1
|
Wu Y, Wu BZ, Ellenbogen Y, Kant JBY, Yu P, Li X, Caloren L, Sotov V, Tran C, Restrepo M, Kushida M, Ayyadhury S, Kossinna P, Lau R, Habibi P, Mansouri S, Regala J, Durbic T, Aboualizadeh F, Tsao J, Ketela T, Pugh T, Butler MO, Wang BX, Dirks PB, Gao A, Zadeh G, Gaiti F. Neurodevelopmental hijacking of oligodendrocyte lineage programs drives glioblastoma infiltration. Dev Cell 2025:S1534-5807(25)00260-6. [PMID: 40381621 DOI: 10.1016/j.devcel.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/06/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with a highly invasive nature. Despite the clinical relevance of this behavior, the molecular underpinnings of infiltrating GBM cells in the peritumoral zone remain underexplored in patients. Here, we show that peritumoral progenitor-like GBM cells activate transcriptional programs associated with increased invasivity, synaptic activity, and NOTCH signaling. These cells spatially colocalize with neurons and exhibit an increased propensity for neuronal crosstalk. The epigenetic encoding of these infiltrative cells mirrors that of uncommitted oligodendrocyte progenitor cells (OPCs) in the developing human brain, a neurodevelopmental state marked by increased synaptic and migratory potential. Functional perturbation of a nominated regulatory factor, ZEB1, confirmed its role in maintaining the invasive and uncommitted developmental potential of infiltrative GBM cells. Our findings provide insights into the neurodevelopmental hijacking that drives GBM infiltration in patients, rationalizing further investigation into targeting differentiation potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Yiyan Wu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Benson Z Wu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Joan B Y Kant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Pengcheng Yu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xuyao Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Loïc Caloren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Valentin Sotov
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Christine Tran
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michelle Restrepo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michelle Kushida
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shamini Ayyadhury
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Pathum Kossinna
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ruth Lau
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Parnian Habibi
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Sheila Mansouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Johanna Regala
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tanja Durbic
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Julissa Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Trevor Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Marcus O Butler
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ben X Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Peter B Dirks
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Developmental and Stem Cell Biology Department, The Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Federico Gaiti
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada; Vector Institute, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ng CAS, Pedus M, Lee MF, Kromer LF, Mandelblatt J, Rebeck GW. The chemotherapy agent doxorubicin induces CNS expression of Ascl1, a regulator of adult neurogenesis and differentiation. Sci Rep 2025; 15:9725. [PMID: 40118985 PMCID: PMC11928606 DOI: 10.1038/s41598-025-94400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a common side effect of cancer and its treatments. Cancer chemotherapy has been associated with hippocampal dysfunction and memory impairment. We investigated the effects of one chemotherapy agent, doxorubicin, on the transcription factor Ascl1 and proliferation of stem cells in the brain. We used an inducible mouse model designed to express TdTomato in Ascl1-lineage cells. Five to six-month-old Ascl1-CreERT2:ROSA mice were treated peripherally with a single dose of either doxorubicin (10 mg/kg) or DMSO control (n = 9 per group, n = 4-5 per sex). We analyzed brains of mice that had been exposed to doxorubicin for 2 weeks and had induced Ascl1 expression after the first week. We used immunostaining of neurogenesis stage specific markers to evaluate the doxorubicin effects on neuronal differentiation in the dentate gyrus of the hippocampus. Overall, doxorubicin significantly increased Ascl1 expression by 81% at this time point. As measured by Ascl1 double stains with Sox2, GFAP, and NeuroD1, doxorubicin-treated mice experienced an increase in Ascl1-mediated neural proliferation compared to control. A similar significant increase in the number of Ascl1-expressing cells (by 146%) after doxorubicin treatment was observed in the gray matter of the cerebral cortex. Thus, rather than leading to the loss of developing neurons, we found that a single dose of doxorubicin increased their appearance and progression, suggesting that hippocampal losses from chemotherapies may require greater and more sustained damage.
Collapse
Affiliation(s)
- Christi Anne S Ng
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd, NW, Washington, DC, 20007, USA
| | - Morgan Pedus
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI, USA
| | - Madeline F Lee
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd, NW, Washington, DC, 20007, USA
| | - Lawrence F Kromer
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd, NW, Washington, DC, 20007, USA
| | | | - G William Rebeck
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd, NW, Washington, DC, 20007, USA.
| |
Collapse
|
3
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
4
|
Emir SM, Karaoğlan BS, Kaşmer R, Şirin HB, Sarıyıldız B, Karakaş N. Hunting glioblastoma recurrence: glioma stem cells as retrospective targets. Am J Physiol Cell Physiol 2025; 328:C1045-C1061. [PMID: 39818986 DOI: 10.1152/ajpcell.00344.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain malignancies in adults. Standard approaches, including surgical resection followed by adjuvant radio- and chemotherapy with temozolomide (TMZ), provide only transient control, as GBM frequently recurs due to its infiltrative nature and the presence of therapy-resistant subpopulations such as glioma stem cells (GSCs). GSCs, with their quiescent state and robust resistance mechanisms, evade conventional therapies, contributing significantly to relapse. Consequently, current treatment methods for GBM face significant limitations in effectively targeting GSCs. In this review, we emphasize the relationship between GBM recurrence and GSCs, discuss the current limitations, and provide future perspectives to overwhelm the challenges associated with targeting GSCs. Eliminating GSCs may suppress recurrence, achieve durable responses, and improve therapeutic outcomes for patients with GBM.
Collapse
Affiliation(s)
- Sümeyra Mengüç Emir
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Birnur Sinem Karaoğlan
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Ramazan Kaşmer
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Hilal Buse Şirin
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Batuhan Sarıyıldız
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Nihal Karakaş
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
- Department of Medical Biology, International School of Medicine, İstanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
5
|
Desai K, Wanggou S, Luis E, Whetstone H, Yu C, Vanner RJ, Selvadurai HJ, Lee L, Vijay J, Jaramillo JE, Fan J, Guilhamon P, Kushida M, Li X, Stein G, Kesari S, Simons BD, Huang X, Dirks PB. OLIG2 mediates a rare targetable stem cell fate transition in sonic hedgehog medulloblastoma. Nat Commun 2025; 16:1092. [PMID: 39904987 PMCID: PMC11794873 DOI: 10.1038/s41467-024-54858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/22/2024] [Indexed: 02/06/2025] Open
Abstract
Functional cellular heterogeneity in tumours often underlies incomplete response to therapy and relapse. Previously, we demonstrated that the growth of the paediatric brain malignancy, sonic hedgehog subgroup medulloblastoma, is rooted in a dysregulated developmental hierarchy, the apex of which is defined by characteristically quiescent SOX2+ stem-like cells. Integrating gene expression and chromatin accessibility patterns in distinct cellular compartments, we identify the transcription factor Olig2 as regulating the stem cell fate transition from quiescence to activation, driving the generation of downstream neoplastic progenitors. Inactivation of Olig2 blocks stem cell activation and tumour output. Targeting this rare OLIG2-driven proliferative programme with a small molecule inhibitor, CT-179, dramatically attenuates early tumour formation and tumour regrowth post-therapy, and significantly increases median survival in vivo. We demonstrate that targeting transition from quiescence to proliferation at the level of the tumorigenic cell could be a pivotal medulloblastoma treatment strategy.
Collapse
Affiliation(s)
- Kinjal Desai
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Neurosurgery, and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Erika Luis
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Chunying Yu
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Robert J Vanner
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hayden J Selvadurai
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jinchu Vijay
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Julia E Jaramillo
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jerry Fan
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Xuejun Li
- Department of Neurosurgery, and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gregory Stein
- Curtana Pharmaceuticals, Inc, Austin, TX, 78756, USA
| | - Santosh Kesari
- Curtana Pharmaceuticals, Inc, Austin, TX, 78756, USA
- Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, and the Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Xi Huang
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Division of Neurosurgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
6
|
Greșiță A, Hermann DM, Boboc IKS, Doeppner TR, Petcu E, Semida GF, Popa-Wagner A. Glial Cell Reprogramming in Ischemic Stroke: A Review of Recent Advancements and Translational Challenges. Transl Stroke Res 2025:10.1007/s12975-025-01331-7. [PMID: 39904845 DOI: 10.1007/s12975-025-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke, the second leading cause of death worldwide and the leading cause of long-term disabilities, presents a significant global health challenge, particularly in aging populations where the risk and severity of cerebrovascular events are significantly increased. The aftermath of stroke involves neuronal loss in the infarct core and reactive astrocyte proliferation, disrupting the neurovascular unit, especially in aged brains. Restoring the balance between neurons and non-neuronal cells within the perilesional area is crucial for post-stroke recovery. The aged post-stroke brain mounts a fulminant proliferative astroglial response, leading to gliotic scarring that prevents neural regeneration. While countless therapeutic techniques have been attempted for decades with limited success, alternative strategies aim to transform inhibitory gliotic tissue into an environment conducive to neuronal regeneration and axonal growth through genetic conversion of astrocytes into neurons. This concept gained momentum following discoveries that in vivo direct lineage reprogramming in the adult mammalian brain is a feasible strategy for reprogramming non-neuronal cells into neurons, circumventing the need for cell transplantation. Recent advancements in glial cell reprogramming, including transcription factor-based methods with factors like NeuroD1, Ascl1, and Neurogenin2, as well as small molecule-induced reprogramming and chemical induction, show promise in converting glial cells into functional neurons. These approaches leverage the brain's intrinsic plasticity for neuronal replacement and circuit restoration. However, applying these genetic conversion therapies in the aged, post-stroke brain faces significant challenges, such as the hostile inflammatory environment and compromised regenerative capacity. There is a critical need for safe and efficient delivery methods, including viral and non-viral vectors, to ensure targeted and sustained expression of reprogramming factors. Moreover, addressing the translational gap between preclinical successes and clinical applications is essential, emphasizing the necessity for robust stroke models that replicate human pathophysiology. Ethical considerations and biosafety concerns are critically evaluated, particularly regarding the long-term effects and potential risks of genetic reprogramming. By integrating recent research findings, this comprehensive review provides an in-depth understanding of the current landscape and future prospects of genetic conversion therapy for ischemic stroke rehabilitation, highlighting the potential to enhance personalized stroke management and regenerative strategies through innovative approaches.
Collapse
Affiliation(s)
- Andrei Greșiță
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Dirk M Hermann
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Ianis Kevyn Stefan Boboc
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Eugen Petcu
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Ghinea Flavia Semida
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany.
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| |
Collapse
|
7
|
Lozada JR, Elliott A, Evans MG, Wacker J, Storey KM, Egusa EA, Zorko NA, Kumar A, Crymes A, Heath EI, Carneiro BA, Soares HP, Cichocki F, Miller JS, Lou E, Beltran H, Antonarakis ES, Ryan CJ, Hwang JH. Expression Patterns of DLL3 across Neuroendocrine and Non-neuroendocrine Neoplasms Reveal Broad Opportunities for Therapeutic Targeting. CANCER RESEARCH COMMUNICATIONS 2025; 5:318-326. [PMID: 39874041 PMCID: PMC11827001 DOI: 10.1158/2767-9764.crc-24-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
SIGNIFICANCE DLL3-targeted therapies have recently shown robust clinical efficacy in aggressive neuroendocrine cancers, positioning them to fulfill a great unmet need in these settings. Here, we examine the clinical and biological correlates of DLL3 expression in both neuroendocrine and non-neuroendocrine cancers. Our findings may stimulate the development and application of DLL3-targeted therapies, as well as other precision therapies, in neuroendocrine cancers and beyond.
Collapse
Affiliation(s)
- John R. Lozada
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Kathleen M. Storey
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Emily A. Egusa
- Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, Minnesota
| | - Nicholas A. Zorko
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Anthony Crymes
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Elisabeth I. Heath
- Department of Oncology, Wayne State University Karmanos Cancer Institute, Detroit, Michigan
| | | | | | - Frank Cichocki
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Emil Lou
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | | | - Emmanuel S. Antonarakis
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Charles J. Ryan
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Justin H. Hwang
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
8
|
Tang ZQ, Ye YR, Shen Y. Molecular Mechanisms and Strategies for Inducing Neuronal Differentiation in Glioblastoma Cells. Cell Reprogram 2025; 27:24-32. [PMID: 39880036 DOI: 10.1089/cell.2024.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain tumor, and traditional treatments combining surgery with radiochemotherapy have limited effects, with tumor recurrence being almost inevitable. Given the lack of proliferative capacity in neurons, inducing terminal differentiation of GBM cells or glioma stem cells (GSCs) into neuron-like cells has emerged as a promising strategy. This approach aims to suppress their proliferation and self-renewal capabilities through differentiation. This review summarizes the methods involved in recent research on the neuronal differentiation of GBM cells or GSCs, including the regulation of transcription factors, signaling pathways, miRNA, and the use of small molecule drugs, among various strategies. It also outlines the interconnections between the mechanisms studied, hoping to provide ideas for exploring new therapeutic avenues for GBM and the development of differentiation-inducing drugs for GBM.
Collapse
Affiliation(s)
- Zhao-Qi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Liao C, Chen Y, Peng D, Li S, Liu L, Li Q, Huang R, Huang L, Jiang T, Hu H, Li Y. Neuron-like lineage differentiation induced by exogenous Neurexin-1 as a potential therapeutic strategy for glioma. Cancer Lett 2024; 611:217387. [PMID: 39657829 DOI: 10.1016/j.canlet.2024.217387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/11/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Strategically altering tumor cell fate is a promising treatment for suppressing the malignant phenotype and improving glioma prognosis. This study reveals the favorable impact of the enrichment of neuronal differentiation-related genes on glioma prognosis. A substantial negative correlation was observed between neuronal and mesenchyme-related biological features within gliomas. Neuron-like tumor cells exhibited relatively low treatment resistance and were prevalent in samples with favorable prognostic scores. By reconstructing the glioblastoma multiforme (GBM) hierarchy, we identified astrocyte-like tumor cells with the highest differentiation potential that play a pivotal role in tumor lineage transition. Subsequent analysis of cell interactions revealed that neuron-like tumor cells engage mainly in the tumor cell network through the neurexin (NRXN) pathway, with astrocyte-like tumor cells being the primary receiver of the pathway. Further in vitro and in vivo experiments demonstrated that exogenous neurexin-1 (NRXN1) has the capacity to regulate the fate of tumor cells, counteract the malignant phenotype, and improve the prognosis of GBM. Furthermore, NRXN1 addition resulted in the downregulation of genes in the activating protein 1 complex. In conclusion, our study revealed that the enrichment of neuronal differentiation-related genes improves glioma prognosis and clarified the role of NRXN1 in regulating tumor cell fate toward the neuronal lineage, suppressing malignant phenotypes, and improving GBM prognosis.
Collapse
Affiliation(s)
- Chihyi Liao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yankun Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dazhao Peng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shuhan Li
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Lingyu Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiuling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lijie Huang
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Yangfang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Center of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Burban A, Sharanek A, Hernandez-Corchado A, Najafabadi HS, Soleimani VD, Jahani-Asl A. Targeting glioblastoma with a brain-penetrant drug that impairs brain tumor stem cells via NLE1-Notch1 complex. Stem Cell Reports 2024; 19:1534-1547. [PMID: 39423824 PMCID: PMC11589194 DOI: 10.1016/j.stemcr.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
Brain tumor stem cells (BTSCs) are a population of self-renewing malignant stem cells that play an important role in glioblastoma tumor hierarchy and contribute to tumor growth, therapeutic resistance, and tumor relapse. Thus, targeting of BTSCs within the bulk of tumors represents a crucial therapeutic strategy. Here, we report that edaravone is a potent drug that impairs BTSCs in glioblastoma. We show that edaravone inhibits the self-renewal and growth of BTSCs harboring a diverse range of oncogenic mutations without affecting non-oncogenic neural stem cells. Global gene expression analysis revealed that edaravone significantly alters BTSC transcriptome and attenuates the expression of a large panel of genes involved in cell cycle progression, stemness, and DNA repair mechanisms. Mechanistically, we discovered that edaravone directly targets Notchless homolog 1 (NLE1) and impairs Notch signaling pathway, alters the expression of stem cell markers, and sensitizes BTSC response to ionizing radiation (IR)-induced cell death. Importantly, we show that edaravone treatment in preclinical models delays glioblastoma tumorigenesis, sensitizes their response to IR, and prolongs the lifespan of animals. Our data suggest that repurposing of edaravone is a promising therapeutic strategy for patients with glioblastoma.
Collapse
Affiliation(s)
- Audrey Burban
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada
| | - Ahmad Sharanek
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada
| | - Aldo Hernandez-Corchado
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada
| | - Hamed S Najafabadi
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada; Cancer Therapeutic and Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Akere MT, Zajac KK, Bretz JD, Madhavaram AR, Horton AC, Schiefer IT. Real-Time Analysis of Neuronal Cell Cultures for CNS Drug Discovery. Brain Sci 2024; 14:770. [PMID: 39199464 PMCID: PMC11352746 DOI: 10.3390/brainsci14080770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
The ability to screen for agents that can promote the development and/or maintenance of neuronal networks creates opportunities for the discovery of novel agents for the treatment of central nervous system (CNS) disorders. Over the past 10 years, advances in robotics, artificial intelligence, and machine learning have paved the way for the improved implementation of live-cell imaging systems for drug discovery. These instruments have revolutionized our ability to quickly and accurately acquire large standardized datasets when studying complex cellular phenomena in real-time. This is particularly useful in the field of neuroscience because real-time analysis can allow efficient monitoring of the development, maturation, and conservation of neuronal networks by measuring neurite length. Unfortunately, due to the relative infancy of this type of analysis, standard practices for data acquisition and processing are lacking, and there is no standardized format for reporting the vast quantities of data generated by live-cell imaging systems. This paper reviews the current state of live-cell imaging instruments, with a focus on the most commonly used equipment (IncuCyte systems). We provide an in-depth analysis of the experimental conditions reported in publications utilizing these systems, particularly with regard to studying neurite outgrowth. This analysis sheds light on trends and patterns that will enhance the use of live-cell imaging instruments in CNS drug discovery.
Collapse
Affiliation(s)
- Millicent T. Akere
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Kelsee K. Zajac
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - James D. Bretz
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Anvitha R. Madhavaram
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Austin C. Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Isaac T. Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
12
|
Singh PNP, Gu W, Madha S, Lynch AW, Cejas P, He R, Bhattacharya S, Muñoz Gomez M, Oser MG, Brown M, Long HW, Meyer CA, Zhou Q, Shivdasani RA. Transcription factor dynamics, oscillation, and functions in human enteroendocrine cell differentiation. Cell Stem Cell 2024; 31:1038-1057.e11. [PMID: 38733993 PMCID: PMC12005834 DOI: 10.1016/j.stem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Enteroendocrine cells (EECs) secrete serotonin (enterochromaffin [EC] cells) or specific peptide hormones (non-EC cells) that serve vital metabolic functions. The basis for terminal EEC diversity remains obscure. By forcing activity of the transcription factor (TF) NEUROG3 in 2D cultures of human intestinal stem cells, we replicated physiologic EEC differentiation and examined transcriptional and cis-regulatory dynamics that culminate in discrete cell types. Abundant EEC precursors expressed stage-specific genes and TFs. Before expressing pre-terminal NEUROD1, post-mitotic precursors oscillated between transcriptionally distinct ASCL1+ and HES6hi cell states. Loss of either factor accelerated EEC differentiation substantially and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and non-EC cell features. These TFs mainly bind cis-elements that are accessible in undifferentiated stem cells, and they tailor subsequent expression of TF combinations that underlie discrete EEC identities. Thus, early TF oscillations retard EEC maturation to enable accurate diversity within a medically important cell lineage.
Collapse
Affiliation(s)
- Pratik N P Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wei Gu
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Allen W Lynch
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ruiyang He
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Swarnabh Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Miguel Muñoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Clifford A Meyer
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Qiao Zhou
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
13
|
Magnuson MA, Osipovich AB. Ca 2+ signaling and metabolic stress-induced pancreatic β-cell failure. Front Endocrinol (Lausanne) 2024; 15:1412411. [PMID: 39015185 PMCID: PMC11250477 DOI: 10.3389/fendo.2024.1412411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Early in the development of Type 2 diabetes (T2D), metabolic stress brought on by insulin resistance and nutrient overload causes β-cell hyperstimulation. Herein we summarize recent studies that have explored the premise that an increase in the intracellular Ca2+ concentration ([Ca2+]i), brought on by persistent metabolic stimulation of β-cells, causes β-cell dysfunction and failure by adversely affecting β-cell function, structure, and identity. This mini-review builds on several recent reviews that also describe how excess [Ca2+]i impairs β-cell function.
Collapse
Affiliation(s)
- Mark A. Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
14
|
Wei J, Wang M, Li S, Han R, Xu W, Zhao A, Yu Q, Li H, Li M, Chi G. Reprogramming of astrocytes and glioma cells into neurons for central nervous system repair and glioblastoma therapy. Biomed Pharmacother 2024; 176:116806. [PMID: 38796971 DOI: 10.1016/j.biopha.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Central nervous system (CNS) damage is usually irreversible owing to the limited regenerative capability of neurons. Following CNS injury, astrocytes are reactively activated and are the key cells involved in post-injury repair mechanisms. Consequently, research on the reprogramming of reactive astrocytes into neurons could provide new directions for the restoration of neural function after CNS injury and in the promotion of recovery in various neurodegenerative diseases. This review aims to provide an overview of the means through which reactive astrocytes around lesions can be reprogrammed into neurons, to elucidate the intrinsic connection between the two cell types from a neurogenesis perspective, and to summarize what is known about the neurotranscription factors, small-molecule compounds and MicroRNA that play major roles in astrocyte reprogramming. As the malignant proliferation of astrocytes promotes the development of glioblastoma multiforme (GBM), this review also examines the research advances on and the theoretical basis for the reprogramming of GBM cells into neurons and discusses the advantages of such approaches over traditional treatment modalities. This comprehensive review provides new insights into the field of GBM therapy and theoretical insights into the mechanisms of neurological recovery following neurological injury and in GBM treatment.
Collapse
Affiliation(s)
- Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Shilin Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, 1xinmin Avenue, Changchun, Jilin Province 130021, China.
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
15
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
16
|
Kim Y, Ko HR, Hwang I, Ahn JY. ErbB3 binding protein 1 contributes to adult hippocampal neurogenesis by modulating Bmp4 and Ascl1 signaling. BMB Rep 2024; 57:182-187. [PMID: 37817439 PMCID: PMC11058358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Neural stem cells (NSCs) in the adult hippocampus divide infrequently; the endogenous molecules modulating adult hippocampal neurogenesis (AHN) remain largely unknown. Here, we show that ErbB3 binding protein 1 (Ebp1), which plays important roles in embryonic neurodevelopment, acts as an essential modulator of adult neurogenic factors. In vivo analysis of Ebp1 neuron depletion mice showed impaired AHN with a low number of hippocampal NSCs and neuroblasts. Ebp1 leads to transcriptional repression of Bmp4 and suppression of Ascl1 promoter methylation in the dentate gyrus of the adult hippocampus reflecting an unusually high level of Bmp4 and low Ascl1 level in neurons of Ebp1-deficient mice. Therefore, our findings suggests that Ebp1 could act as an endogenous modulator of the interplay between Bmp4 and Ascl1/Notch signaling, contributing to AHN. [BMB Reports 2024; 57(4): 182-187].
Collapse
Affiliation(s)
- Youngkwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
17
|
Singh PNP, Gu W, Madha S, Lynch AW, Cejas P, He R, Bhattacharya S, Gomez MM, Oser MG, Brown M, Long HW, Meyer CA, Zhou Q, Shivdasani RA. Transcription factor dynamics, oscillation, and functions in human enteroendocrine cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574746. [PMID: 38260422 PMCID: PMC10802488 DOI: 10.1101/2024.01.09.574746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Enteroendocrine cells (EECs), which secrete serotonin (enterochromaffin cells, EC) or a dominant peptide hormone, serve vital physiologic functions. As with any adult human lineage, the basis for terminal cell diversity remains obscure. We replicated human EEC differentiation in vitro , mapped transcriptional and chromatin dynamics that culminate in discrete cell types, and studied abundant EEC precursors expressing selected transcription factors (TFs) and gene programs. Before expressing the pre-terminal factor NEUROD1, non-replicating precursors oscillated between epigenetically similar but transcriptionally distinct ASCL1 + and HES6 hi cell states. Loss of either factor substantially accelerated EEC differentiation and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and hormone-producing cell features. Expressed late in EEC differentiation, the latter TFs mainly bind cis -elements that are accessible in undifferentiated stem cells and tailor the subsequent expression of TF combinations that specify EEC types. Thus, TF oscillations retard EEC maturation to enable accurate EEC diversification.
Collapse
|
18
|
Bahcheli AT, Min HK, Bayati M, Zhao H, Fortuna A, Dong W, Dzneladze I, Chan J, Chen X, Guevara-Hoyer K, Dirks PB, Huang X, Reimand J. Pan-cancer ion transport signature reveals functional regulators of glioblastoma aggression. EMBO J 2024; 43:196-224. [PMID: 38177502 PMCID: PMC10897389 DOI: 10.1038/s44318-023-00016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Ion channels, transporters, and other ion-flux controlling proteins, collectively comprising the "ion permeome", are common drug targets, however, their roles in cancer remain understudied. Our integrative pan-cancer transcriptome analysis shows that genes encoding the ion permeome are significantly more often highly expressed in specific subsets of cancer samples, compared to pan-transcriptome expectations. To enable target selection, we identified 410 survival-associated IP genes in 33 cancer types using a machine-learning approach. Notably, GJB2 and SCN9A show prominent expression in neoplastic cells and are associated with poor prognosis in glioblastoma, the most common and aggressive brain cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma cells induces transcriptome-wide changes involving neuron projection and proliferation pathways, impairs cell viability and tumor sphere formation in vitro, perturbs tunneling nanotube dynamics, and extends the survival of glioblastoma-bearing mice. Thus, aberrant activation of genes encoding ion transport proteins appears as a pan-cancer feature defining tumor heterogeneity, which can be exploited for mechanistic insights and therapy development.
Collapse
Affiliation(s)
- Alexander T Bahcheli
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hyun-Kee Min
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masroor Bayati
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Hongyu Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Neurosurgery and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Alexander Fortuna
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Weifan Dong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Irakli Dzneladze
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jade Chan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kissy Guevara-Hoyer
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, Department of Clinical Immunology, Institute of Laboratory Medicine (IML) and Biomedical Research Foundation (IdiSCC), San Carlos Clinical Hospital, Madrid, Spain
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Shahcheraghi SH, Asl ER, Lotfi M, Ayatollahi J, Khaleghinejad SH, Aljabali AAA, Bakshi HA, El-Tanani M, Charbe NB, Serrano-Aroca Á, Mishra V, Mishra Y, Goyal R, Hromić-Jahjefendić A, Uversky VN, Lotfi M, Tambuwala MM. Non-coding RNAs as Key Regulators of the Notch Signaling Pathway in Glioblastoma: Diagnostic, Prognostic, and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1203-1216. [PMID: 38279763 DOI: 10.2174/0118715273277458231213063147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 01/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain malignancy originating from astrocytes, accounting for approximately 30% of central nervous system malignancies. Despite advancements in therapeutic strategies including surgery, chemotherapy, and radiopharmaceutical drugs, the prognosis for GBM patients remains dismal. The aggressive nature of GBM necessitates the identification of molecular targets and the exploration of effective treatments to inhibit its proliferation. The Notch signaling pathway, which plays a critical role in cellular homeostasis, becomes deregulated in GBM, leading to increased expression of pathway target genes such as MYC, Hes1, and Hey1, thereby promoting cellular proliferation and differentiation. Recent research has highlighted the regulatory role of non-coding RNAs (ncRNAs) in modulating Notch signaling by targeting critical mRNA expression at the post-transcriptional or transcriptional levels. Specifically, various types of ncRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to control multiple target genes and significantly contribute to the carcinogenesis of GBM. Furthermore, these ncRNAs hold promise as prognostic and predictive markers for GBM. This review aims to summarize the latest studies investigating the regulatory effects of ncRNAs on the Notch signaling pathway in GBM.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Hamid A Bakshi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia, 46001, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
20
|
Wang L, Tan TK, Kim H, Kappei D, Tan SH, Look AT, Sanda T. ASCL1 characterizes adrenergic neuroblastoma via its pioneer function and cooperation with core regulatory circuit factors. Cell Rep 2023; 42:113541. [PMID: 38060444 DOI: 10.1016/j.celrep.2023.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Neuroblastoma originates from developing neural crest and can interconvert between the mesenchymal (MES) and adrenergic (ADRN) states, each of which are controlled by different sets of transcription factors forming the core regulatory circuit (CRC). However, the roles of CRC factors in induction and maintenance of specific state are poorly understood. Here, we demonstrate that overexpression of ASCL1, an ADRN CRC factor, in MES neuroblastoma cells opens closed chromatin at the promoters of key ADRN genes, accompanied by epigenetic activation and establishment of enhancer-promoter interactions, initiating the ADRN gene expression program. ASCL1 inhibits the transforming growth factor β-SMAD2/3 pathway but activates the bone morphogenetic protein SMAD1-ID3/4 pathway. ASCL1 and other CRC members potentiate each other's activity, increasing the expression of the original targets and inducing a new set of genes, thereby fully inducing the ADRN program. Our results demonstrate that ASCL1 serves as a pioneer factor and cooperates with CRC factors to characterize the ADRN gene expression program.
Collapse
Affiliation(s)
- Lu Wang
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Hyoju Kim
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02216, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
21
|
Osipovich AB, Zhou FY, Chong JJ, Trinh LT, Cottam MA, Shrestha S, Cartailler JP, Magnuson MA. Deletion of Ascl1 in pancreatic β-cells improves insulin secretion, promotes parasympathetic innervation, and attenuates dedifferentiation during metabolic stress. Mol Metab 2023; 78:101811. [PMID: 37769990 PMCID: PMC10570713 DOI: 10.1016/j.molmet.2023.101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVE ASCL1, a pioneer transcription factor, is essential for neural cell differentiation and function. Previous studies have shown that Ascl1 expression is increased in pancreatic β-cells lacking functional KATP channels or after feeding of a high fat diet (HFD) suggesting that it may contribute to the metabolic stress response of β-cells. METHODS We generated β-cell-specific Ascl1 knockout mice (Ascl1βKO) and assessed their glucose homeostasis, islet morphology and gene expression after feeding either a normal diet or HFD for 12 weeks, or in combination with a genetic disruption of Abcc8, an essential KATP channel component. RESULTS Ascl1 expression is increased in response to both a HFD and membrane depolarization and requires CREB-dependent Ca2+ signaling. No differences in glucose homeostasis or islet morphology were observed in Ascl1βKO mice fed a normal diet or in the absence of KATP channels. However, male Ascl1βKO mice fed a HFD exhibited decreased blood glucose levels, improved glucose tolerance, and increased β-cell proliferation. Bulk RNA-seq analysis of islets from Ascl1βKO mice from three studied conditions showed alterations in genes associated with the secretory function. HFD-fed Ascl1βKO mice showed the most extensive changes with increased expression of genes necessary for glucose sensing, insulin secretion and β-cell proliferation, and a decrease in genes associated with β-cell dysfunction, inflammation and dedifferentiation. HFD-fed Ascl1βKO mice also displayed increased expression of parasympathetic neural markers and cholinergic receptors that was accompanied by increased insulin secretion in response to acetylcholine and an increase in islet innervation. CONCLUSIONS Ascl1 expression is induced by stimuli that cause Ca2+-signaling to the nucleus and contributes in a multifactorial manner to the loss of β-cell function by promoting the expression of genes associated with cellular dedifferentiation, attenuating β-cells proliferation, suppressing acetylcholine sensitivity, and repressing parasympathetic innervation of islets. Thus, the removal of Ascl1 from β-cells improves their function in response to metabolic stress.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Frank Y Zhou
- College of Arts and Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Judy J Chong
- College of Arts and Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Linh T Trinh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mathew A Cottam
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Ragazzini R, Boeing S, Zanieri L, Green M, D'Agostino G, Bartolovic K, Agua-Doce A, Greco M, Watson SA, Batsivari A, Ariza-McNaughton L, Gjinovci A, Scoville D, Nam A, Hayday AC, Bonnet D, Bonfanti P. Defining the identity and the niches of epithelial stem cells with highly pleiotropic multilineage potency in the human thymus. Dev Cell 2023; 58:2428-2446.e9. [PMID: 37652013 PMCID: PMC10957394 DOI: 10.1016/j.devcel.2023.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Thymus is necessary for lifelong immunological tolerance and immunity. It displays a distinctive epithelial complexity and undergoes age-dependent atrophy. Nonetheless, it also retains regenerative capacity, which, if harnessed appropriately, might permit rejuvenation of adaptive immunity. By characterizing cortical and medullary compartments in the human thymus at single-cell resolution, in this study we have defined specific epithelial populations, including those that share properties with bona fide stem cells (SCs) of lifelong regenerating epidermis. Thymic epithelial SCs display a distinctive transcriptional profile and phenotypic traits, including pleiotropic multilineage potency, to give rise to several cell types that were not previously considered to have shared origin. Using here identified SC markers, we have defined their cortical and medullary niches and shown that, in vitro, the cells display long-term clonal expansion and self-organizing capacity. These data substantively broaden our knowledge of SC biology and set a stage for tackling thymic atrophy and related disorders.
Collapse
Affiliation(s)
- Roberta Ragazzini
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | - Stefan Boeing
- Bioinformatics & Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Luca Zanieri
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | - Mary Green
- Experimental Histopathology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giuseppe D'Agostino
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Plasticell Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Kerol Bartolovic
- Flow Cytometry Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Agua-Doce
- Flow Cytometry Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria Greco
- Single Cell Facility, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Sara A Watson
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antoniana Batsivari
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Asllan Gjinovci
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | | | - Andy Nam
- NanoString Technologies Inc., Seattle, WA, USA
| | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK.
| |
Collapse
|
23
|
Chen Z, Giotti B, Kaluzova M, Vallcorba MP, Rawat K, Price G, Herting CJ, Pinero G, Cristea S, Ross JL, Ackley J, Maximov V, Szulzewsky F, Thomason W, Marquez-Ropero M, Angione A, Nichols N, Tsankova NM, Michor F, Shayakhmetov DM, Gutmann DH, Tsankov AM, Hambardzumyan D. A paracrine circuit of IL-1β/IL-1R1 between myeloid and tumor cells drives genotype-dependent glioblastoma progression. J Clin Invest 2023; 133:e163802. [PMID: 37733448 PMCID: PMC10645395 DOI: 10.1172/jci163802] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2023] [Indexed: 09/23/2023] Open
Abstract
Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1β in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1β/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1β/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1β, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1β could be considered as an effective therapy specifically for proneural GBM.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Milota Kaluzova
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Department of Neurology, Rutgers University, New Brunswick, New Jersey, USA
| | - Montse Puigdelloses Vallcorba
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Kavita Rawat
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Gabrielle Price
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Cameron J. Herting
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
| | - Gonzalo Pinero
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - James L. Ross
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Emory University Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, Georgia, USA
| | - James Ackley
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
| | - Victor Maximov
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Wes Thomason
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Mar Marquez-Ropero
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Angelo Angione
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | | | - Nadejda M. Tsankova
- Department of Pathology and Molecular and Cell-Based Medicine, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- The Ludwig Center at Harvard, Boston, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dmitry M. Shayakhmetov
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology and Emory Vaccine Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander M. Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Neurosurgery and
| |
Collapse
|
24
|
Chang SY, Kim E, Carpena NT, Lee JH, Kim DH, Lee MY. Photobiomodulation Can Enhance Stem Cell Viability in Cochlea with Auditory Neuropathy but Does Not Restore Hearing. Stem Cells Int 2023; 2023:6845571. [PMID: 38020205 PMCID: PMC10665102 DOI: 10.1155/2023/6845571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Sensorineural hearing loss is very difficult to treat. Currently, one of the techniques used for hearing rehabilitation is a cochlear implant that can transform sound into electrical signals instead of inner ear hair cells. However, the prognosis remains very poor if sufficient auditory nerve cells are not secured. In this study, the effect of mouse embryonic stem cells (mESC) and photobiomodulation (PBM) combined treatment on auditory function and auditory nerve cells in a secondary neuropathy animal model was investigated. To confirm the engraftment of stem cells in vitro, cochlear explants were treated with kanamycin (KM) to mimic nerve damage and then cocultured with GFP-mESC. GFP-mESCs were observed to have attached and integrated into the explanted samples. An animal model for secondary neurodegeneration was achieved by KM treatment and was treated by a combination therapy of GFP-mESC and NIR-PBM at 8 weeks of KM treatment. Hearing recovery by functional testing using auditory brain stem response (ABR) and eABR was measured as well as morphological changes and epifluorescence analysis were conducted after 2 weeks of combination therapy. KM treatment elevated the hearing threshold at 70-80 dB and even after the combination treatment with GFP-mESC and PBM was applied, the auditory function was not restored. In addition, the stem cells transplanted into cochlea has exponentially increased due to PBM treatment although did not produce any malignancy. This study confirmed that the combined treatment with mESC and PBM could not improve hearing or increase the response of the auditory nerve. Nevertheless, it is noteworthy in this study that the cells are distributed in most cochlear tissues and the proliferation of stem cells was very active in animals irradiated with PBM compared to other groups wherein the stem cells had disappeared immediately after transplantation or existed for only a short period of time.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea
| | - Eunjeong Kim
- Department of Biological Science, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
| | - Nathaniel T. Carpena
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | | | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
25
|
An Y, Talwar CS, Park KH, Ahn WC, Lee SJ, Go SR, Cho JH, Kim DY, Kim YS, Cho S, Kim JH, Kim TJ, Woo EJ. Design of hypoxia responsive CRISPR-Cas9 for target gene regulation. Sci Rep 2023; 13:16763. [PMID: 37798384 PMCID: PMC10556097 DOI: 10.1038/s41598-023-43711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
The CRISPR-Cas9 system is a widely used gene-editing tool, offering unprecedented opportunities for treating various diseases. Controlling Cas9/dCas9 activity at specific location and time to avoid undesirable effects is very important. Here, we report a conditionally active CRISPR-Cas9 system that regulates target gene expression upon sensing cellular environmental change. We conjugated the oxygen-sensing transcription activation domain (TAD) of hypoxia-inducing factor (HIF-1α) with the Cas9/dCas9 protein. The Cas9-TAD conjugate significantly increased endogenous target gene cleavage under hypoxic conditions compared with that under normoxic conditions, whereas the dCas9-TAD conjugate upregulated endogenous gene transcription. Furthermore, the conjugate system effectively downregulated the expression of SNAIL, an essential gene in cancer metastasis, and upregulated the expression of the tumour-related genes HNF4 and NEUROD1 under hypoxic conditions. Since hypoxia is closely associated with cancer, the hypoxia-dependent Cas9/dCas9 system is a novel addition to the molecular tool kit that functions in response to cellular signals and has potential application for gene therapeutics.
Collapse
Affiliation(s)
- Yan An
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chandana S Talwar
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Kwang-Hyun Park
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Woo-Chan Ahn
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Su-Jin Lee
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Seong-Ryeong Go
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Jin Hwa Cho
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Do Yon Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Yong-Sam Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong-Hoon Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Tae-Jip Kim
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Eui-Jeon Woo
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea.
| |
Collapse
|
26
|
Myers BL, Brayer KJ, Paez-Beltran LE, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara R, Borromeo MD, Bachoo RM, Johnson JE, Vue TY. Glioblastoma initiation, migration, and cell types are regulated by core bHLH transcription factors ASCL1 and OLIG2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560206. [PMID: 37873200 PMCID: PMC10592871 DOI: 10.1101/2023.09.30.560206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex driver mutations and glioma stem cells (GSCs). The neurodevelopmental transcription factors ASCL1 and OLIG2 are co-expressed in GBMs, but their role in regulating the heterogeneity and hierarchy of GBM tumor cells is unclear. Here, we show that oncogenic driver mutations lead to dysregulation of ASCL1 and OLIG2, which function redundantly to initiate brain tumor formation in a mouse model of GBM. Subsequently, the dynamic levels and reciprocal binding of ASCL1 and OLIG2 to each other and to downstream target genes then determine the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in defining GSCs by upregulating a collection of ribosomal protein, mitochondrial, neural stem cell (NSC), and cancer metastasis genes - all essential for sustaining the high proliferation, migration, and therapeutic resistance of GSCs.
Collapse
|
27
|
Dong W, Fekete A, Chen X, Liu H, Beilhartz GL, Chen X, Bahrampour S, Xiong Y, Yang Q, Zhao H, Kong T, Morioka MS, Jung G, Kim JE, Schramek D, Dirks PB, Song Y, Kim TH, He Y, Wanggou S, Li X, Melnyk RA, Wang LY, Huang X. A designer peptide against the EAG2-Kvβ2 potassium channel targets the interaction of cancer cells and neurons to treat glioblastoma. NATURE CANCER 2023; 4:1418-1436. [PMID: 37697045 DOI: 10.1038/s43018-023-00626-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/02/2023] [Indexed: 09/13/2023]
Abstract
Glioblastoma (GBM) is an incurable brain cancer that lacks effective therapies. Here we show that EAG2 and Kvβ2, which are predominantly expressed by GBM cells at the tumor-brain interface, physically interact to form a potassium channel complex due to a GBM-enriched Kvβ2 isoform. In GBM cells, EAG2 localizes at neuron-contacting regions in a Kvβ2-dependent manner. Genetic knockdown of the EAG2-Kvβ2 complex decreases calcium transients of GBM cells, suppresses tumor growth and invasion and extends the survival of tumor-bearing mice. We engineered a designer peptide to disrupt EAG2-Kvβ2 interaction, thereby mitigating tumor growth in patient-derived xenograft and syngeneic mouse models across GBM subtypes without overt toxicity. Neurons upregulate chemoresistant genes in GBM cells in an EAG2-Kvβ2-dependent manner. The designer peptide targets neuron-associated GBM cells and possesses robust efficacy in treating temozolomide-resistant GBM. Our findings may lead to the next-generation therapeutic agent to benefit patients with GBM.
Collapse
Affiliation(s)
- Weifan Dong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Adam Fekete
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaodi Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Greg L Beilhartz
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shahrzad Bahrampour
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yi Xiong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Kong
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Malia S Morioka
- Macaulay Honors College, City College of New York, New York, NY, USA
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY, USA
| | - Geena Jung
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ji-Eun Kim
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniel Schramek
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yuanquan Song
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tae-Hee Kim
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ye He
- Macaulay Honors College, City College of New York, New York, NY, USA
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY, USA
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Roman A Melnyk
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Lu-Yang Wang
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Frazel PW, Labib D, Fisher T, Brosh R, Pirjanian N, Marchildon A, Boeke JD, Fossati V, Liddelow SA. Longitudinal scRNA-seq analysis in mouse and human informs optimization of rapid mouse astrocyte differentiation protocols. Nat Neurosci 2023; 26:1726-1738. [PMID: 37697111 PMCID: PMC10763608 DOI: 10.1038/s41593-023-01424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Macroglia (astrocytes and oligodendrocytes) are required for normal development and function of the central nervous system, yet many questions remain about their emergence during the development of the brain and spinal cord. Here we used single-cell/single-nucleus RNA sequencing (scRNA-seq/snRNA-seq) to analyze over 298,000 cells and nuclei during macroglia differentiation from mouse embryonic and human-induced pluripotent stem cells. We computationally identify candidate genes involved in the fate specification of glia in both species and report heterogeneous expression of astrocyte surface markers across differentiating cells. We then used our transcriptomic data to optimize a previous mouse astrocyte differentiation protocol, decreasing the overall protocol length and complexity. Finally, we used multi-omic, dual single-nuclei (sn)RNA-seq/snATAC-seq analysis to uncover potential genomic regulatory sites mediating glial differentiation. These datasets will enable future optimization of glial differentiation protocols and provide insight into human glial differentiation.
Collapse
Affiliation(s)
- Paul W Frazel
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA.
| | - David Labib
- The New York Stem Cell Foundation Research Institute, New York City, NY, USA
| | - Theodore Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York City, NY, USA
| | - Nicolette Pirjanian
- The New York Stem Cell Foundation Research Institute, New York City, NY, USA
| | - Anne Marchildon
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York City, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York City, NY, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA.
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York City, NY, USA.
| |
Collapse
|
29
|
Tabrizian N, Nouruzi S, Cui CJ, Kobelev M, Namekawa T, Lodhia I, Talal A, Sivak O, Ganguli D, Zoubeidi A. ASCL1 is activated downstream of the ROR2/CREB signaling pathway to support lineage plasticity in prostate cancer. Cell Rep 2023; 42:112937. [PMID: 37552603 DOI: 10.1016/j.celrep.2023.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Lineage plasticity is a form of therapy-induced drug resistance. In prostate cancer, androgen receptor (AR) pathway inhibitors potentially lead to the accretion of tumor relapse with loss of AR signaling and a shift from a luminal state to an alternate program. However, the molecular and signaling mechanisms orchestrating the development of lineage plasticity under the pressure of AR-targeted therapies are not fully understood. Here, a survey of receptor tyrosine kinases (RTKs) identifies ROR2 as the top upregulated RTK following AR pathway inhibition, which feeds into lineage plasticity by promoting stem-cell-like and neuronal networks. Mechanistically, ROR2 activates the ERK/CREB signaling pathway to modulate the expression of the lineage commitment transcription factor ASCL1. Collectively, our findings nominate ROR2 as a potential therapeutic target to reverse the ENZ-induced plastic phenotype and potentially re-sensitize tumors to AR pathway inhibitors.
Collapse
Affiliation(s)
- Nakisa Tabrizian
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Shaghayegh Nouruzi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Cassandra Jingjing Cui
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Maxim Kobelev
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Takeshi Namekawa
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Ishana Lodhia
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Amina Talal
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Olena Sivak
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | | | - Amina Zoubeidi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
30
|
Zimmermannova O, Ferreira AG, Ascic E, Santiago MV, Kurochkin I, Hansen M, Met Ö, Caiado I, Shapiro IE, Michaux J, Humbert M, Soto-Cabrera D, Benonisson H, Silvério-Alves R, Gomez-Jimenez D, Bernardo C, Bauden M, Andersson R, Höglund M, Miharada K, Nakamura Y, Hugues S, Greiff L, Lindstedt M, Rosa FF, Pires CF, Bassani-Sternberg M, Svane IM, Pereira CF. Restoring tumor immunogenicity with dendritic cell reprogramming. Sci Immunol 2023; 8:eadd4817. [PMID: 37418548 PMCID: PMC7614848 DOI: 10.1126/sciimmunol.add4817] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
Decreased antigen presentation contributes to the ability of cancer cells to evade the immune system. We used the minimal gene regulatory network of type 1 conventional dendritic cells (cDC1) to reprogram cancer cells into professional antigen-presenting cells (tumor-APCs). Enforced expression of the transcription factors PU.1, IRF8, and BATF3 (PIB) was sufficient to induce the cDC1 phenotype in 36 cell lines derived from human and mouse hematological and solid tumors. Within 9 days of reprogramming, tumor-APCs acquired transcriptional and epigenetic programs associated with cDC1 cells. Reprogramming restored the expression of antigen presentation complexes and costimulatory molecules on the surfaces of tumor cells, allowing the presentation of endogenous tumor antigens on MHC-I and facilitating targeted killing by CD8+ T cells. Functionally, tumor-APCs engulfed and processed proteins and dead cells, secreted inflammatory cytokines, and cross-presented antigens to naïve CD8+ T cells. Human primary tumor cells could also be reprogrammed to increase their capability to present antigen and to activate patient-specific tumor-infiltrating lymphocytes. In addition to acquiring improved antigen presentation, tumor-APCs had impaired tumorigenicity in vitro and in vivo. Injection of in vitro generated melanoma-derived tumor-APCs into subcutaneous melanoma tumors delayed tumor growth and increased survival in mice. Antitumor immunity elicited by tumor-APCs was synergistic with immune checkpoint inhibitors. Our approach serves as a platform for the development of immunotherapies that endow cancer cells with the capability to process and present endogenous tumor antigens.
Collapse
Affiliation(s)
- Olga Zimmermannova
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
| | - Alexandra G. Ferreira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal
| | - Ervin Ascic
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
| | - Marta Velasco Santiago
- National Center of Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark
| | - Ilia Kurochkin
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
| | - Morten Hansen
- National Center of Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark
| | - Özcan Met
- National Center of Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Ørsteds Pl. 345C, 2800 Kongens Lyngby, Denmark
| | - Inês Caiado
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal
| | - Ilja E. Shapiro
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Marion Humbert
- Department of Pathology and Immunology, Geneva Medical School, Av. de Champel 41, 1206, Geneva, Switzerland
| | - Diego Soto-Cabrera
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
| | - Hreinn Benonisson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
| | - Rita Silvério-Alves
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal
| | - David Gomez-Jimenez
- Department of Immunotechnology, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Carina Bernardo
- Division of Oncology, Department of Clinical Sciences, Lund, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, 22185, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, 22185, Sweden
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences, Lund, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Kenichi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, 305-0074, Tsukuba, Ibaraki, Japan
| | - Stephanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Av. de Champel 41, 1206, Geneva, Switzerland
| | - Lennart Greiff
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85, Lund, Sweden
- Department of Clinical Sciences, Lund University, 221 84, Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Fábio F. Rosa
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
- Asgard Therapeutics AB, Medicon Village, 223 81 Lund, Sweden
| | - Cristiana F. Pires
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
- Asgard Therapeutics AB, Medicon Village, 223 81 Lund, Sweden
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
- Department of Oncology - University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Inge Marie Svane
- National Center of Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84, Lund, Sweden
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517, Coimbra, Portugal
- Asgard Therapeutics AB, Medicon Village, 223 81 Lund, Sweden
| |
Collapse
|
31
|
Wang X, Sun Y, Zhang DY, Ming GL, Song H. Glioblastoma modeling with 3D organoids: progress and challenges. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad008. [PMID: 38596241 PMCID: PMC10913843 DOI: 10.1093/oons/kvad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Glioblastoma (GBM) is the most aggressive adult primary brain tumor with nearly universal treatment resistance and recurrence. The mainstay of therapy remains maximal safe surgical resection followed by concurrent radiation therapy and temozolomide chemotherapy. Despite intensive investigation, alternative treatment options, such as immunotherapy or targeted molecular therapy, have yielded limited success to achieve long-term remission. This difficulty is partly due to the lack of pre-clinical models that fully recapitulate the intratumoral and intertumoral heterogeneity of GBM and the complex tumor microenvironment. Recently, GBM 3D organoids originating from resected patient tumors, genetic manipulation of induced pluripotent stem cell (iPSC)-derived brain organoids and bio-printing or fusion with non-malignant tissues have emerged as novel culture systems to portray the biology of GBM. Here, we highlight several methodologies for generating GBM organoids and discuss insights gained using such organoid models compared to classic modeling approaches using cell lines and xenografts. We also outline limitations of current GBM 3D organoids, most notably the difficulty retaining the tumor microenvironment, and discuss current efforts for improvements. Finally, we propose potential applications of organoid models for a deeper mechanistic understanding of GBM and therapeutic development.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yusha Sun
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Y Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Gong W, Dsouza N, Garry DJ. SeATAC: a tool for exploring the chromatin landscape and the role of pioneer factors. Genome Biol 2023; 24:125. [PMID: 37218013 DOI: 10.1186/s13059-023-02954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Assay for Transposase-Accessible Chromatin with sequencing (ATAC-seq) reveals chromatin accessibility across the genome. Currently, no method specifically detects differential chromatin accessibility. Here, SeATAC uses a conditional variational autoencoder model to learn the latent representation of ATAC-seq V-plots and outperforms MACS2 and NucleoATAC on six separate tasks. Applying SeATAC to several pioneer factor-induced differentiation or reprogramming ATAC-seq datasets suggests that induction of these factors not only relaxes the closed chromatin but also decreases chromatin accessibility of 20% to 30% of their target sites. SeATAC is a novel tool to accurately reveal genomic regions with differential chromatin accessibility from ATAC-seq data.
Collapse
Affiliation(s)
- Wuming Gong
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota, 2231 6Th St SE, Minneapolis, MN, 55455, USA.
| | - Nikita Dsouza
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota, 2231 6Th St SE, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
33
|
Pine AR, Cirigliano SM, Singhania R, Nicholson J, da Silva B, Leslie CS, Fine HA. Microenvironment-Driven Dynamic Chromatin Changes in Glioblastoma Recapitulate Early Neural Development at Single-Cell Resolution. Cancer Res 2023; 83:1581-1595. [PMID: 36877162 PMCID: PMC11022245 DOI: 10.1158/0008-5472.can-22-2872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The tumor microenvironment is necessary for recapitulating the intratumoral heterogeneity and cell state plasticity found in human primary glioblastoma (GBM). Conventional models do not accurately recapitulate the spectrum of GBM cellular states, hindering elucidation of the underlying transcriptional regulation of these states. Using our glioblastoma cerebral organoid model, we profiled the chromatin accessibility of 28,040 single cells in five patient-derived glioma stem cell lines. Integration of paired epigenomes and transcriptomes within the context of tumor-normal host cell interactions was used to probe the gene-regulatory networks underlying individual GBM cellular states in a way not readily possible in other in vitro models. These analyses identified the epigenetic underpinnings of GBM cellular states and characterized dynamic chromatin changes reminiscent of early neural development that underlie GBM cell state transitions. Despite large differences between tumors, a shared cellular compartment made up of neural progenitor-like cells and outer radial glia-like cells was observed. Together, these results shed light on the transcriptional regulation program in GBM and offer novel therapeutic targets across a broad range of genetically heterogenous GBMs. SIGNIFICANCE Single-cell analyses elucidate the chromatin landscape and transcriptional regulation of glioblastoma cellular states and identify a radial glia-like population, providing potential targets to disrupt cell states and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Allison R. Pine
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10021, USA
| | | | - Richa Singhania
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021 USA
| | - James Nicholson
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021 USA
| | - Bárbara da Silva
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021 USA
| | - Christina S. Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Howard A. Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021 USA
| |
Collapse
|
34
|
McCornack C, Woodiwiss T, Hardi A, Yano H, Kim AH. The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol 2023; 13:1144184. [PMID: 37205197 PMCID: PMC10185819 DOI: 10.3389/fonc.2023.1144184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain malignancy and is characterized by a high degree of intra and intertumor cellular heterogeneity, a starkly immunosuppressive tumor microenvironment, and nearly universal recurrence. The application of various genomic approaches has allowed us to understand the core molecular signatures, transcriptional states, and DNA methylation patterns that define GBM. Histone posttranslational modifications (PTMs) have been shown to influence oncogenesis in a variety of malignancies, including other forms of glioma, yet comparatively less effort has been placed on understanding the transcriptional impact and regulation of histone PTMs in the context of GBM. In this review we discuss work that investigates the role of histone acetylating and methylating enzymes in GBM pathogenesis, as well as the effects of targeted inhibition of these enzymes. We then synthesize broader genomic and epigenomic approaches to understand the influence of histone PTMs on chromatin architecture and transcription within GBM and finally, explore the limitations of current research in this field before proposing future directions for this area of research.
Collapse
Affiliation(s)
- Colin McCornack
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy Woodiwiss
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa, IA, United States
| | - Angela Hardi
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
35
|
Rodgers TM, Muzzio N, Valero A, Ahmad I, Lüdtke TU, Moya SE, Romero G. Poly (β-amino Ester) Nanoparticles Modified with a Rabies Virus-derived peptide for the Delivery of ASCL1 Across a 3D In Vitro Model of the Blood Brain Barrier. ACS APPLIED NANO MATERIALS 2023; 6:6299-6311. [PMID: 37274933 PMCID: PMC10234607 DOI: 10.1021/acsanm.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gene editing has emerged as a therapeutic approach to manipulate the genome for killing cancer cells, protecting healthy tissues, and improving immune response to a tumor. The gene editing tool achaete-scute family bHLH transcription factor 1 CRISPR guide RNA (ASCL1-gRNA) is known to restore neuronal lineage potential, promote terminal differentiation, and attenuate tumorigenicity in glioblastoma tumors. Here, we fabricated a polymeric nonviral carrier to encapsulate ASCL1-gRNA by electrostatic interactions and deliver it into glioblastoma cells across a 3D in vitro model of the blood-brain barrier (BBB). To mimic rabies virus (RV) neurotropism, gene-loaded poly (β-amino ester) nanoparticles are surface functionalized with a peptide derivative of rabies virus glycoprotein (RVG29). The capability of the obtained NPs, hereinafter referred to as RV-like NPs, to travel across the BBB, internalize into glioblastoma cells and deliver ASCL1-gRNA are investigated in a 3D BBB in vitro model through flow cytometry and CLSM microscopy. The formation of nicotinic acetylcholine receptors in the 3D BBB in vitro model is confirmed by immunochemistry. These receptors are known to bind to RVG29. Unlike Lipofectamine that primarily internalizes and transfects endothelial cells, RV-like NPs are capable to travel across the BBB, preferentially internalize glioblastoma cells and deliver ASCL1-gRNA at an efficiency of 10 % causing non-cytotoxic effects.
Collapse
Affiliation(s)
- Tina M Rodgers
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Andrea Valero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Ikram Ahmad
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Tanja Ursula Lüdtke
- Soft Matter Nanotechnology, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, Donostia/San Sebastian, Gipuzkoa, 20014 Spain
| | - Sergio E Moya
- Soft Matter Nanotechnology, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, Donostia/San Sebastian, Gipuzkoa, 20014 Spain
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| |
Collapse
|
36
|
Loras A, Gonzalez-Bonet LG, Gutierrez-Arroyo JL, Martinez-Cadenas C, Marques-Torrejon MA. Neural Stem Cells as Potential Glioblastoma Cells of Origin. Life (Basel) 2023; 13:life13040905. [PMID: 37109434 PMCID: PMC10145968 DOI: 10.3390/life13040905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor in adults and it remains incurable. These tumors are very heterogeneous, resistant to cytotoxic therapies, and they show high rates of invasiveness. Therefore, patients face poor prognosis, and the survival rates remain very low. Previous research states that GBM contains a cell population with stem cell characteristics called glioma stem cells (GSCs). These cells are able to self-renew and regenerate the tumor and, therefore, they are partly responsible for the observed resistance to therapies and tumor recurrence. Recent data indicate that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells of origin of GBM, that is, the cell type acquiring the initial tumorigenic mutation. The involvement of SVZ-NSCs is also associated with GBM progression and recurrence. Identifying the cellular origin of GBM is important for the development of early detection techniques and the discovery of early disease markers. In this review, we analyze the SVZ-NSC population as a potential GBM cell of origin, and its potential role for GBM therapies.
Collapse
Affiliation(s)
- Alba Loras
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon de la Plana, Spain
| | - Julia L. Gutierrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon de la Plana, Spain
| | | | - Maria Angeles Marques-Torrejon
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
- Correspondence: ; Tel.: +34-964-387-478
| |
Collapse
|
37
|
Fang Y, Ji Z, Zhou W, Abante J, Koldobskiy MA, Ji H, Feinberg A. DNA methylation entropy is associated with DNA sequence features and developmental epigenetic divergence. Nucleic Acids Res 2023; 51:2046-2065. [PMID: 36762477 PMCID: PMC10018346 DOI: 10.1093/nar/gkad050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/02/2022] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Epigenetic information defines tissue identity and is largely inherited in development through DNA methylation. While studied mostly for mean differences, methylation also encodes stochastic change, defined as entropy in information theory. Analyzing allele-specific methylation in 49 human tissue sample datasets, we find that methylation entropy is associated with specific DNA binding motifs, regulatory DNA, and CpG density. Then applying information theory to 42 mouse embryo methylation datasets, we find that the contribution of methylation entropy to time- and tissue-specific patterns of development is comparable to the contribution of methylation mean, and methylation entropy is associated with sequence and chromatin features conserved with human. Moreover, methylation entropy is directly related to gene expression variability in development, suggesting a role for epigenetic entropy in developmental plasticity.
Collapse
Affiliation(s)
- Yuqi Fang
- Center for Epigenetics, Johns Hopkins University, 855 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jordi Abante
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael A Koldobskiy
- Center for Epigenetics, Johns Hopkins University, 855 N. Wolfe St., Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University, 855 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Păun O, Tan YX, Patel H, Strohbuecker S, Ghanate A, Cobolli-Gigli C, Llorian Sopena M, Gerontogianni L, Goldstone R, Ang SL, Guillemot F, Dias C. Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes Dev 2023; 37:218-242. [PMID: 36931659 PMCID: PMC10111863 DOI: 10.1101/gad.350269.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.
Collapse
Affiliation(s)
- Oana Păun
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Yu Xuan Tan
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephanie Strohbuecker
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Avinash Ghanate
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Clementina Cobolli-Gigli
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Lina Gerontogianni
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Siew-Lan Ang
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Cristina Dias
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
- Medical and Molecular Genetics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
39
|
Neuronal and tumourigenic boundaries of glioblastoma plasticity. Trends Cancer 2023; 9:223-236. [PMID: 36460606 DOI: 10.1016/j.trecan.2022.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022]
Abstract
Glioblastoma (GBM) remains the most lethal primary brain cancer largely due to recurrence of treatment-resistant disease. Current therapies are ultimately ineffective as GBM tumour cells adapt their identity to escape treatment. Recent advances in single-cell epigenetics and transcriptomics highlight heterogeneous cell populations in GBM tumours originating from unique cancerous genetic aberrations. However, they also suggest that tumour cells conserve molecular properties of parent neuronal cells, with their permissive epigenetic profiles enabling them to morph along a finite number of reprogramming routes to evade treatment. Here, we review the known tumourigenic, neurodevelopmental and brain-injury boundaries of GBM plasticity, and propose that effective treatment of GBM requires the addition of therapeutics that restrain GBM plasticity.
Collapse
|
40
|
Sisakht AK, Malekan M, Ghobadinezhad F, Firouzabadi SNM, Jafari A, Mirazimi SMA, Abadi B, Shafabakhsh R, Mirzaei H. Cellular Conversations in Glioblastoma Progression, Diagnosis and Treatment. Cell Mol Neurobiol 2023; 43:585-603. [PMID: 35411434 PMCID: PMC11415179 DOI: 10.1007/s10571-022-01212-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most frequent malignancy among primary brain tumors in adults and one of the worst 5-year survival rates (< 7%) among all human cancers. Till now, treatments that target particular cell or intracellular metabolism have not improved patients' survival. GBM recruits healthy brain cells and subverts their processes to create a microenvironment that contributes to supporting tumor progression. This microenvironment encompasses a complex network in which malignant cells interact with each other and with normal and immune cells to promote tumor proliferation, angiogenesis, metastasis, immune suppression, and treatment resistance. Communication can be direct via cell-to-cell contact, mainly through adhesion molecules, tunneling nanotubes, gap junctions, or indirect by conventional paracrine signaling by cytokine, neurotransmitter, and extracellular vesicles. Understanding these communication routes could open up new avenues for the treatment of this lethal tumor. Hence, therapeutic approaches based on glioma cells` communication have recently drawn attention. This review summarizes recent findings on the crosstalk between glioblastoma cells and their tumor microenvironment, and the impact of this conversation on glioblastoma progression. We also discuss the mechanism of communication of glioma cells and their importance as therapeutic targets and diagnostic and prognostic biomarkers. Overall, understanding the biological mechanism of specific interactions in the tumor microenvironment may help in predicting patient prognosis and developing novel therapeutic strategies to target GBM.
Collapse
Affiliation(s)
- Ali Karimi Sisakht
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malekan
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Ghobadinezhad
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyedeh Negar Mousavi Firouzabadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Banafshe Abadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
41
|
Dennison R, Usuga E, Chen H, Paul JZ, Arbelaez CA, Teng YD. Direct Cell Reprogramming and Phenotypic Conversion: An Analysis of Experimental Attempts to Transform Astrocytes into Neurons in Adult Animals. Cells 2023; 12:618. [PMID: 36831283 PMCID: PMC9954435 DOI: 10.3390/cells12040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Central nervous system (CNS) repair after injury or disease remains an unresolved problem in neurobiology research and an unmet medical need. Directly reprogramming or converting astrocytes to neurons (AtN) in adult animals has been investigated as a potential strategy to facilitate brain and spinal cord recovery and advance fundamental biology. Conceptually, AtN strategies rely on forced expression or repression of lineage-specific transcription factors to make endogenous astrocytes become "induced neurons" (iNs), presumably without re-entering any pluripotent or multipotent states. The AtN-derived cells have been reported to manifest certain neuronal functions in vivo. However, this approach has raised many new questions and alternative explanations regarding the biological features of the end products (e.g., iNs versus neuron-like cells, neural functional changes, etc.), developmental biology underpinnings, and neurobiological essentials. For this paper per se, we proposed to draw an unconventional distinction between direct cell conversion and direct cell reprogramming, relative to somatic nuclear transfer, based on the experimental methods utilized to initiate the transformation process, aiming to promote a more in-depth mechanistic exploration. Moreover, we have summarized the current tactics employed for AtN induction, comparisons between the bench endeavors concerning outcome tangibility, and discussion of the issues of published AtN protocols. Lastly, the urgency to clearly define/devise the theoretical frameworks, cell biological bases, and bench specifics to experimentally validate primary data of AtN studies was highlighted.
Collapse
Affiliation(s)
- Rachel Dennison
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Esteban Usuga
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Harriet Chen
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Jacob Z. Paul
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
- Neurotrauma Recovery Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Pieri V, Gallotti AL, Drago D, Cominelli M, Pagano I, Conti V, Valtorta S, Coliva A, Lago S, Michelatti D, Massimino L, Ungaro F, Perani L, Spinelli A, Castellano A, Falini A, Zippo A, Poliani PL, Moresco RM, Andolfo A, Galli R. Aberrant L-Fucose Accumulation and Increased Core Fucosylation Are Metabolic Liabilities in Mesenchymal Glioblastoma. Cancer Res 2023; 83:195-218. [PMID: 36409826 DOI: 10.1158/0008-5472.can-22-0677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/28/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets. SIGNIFICANCE Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.
Collapse
Affiliation(s)
- Valentina Pieri
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy.,Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Alberto L Gallotti
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Denise Drago
- ProMeFa, Center for Omics Sciences, IRCCS San Raffaele Hospital, Milan, Italy
| | - Manuela Cominelli
- Molecular and Translational Medicine Department, Pathology Unit, University of Brescia, Brescia, Italy
| | - Ilaria Pagano
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Valentina Conti
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Silvia Valtorta
- Nuclear Medicine and PET Cyclotron Center, IRCCS San Raffaele Hospital, Milan, Italy
| | - Angela Coliva
- Nuclear Medicine and PET Cyclotron Center, IRCCS San Raffaele Hospital, Milan, Italy
| | - Sara Lago
- Department of Cellular, Computational and Integrative Biology (CIBIO), Laboratory of Chromatin Biology & Epigenetics, University of Trento, Trento, Italy
| | - Daniela Michelatti
- Department of Cellular, Computational and Integrative Biology (CIBIO), Laboratory of Chromatin Biology & Epigenetics, University of Trento, Trento, Italy
| | - Luca Massimino
- Gastroenterology and Endoscopy Department, Experimental Gastroenterology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Federica Ungaro
- Gastroenterology and Endoscopy Department, Experimental Gastroenterology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Laura Perani
- Experimental Imaging Center, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), Laboratory of Chromatin Biology & Epigenetics, University of Trento, Trento, Italy
| | - Pietro L Poliani
- Molecular and Translational Medicine Department, Pathology Unit, University of Brescia, Brescia, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine and PET Cyclotron Center, IRCCS San Raffaele Hospital, Milan, Italy.,Institute of Bioimaging and Molecular Physiology (IBFM), CNR, Segrate, Italy.,Department of Medicine and Surgery and Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
| | - Annapaola Andolfo
- ProMeFa, Center for Omics Sciences, IRCCS San Raffaele Hospital, Milan, Italy
| | - Rossella Galli
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
43
|
Khan S, Martinez-Ledesma E, Dong J, Mahalingam R, Park SY, Piao Y, Koul D, Balasubramaniyan V, de Groot JF, Yung WKA. Neuronal differentiation drives the antitumor activity of mitogen-activated protein kinase kinase (MEK) inhibition in glioblastoma. Neurooncol Adv 2023; 5:vdad132. [PMID: 38130900 PMCID: PMC10734674 DOI: 10.1093/noajnl/vdad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Epidermal growth factor receptor (EGFR) amplification is found in nearly 40%-50% of glioblastoma cases. Several EGFR inhibitors have been tested in glioblastoma but have failed to demonstrate long-term therapeutic benefit, presumably because of acquired resistance. Targeting EGFR downstream signaling with mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) inhibitors would be a more effective approach to glioblastoma treatment. We tested the therapeutic potential of MEK1/2 inhibitors in glioblastoma using 3D cultures of glioma stem-like cells (GSCs) and mouse models of glioblastoma. Methods Several MEK inhibitors were screened in an unbiased high-throughput platform using GSCs. Cell death was evaluated using flow cytometry and Western blotting (WB) analysis. RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and WB analysis were used to identify and validate neuronal differentiation. Results Unbiased screening of multiple MEK inhibitors in GSCs showed antiproliferative and apoptotic cell death in sensitive cell lines. An RNA-seq analysis of cells treated with trametinib, a potent MEK inhibitor, revealed upregulation of neurogenesis and neuronal differentiation genes, such as achaete-scute homolog 1 (ASCL1), delta-like 3 (DLL3), and neurogenic differentiation 4 (NeuroD4). We validated the neuronal differentiation phenotypes in vitro and in vivo using selected differentiation markers (β-III-tubulin, ASCL1, DLL3, and NeuroD4). Oral treatment with trametinib in an orthotopic GSC xenograft model significantly improved animal survival, with 25%-30% of mice being long-term survivors. Conclusions Our findings demonstrated that MEK1/2 inhibition promotes neuronal differentiation in glioblastoma, a potential additional mechanism of action of MEK1/2 inhibitors. Thus, MEK inhibitors could be efficacious in glioblastoma patients with activated EGFR/MAPK signaling.
Collapse
Affiliation(s)
- Sabbir Khan
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo León, Mexico
| | - Jianwen Dong
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rajasekaran Mahalingam
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Soon Young Park
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuji Piao
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - John F de Groot
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
44
|
Gulaia V, Shmelev M, Romanishin A, Shved N, Farniev V, Goncharov N, Biktimirov A, Vargas IL, Khodosevich K, Kagansky A, Kumeiko V. Single-nucleus transcriptomics of IDH1- and TP53-mutant glioma stem cells displays diversified commitment on invasive cancer progenitors. Sci Rep 2022; 12:18975. [PMID: 36348001 PMCID: PMC9643511 DOI: 10.1038/s41598-022-23646-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Glioma is a devastating brain tumor with a high mortality rate attributed to the glioma stem cells (GSCs) possessing high plasticity. Marker mutations in isocitrate dehydrogenase type 1 (IDH1) and tumor protein 53 (TP53) are frequent in gliomas and impact the cell fate decisions. Understanding the GSC heterogeneity within IDH1- and TP53- mutant tumors may elucidate possible treatment targets. Here, we performed single-nucleus transcriptomics of mutant and wild-type glioma samples sorted for Sox2 stem cell marker. For the first time the rare subpopulations of Sox2 + IDH1- and TP53-mutant GSCs were characterized. In general, GSCs contained the heterogeneity root subpopulation resembling active neural stem cells capable of asymmetric division to quiescent and transit amplifying cell branches. Specifically, double-mutant GSCs revealed the commitment on highly invasive oligodendrocyte- and astroglia-like progenitors. Additionally, double-mutant GSCs displayed upregulated markers of collagen synthesis, altered lipogenesis and high migration, while wild-type GSCs expressed genes related to ATP production. Wild-type GSC root population was highly heterogeneous and lacked the signature marker expression, thus glioblastoma treatment should emphasize on establishing differentiation protocol directed against residual GSCs. For the more differentiated IDH1- and TP53-mutant gliomas we suggest therapeutic targeting of migration molecules, such as CD44.
Collapse
Affiliation(s)
- Valeriia Gulaia
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Mikhail Shmelev
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Aleksander Romanishin
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.410686.d0000 0001 1018 9204School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, 236041 Russia
| | - Nikita Shved
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.417808.20000 0001 1393 1398A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, 690041 Russia
| | - Vladislav Farniev
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Nikolay Goncharov
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Arthur Biktimirov
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Irene Lisa Vargas
- grid.5254.60000 0001 0674 042XBiotech Research & Innovation Centre (BRIC), The Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Konstantin Khodosevich
- grid.5254.60000 0001 0674 042XBiotech Research & Innovation Centre (BRIC), The Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexander Kagansky
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Vadim Kumeiko
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.417808.20000 0001 1393 1398A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, 690041 Russia
| |
Collapse
|
45
|
Brooks LJ, Simpson Ragdale H, Hill CS, Clements M, Parrinello S. Injury programs shape glioblastoma. Trends Neurosci 2022; 45:865-876. [PMID: 36089406 DOI: 10.1016/j.tins.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Glioblastoma is the most common and aggressive primary brain cancer in adults and is almost universally fatal due to its stark therapeutic resistance. During the past decade, although survival has not substantially improved, major advances have been made in our understanding of the underlying biology. It has become clear that these devastating tumors recapitulate features of neurodevelopmental hierarchies which are influenced by the microenvironment. Emerging evidence also highlights a prominent role for injury responses in steering cellular phenotypes and contributing to tumor heterogeneity. This review highlights how the interplay between injury and neurodevelopmental programs impacts on tumor growth, invasion, and treatment resistance, and discusses potential therapeutic considerations in view of these findings.
Collapse
Affiliation(s)
- Lucy J Brooks
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK.
| | - Holly Simpson Ragdale
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK
| | - Ciaran Scott Hill
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK; Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | - Melanie Clements
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK.
| |
Collapse
|
46
|
Caldwell AB, Liu Q, Zhang C, Schroth GP, Galasko DR, Rynearson KD, Tanzi RE, Yuan SH, Wagner SL, Subramaniam S. Endotype reversal as a novel strategy for screening drugs targeting familial Alzheimer's disease. Alzheimers Dement 2022; 18:2117-2130. [PMID: 35084109 PMCID: PMC9787711 DOI: 10.1002/alz.12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
While amyloid-β (Aβ) plaques are considered a hallmark of Alzheimer's disease, clinical trials focused on targeting gamma secretase, an enzyme involved in aberrant Aβ peptide production, have not led to amelioration of AD symptoms or synaptic dysregulation. Screening strategies based on mechanistic, multi-omics approaches that go beyond pathological readouts can aid in the evaluation of therapeutics. Using early-onset Alzheimer's (EOFAD) disease patient lineage PSEN1A246E iPSC-derived neurons, we performed RNA-seq to characterize AD-associated endotypes, which are in turn used as a screening evaluation metric for two gamma secretase drugs, the inhibitor Semagacestat and the modulator BPN-15606. We demonstrate that drug treatment partially restores the neuronal state while concomitantly inhibiting cell cycle re-entry and dedifferentiation endotypes to different degrees depending on the mechanism of gamma secretase engagement. Our endotype-centric screening approach offers a new paradigm by which candidate AD therapeutics can be evaluated for their overall ability to reverse disease endotypes.
Collapse
Affiliation(s)
- Andrew B. Caldwell
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Qing Liu
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of California, San DiegoLa JollaCalifornia92093USA
| | - Can Zhang
- Genetics and Aging Research Unit, Department of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | | | - Douglas R. Galasko
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Kevin D. Rynearson
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Shauna H. Yuan
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA,N. Bud Grossman Center for Memory Research and CareDepartment of Neurology, University of Minnesota, Minneapolis, MN, USA; GRECC, Minneapolis VA Health Care SystemMinneapolisMNUSA
| | - Steven L. Wagner
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA,VA San Diego Healthcare SystemLa JollaCaliforniaUSA
| | - Shankar Subramaniam
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of Computer Science and EngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
47
|
Tanabe K, Nobuta H, Yang N, Ang CE, Huie P, Jordan S, Oldham MC, Rowitch DH, Wernig M. Generation of functional human oligodendrocytes from dermal fibroblasts by direct lineage conversion. Development 2022; 149:275808. [PMID: 35748297 PMCID: PMC9357374 DOI: 10.1242/dev.199723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2022] [Indexed: 01/08/2023]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, possess great potential for disease modeling and cell transplantation-based therapies for leukodystrophies. However, caveats to oligodendrocyte differentiation protocols ( Ehrlich et al., 2017; Wang et al., 2013; Douvaras and Fossati, 2015) from human embryonic stem and induced pluripotent stem cells (iPSCs), which include slow and inefficient differentiation, and tumorigenic potential of contaminating undifferentiated pluripotent cells, are major bottlenecks towards their translational utility. Here, we report the rapid generation of human oligodendrocytes by direct lineage conversion of human dermal fibroblasts (HDFs). We show that the combination of the four transcription factors OLIG2, SOX10, ASCL1 and NKX2.2 is sufficient to convert HDFs to induced oligodendrocyte precursor cells (iOPCs). iOPCs resemble human primary and iPSC-derived OPCs based on morphology and transcriptomic analysis. Importantly, iOPCs can differentiate into mature myelinating oligodendrocytes in vitro and in vivo. Finally, iOPCs derived from patients with Pelizaeus Merzbacher disease, a hypomyelinating leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1) gene, showed increased cell death compared with iOPCs from healthy donors. Thus, human iOPCs generated by direct lineage conversion represent an attractive new source for human cell-based disease models and potentially myelinating cell grafts.
Collapse
Affiliation(s)
- Koji Tanabe
- I Peace, Inc, Palo Alto, CA 94303, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiroko Nobuta
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheen Euong Ang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Huie
- Department of Surgical Pathology, Stanford Health Care, Palo Alto, CA 94305, USA
| | - Sacha Jordan
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael C Oldham
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.,Departments of Pediatrics and Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Paediatrics and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
48
|
Zhuang Q, Yang H, Mao Y. The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities. Neurosci Bull 2022; 39:393-408. [PMID: 36229714 PMCID: PMC10043159 DOI: 10.1007/s12264-022-00953-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.
Collapse
Affiliation(s)
- Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
49
|
Parkinson LM, Gillen SL, Woods LM, Chaytor L, Marcos D, Ali FR, Carroll JS, Philpott A. The proneural transcription factor ASCL1 regulates cell proliferation and primes for differentiation in neuroblastoma. Front Cell Dev Biol 2022; 10:942579. [PMID: 36263020 PMCID: PMC9574099 DOI: 10.3389/fcell.2022.942579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Neuroblastoma is believed to arise from sympathetic neuroblast precursors that fail to engage the neuronal differentiation programme, but instead become locked in a pro-proliferative developmental state. Achaete-scute homolog 1 (ASCL1) is a proneural master regulator of transcription which modulates both proliferation and differentiation of sympathetic neuroblast precursor cells during development, while its expression has been implicated in the maintenance of an oncogenic programme in MYCN-amplified neuroblastoma. However, the role of ASCL1 expression in neuroblastoma is not clear, especially as its levels vary considerably in different neuroblastoma cell lines. Here, we have investigated the role of ASCL1 in maintaining proliferation and controlling differentiation in both MYCN amplified and Anaplastic Lymphoma Kinase (ALK)-driven neuroblastoma cells. Using CRISPR deletion, we generated neuroblastoma cell lines lacking ASCL1 expression, and these grew more slowly than parental cells, indicating that ASCL1 contributes to rapid proliferation of MYCN amplified and non-amplified neuroblastoma cells. Genome-wide analysis after ASCL1 deletion revealed reduced expression of genes associated with neuronal differentiation, while chromatin accessibility at regulatory regions associated with differentiation genes was also attenuated by ASCL1 knock-out. In neuroblastoma, ASCL1 has been described as part of a core regulatory circuit of developmental regulators whose high expression is maintained by mutual cross-activation of a network of super enhancers and is further augmented by the activity of MYC/MYCN. Surprisingly, ASCL1 deletion had little effect on the transcription of CRC gene transcripts in these neuroblastoma cell lines, but the ability of MYC/MYCN and CRC component proteins, PHOX2B and GATA3, to bind to chromatin was compromised. Taken together, our results demonstrate several roles for endogenous ASCL1 in neuroblastoma cells: maintaining a highly proliferative phenotype, regulating DNA binding of the core regulatory circuit genes to chromatin, while also controlling accessibility and transcription of differentiation targets. Thus, we propose a model where ASCL1, a key developmental regulator of sympathetic neurogenesis, plays a pivotal role in maintaining proliferation while simultaneously priming cells for differentiation in neuroblastoma.
Collapse
Affiliation(s)
- Lydia M. Parkinson
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sarah L. Gillen
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Laura M. Woods
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Lewis Chaytor
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniel Marcos
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Fahad R. Ali
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Jason S. Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
50
|
Giannopoulou AI, Kanakoglou DS, Papavassiliou AG, Piperi C. Insights into the multi-faceted role of Pioneer transcription factors in glioma formation and progression with targeting options. Biochim Biophys Acta Rev Cancer 2022; 1877:188801. [PMID: 36113627 DOI: 10.1016/j.bbcan.2022.188801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Pioneer transcription factors (TFs) present an important subtype of transcription factors which are vital for cell programming during embryonic development and cellular memory during mitotic growth, as well as cell fate reprogramming. Pioneer TFs can engage specific target binding sites on nucleosomal DNA to attract chromatin remodeling complexes, cofactors, and other transcription factors, ultimately controlling gene expression by shaping locally the epigenome. The priority of binding that they exhibit in contrast to other transcription factors and their involvement in crucial events regarding cell fate, has implicated their aberrant function in the pathogenesis of several disorders including carcinogenesis. Emerging experimental data indicate that certain Pioneer TFs are highly implicated in gliomas development, in neoplastic cell proliferation, angiogenic processes, resistance to therapy, and patient survival. Herein, we describe the main structural characteristics and functional mechanisms of pioneer TFs, focusing on their central role in the pathogenesis and progression of gliomas. We further highlight the current treatment options ranging from natural agents (oleanolic acid) to a variety of chemical compounds (APR-246, COTI-2) and discuss potential delivery systems, including nanoparticles, viral vectors, and intracellular protein delivery techniques.
Collapse
Affiliation(s)
- Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Dimitrios S Kanakoglou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| |
Collapse
|