients treated with concurrent chemoradiotherapy or radiotherapy alone. Results: We found that radiation can trigger disassemble of Mediator complex via silencing of MED13L by miR-4497 in NSCLC. Although not interrupting structure integrity of the core Mediator or the CDK8 kinase module, suppression of MED13L attenuated their physical interactions and reduced recruitment of acetyltransferase P300 to chromatin via Mediator. Silencing of MED13L therefore diminishes global H3K27ac signals written by P300, activities of enhancer and/or promoters and expression of multiple oncogenes, especially PRKCA. Inhibition of PRKCA expression potentiates the killing effect of radiotherapy in vitro and in vivo. Remarkably, high PRKCA expression in NSCLC tissues is correlated with poor prognosis of patients received radiotherapy. Conclusions: Our study linking PRKCA to radiosensitivity through a novel mechanism may enable the rational targeting of PRKCA to unlock therapeutic potentials of NSCLC.
Collapse
|
46
|
Liu Q, Bischof S, Harris CJ, Zhong Z, Zhan L, Nguyen C, Rashoff A, Barshop WD, Sun F, Feng S, Potok M, Gallego-Bartolome J, Zhai J, Wohlschlegel JA, Carey MF, Long JA, Jacobsen SE. The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis. Nat Commun 2020; 11:2798. [PMID: 32493925 PMCID: PMC7271234 DOI: 10.1038/s41467-020-16651-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Mediator 12 (MED12) and MED13 are components of the Mediator multi-protein complex, that facilitates the initial steps of gene transcription. Here, in an Arabidopsis mutant screen, we identify MED12 and MED13 as positive gene regulators, both of which contribute broadly to morc1 de-repressed gene expression. Both MED12 and MED13 are preferentially required for the expression of genes depleted in active chromatin marks, a chromatin signature shared with morc1 re-activated loci. We further discover that MED12 tends to interact with genes that are responsive to environmental stimuli, including light and radiation. We demonstrate that light-induced transient gene expression depends on MED12, and is accompanied by a concomitant increase in MED12 enrichment during induction. In contrast, the steady-state expression level of these genes show little dependence on MED12, suggesting that MED12 is primarily required to aid the expression of genes in transition from less-active to more active states. Mediator is a multiprotein complex required to activate gene transcription by RNAPII. Here, the authors report that MED12 and MED13 are conditional positive regulators that facilitate the expression of genes depleted in active chromatin marks and the induction of gene expression in response to environmental stimuli in Arabidopsis.
Collapse
Affiliation(s)
- Qikun Liu
- School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China. .,Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Sylvain Bischof
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - C Jake Harris
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Basic Forestry and Proteomics Center, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lingyu Zhan
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Calvin Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrew Rashoff
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Fei Sun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Magdalena Potok
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Javier Gallego-Bartolome
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey A Long
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA. .,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
47
|
Ochi Y, Kon A, Sakata T, Nakagawa MM, Nakazawa N, Kakuta M, Kataoka K, Koseki H, Nakayama M, Morishita D, Tsuruyama T, Saiki R, Yoda A, Okuda R, Yoshizato T, Yoshida K, Shiozawa Y, Nannya Y, Kotani S, Kogure Y, Kakiuchi N, Nishimura T, Makishima H, Malcovati L, Yokoyama A, Takeuchi K, Sugihara E, Sato TA, Sanada M, Takaori-Kondo A, Cazzola M, Kengaku M, Miyano S, Shirahige K, Suzuki HI, Ogawa S. Combined Cohesin-RUNX1 Deficiency Synergistically Perturbs Chromatin Looping and Causes Myelodysplastic Syndromes. Cancer Discov 2020; 10:836-853. [PMID: 32249213 PMCID: PMC7269820 DOI: 10.1158/2159-8290.cd-19-0982] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
Abstract
STAG2 encodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant comutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis. Combined loss of STAG2 and RUNX1, which colocalize at enhancer-rich, CTCF-deficient sites, synergistically attenuates enhancer-promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPC) and myelodysplastic syndromes (MDS) in mice. Attenuated enhancer-promoter loops in STAG2/RUNX1-deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Downregulation of high-pausing genes is also confirmed in STAG2-cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2-RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis. SIGNIFICANCE: We demonstrate a critical role of an interplay between STAG2 and a master transcription factor of hematopoiesis, RUNX1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer-promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro M Nakagawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naotaka Nakazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Masanori Kakuta
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | | | - Tatsuaki Tsuruyama
- Department of Drug and Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akinori Yoda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rurika Okuda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Kotani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasunori Kogure
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomomi Nishimura
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
48
|
Selective Mediator dependence of cell-type-specifying transcription. Nat Genet 2020; 52:719-727. [PMID: 32483291 PMCID: PMC7610447 DOI: 10.1038/s41588-020-0635-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
The Mediator complex directs signals from DNA-binding transcription factors to RNA polymerase (Pol) II. Despite this pivotal position, mechanistic understanding of Mediator in human cells remains incomplete. Here, we quantified Mediator-controlled Pol II kinetics by coupling rapid subunit degradation with orthogonal experimental readouts. Consistent with a model of condensate-driven transcription initiation, large clusters of hypo-phosphorylated Pol II rapidly disassembled upon Mediator degradation. This was accompanied by a selective and pronounced disruption of cell type-specifying transcriptional circuits, whose constituent genes featured exceptionally high rates of Pol II turnover. Notably, transcriptional output of most other genes was largely unaffected by acute Mediator ablation. Maintenance of transcriptional activity at these genes was linked to an unexpected, CDK9-dependent compensatory feedback loop that elevated Pol II pause release rates genome-wide. Collectively, our work positions human Mediator as a globally acting coactivator that selectively safeguards the functionality of cell type-specifying transcriptional networks.
Collapse
|
49
|
Abstract
Pathological cardiac remodeling is induced through multiple mechanisms that include neurohumoral and biomechanical stress resulting in transcriptional alterations that ultimately become maladaptive and lead to the development of heart failure (HF). Although cardiac transcriptional remodeling is mediated by the activation of numerous signaling pathways that converge on a limited number of transcription factors (TFs) that promote hypertrophy (pro-hypertrophic TFs), the current therapeutic approach to prevent HF utilizes pharmacological inhibitors that largely target specific receptors that are activated in response to pathological stimuli. Thus, there is limited efficacy with the current pharmacological approaches to inhibit transcriptional remodeling associated with the development of HF. Recent evidence suggests that these pro-hypertrophic TFs co-localize at enhancers to cooperatively activate transcription associated with pathological cardiac remodeling. In disease states, including cancer and HF, evidence suggests that the general transcriptional machinery is disproportionately bound at enhancers. Therefore, pharmacological inhibition of transcriptional machinery that integrates pro-hypertrophic TFs may represent a promising alternative therapeutic approach to limit pathological remodeling associated with the development of HF.
Collapse
|
50
|
Thom CS, Jobaliya CD, Lorenz K, Maguire JA, Gagne A, Gadue P, French DL, Voight BF. Tropomyosin 1 genetically constrains in vitro hematopoiesis. BMC Biol 2020; 18:52. [PMID: 32408895 PMCID: PMC7227211 DOI: 10.1186/s12915-020-00783-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Identifying causal variants and genes from human genetic studies of hematopoietic traits is important to enumerate basic regulatory mechanisms underlying these traits, and could ultimately augment translational efforts to generate platelets and/or red blood cells in vitro. To identify putative causal genes from these data, we performed computational modeling using available genome-wide association datasets for platelet and red blood cell traits. RESULTS Our model identified a joint collection of genomic features enriched at established trait associations and plausible candidate variants. Additional studies associating variation at these loci with change in gene expression highlighted Tropomyosin 1 (TPM1) among our top-ranked candidate genes. CRISPR/Cas9-mediated TPM1 knockout in human induced pluripotent stem cells (iPSCs) enhanced hematopoietic progenitor development, increasing total megakaryocyte and erythroid cell yields. CONCLUSIONS Our findings may help explain human genetic associations and identify a novel genetic strategy to enhance in vitro hematopoiesis. A similar trait-specific gene prioritization strategy could be employed to help streamline functional validation experiments for virtually any human trait.
Collapse
Affiliation(s)
- Christopher Stephen Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Chintan D Jobaliya
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Lorenz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alyssa Gagne
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin Franklin Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|