1
|
Wang J, Fu C, Chang S, Stephens C, Li H, Wang D, Fu YC, Green KJ, Yan J, Yi R. PIEZO1-mediated calcium signaling reinforces mechanical properties of hair follicle stem cells to promote quiescence. SCIENCE ADVANCES 2025; 11:eadt2771. [PMID: 40435254 PMCID: PMC12118625 DOI: 10.1126/sciadv.adt2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/23/2025] [Indexed: 06/01/2025]
Abstract
The mechanisms by which epithelial stem cells (SCs) sense mechanical cues within their niche and convert the information into biochemical signals to govern their function are not well understood. Here, we show that hair follicle SCs (HF-SCs) sense mechanical forces through cell adhesion and maintain quiescence in a PIEZO1-dependent mechanism. PIEZO1 interacts with E-cadherin in HF-SCs, and mechanical pulling of E-cadherin with a force of ~20 pN triggers PIEZO1-dependent, localized calcium flickers. Deletion of Piezo1 leads to reduced cumulative calcium influx and compromises quiescence. Single-cell genomic analyses identify a transcriptional network involving AP1 and NFATC1, which functions downstream of PIEZO1 and regulates the expression of extracellular matrix, cell adhesion, and actin cytoskeleton genes to reinforce the unique mechanical property of HF-SCs. These findings establish the force threshold necessary for PIEZO1 activation and reveal PIEZO1-dependent calcium influx as a key mechanism for sensing mechanical cues in the niche and regulating HF-SC activity.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Chaoyu Fu
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Sophie Chang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Christopher Stephens
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Haimin Li
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Yuheng C. Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
2
|
Hinnant TD, Joo C, Lechler T. Mesenchymal cell contractility regulates villus morphogenesis and intestinal architecture. Dev Biol 2025; 519:96-105. [PMID: 39708944 PMCID: PMC11758735 DOI: 10.1016/j.ydbio.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The large absorptive surface area of the small intestine is imparted by finger-like projections called villi. Villi formation is instructed by stromal-derived clusters of cells which have been proposed to induce epithelial bending through actomyosin contraction. Their functions in the elongation of villi have not been studied. Here, we explored the function of mesenchymal contractility at later stages of villus morphogenesis. We induced contractility specifically in the mesenchyme of the developing intestine through inducible overexpression of the RhoA GTPase activator Arhgef11. This resulted in overgrowth of the clusters through a YAP-mediated increase in cell proliferation. While epithelial bending occurred in the presence of contractile clusters, the resulting villi had architectural defects, being shorter and wider than controls. These villi also had defects in epithelial organization and the establishment of nutrient-absorbing enterocytes. While ectopic activation of YAP resulted in similar cluster overgrowth and wider villi, it did not affect villus elongation or enterocyte differentiation, demonstrating roles for contractility in addition to proliferation. We find that the specific contractility-induced effects were dependent upon cluster interaction with the extracellular matrix. Together, these data demonstrate effects of contractility on villus morphogenesis and distinguish separable roles for proliferation and contractility in controlling intestinal architecture.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Dermatology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Caroline Joo
- Department of Dermatology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Mason DE, Madsen TD, Gasparski AN, Jiwnani N, Lechler T, Weigert R, Iglesias-Bartolome R, Mili S. Control of Epithelial Tissue Organization by mRNA Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626432. [PMID: 39677649 PMCID: PMC11643025 DOI: 10.1101/2024.12.02.626432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
mRNA localization to specific subcellular regions is common in mammalian cells but poorly understood in terms of its physiological roles1-6,7. This study demonstrates the functional importance of Net1 mRNA, which we find prominently localized at the dermal-epidermal junction (DEJ) in stratified squamous epithelia. Net1 mRNA accumulates at DEJ protrusion-like structures that interact with the basement membrane and connect to a mechanosensitive network of microfibrils. Disrupting Net1 mRNA localization in mouse epithelium alters DEJ morphology and keratinocyte-matrix connections, affecting tissue homeostasis. mRNA localization dictates Net1 protein distribution and its function as a RhoA GTPase exchange factor (GEF). Altered RhoA activity is in turn sufficient to alter the ultrastructure of the DEJ. This study provides a high-resolution in vivo view of mRNA targeting in a physiological context. It further demonstrates how the subcellular localization of a single mRNA can significantly influence mammalian epithelial tissue organization, thus revealing an unappreciated level of post-transcriptional regulation that controls tissue physiology.
Collapse
Affiliation(s)
- Devon E. Mason
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thomas D. Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alexander N. Gasparski
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Neal Jiwnani
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
4
|
Albougha MS, Sugii H, Adachi O, Mardini B, Soeno S, Hamano S, Hasegawa D, Yoshida S, Itoyama T, Obata J, Maeda H. Exosomes from Human Periodontal Ligament Stem Cells Promote Differentiation of Osteoblast-like Cells and Bone Healing in Rat Calvarial Bone. Biomolecules 2024; 14:1455. [PMID: 39595630 PMCID: PMC11591890 DOI: 10.3390/biom14111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Deep caries and severe periodontitis cause bone resorption in periodontal tissue, and severe bone resorption leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are important for the healing of defective periodontal tissue. It is increasingly understood that healing of periodontal tissue is mediated through the secretion of trophic factors, particularly exosomes. This study investigated the effects of exosomes from human PDLSCs (HPDLSCs-Exo) on human osteoblast-like cells in vitro and on the healing of rat calvarial bone defects in vivo. HPDLSCs-Exo were isolated and characterized by their particle shape, size (133 ± 6.4 nm), and expression of surface markers (CD9, CD63, and CD81). In vitro results showed that HPDLSCs-Exo promoted the migration, mineralization, and expression of bone-related genes such as alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), osteocalcin (OCN), and osteopontin (OPN) in human osteoblast-like cells. Furthermore, in vivo results showed that more newly formed bone was observed in the HPDLSCs-Exo-treated group than in the non-treated group at the defect sites in rats. These results indicated that HPDLSCs-Exo could promote osteogenesis in vitro and in vivo, and this suggests that HPDLSCs-Exo may be an attractive treatment tool for bone healing in defective periodontal tissue.
Collapse
Affiliation(s)
- Mhd Safwan Albougha
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Orie Adachi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Bara Mardini
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Serina Soeno
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Itoyama
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Junko Obata
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Liu C, Li Q, Ma JX, Lu B, Criswell T, Zhang Y. Exosome-mediated renal protection: Halting the progression of fibrosis. Genes Dis 2024; 11:101117. [PMID: 39263535 PMCID: PMC11388648 DOI: 10.1016/j.gendis.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2024] Open
Abstract
Renal fibrosis is a complex and multifactorial process that involves inflammation, cell proliferation, collagen, and fibronectin deposition in the kidney, ultimately leading to chronic kidney disease and even end-stage renal disease. The main goal of treatment is to slow down or halt the progression of fibrosis and to improve or preserve kidney function. Despite significant progress made in understanding the underlying mechanisms of renal fibrosis, current therapies have limited renal protection as the disease progresses. Exosomes derived from stem cells are a newer area of research for the treatment of renal fibrosis. Exosomes as nano-sized extracellular vesicles carry proteins, lipids, and nucleic acids, which can be taken up by local or distant cells, serving as mediators of intercellular communication and as drug delivery vehicles. Exosomes deliver molecules that reduce inflammation, renal fibrosis and extracellular matrix protein production, and promote tissue regeneration in animal models of kidney disease. Additionally, they have several advantages over stem cells, such as being non-immunogenic, having low risk of tumor formation, and being easier to produce and store. This review describes the use of natural and engineered exosomes containing therapeutic agents capable of mediating anti-inflammatory and anti-fibrotic processes during both acute kidney injury and chronic kidney disease. Exosome-based therapies will be compared with stem cell-based treatments for tissue regeneration, with a focus on renal protection. Finally, future directions and strategies for improving the therapeutic efficacy of exosomes are discussed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Baisong Lu
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Tracy Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
6
|
Li H, He Y, Wang Y, Xie L, Wu G, Liu X, Duan X, Zhou K, Ning W. The RhoGAP ARHGAP32 interacts with desmoplakin, and is required for desmosomal organization and assembly. J Cell Sci 2024; 137:jcs261901. [PMID: 39258310 DOI: 10.1242/jcs.261901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Desmosomes play a crucial role in maintaining tissue barrier integrity, particularly in mechanically stressed tissues. The assembly of desmosomes is regulated by the cytoskeleton and its regulators, and desmosomes also function as a central hub for regulating F-actin. However, the specific mechanisms underlying the crosstalk between desmosomes and F-actin remain unclear. Here, we identified that ARHGAP32, a Rho GTPase-activating protein, is located in desmosomes through its interaction with desmoplakin (DSP) via its GAB2-interacting domain (GAB2-ID). We confirmed that ARHGAP32 is required for desmosomal organization, maturation and length regulation. Notably, loss of ARHGAP32 increased formation of F-actin stress fibers and phosphorylation of the regulatory myosin light chain Myl9 at T18/S19. Inhibition of ROCK activity in ARHGAP32-knockout (KO) cells effectively restored desmosomal organization and the integrity of epithelial cell sheets. Moreover, loss of DSP impaired desmosomal ARHGAP32 location and led to decreased actomyosin contractility. ARHGAP32 with a deletion of the GAB2-ID domain showed enhanced association with RhoA in the cytosol and failed to rescue the desmosomal organization in ARHGAP32-KO cells. Collectively, our study unveils that ARHGAP32 associates with and regulates desmosomes by interacting with DSP. This interaction potentially facilitates the crosstalk between desmosomes and F-actin.
Collapse
Affiliation(s)
- Hua Li
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Yinzhen He
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Yan Wang
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Lin Xie
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Gangyun Wu
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Xiayu Liu
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Xiufen Duan
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Kaiyao Zhou
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Wenxiu Ning
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| |
Collapse
|
7
|
Del Caño LR, South AP, O'Toole EA, Kelsell DP, Blaydon DC. A Role for Aquaporin-5 Variants in Regulation of the Actin Cytoskeleton in Non-Epidermolytic Palmoplantar Keratoderma. J Invest Dermatol 2024; 144:2092-2096. [PMID: 38527693 DOI: 10.1016/j.jid.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Affiliation(s)
- Laura Ramos Del Caño
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew P South
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, 233 South Tenth Street BLSB 406, Philadelphia, Pennsylvania, USA
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David P Kelsell
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Diana C Blaydon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
8
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
9
|
Xie L, Wu G, Liu X, Duan X, Zhou K, Li H, Ning W. The TRIP6/LATS1 complex constitutes the tension sensor of α-catenin/vinculin at both bicellular and tricellular junctions. Eur J Cell Biol 2024; 103:151426. [PMID: 38805800 DOI: 10.1016/j.ejcb.2024.151426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Cell-cell mechanotransduction regulates tissue development and homeostasis. α-catenin, the core component of adherens junctions, functions as a tension sensor and transducer by recruiting vinculin and transducing signals that influence cell behaviors. α-catenin/vinculin complex-mediated mechanotransduction regulates multiple pathways, such as Hippo pathway. However, their associations with the α-catenin-based tension sensors at cell junctions are still not fully addressed. Here, we uncovered the TRIP6/LATS1 complex co-localizes with α-catenin/vinculin at both bicellular junctions (BCJs) and tricellular junctions (TCJs). The localization of TRIP6/LATS1 complex to both TCJs and BCJs requires ROCK1 and α-catenin. Treatment by cytochalasin B, Y-27632 and blebbistatin all impaired the BCJ and TCJ junctional localization of TRIP6/LATS1, indicating that the junctional localization of TRIP6/LATS1 is mechanosensitive. The α-catenin/vinculin/TRIP6/LATS1 complex strongly localized to TCJs and exhibited a discontinuous button-like pattern on BCJs. Additionally, we developed and validated an α-catenin/vinculin BiFC-based mechanosensor that co-localizes with TRIP6/LATS1 at BCJs and TCJs. The mechanosensor exhibited a discontinuous distribution and motile signals at BCJs. Overall, our study revealed that TRIP6 and LATS1 are novel compositions of the tension sensor, together with the core complex of α-catenin/vinculin, at both the BCJs and TCJs.
Collapse
Affiliation(s)
- Lin Xie
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Gangyun Wu
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Xiayu Liu
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Xiufen Duan
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Kaiyao Zhou
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China
| | - Hua Li
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China.
| | - Wenxiu Ning
- Center for Life Sciences, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Cell Metabolism and Diseases, Kunming, Yunnan 650500, China.
| |
Collapse
|
10
|
Deng S, Yuan P, Sun J. The role of NF-κB in carcinogenesis of cervical cancer: opportunities and challenges. Mol Biol Rep 2024; 51:538. [PMID: 38642209 DOI: 10.1007/s11033-024-09447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
The nuclear factor-κB (NF-κB) family, consisting of several transcription factors, has been implicated in the regulation of cell proliferation and invasion, as well as inflammatory reactions and tumor development. Cervical cancer (CC) results from long-term interactions of multiple factors, among which persistent high-risk human papillomavirus (hrHPV) infection is necessary. During different stages from early to late after HPV infection, the activity of NF-κB varies and plays various roles in carcinogenesis and progress of CC. As the center of the cell signaling transduction network, NF-κB can be activated through classical and non-classical pathways, and regulate the expression of downstream target genes involved in regulating the tumor microenvironment and acquiring hallmark traits of CC cells. Targeting NF-κB may help treat CC and overcome the resistance to radiation and chemotherapy. Even though NF-κB inhibitors have not been applied in clinical treatment as yet, due to limitations such as dose-restrictive toxicity and poor tumor-specificity, it is still considered to have significant therapeutic potential and application prospects. In this review, we focus on the role of NF-κB in the process of CC occurrence and hallmark capabilities acquisition. Finally, we summarize relevant NF-κB-targeted treatments, providing ideas for the prevention and treatment of CC.
Collapse
Affiliation(s)
- Song Deng
- The Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, China
| | - Jun Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, China.
| |
Collapse
|
11
|
Hinnant T, Ning W, Lechler T. Compartment specific responses to contractility in the small intestinal epithelium. PLoS Genet 2024; 20:e1010899. [PMID: 38517900 PMCID: PMC10990186 DOI: 10.1371/journal.pgen.1010899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/03/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024] Open
Abstract
Tissues are subject to multiple mechanical inputs at the cellular level that influence their overall shape and function. In the small intestine, actomyosin contractility can be induced by many physiological and pathological inputs. However, we have little understanding of how contractility impacts the intestinal epithelium on a cellular and tissue level. In this study, we probed the cell and tissue-level effects of contractility by using mouse models to genetically increase the level of myosin activity in the two distinct morphologic compartments of the intestinal epithelium, the crypts and villi. We found that increased contractility in the villar compartment caused shape changes in the cells that expressed the transgene and their immediate neighbors. While there were no discernable effects on villar architecture or cell polarity, even low levels of transgene induction in the villi caused non-cell autonomous hyperproliferation of the transit amplifying cells in the crypt, driving increased cell flux through the crypt-villar axis. In contrast, induction of increased contractility in the proliferating cells of the crypts resulted in nuclear deformations, DNA damage, and apoptosis. This study reveals the complex and diverse responses of different intestinal epithelial cells to contractility and provides important insight into mechanical regulation of intestinal physiology.
Collapse
Affiliation(s)
- Taylor Hinnant
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina United States of America
| | - Wenxiu Ning
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina United States of America
- Center for Life Sciences, School of Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases. Yunnan University, Kunming, China
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina United States of America
| |
Collapse
|
12
|
Beumer J, Clevers H. Hallmarks of stemness in mammalian tissues. Cell Stem Cell 2024; 31:7-24. [PMID: 38181752 PMCID: PMC10769195 DOI: 10.1016/j.stem.2023.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
All adult tissues experience wear and tear. Most tissues can compensate for cell loss through the activity of resident stem cells. Although the cellular maintenance strategies vary greatly between different adult (read: postnatal) tissues, the function of stem cells is best defined by their capacity to replace lost tissue through division. We discuss a set of six complementary hallmarks that are key enabling features of this basic function. These include longevity and self-renewal, multipotency, transplantability, plasticity, dependence on niche signals, and maintenance of genome integrity. We discuss these hallmarks in the context of some of the best-understood adult stem cell niches.
Collapse
Affiliation(s)
- Joep Beumer
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland.
| | - Hans Clevers
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland.
| |
Collapse
|
13
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
14
|
Shen Z, Liu Z, Sun L, Li M, Han L, Wang J, Wu X, Sang S. Constructing epidermal rete ridges using a composite hydrogel to enhance multiple signaling pathways for the maintenance of epidermal stem cell niche. Acta Biomater 2023; 169:273-288. [PMID: 37516415 DOI: 10.1016/j.actbio.2023.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The undulating microstructure rete ridge (RR) located at the junction between the dermis and epidermis plays a crucial role in improving skin mechanical properties and maintaining skin homeostasis. However, the investigation of RR microstructures is usually neglected in current tissue engineering for skin regeneration. Here, to create an epidermal model with RR microstructures, keratinocytes were cultured on a patterned GelMA-PEGDA hydrogel constructed using molding technology. Furthermore, grafting acryloylated Arg-Gly-Asp (RGD) peptides on the hydrogel surface significantly improved cell adhesion, fusion, and development. RT-PCR, Western blot, and immunofluorescence staining confirmed that cells on RR microstructures exhibited higher gene and protein expression associated with epidermal stem cells. RNA sequencing analysis of cells on RR microstructure showed higher gene expression profiles related to stem cell maintenance, basement membrane formation, and epidermal development. Furthermore, RT-PCR analysis of epidermal models of various dimensions demonstrated that smaller microstructures were more conducive to epidermal stem cell marker gene expression, which is analogous to human skin. Overall, we have successfully developed a method for integrating RR microstructures into an epidermal model that mimics natural skin to maintain epidermal stem cell niche, providing a valuable reference for researching skin regeneration within the fields of tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: This study presents a method for precisely fabricating microstructures of skin rete ridges using composite hydrogels, thereby creating a skin model that mimics natural human skin. The findings reveal that this microstructure provides a stem cell niche that regulates the pathways and promotes the expression of proteins related to epidermal stem cells. This work advances the functional properties of tissue engineered skin and holds promise for improving the therapeutic efficacy of artificial skin grafts for the skin wounds.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan, 030809, China
| | - Xunwei Wu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China; Department of Tissue Engineering and Regeneration, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Jinan, Shandong, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
15
|
Hinnant T, Ning W, Lechler T. Compartment specific responses to contractility in the small intestinal epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552224. [PMID: 37609300 PMCID: PMC10441304 DOI: 10.1101/2023.08.07.552224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Tissues are subject to multiple mechanical inputs at the cellular level that influence their overall shape and function. In the small intestine, actomyosin contractility can be induced by many physiological and pathological inputs. However, we have little understanding of how contractility impacts the intestinal epithelium on a cellular and tissue level. In this study, we probed the cell and tissue-level effects of contractility by using mouse models to genetically increase the level of myosin activity in the two distinct morphologic compartments of the intestinal epithelium, the crypts and villi. We found that increased contractility in the villar compartment caused shape changes in the cells that expressed the transgene and their immediate neighbors. While there were no discernable effects on villar architecture, even low levels of transgene induction in the villi caused non-cell autonomous hyperproliferation of the transit amplifying cells in the crypt, driving increased cell flux through the crypt-villar axis. In contrast, induction of increased contractility in the proliferating cells of the crypts resulted in nuclear deformations, DNA damage, and apoptosis. This study reveals the complex and diverse responses of different intestinal epithelial cells to contractility and provides important insight into mechanical regulation of intestinal physiology.
Collapse
Affiliation(s)
- Taylor Hinnant
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Wenxiu Ning
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 USA
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
16
|
Wang J, Fu Y, Huang W, Biswas R, Banerjee A, Broussard JA, Zhao Z, Wang D, Bjerke G, Raghavan S, Yan J, Green KJ, Yi R. MicroRNA-205 promotes hair regeneration by modulating mechanical properties of hair follicle stem cells. Proc Natl Acad Sci U S A 2023; 120:e2220635120. [PMID: 37216502 PMCID: PMC10235966 DOI: 10.1073/pnas.2220635120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Stiffness and actomyosin contractility are intrinsic mechanical properties of animal cells required for the shaping of tissues. However, whether tissue stem cells (SCs) and progenitors located within SC niche have different mechanical properties that modulate their size and function remains unclear. Here, we show that hair follicle SCs in the bulge are stiff with high actomyosin contractility and resistant to size change, whereas hair germ (HG) progenitors are soft and periodically enlarge and contract during quiescence. During activation of hair follicle growth, HGs reduce contraction and more frequently enlarge, a process that is associated with weakening of the actomyosin network, nuclear YAP accumulation, and cell cycle reentry. Induction of miR-205, a novel regulator of the actomyosin cytoskeleton, reduces actomyosin contractility and activates hair regeneration in young and old mice. This study reveals the control of tissue SC size and activities by spatiotemporally compartmentalized mechanical properties and demonstrates the possibility to stimulate tissue regeneration by fine-tuning cell mechanics.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yuheng Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Wenmao Huang
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore560065, India
| | - Avinanda Banerjee
- A*Star Skin Research Institute of Singapore, Singapore138648, Singapore
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Zhihai Zhao
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Glen Bjerke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
| | - Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore560065, India
- A*Star Skin Research Institute of Singapore, Singapore138648, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
17
|
Tan YR, Liaw M, Chen CH. The hidden depths of zebrafish skin. eLife 2023; 12:e88597. [PMID: 37218526 PMCID: PMC10205081 DOI: 10.7554/elife.88597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Single-cell transcriptome analysis of zebrafish cells clarifies the signalling pathways controlling skin formation and reveals that some cells produce proteins required for human teeth to acquire their enamel.
Collapse
Affiliation(s)
- Yue Rong Tan
- Institute of Cellular and Organismic Biology (ICOB) at Academia SinicaTaipei CityTaiwan
| | - Megan Liaw
- Institute of Cellular and Organismic Biology (ICOB) at Academia SinicaTaipei CityTaiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology (ICOB) at Academia SinicaTaipei CityTaiwan
| |
Collapse
|
18
|
Butera A, Agostini M, Cassandri M, De Nicola F, Fanciulli M, D’Ambrosio L, Falasca L, Nardacci R, Wang L, Piacentini M, Knight RA, Jia W, Sun Q, Shi Y, Wang Y, Candi E, Melino G. ZFP750 affects the cutaneous barrier through regulating lipid metabolism. SCIENCE ADVANCES 2023; 9:eadg5423. [PMID: 37115925 PMCID: PMC10146900 DOI: 10.1126/sciadv.adg5423] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An essential function of the epidermis is to provide a physical barrier that prevents the loss of water. Essential mediators of this barrier function include ceramides, cholesterol, and very long chain fatty acids, and their alteration causes human pathologies, including psoriasis and atopic dermatitis. A frameshift mutation in the human ZNF750 gene, which encodes a zinc finger transcription factor, has been shown to cause a seborrhea-like dermatitis. Here, we show that genetic deletion of the mouse homolog ZFP750 results in loss of epidermal barrier function, which is associated with a substantial reduction of ceramides, nonpolar lipids. The alteration of epidermal lipid homeostasis is directly linked to the transcriptional activity of ZFP750. ZFP750 directly and/or indirectly regulates the expression of crucial enzymes primarily involved in the biosynthesis of ceramides. Overall, our study identifies the transcription factor ZFP750 as a master regulator epidermal homeostasis through lipid biosynthesis and thus contributing to our understanding of the pathogenesis of several human skin diseases.
Collapse
Affiliation(s)
- Alessio Butera
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Francesca De Nicola
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maurizio Fanciulli
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo D’Ambrosio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Falasca
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases “L. Spallanzani,” IRCCS, Rome Italy
| | - Roberta Nardacci
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases “L. Spallanzani,” IRCCS, Rome Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences (UniCamillus), Rome, Italy
| | - Lu Wang
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Mauro Piacentini
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases “L. Spallanzani,” IRCCS, Rome Italy
| | - Richard A. Knight
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, 100071, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- IDI-IRCCS, via Monti di Creta, 106, 00166 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Corresponding author.
| |
Collapse
|
19
|
Abstract
Over the past decade, melanoma has led the field in new cancer treatments, with impressive gains in on-treatment survival but more modest improvements in overall survival. Melanoma presents heterogeneity and transcriptional plasticity that recapitulates distinct melanocyte developmental states and phenotypes, allowing it to adapt to and eventually escape even the most advanced treatments. Despite remarkable advances in our understanding of melanoma biology and genetics, the melanoma cell of origin is still fiercely debated because both melanocyte stem cells and mature melanocytes can be transformed. Animal models and high-throughput single-cell sequencing approaches have opened new opportunities to address this question. Here, we discuss the melanocytic journey from the neural crest, where they emerge as melanoblasts, to the fully mature pigmented melanocytes resident in several tissues. We describe a new understanding of melanocyte biology and the different melanocyte subpopulations and microenvironments they inhabit, and how this provides unique insights into melanoma initiation and progression. We highlight recent findings on melanoma heterogeneity and transcriptional plasticity and their implications for exciting new research areas and treatment opportunities. The lessons from melanocyte biology reveal how cells that are present to protect us from the damaging effects of ultraviolet radiation reach back to their origins to become a potentially deadly cancer.
Collapse
Affiliation(s)
- Patricia P Centeno
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Valeria Pavet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Oncodrug Ltd, Alderly Park, Macclesfield, UK.
| |
Collapse
|
20
|
Bhattacharya S, Mukherjee A, Pisano S, Dimri S, Knaane E, Altshuler A, Nasser W, Dey S, Shi L, Mizrahi I, Blum N, Jokel O, Amitai-Lange A, Kaganovsky A, Mimouni M, Socea S, Midlij M, Tiosano B, Hasson P, Feral C, Wolfenson H, Shalom-Feuerstein R. The biophysical property of the limbal niche maintains stemness through YAP. Cell Death Differ 2023:10.1038/s41418-023-01156-7. [PMID: 37095157 DOI: 10.1038/s41418-023-01156-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
The cell fate decisions of stem cells (SCs) largely depend on signals from their microenvironment (niche). However, very little is known about how biochemical niche cues control cell behavior in vivo. To address this question, we focused on the corneal epithelial SC model in which the SC niche, known as the limbus, is spatially segregated from the differentiation compartment. We report that the unique biomechanical property of the limbus supports the nuclear localization and function of Yes-associated protein (YAP), a putative mediator of the mechanotransduction pathway. Perturbation of tissue stiffness or YAP activity affects SC function as well as tissue integrity under homeostasis and significantly inhibited the regeneration of the SC population following SC depletion. In vitro experiments revealed that substrates with the rigidity of the corneal differentiation compartment inhibit nuclear YAP localization and induce differentiation, a mechanism that is mediated by the TGFβ-SMAD2/3 pathway. Taken together, these results indicate that SC sense biomechanical niche signals and that manipulation of mechano-sensory machinery or its downstream biochemical output may bear fruits in SC expansion for regenerative therapy.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Abhishek Mukherjee
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Sabrina Pisano
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107, Nice, France
| | - Shalini Dimri
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Eman Knaane
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Anna Altshuler
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Waseem Nasser
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Sunanda Dey
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Lidan Shi
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Ido Mizrahi
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Noam Blum
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Ophir Jokel
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Aya Amitai-Lange
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Anna Kaganovsky
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Michael Mimouni
- Department of Ophthalmology, Rambam Health Care Campus, 31096, Haifa, Israel
| | - Sergiu Socea
- Department of Ophthalmology, Rambam Health Care Campus, 31096, Haifa, Israel
| | - Mohamad Midlij
- Department of Ophthalmology, Hilel Yafe Medical Center, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hilel Yafe Medical Center, Hadera, Israel
| | - Peleg Hasson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Chloe Feral
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107, Nice, France
| | - Haguy Wolfenson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
| |
Collapse
|
21
|
Song Y, Zhang Y, Qu Q, Zhang X, Lu T, Xu J, Ma W, Zhu M, Huang C, Xiong R. Biomaterials based on hyaluronic acid, collagen and peptides for three-dimensional cell culture and their application in stem cell differentiation. Int J Biol Macromol 2023; 226:14-36. [PMID: 36436602 DOI: 10.1016/j.ijbiomac.2022.11.213] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
In recent decades, three-dimensional (3D) cell culture technologies have been developed rapidly in the field of tissue engineering and regeneration, and have shown unique advantages and great prospects in the differentiation of stem cells. Herein, the article reviews the progress and advantages of 3D cell culture technologies in the field of stem cell differentiation. Firstly, 3D cell culture technologies are divided into two main categories: scaffoldless and scaffolds. Secondly, the effects of hydrogels scaffolds and porous scaffolds on stem cell differentiation in the scaffold category were mainly reviewed. Among them, hydrogels scaffolds are divided into natural hydrogels and synthetic hydrogels. Natural materials include polysaccharides, proteins, and their derivatives, focusing on hyaluronic acid, collagen and polypeptides. Synthetic materials mainly include polyethylene glycol (PEG), polyacrylic acid (PAA), polyvinyl alcohol (PVA), etc. In addition, since the preparation techniques have a large impact on the properties of porous scaffolds, several techniques for preparing porous scaffolds based on different macromolecular materials are reviewed. Finally, the future prospects and challenges of 3D cell culture in the field of stem cell differentiation are reviewed. This review will provide a useful guideline for the selection of materials and techniques for 3D cell culture in stem cell differentiation.
Collapse
Affiliation(s)
- Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jianhua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
22
|
Zhang T, Hu R, Wang Y, Guo S, Wu Z, Liu J, Han C, Qiu C, Deng G. Extracellular matrix stiffness mediates uterine repair via the Rap1a/ARHGAP35/RhoA/F-actin/YAP axis. Cell Commun Signal 2023; 21:22. [PMID: 36691027 PMCID: PMC9869517 DOI: 10.1186/s12964-022-01018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/25/2023] Open
Abstract
The integrity of the structure and function of the endometrium is essential for the maintenance of fertility. However, the repair mechanisms of uterine injury remain largely unknown. Here, we showed that the disturbance of mechanical cue homeostasis occurs after uterine injury. Applying a multimodal approach, we identified YAP as a sensor of biophysical forces that drives endometrial regeneration. Through protein activation level analysis of the combinatorial space of mechanical force strength and of the presence of particular kinase inhibitors and gene silencing reagents, we demonstrated that mechanical cues related to extracellular matrix rigidity can turn off the Rap1a switch, leading to the inactivation of ARHGAP35and then induced activation of RhoA, which in turn depends on the polymerization of the agonist protein F-actin to activate YAP. Further study confirmed that mechanotransduction significantly accelerates remodeling of the uterus by promoting the proliferation of endometrial stromal cells in vitro and in vivo. These studies provide new insights into the dynamic regulatory mechanisms behind uterine remodeling and the function of mechanotransduction. Video Abstract.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230031, People's Republic of China.
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Ruiting Hu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230031, People's Republic of China
| | - Yan Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230031, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Junfeng Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Chunyang Han
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230031, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
23
|
Li JH, Trivedi V, Diz-Muñoz A. Understanding the interplay of membrane trafficking, cell surface mechanics, and stem cell differentiation. Semin Cell Dev Biol 2023; 133:123-134. [PMID: 35641408 PMCID: PMC9703995 DOI: 10.1016/j.semcdb.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/08/2022] [Accepted: 05/14/2022] [Indexed: 01/17/2023]
Abstract
Stem cells can generate a diversity of cell types during development, regeneration and adult tissue homeostasis. Differentiation changes not only the cell fate in terms of gene expression but also the physical properties and functions of cells, e.g. the secretory activity, cell shape, or mechanics. Conversely, these activities and properties can also regulate differentiation itself. Membrane trafficking is known to modulate signal transduction and thus has the potential to control stem cell differentiation. On the other hand, membrane trafficking, particularly from and to the plasma membrane, depends on the mechanical properties of the cell surface such as tension within the plasma membrane or the cortex. Indeed, recent findings demonstrate that cell surface mechanics can also control cell fate. Here, we review the bidirectional relationships between these three fundamental cellular functions, i.e. membrane trafficking, cell surface mechanics, and stem cell differentiation. Furthermore, we discuss commonly used methods in each field and how combining them with new tools will enhance our understanding of their interplay. Understanding how membrane trafficking and cell surface mechanics can guide stem cell fate holds great potential as these concepts could be exploited for directed differentiation of stem cells for the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jia Hui Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vikas Trivedi
- EMBL, PRBB, Dr. Aiguader, 88, Barcelona 08003, Spain,Developmental Biology Unit, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg 69117, Germany.
| |
Collapse
|
24
|
Abstract
The epidermis is a stratified squamous epithelium that forms the outermost layer of the skin. Its primary function is to act as a barrier, keeping pathogens and toxins out and moisture in. This physiological role has necessitated major differences in the organization and polarity of the tissue as compared to simple epithelia. We discuss four aspects of polarity in the epidermis - the distinctive polarities of basal progenitor cells as well as differentiated granular cells, the polarity of adhesions and the cytoskeleton across the tissue as keratinocytes differentiate, and the planar cell polarity of the tissue. These distinctive polarities are essential for the morphogenesis and the function of the epidermis and have also been implicated in regulating tumor formation.
Collapse
|
25
|
Lin Y, Ren J, McGrath C. Mechanosensitive Piezo1 and Piezo2 ion channels in craniofacial development and dentistry: Recent advances and prospects. Front Physiol 2022; 13:1039714. [PMID: 36338498 PMCID: PMC9633653 DOI: 10.3389/fphys.2022.1039714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Mechanical forces play important roles in many biological processes and there is increasing interest and understanding of these roles. Mechanotransduction is the process by which mechanical stimuli are converted to biochemical signals through specific mechanisms, and this results in the activation of downstream signaling pathways with specific effects on cell behaviors. This review systematically summarizes the current understanding of the mechanosensitive Piezo1 and Piezo2 ion channels in craniofacial bone, tooth, and periodontal tissue, presenting the latest relevant evidence with implications for potential treatments and managements of dental and orofacial diseases and deformities. The mechanosensitive ion channels Piezo1 and Piezo2 are widely expressed in various cells and tissues and have essential functions in mechanosensation and mechanotransduction. These channels play an active role in many physiological and pathological processes, such as growth and development, mechano-stimulated bone homeostasis and the mediation of inflammatory responses. Emerging evidence indicates the expression of Piezo1 and Piezo2 in bone, dental tissues and dental tissue-derived stem cells and suggests that they function in dental sensation transduction, dentin mineralization and periodontal bone remodeling and modulate orthodontic tooth movement.
Collapse
|
26
|
An artificial LAMA2-GelMA hydrogel microenvironment for the development of pancreatic endocrine progenitors. Biomaterials 2022; 291:121882. [DOI: 10.1016/j.biomaterials.2022.121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022]
|
27
|
Altshuler A, Wickström SA, Shalom-Feuerstein R. Spotlighting adult stem cells: advances, pitfalls, and challenges. Trends Cell Biol 2022; 33:477-494. [PMID: 36270939 DOI: 10.1016/j.tcb.2022.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
The existence of stem cells (SCs) at the tip of the cellular differentiation hierarchy has fascinated the scientific community ever since their discovery in the early 1950s to 1960s. Despite the remarkable success of the SC theory and the development of SC-based treatments, fundamental features of SCs remain enigmatic. Recent advances in single-cell lineage tracing, live imaging, and genomic technologies have allowed capture of life histories and transcriptional signatures of individual cells, leaving SCs much less space to 'hide'. Focusing on epithelial SCs and comparing them to other SCs, we discuss new paradigms of the SC niche, dynamics, and pathology, highlighting key open questions in SC biology that need to be resolved for harnessing SC potential in regenerative medicine.
Collapse
|
28
|
Zhang X, Zhang S, Wang T. How the mechanical microenvironment of stem cell growth affects their differentiation: a review. Stem Cell Res Ther 2022; 13:415. [PMID: 35964140 PMCID: PMC9375355 DOI: 10.1186/s13287-022-03070-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/20/2022] [Indexed: 12/18/2022] Open
Abstract
Stem cell differentiation is of great interest in medical research; however, specifically and effectively regulating stem cell differentiation is still a challenge. In addition to chemical factors, physical signals are an important component of the stem cell ecotone. The mechanical microenvironment of stem cells has a huge role in stem cell differentiation. Herein, we describe the knowledge accumulated to date on the mechanical environment in which stem cells exist, which consists of various factors, including the extracellular matrix and topology, substrate stiffness, shear stress, hydrostatic pressure, tension, and microgravity. We then detail the currently known signalling pathways that stem cells use to perceive the mechanical environment, including those involving nuclear factor-kB, the nicotinic acetylcholine receptor, the piezoelectric mechanosensitive ion channel, and hypoxia-inducible factor 1α. Using this information in clinical settings to treat diseases is the goal of this research, and we describe the progress that has been made. In this review, we examined the effects of mechanical factors in the stem cell growth microenvironment on stem cell differentiation, how mechanical signals are transmitted to and function within the cell, and the influence of mechanical factors on the use of stem cells in clinical applications.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Sibo Zhang
- China Medical University, Shenyang, China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| |
Collapse
|
29
|
Abstract
The skin forms a crucial, dynamic barrier between an animal and the external world. In mammals, three stem cell populations possess robust regenerative potential to maintain and repair the body's protective surface: epidermal stem cells, which maintain the stratified epidermis; hair follicle stem cells, which power the cyclic growth of the hair follicle; and melanocyte stem cells, which regenerate pigment-producing melanocytes to color the skin and hair. These stem cells reside in complex microenvironments ("niches") comprising diverse cellular repertoires that enable stem cells to rejuvenate tissues during homeostasis and regenerate them upon injury. Beyond their niches, skin stem cells can also sense and respond to fluctuations in organismal health or changes outside the body. Here, we review these diverse cellular interactions and highlight how far-reaching signals can be transmitted at the local level to enable skin stem cells to tailor their actions to suit the particular occasion and optimize fitness.
Collapse
Affiliation(s)
- Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
30
|
Abstract
Developing organs are shaped, in part, by physical interaction with their environment in the embryo. In recent years, technical advances in live-cell imaging and material science have greatly expanded our understanding of the mechanical forces driving organ formation. Here, we provide a broad overview of the types of forces generated during embryonic development and then focus on a subset of organs underlying our senses: the eyes, inner ears, nose and skin. The epithelia in these organs emerge from a common origin: the ectoderm germ layer; yet, they arrive at unique and complex forms over developmental time. We discuss exciting recent animal studies that show a crucial role for mechanical forces in, for example, the thickening of sensory placodes, the coiling of the cochlea and the lengthening of hair. Finally, we discuss how microfabricated organoid systems can now provide unprecedented insights into the physical principles of human development.
Collapse
Affiliation(s)
- Anh Phuong Le
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Abstract
The number of hair follicle stem cells decreases during aging and in hair-loss disorders, such as alopecia. In this issue of Cell Stem Cell, Xie et al. (2021) discover that the hair shaft serves as a physical niche component for the preservation of hair follicle stem cells.
Collapse
Affiliation(s)
- Taylor Hinnant
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Terry Lechler
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
32
|
Peskoller M, Bhosale A, Göbel K, Löhr J, Miceli S, Perot S, Persa O, Rübsam M, Shah J, Zhang H, Niessen CM. ESDR 50th Anniversary Lecture summary: How to build and regenerate a functional skin barrier: the adhesive and cell shaping travels of a keratinocyte. J Invest Dermatol 2022; 142:1020-1025. [DOI: 10.1016/j.jid.2021.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023]
|
33
|
Zijl S, Salameti V, Louis B, Negri VA, Watt FM. Dynamic regulation of human epidermal differentiation by adhesive and mechanical forces. Curr Top Dev Biol 2022; 150:129-148. [DOI: 10.1016/bs.ctdb.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Ferraces-Riegas P, Galbraith AC, Doupé DP. Epithelial Stem Cells: Making, Shaping and Breaking the Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:1-12. [DOI: 10.1007/5584_2021_686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractEpithelial stem cells maintain tissues throughout adult life and are tightly regulated by their microenvironmental niche to balance cell production and loss. These stem cells have been studied extensively as signal-receiving cells, responding to cues from other cell types and mechanical stimuli that comprise the niche. However, studies from a wide range of systems have identified epithelial stem cells as major contributors to their own microenvironment either through producing niche cells, acting directly as niche cells or regulating niche cells. The importance of stem cell contributions to the niche is particularly clear in cancer, where tumour cells extensively remodel their microenvironment to promote their survival and proliferation.
Collapse
|
35
|
Nassar D. Quoi de neuf en recherche 2021 ? ANNALES DE DERMATOLOGIE ET DE VÉNÉRÉOLOGIE - FMC 2021. [PMCID: PMC8683089 DOI: 10.1016/s2667-0623(21)01526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Nassar
- Service de dermatologie, hôpital Cochin, Paris, France
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
- Adresse e-mail : (D. Nassar)
| |
Collapse
|
36
|
Bhattacharya S, Wolfenson H, Shivdasani R, Shalom-Feuerstein R. Stem cell responses to stretch and strain. Trends Cell Biol 2021; 32:4-7. [PMID: 34801376 DOI: 10.1016/j.tcb.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023]
Abstract
Recent studies highlight how stem cells (SCs) perceive and respond to various biomechanical cues from the extracellular niche and neighboring cells. These combined inputs drive certain stem cell behaviors, including cell fate decisions, and may influence aging and disease.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Haguy Wolfenson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096 Haifa, Israel
| | - Ramesh Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096 Haifa, Israel.
| |
Collapse
|
37
|
Nguyen TM, Aragona M. Regulation of tissue architecture and stem cell dynamics to sustain homeostasis and repair in the skin epidermis. Semin Cell Dev Biol 2021; 130:79-89. [PMID: 34563461 DOI: 10.1016/j.semcdb.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022]
Abstract
Stratified epithelia are made up of several layers of cells, which act as a protective barrier for the organ they cover. To ensure their shielding effect, epithelia are naturally able to cope with constant environmental insults. This ability is enabled by their morphology and architecture, as well as the continuous turnover of stem and progenitor cells that constitute their building blocks. Stem cell fate decisions and dynamics are fundamental key biological processes that allow epithelia to exert their functions. By focusing on the skin epidermis, this review discusses how tissue architecture is generated during development, maintained through adult life, and re-established during regeneration.
Collapse
Affiliation(s)
- Tram Mai Nguyen
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mariaceleste Aragona
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Roan HY, Tseng TL, Chen CH. Whole-body clonal mapping identifies giant dominant clones in zebrafish skin epidermis. Development 2021; 148:272161. [PMID: 34463754 DOI: 10.1242/dev.199669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Skin expansion during development is predominantly driven by growth of basal epithelial cell (BEC)-derived clonal populations, which often display varied sizes and shapes. However, little is known about the causes of clonal heterogeneity and the maximum size to which a single clone can grow. Here, we created a zebrafish model, basebow, for capturing clonal growth behavior in the BEC population on a whole-body, centimeter scale. By tracking 222 BECs over the course of a 28-fold expansion of body surface area, we determined that most BECs survive and grow clonal populations with an average size of 0.013 mm2. An extensive survey of 742 sparsely labeled BECs further revealed that giant dominant clones occasionally arise on specific body regions, covering up to 0.6% of the surface area. Additionally, a growth-induced extracellular matrix component, Lamb1a, mediates clonal growth in a cell-autonomous manner. Altogether, our findings demonstrate how clonal heterogeneity and clonal dominance may emerge to enable post-embryonic growth of a vertebrate organ, highlighting key cellular mechanisms that may only become evident when visualizing single cell behavior at the whole-animal level.
Collapse
Affiliation(s)
- Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
39
|
Dias Gomes M, Iden S. Orchestration of tissue-scale mechanics and fate decisions by polarity signalling. EMBO J 2021; 40:e106787. [PMID: 33998017 PMCID: PMC8204866 DOI: 10.15252/embj.2020106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic development relies on dynamic cell shape changes and segregation of fate determinants to achieve coordinated compartmentalization at larger scale. Studies in invertebrates have identified polarity programmes essential for morphogenesis; however, less is known about their contribution to adult tissue maintenance. While polarity-dependent fate decisions in mammals utilize molecular machineries similar to invertebrates, the hierarchies and effectors can differ widely. Recent studies in epithelial systems disclosed an intriguing interplay of polarity proteins, adhesion molecules and mechanochemical pathways in tissue organization. Based on major advances in biophysics, genome editing, high-resolution imaging and mathematical modelling, the cell polarity field has evolved to a remarkably multidisciplinary ground. Here, we review emerging concepts how polarity and cell fate are coupled, with emphasis on tissue-scale mechanisms, mechanobiology and mammalian models. Recent findings on the role of polarity signalling for tissue mechanics, micro-environmental functions and fate choices in health and disease will be summarized.
Collapse
Affiliation(s)
- Martim Dias Gomes
- CECAD Cluster of ExcellenceUniversity of CologneCologneGermany
- Cell and Developmental BiologyFaculty of MedicineCenter of Human and Molecular Biology (ZHMB)Saarland UniversityHomburgGermany
| | - Sandra Iden
- CECAD Cluster of ExcellenceUniversity of CologneCologneGermany
- Cell and Developmental BiologyFaculty of MedicineCenter of Human and Molecular Biology (ZHMB)Saarland UniversityHomburgGermany
- CMMCUniversity of CologneCologneGermany
| |
Collapse
|
40
|
A Niche Above: A Novel Modality of Stem Cell Regulation in Mammalian Skin Epidermis. Cell Stem Cell 2021; 28:365-366. [PMID: 33667355 DOI: 10.1016/j.stem.2021.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this issue of Cell Stem Cell, Ning et al. (2021) demonstrate that contractility in differentiating, suprabasally located keratinocytes acts non-cell-autonomously to regulate the replication and differentiation of the stem/progenitor keratinocytes in the basal layer of epidermis. This finding expands our understanding of the niche that regulates stem/progenitor cells in skin.
Collapse
|
41
|
Abstract
Most tissues include several cell types, which generally develop or get repaired synchronously so as to remain properly organized. In a recent Cell Stem Cell article, Ning et al. (2020) reveals how the tensile state of the skin suprabasal cells non-autonomously regulate stem cell behavior in the basal layer.
Collapse
|