1
|
Xu R, Ooi HS, Bian L, Ouyang L, Sun W. Dynamic hydrogels for biofabrication: A review. Biomaterials 2025; 320:123266. [PMID: 40120174 DOI: 10.1016/j.biomaterials.2025.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Reversibly crosslinked dynamic hydrogels have emerged as a significant material platform for biomedical applications owing to their distinctive time-dependent characteristics, including shear-thinning, self-healing, stress relaxation, and creep. These physical properties permit the use of dynamic hydrogels as injectable carriers or three-dimensional printable bioinks. It is noteworthy that matrix dynamics can serve as physical cues that stimulate cellular processes. Therefore, dynamic hydrogels are preferred for tissue engineering and biofabrication, which seek to create functional tissue constructs that require regulation of cellular processes. This review summarizes the critical biophysical properties of dynamic hydrogels, various cellular processes and related mechanisms triggered by hydrogel dynamics, particularly in three-dimensional culture scenarios. Subsequently, we present an overview of advanced biofabrication techniques, particularly 3D bioprinting, of dynamic hydrogels for the large-scale production of tissue and organ engineering models. This review presents an overview of the strategies that can be used to expand the range of applications of dynamic hydrogels in biofabrication, while also addressing the challenges and opportunities that arise in the field. This review highlights the importance of matrix dynamics in regulating cellular processes and elucidates strategies for leveraging them in the context of biofabrication.
Collapse
Affiliation(s)
- Runze Xu
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hon Son Ooi
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Liliang Ouyang
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China.
| | - Wei Sun
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Tong X, Ayushman M, Lee HP, Yang F. Tuning local matrix compliance accelerates mesenchymal stem cell chondrogenesis in 3D sliding hydrogels. Biomaterials 2025; 317:123112. [PMID: 39827509 DOI: 10.1016/j.biomaterials.2025.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The mechanical properties of the extracellular matrix critically regulate stem cell differentiation in 3D. Alginate hydrogels with tunable bulk stiffness and viscoelasticity can modulate differentiation in 3D through mechanotransduction. Such enhanced differentiation is correlated with changes in the local matrix compliance- the extent of matrix deformation under applied load. However, the causal effect of local matrix compliance changes without altering bulk hydrogel mechanics on stem cell differentiation remains unclear. To address this, we report sliding hydrogel (SG) designs with tunable local matrix compliance obtained by varying the molecular mobility of the hydrogel network without changing bulk mechanics. Atomic force microscopy showed increasing SG mobility allowed cells to increasingly deform local niches with lesser forces, indicating higher local matrix compliance. Increasing SG mobility accelerates MSC chondrogenesis in a mobility-dependent manner and is independent of exogenous adhesive ligands or cell volume expansion. The enhanced chondrogenesis in SG is accompanied by enhanced cytoskeletal organization and TRPV4 expression, and blocking these elements abolished the effect. In conclusion, this study establishes a causal link between local matrix compliance and stem cell differentiation and establishes it as a crucial hydrogel design parameter. Furthermore, it offers novel SG designs to probe the role of local matrix compliance in various biological processes.
Collapse
Affiliation(s)
- Xinming Tong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Hung-Pang Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Zhao J, Hu Y, Li H, Liu C, Nie Z, Chen Z, Ling Q, Li Z, Zhao P, Song B, Zhang K, Bian L. Liquid-Liquid Phase Separation-Mediated Cellular-Scale Compartmentalization of Hydrogel Covalent Cross-Linking Promotes Microtubule-Based Mechanosensing. J Am Chem Soc 2025; 147:14336-14347. [PMID: 40252026 DOI: 10.1021/jacs.5c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Controlled liquid-liquid phase separation (LLPS) plays an important role in the formation of a heterogeneously structured extracellular matrix (ECM) consisting of densely cross-linked stiff structures compartmentalized in a loosely cross-linked matrix. Moreover, the mechanical cues presented by the cellular-scale structural heterogeneity of the ECM facilitate the mechanotransduction of cells and subsequent cellular development. Therefore, developing ECM-mimetic hydrogels with compartmentalized structural heterogeneity as inductive cell carriers is highly desirable but challenging. Inspired by the ECM formation process, we capitalized on the temperature-assisted LLPS of a custom-designed temperature-responsive macromer (TRM) to concentrate and compartmentalize the TRM in the dense phase of the phase-separated precursor solution while keeping the gelatin comacromer complex in the dilute phase. The subsequent cross-linking produces the cellular (micron)-scale microdomains with dense covalent cross-linking interspersed in the loosely cross-linked cell-adaptable interdomain hydrogel matrix. The obtained ECM-mimetic heterogeneous hydrogel, which is solely cross-linked by covalent bonds, promotes extensive spreading, microtubule-based mechanotransduction, and autophagic flux of encapsulated human mesenchymal stem cells (hMSCs), thereby enhancing osteogenesis and bone regeneration. Our findings not only provide valuable guidance for the fabrication of ECM-mimetic biomaterials via LLPS-mediated assembly but also shed light on the mechanobiological mechanism underlying the regulation of cellular development by mechanical cues of the ECM.
Collapse
Affiliation(s)
- Jianyang Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yuan Hu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Hao Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Caikun Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zhiqiang Nie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zekun Chen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Qiangjun Ling
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, P.R. China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Bin Song
- Department of Joint Surgery and Sports Medicine, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
4
|
Francis RM, Kopyeva I, Lai N, Yang S, Filteau JR, Wang X, Baker D, DeForest CA. Rapid and Inexpensive Image-Guided Grayscale Biomaterial Customization via LCD Printing. J Biomed Mater Res A 2025; 113:e37897. [PMID: 40145385 DOI: 10.1002/jbm.a.37897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/04/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
Hydrogels are an important class of biomaterials that permit cells to be cultured and studied within engineered microenvironments of user-defined physical and chemical properties. Though conventional 3D extrusion and stereolithographic (SLA) printing readily enable homogeneous and multimaterial hydrogels to be formed with specific macroscopic geometries, strategies that further afford spatiotemporal customization of the underlying gel physicochemistry in a non-discrete manner would be profoundly useful toward recapitulating the complexity of native tissue in vitro. Here, we demonstrate that grayscale control over local biomaterial biochemistry and mechanics can be rapidly achieved across large constructs using an inexpensive (~$300) and commercially available liquid crystal display (LCD)-based printer. Template grayscale images are first processed into a "height-extruded" 3D object, which is then printed on a standard LCD printer with an immobile build head. As the local height of the 3D object corresponds to the final light dosage delivered at the corresponding xy-coordinate, this method provides a route toward spatially specifying the extent of various dosage-dependent and biomaterial, forming/modifying photochemistries. Demonstrating the utility of this approach, we photopattern the grayscale polymerization of poly(ethylene glycol) (PEG) diacrylate gels, biochemical functionalization of agarose- and PEG-based gels via oxime ligation, and the controlled 2D adhesion and 3D growth of cells in response to a de novo-designed α5β1-modulating protein via thiol-norbornene click chemistry. Owing to the method's low cost, simple implementation, and high compatibility with many biomaterial photochemistries, we expect this strategy will prove useful toward fundamental biological studies and functional tissue engineering alike.
Collapse
Affiliation(s)
- Ryan M Francis
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Nicholas Lai
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Jeremy R Filteau
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Xinru Wang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - David Baker
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington, USA
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington, USA
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Zhu M, Zhang H, Zhou Q, Sheng S, Gao Q, Geng Z, Chen X, Lai Y, Jing Y, Xu K, Bai L, Wang G, Wang J, Jiang Y, Su J. Dynamic GelMA/DNA Dual-Network Hydrogels Promote Woven Bone Organoid Formation and Enhance Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501254. [PMID: 40123197 DOI: 10.1002/adma.202501254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Bone organoids, in vitro models mimicking native bone structure and function, rely on 3D stem cell culture for self-organization, differentiation, ECM secretion, and biomineralization, ultimately forming mineralized collagen hierarchies. However, their development is often limited by the lack of suitable matrices with optimal mechanical properties for sustained cell growth and differentiation. To address this, a dynamic DNA/Gelatin methacryloyl (GelMA) hydrogel (CGDE) is developed to recapitulate key biochemical and mechanical features of the bone ECM, providing a supportive microenvironment for bone organoid formation. This dual-network hydrogel is engineered through hydrogen bonding between DNA and GelMA, combined with GelMA network crosslinking, resulting in appropriate mechanical strength and enhanced viscoelasticity. During a 21-day 3D culture, the CGDE hydrogel facilitates cellular migration and self-organization, promoting woven bone organoid (WBO) formation via intramembranous ossification. These WBOs exhibit spatiotemporal architectures supporting dynamic mineralization and tissue remodeling. In vivo studies demonstrate that CGDE-derived WBOs exhibit self-adaptive properties, enabling rapid osseointegration within 4 weeks. This work highlights the CGDE hydrogel as a robust and scalable platform for bone organoid development, offering new insights into bone biology and innovative strategies for bone tissue regeneration.
Collapse
Affiliation(s)
- Mengru Zhu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Qirong Zhou
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Qianmin Gao
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhen Geng
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yingying Jing
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Ke Xu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jianhua Wang
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yingying Jiang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
6
|
Wu Z, Liu R, Shao N, Zhao Y. Developing 3D bioprinting for organs-on-chips. LAB ON A CHIP 2025; 25:1081-1096. [PMID: 39775492 DOI: 10.1039/d4lc00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Organs-on-chips (OoCs) have significantly advanced biomedical research by precisely reconstructing human microphysiological systems with biomimetic functions. However, achieving greater structural complexity of cell cultures on-chip for enhanced biological mimicry remains a challenge. To overcome these challenges, 3D bioprinting techniques can be used in directly building complex 3D cultures on chips, facilitating the in vitro engineering of organ-level models. Herein, we review the distinctive features of OoCs, along with the technical and biological challenges associated with replicating complex organ structures. We discuss recent bioprinting innovations that simplify the fabrication of OoCs while increasing their architectural complexity, leading to breakthroughs in the field and enabling the investigation of previously inaccessible biological problems. We highlight the challenges for the development of 3D bioprinted OoCs, concluding with a perspective on future directions aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Ning Shao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Shenzhen Research Institute, Southeast University, Shenzhen 518071, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou 450009, China
| |
Collapse
|
7
|
Ohnsorg ML, Hushka EA, Anseth KS. Photoresponsive Chemistries for User-Directed Hydrogel Network Modulation to Investigate Cell-Matrix Interactions. Acc Chem Res 2025; 58:47-60. [PMID: 39665396 DOI: 10.1021/acs.accounts.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Synthetic extracellular matrix (ECM) engineering is a highly interdisciplinary field integrating materials and polymer science and engineering, chemistry, cell biology, and medicine to develop innovative strategies to investigate and control cell-matrix interactions. Cellular microenvironments are complex and highly dynamic, changing in response to injury and disease. To capture some of these critical dynamics in vitro, biomaterial matrices have been developed with tailorable properties that can be modulated in situ in the presence of cells. While numerous macromolecules can serve as a basis in the design of a synthetic ECM, our group has exploited multi-arm poly(ethylene glycol) (PEG) macromolecules because of the ease of functionalization, many complementary bio-click reactions to conjugate biological signals, and ultimately, the ability to create well-defined systems to investigate cell-matrix interactions. To date, significant strides have been made in developing bio-responsive and transient synthetic ECM materials that degrade, relax stress, or strain-stiffen in response to cell-mediated stimuli through ECM-cleaving enzymes or integrin-mediated ECM adhesions. However, our group has also designed hydrogels incorporating different photoresponsive moieties, and these moieties facilitate user-defined spatiotemporal modulation of the extracellular microenvironment in vitro. The application of light allows one to break, form, and rearrange network bonds in the presence of cells to alter the biomechanical and biochemical microenvironment to investigate cell-matrix interactions in real-time. Such photoresponsive materials have facilitated fundamental discoveries in the biological pathways related to outside-in signaling, which guide important processes related to tissue development, homeostasis, disease progression, and regeneration. This review focuses on the phototunable chemical toolbox that has been used by Anseth and co-workers to modulate hydrogel properties post-network formation through: bond-breaking chemistries, such as o-nitrobenzyl and coumarin methyl ester photolysis; bond-forming chemistries, such as azadibenzocyclooctyne photo-oligomerization and anthracene dimerization; and bond-rearranging chemistries, such as allyl sulfide addition-fragmentation chain transfer and reversible ring opening polymerization of 1,2-dithiolanes. By using light to modulate the cellular microenvironment (in 2D, 3D, and even 4D), innovative experiments can be designed to study mechanosensing of single cells or multicellular constructs, pattern adhesive ligands to spatially control cell-integrin binding or modulate on-demand the surrounding cell niche to alter outside-in signaling in a temporally controlled manner. To date, these photochemically defined materials have been used for the culture, differentiation, and directed morphogenesis of primary cells and stem cells, co-cultured cells, and even multicellular constructs (e.g., organoids).Herein, we present examples of how this photochemical toolbox has been used under physiological reaction conditions with spatiotemporal control to answer important biological questions and address medical needs. Specifically, our group has exploited these materials to study mesenchymal stem cell mechanosensing and differentiation, the activation of fibroblasts in the context of valve and cardiac fibrosis, muscle stem cell response to matrix changes during injury and aging, and predictable symmetry breaking during intestinal organoid development. The materials and reactions described herein are diverse and enable the design and implementation of an array of hydrogels that can serve as cell delivery systems, tissue engineering scaffolds, or even in vitro models for studying disease or screening for new drug treatments.
Collapse
Affiliation(s)
- Monica L Ohnsorg
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ella A Hushka
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
8
|
Ryu JR, Ko K, Sun W. Polarization of organoids by bioengineered symmetry breaking. IBRO Neurosci Rep 2024; 17:22-31. [PMID: 38881849 PMCID: PMC11176950 DOI: 10.1016/j.ibneur.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Symmetry breaking leading to axis formation and spatial patterning is crucial for achieving more accurate recapitulation of human development in organoids. While these processes can occur spontaneously by self-organizing capabilities of pluripotent stem cells, they can often result in variation in structure and composition of cell types within organoids. To address this limitation, bioengineering techniques that utilize geometric, topological and stiffness factors are increasingly employed to enhance control and consistency. Here, we review how spontaneous manners and engineering tools such as micropattern, microfluidics, biomaterials, etc. can facilitate the process of symmetry breaking leading to germ layer patterning and the formation of anteroposterior and dorsoventral axes in blastoids, gastruloids, neuruloids and neural organoids. Furthermore, brain assembloids, which are composed of multiple brain regions through fusion processes are discussed. The overview of organoid polarization in terms of patterning tools can offer valuable insights for enhancing the physiological relevance of organoid system.
Collapse
Affiliation(s)
- Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kahee Ko
- Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Qiu W, Gehre C, Nepomuceno JP, Bao Y, Li Z, Müller R, Qin XH. Coumarin-Based Photodegradable Hydrogels Enable Two-Photon Subtractive Biofabrication at 300 mm s -1. Angew Chem Int Ed Engl 2024; 63:e202404599. [PMID: 39023389 DOI: 10.1002/anie.202404599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 07/20/2024]
Abstract
Spatiotemporally controlled two-photon photodegradation of hydrogels has gained increasing attention for high-precision subtractive tissue engineering. However, conventional photolabile hydrogels often have poor efficiency upon two-photon excitation in the near-infrared (NIR) region and thus require high laser dosage that may compromise cell activity. As a result, high-speed two-photon hydrogel erosion in the presence of cells remains challenging. Here we introduce the design and synthesis of efficient coumarin-based photodegradable hydrogels to overcome these limitations. A set of photolabile coumarin-functionalized polyethylene glycol linkers are synthesized through a Passerini multicomponent reaction. After mixing these linkers with thiolated hyaluronic acid, semi-synthetic photodegradable hydrogels are formed in situ via Michael addition crosslinking. The efficiency of photodegradation in these hydrogels is significantly higher than that in nitrobenzyl counterparts upon two-photon irradiation at 780 nm. A complex microfluidic network mimicking the bone microarchitecture is successfully fabricated in preformed coumarin hydrogels at high speeds of up to 300 mm s-1 and low laser dosage down to 10 mW. Further, we demonstrate fast two-photon printing of hollow microchannels inside a hydrogel to spatiotemporally direct cell migration in 3D. Collectively, these hydrogels may open new avenues for fast laser-guided tissue fabrication at high spatial resolution.
Collapse
Affiliation(s)
- Wanwan Qiu
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 39, 8092, Zurich, Switzerland
| | - Christian Gehre
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 39, 8092, Zurich, Switzerland
| | | | - Yinyin Bao
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Zhiquan Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 39, 8092, Zurich, Switzerland
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 39, 8092, Zurich, Switzerland
| |
Collapse
|
10
|
Wang H, Bai S, Gu G, Zhang C, Wang Y. Chemical Reaction Steers Spatiotemporal Self-Assembly of Supramolecular Hydrogels. Chempluschem 2024; 89:e202400396. [PMID: 38923325 DOI: 10.1002/cplu.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular structures are widespread in living system, which are usually spatiotemporally regulated by sophisticated metabolic processes to enable vital biological functions. Inspired by living system, tremendous efforts have been made to realize spatiotemporal control over the self-assembly of supramolecular materials in synthetic scenario by coupling chemical reaction with molecular self-assembly process. In this review, we focused on the works related to supramolecular hydrogels that are regulated in space and time using chemical reaction. Firstly, we summarized how spatially controlled self-assembly of supramolecular hydrogels can be achieved via chemical reaction-instructed self-assembly, and the application of such a self-assembly methodology in biotherapy was discussed as well. Second, we reviewed dynamic supramolecular hydrogels dictated by chemical reaction networks that can evolve their structures and properties against time. Third, we discussed the recent progresses in the control of the self-assembly of supramolecular hydrogels in both space and time though a reaction-diffusion-coupled self-assembly approach. Finally, we provided a perspective on the further development of spatiotemporally controlled supramolecular hydrogels using chemical reaction in the future.
Collapse
Affiliation(s)
- Hucheng Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengyu Bai
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guanyao Gu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunyu Zhang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiming Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Jha A, Moore E. YIGSR, A Laminin-Derived Peptide, Dictates a Concentration-Dependent Impact on Macrophage Phenotype Response. Cell Mol Bioeng 2024; 17:423-440. [PMID: 39513005 PMCID: PMC11538123 DOI: 10.1007/s12195-024-00810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/18/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose Macrophage immune cells play crucial roles in the inflammatory (M1) and regenerative (M2) processes. The extracellular matrix (ECM) composition, including presentation of embedded ligands, governs macrophage function. Laminin concentration is abundant in the basement membrane and is dependent on pathological state: reduced in inflammation and increased during regeneration. Distinct laminin ligands, such as IKVAV and YIGSR, have disparate roles in dictating cell function. For example, IKVAV, derived from the alpha chain of laminin, promotes angiogenesis and metastasis of cancer cells whereas YIGSR, beta chain derived, impedes angiogenesis and tumor progression. Previous work has demonstrated IKVAV's inflammation inhibiting properties in macrophages. Given the divergent role of IKVAV and YIGSR in interacting with cells through varied integrin receptors, we ask: what role does laminin derived peptide YIGSR play in governing macrophage function? Methods We quantified the influence of YIGSR on macrophage phenotype in 2D and 3D via immunostaining assessments for M1 marker inducible nitric oxide synthase (iNOS) and M2 marker Arginase-1 (Arg-1). We also analysed the secretome of human and murine macrophage response to YIGSR via a Luminex bead assay. Results YIGSR impact on macrophage phenotype occurs in a concentration-dependent manner. At lower concentrations of YIGSR, macrophage inflammation was increased whereas, at higher concentrations of YIGSR the opposite effect was seen within the same time frame. Secretomic assessments also demonstrate that pro-inflammatory chemokines and cytokines were increased at low YIGSR concentrations in M0, M1, M2 macrophages while pro-inflammatory secretion was reduced at higher concentrations. Conclusions YIGSR can be used as a tool to modulate macrophage inflammatory state within M1 and M2 phenotypes depending on the concentration of peptide. YIGSR's impact on macrophage function can be leveraged for the development of immunoengineering strategies in regenerative medicine and cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00810-5.
Collapse
Affiliation(s)
- Aakanksha Jha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Erika Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
12
|
Beeren IAO, Morgan FLC, Rademakers T, Bauer J, Dijkstra PJ, Moroni L, Baker MB. Well-Defined Synthetic Copolymers with Pendant Aldehydes Form Biocompatible Strain-Stiffening Hydrogels and Enable Competitive Ligand Displacement. J Am Chem Soc 2024; 146:24330-24347. [PMID: 39163519 PMCID: PMC11378284 DOI: 10.1021/jacs.4c04988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Dynamic hydrogels are attractive platforms for tissue engineering and regenerative medicine due to their ability to mimic key extracellular matrix (ECM) mechanical properties like strain-stiffening and stress relaxation while enabling enhanced processing characteristics like injectability, 3D printing, and self-healing. Systems based on imine-type dynamic covalent chemistry (DCvC) have become increasingly popular. However, most reported polymers comprising aldehyde groups are based on either end-group-modified synthetic or side-chain-modified natural polymers; synthetic versions of side-chain-modified polymers are noticeably absent. To facilitate access to new classes of dynamic hydrogels, we report the straightforward synthesis of a water-soluble copolymer with a tunable fraction of pendant aldehyde groups (12-64%) using controlled radical polymerization and their formation into hydrogel biomaterials with dynamic cross-links. We found the polymer synthesis to be well-controlled with the determined reactivity ratios consistent with a blocky gradient microarchitecture. Subsequently, we observed fast gelation kinetics with imine-type cross-linking. We were able to vary hydrogel stiffness from ≈2 to 20 kPa, tune the onset of strain-stiffening toward a biologically relevant regime (σc ≈ 10 Pa), and demonstrate cytocompatibility using human dermal fibroblasts. Moreover, to begin to mimic the dynamic biochemical nature of the native ECM, we highlight the potential for temporal modulation of ligands in our system to demonstrate ligand displacement along the copolymer backbone via competitive binding. The combination of highly tunable composition, stiffness, and strain-stiffening, in conjunction with spatiotemporal control of functionality, positions these cytocompatible copolymers as a powerful platform for the rational design of next-generation synthetic biomaterials.
Collapse
Affiliation(s)
- Ivo A O Beeren
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Francis L C Morgan
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Timo Rademakers
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jurica Bauer
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Pieter J Dijkstra
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
13
|
Son DO, Benitez R, Diao L, Hinz B. How to Keep Myofibroblasts under Control: Culture of Mouse Skin Fibroblasts on Soft Substrates. J Invest Dermatol 2024; 144:1923-1934. [PMID: 39078357 DOI: 10.1016/j.jid.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024]
Abstract
During the physiological healing of skin wounds, fibroblasts recruited from the uninjured adjacent dermis and deeper subcutaneous fascia layers are transiently activated into myofibroblasts to first secrete and then contract collagen-rich extracellular matrix into a mechanically resistant scar. Scar tissue restores skin integrity after damage but comes at the expense of poor esthetics and loss of tissue function. Stiff scar matrix also mechanically activates various precursor cells into myofibroblasts in a positive feedback loop. Persistent myofibroblast activation results in pathologic accumulation of fibrous collagen and hypertrophic scarring, called fibrosis. Consequently, the mechanisms of fibroblast-to-myofibroblast activation and persistence are studied to develop antifibrotic and prohealing treatments. Mechanistic understanding often starts in a plastic cell culture dish. This can be problematic because contact of fibroblasts with tissue culture plastic or glass surfaces invariably generates myofibroblast phenotypes in standard culture. We describe a straight-forward method to produce soft cell culture surfaces for fibroblast isolation and continued culture and highlight key advantages and limitations of the approach. Adding a layer of elastic silicone polymer tunable to the softness of normal skin and the stiffness of pathologic scars allows to control mechanical fibroblast activation while preserving the simplicity of conventional 2-dimensional cell culture.
Collapse
Affiliation(s)
- Dong Ok Son
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Raquel Benitez
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Li Diao
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Boris Hinz
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada; Faculty of Dentistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
14
|
Riffe MB, Davidson MD, Seymour G, Dhand AP, Cooke ME, Zlotnick HM, McLeod RR, Burdick JA. Multi-Material Volumetric Additive Manufacturing of Hydrogels using Gelatin as a Sacrificial Network and 3D Suspension Bath. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309026. [PMID: 38243918 PMCID: PMC11259577 DOI: 10.1002/adma.202309026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/29/2023] [Indexed: 01/22/2024]
Abstract
Volumetric additive manufacturing (VAM) is an emerging layerless method for the rapid processing of reactive resins into 3D structures, where printing is much faster (seconds) than other lithography and direct ink writing methods (minutes to hours). As a vial of resin rotates in the VAM process, patterned light exposure defines a 3D object and then resin that has not undergone gelation can be washed away. Despite the promise of VAM, there are challenges with the printing of soft hydrogel materials from non-viscous precursors, including multi-material constructs. To address this, sacrificial gelatin is used to modulate resin viscosity to support the cytocompatible VAM printing of macromers based on poly(ethylene glycol) (PEG), hyaluronic acid (HA), and polyacrylamide (PA). After printing, gelatin is removed by washing at an elevated temperature. To print multi-material constructs, the gelatin-containing resin is used as a shear-yielding suspension bath (including HA to further modulate bath properties) where ink can be extruded into the bath to define a multi-material resin that can then be processed with VAM into a defined object. Multi-material constructs of methacrylated HA (MeHA) and gelatin methacrylamide (GelMA) are printed (as proof-of-concept) with encapsulated mesenchymal stromal cells (MSCs), where the local hydrogel properties guide cell spreading behavior with culture.
Collapse
Affiliation(s)
- Morgan B Riffe
- Material Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Matthew D Davidson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Gabriel Seymour
- Department of Electrical, Computer, and Energy Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Abhishek P Dhand
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Megan E Cooke
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Hannah M Zlotnick
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Robert R McLeod
- Material Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Electrical, Computer, and Energy Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Jason A Burdick
- Material Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
15
|
Zhu J, He Y, Wang Y, Cai LH. Voxelated bioprinting of modular double-network bio-ink droplets. Nat Commun 2024; 15:5902. [PMID: 39003266 PMCID: PMC11246467 DOI: 10.1038/s41467-024-49705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/17/2024] [Indexed: 07/15/2024] Open
Abstract
Analogous of pixels to two-dimensional pictures, voxels-in the form of either small cubes or spheres-are the basic building blocks of three-dimensional objects. However, precise manipulation of viscoelastic bio-ink voxels in three-dimensional space represents a grand challenge in both soft matter science and biomanufacturing. Here, we present a voxelated bioprinting technology that enables the digital assembly of interpenetrating double-network hydrogel droplets made of polyacrylamide/alginate-based or hyaluronic acid/alginate-based polymers. The hydrogels are crosslinked via additive-free and biofriendly click reaction between a pair of stoichiometrically matched polymers carrying norbornene and tetrazine groups, respectively. We develop theoretical frameworks to describe the crosslinking kinetics and stiffness of the hydrogels, and construct a diagram-of-state to delineate their mechanical properties. Multi-channel print nozzles are developed to allow on-demand mixing of highly viscoelastic bio-inks without significantly impairing cell viability. Further, we showcase the distinctive capability of voxelated bioprinting by creating highly complex three-dimensional structures such as a hollow sphere composed of interconnected yet distinguishable hydrogel particles. Finally, we validate the cytocompatibility and in vivo stability of the printed double-network scaffolds through cell encapsulation and animal transplantation.
Collapse
Affiliation(s)
- Jinchang Zhu
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Yi He
- Department of Surgery, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, VA, 22903, USA
| | - Li-Heng Cai
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
16
|
Garibyan M, Hoffman T, Makaske T, Do SK, Wu Y, Williams BA, March AR, Cho N, Pedroncelli N, Lima RE, Soto J, Jackson B, Santoso JW, Khademhosseini A, Thomson M, Li S, McCain ML, Morsut L. Engineering programmable material-to-cell pathways via synthetic notch receptors to spatially control differentiation in multicellular constructs. Nat Commun 2024; 15:5891. [PMID: 39003263 PMCID: PMC11246427 DOI: 10.1038/s41467-024-50126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.
Collapse
Affiliation(s)
- Mher Garibyan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Thijs Makaske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
- Utrecht University in the lab of Prof. Dr. Lukas Kapitein, Los Angeles, CA, 90024, USA
| | - Stephanie K Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander R March
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nathan Cho
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Ricardo Espinosa Lima
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brooke Jackson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey W Santoso
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Megan L McCain
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Wang Y, Liu H, Wang H, Xie H, Zhou S. Micropatterned shape-memory polymer substrate containing hydrogen bonds creates a long-term dynamic microenvironment for regulating nerve-cell fate. J Mater Chem B 2024; 12:6690-6702. [PMID: 38895854 DOI: 10.1039/d4tb00593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Peripheral nerve injuries (PNIs) caused by mechanical contusion are frequently encountered in clinical practice, using nerve guidance conduits (NGCs) is now a promising therapy. An NGC creates a microenvironment for cell growth and differentiation, thus understanding physical and biochemical cues that can affect nerve-cell fate is a prerequisite for rationally designing NGCs. However, most of the previous works were focused on some static cues, the dynamic nature of the nerve microenvironment has not yet been well captured. Herein, we develop a micropatterned shape-memory polymer as a programmable substrate for providing a dynamic cue for nerve-cell growth. The shape-memory properties enable temporal programming of the substrate, and a dynamic microenvironment is created during standard cell culturing at 37 °C. Unlike most of the biomedical shape-memory polymers that recover rapidly at 37 °C, the proposed substrate shows a slow recovery process lasting 3-4 days and creates a long-term dynamic microenvironment. Results demonstrate that the vertically programmed substrates provide the most suitable dynamic microenvironment for PC12 cells as both the differentiation and maturity are promoted. Overall, this work provides a strategy for creating a long-term dynamic microenvironment for regulating nerve-cell fate and will inspire the rational design of NGCs for the treatment of PNIs.
Collapse
Affiliation(s)
- Yilei Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hao Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Huan Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
18
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
19
|
Yang J, Chen Z, Gao C, Liu J, Liu K, Wang X, Pan X, Wang G, Sang H, Pan H, Liu W, Ruan C. A mechanical-assisted post-bioprinting strategy for challenging bone defects repair. Nat Commun 2024; 15:3565. [PMID: 38670999 PMCID: PMC11053166 DOI: 10.1038/s41467-024-48023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bioprinting that can synchronously deposit cells and biomaterials has lent fresh impetus to the field of tissue regeneration. However, the unavoidable occurrence of cell damage during fabrication process and intrinsically poor mechanical stability of bioprinted cell-laden scaffolds severely restrict their utilization. As such, on basis of heart-inspired hollow hydrogel-based scaffolds (HHSs), a mechanical-assisted post-bioprinting strategy is proposed to load cells into HHSs in a rapid, uniform, precise and friendly manner. HHSs show mechanical responsiveness to load cells within 4 s, a 13-fold increase in cell number, and partitioned loading of two types of cells compared with those under static conditions. As a proof of concept, HHSs with the loading cells show an enhanced regenerative capability in repair of the critical-sized segmental and osteoporotic bone defects in vivo. We expect that this post-bioprinting strategy can provide a universal, efficient, and promising way to promote cell-based regenerative therapy.
Collapse
Affiliation(s)
- Jirong Yang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhigang Chen
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chongjian Gao
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juan Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kaizheng Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiao Wang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Xiaoling Pan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Guocheng Wang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxun Sang
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Haobo Pan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Wijewardhane N, Denniss AR, Uppington M, Hauser H, Gorochowski TE, Piddini E, Hauert S. Long-term imaging and spatio-temporal control of living cells using targeted light based on closed-loop feedback. JOURNAL OF MICRO-BIO ROBOTICS 2024; 20:2. [PMID: 38616892 PMCID: PMC11009755 DOI: 10.1007/s12213-024-00165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/24/2023] [Accepted: 12/28/2023] [Indexed: 04/16/2024]
Abstract
The ability to optically interact with cells on both an individual and collective level has applications from wound healing to cancer treatment. Building systems that can facilitate both localised light illumination and visualisation of cells can, however, be challenging and costly. This work takes the Dynamic Optical MicroEnvironment (DOME), an existing platform for the closed-loop optical control of microscale agents, and adapts the design to support live-cell imaging. Through modifications made to the imaging and projection systems within the DOME, a significantly higher resolution, alternative imaging channels and the ability to customise light wavelengths are achieved (Bio-DOME). This is accompanied by an interactive calibration procedure that is robust to changes in the hardware configuration and provides fluorescence imaging (Fluoro-DOME). These alterations to the fundamental design allow for long-term use of the DOME in an environment of higher temperature and humidity. Thus, long-term imaging of living cells in a wound, with closed-loop control of real-time frontier illumination via projected light patterns, is facilitated. Supplementary Information The online version contains supplementary material available at 10.1007/s12213-024-00165-0.
Collapse
Affiliation(s)
- Neshika Wijewardhane
- Centre for Doctoral Training in Digital Health and Care, University of Bristol, Bristol, UK
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ana Rubio Denniss
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- Bristol Robotics Laboratory, University of Bristol, University of West of England, Bristol, UK
| | - Matthew Uppington
- Bristol Robotics Laboratory, University of Bristol, University of West of England, Bristol, UK
- Centre for Doctoral Training in FARSCOPE, University of Bristol, University of West of England, Bristol, UK
| | - Helmut Hauser
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- Centre for Doctoral Training in FARSCOPE, University of Bristol, University of West of England, Bristol, UK
| | - Thomas E. Gorochowski
- School of Biological Science, University of Bristol, Bristol, UK
- Bristol Synthetic Biology Research Centre, University of Bristol, Bristol, UK
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Sabine Hauert
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- Bristol Robotics Laboratory, University of Bristol, University of West of England, Bristol, UK
| |
Collapse
|
21
|
Wang H, Hao Y, Guo K, Liu L, Xia B, Gao X, Zheng X, Huang J. Quantitative Biofabrication Platform for Collagen-Based Peripheral Nerve Grafts with Structural and Chemical Guidance. Adv Healthc Mater 2024; 13:e2303505. [PMID: 37988388 DOI: 10.1002/adhm.202303505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Owing to its crucial role in the human body, collagen has immense potential as a material for the biofabrication of tissues and organs. However, highly refined fabrication using collagen remains difficult, primarily because of its notably soft properties. A quantitative biofabrication platform to construct collagen-based peripheral nerve grafts, incorporating bionic structural and chemical guidance cues, is introduced. A viscoelastic model for collagen, which facilitates simulating material relaxation and fabricating collagen-based neural grafts, achieving a maximum channel density similar to that of the native nerve structure of longitudinal microchannel arrays, is established. For axonal regeneration over considerable distances, a gradient printing control model and quantitative method are developed to realize the high-precision gradient distribution of nerve growth factor required to obtain nerve grafts through one-step bioprinting. Experiments verify that the bioprinted graft effectively guides linear axonal growth in vitro and in vivo. This study should advance biofabrication methods for a variety of human tissue-engineering applications requiring tailored cues.
Collapse
Affiliation(s)
- Heran Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Hao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai Guo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xue Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
22
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
23
|
Peng YH, Hsiao SK, Gupta K, Ruland A, Auernhammer GK, Maitz MF, Boye S, Lattner J, Gerri C, Honigmann A, Werner C, Krieg E. Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture. NATURE NANOTECHNOLOGY 2023; 18:1463-1473. [PMID: 37550574 PMCID: PMC10716043 DOI: 10.1038/s41565-023-01483-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Three-dimensional cell and organoid cultures rely on the mechanical support of viscoelastic matrices. However, commonly used matrix materials lack control over key cell-instructive properties. Here we report on fully synthetic hydrogels based on DNA libraries that self-assemble with ultrahigh-molecular-weight polymers, forming a dynamic DNA-crosslinked matrix (DyNAtrix). DyNAtrix enables computationally predictable and systematic control over its viscoelasticity, thermodynamic and kinetic parameters by changing DNA sequence information. Adjustable heat activation allows homogeneous embedding of mammalian cells. Intriguingly, stress-relaxation times can be tuned over four orders of magnitude, recapitulating mechanical characteristics of living tissues. DyNAtrix is self-healing, printable, exhibits high stability, cyto- and haemocompatibility, and controllable degradation. DyNAtrix-based cultures of human mesenchymal stromal cells, pluripotent stem cells, canine kidney cysts and human trophoblast organoids show high viability, proliferation and morphogenesis. DyNAtrix thus represents a programmable and versatile precision matrix for advanced approaches to biomechanics, biophysics and tissue engineering.
Collapse
Affiliation(s)
- Yu-Hsuan Peng
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Syuan-Ku Hsiao
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Krishna Gupta
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - André Ruland
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Günter K Auernhammer
- Institute for Physical Chemistry and Polymer Physics, Polymer Interfaces, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Manfred F Maitz
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Susanne Boye
- Institute for Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Johanna Lattner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Claudia Gerri
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Carsten Werner
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Elisha Krieg
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
24
|
Muthuramalingam K, Lee HJ. Effect of GelMA Hydrogel Properties on Long-Term Encapsulation and Myogenic Differentiation of C 2C 12 Spheroids. Gels 2023; 9:925. [PMID: 38131911 PMCID: PMC10743132 DOI: 10.3390/gels9120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Skeletal muscle regeneration and engineering hold great promise for the treatment of various muscle-related pathologies and injuries. This research explores the use of gelatin methacrylate (GelMA) hydrogels as a critical component for encapsulating cellular spheroids in the context of muscle tissue engineering and regenerative applications. The preparation of GelMA hydrogels at various concentrations, ranging from 5% to 15%, was characterized and correlated with their mechanical stiffness. The storage modulus was quantified and correlated with GelMA concentration: 6.01 ± 1.02 Pa (5% GelMA), 75.78 ± 6.67 Pa (10% GelMA), and 134.69 ± 7.93 Pa (15% GelMA). In particular, the mechanical properties and swelling capacity of GelMA hydrogels were identified as key determinants affecting cell sprouting and migration from C2C12 spheroids. The controlled balance between these factors was found to significantly enhance the differentiation and functionality of the encapsulated spheroids. Our results highlight the critical role of GelMA hydrogels in orchestrating cellular dynamics and processes within a 3D microenvironment. The study demonstrates that these hydrogels provide a promising scaffold for the long-term encapsulation of spheroids while maintaining high biocompatibility. This research provides valuable insights into the design and use of GelMA hydrogels for improved muscle tissue engineering and regenerative applications, paving the way for innovative approaches to muscle tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
25
|
Dudaryeva OY, Bernhard S, Tibbitt MW, Labouesse C. Implications of Cellular Mechanical Memory in Bioengineering. ACS Biomater Sci Eng 2023; 9:5985-5998. [PMID: 37797187 PMCID: PMC10646820 DOI: 10.1021/acsbiomaterials.3c01007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The ability to maintain and differentiate cells in vitro is critical to many advances in the field of bioengineering. However, on traditional, stiff (E ≈ GPa) culture substrates, cells are subjected to sustained mechanical stress that can lead to phenotypic changes. Such changes may remain even after transferring the cells to another scaffold or engrafting them in vivo and bias the outcomes of the biological investigation or clinical treatment. This persistence─or mechanical memory─was initially observed for sustained myofibroblast activation of pulmonary fibroblasts after culturing them on stiff (E ≈ 100 kPa) substrates. Aspects of mechanical memory have now been described in many in vitro contexts. In this Review, we discuss the stiffness-induced effectors of mechanical memory: structural changes in the cytoskeleton and activity of transcription factors and epigenetic modifiers. We then focus on how mechanical memory impacts cell expansion and tissue regeneration outcomes in bioengineering applications relying on prolonged 2D plastic culture, such as stem cell therapies and disease models. We propose that alternatives to traditional cell culture substrates can be used to mitigate or erase mechanical memory and improve the efficiency of downstream cell-based bioengineering applications.
Collapse
Affiliation(s)
- Oksana Y Dudaryeva
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3584, Netherlands
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
26
|
Morrison TX, Gramlich WM. Tunable, thiol-ene, interpenetrating network hydrogels of norbornene-modified carboxymethyl cellulose and cellulose nanofibrils. Carbohydr Polym 2023; 319:121173. [PMID: 37567714 DOI: 10.1016/j.carbpol.2023.121173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 08/13/2023]
Abstract
Carboxymethyl cellulose modified with norbornene groups (NorCMC) and cellulose nanofibrils (CNFs) produced through mechanical refining without chemical pretreatment formed interpenetrating network hydrogels through a UV-light initiated thiol-ene reaction. The molar ratio of thiols in crosslinkers to norbornene groups off the NorCMC (T:N), total polymer weight percent in the hydrogel, and weight percent of CNFs of the total polymer content of the hydrogels were varied to control hydrogel properties. This method enabled orders of magnitude changes to behavior. Swelling in aqueous environments could be significant (>150 %) without CNFs to minimal (<15 %) with the use of 50 % CNFs. NorCMC and CNF networks interacted synergistically to create hydrogels with compression modulus values spanning 1 to 150 kPa - the values of most biological tissues. T:N and total polymer weight percent could be varied to create hydrogels with different CNF content, but the same compression modulus, targeting 10 and 100 kPa hydrogels and providing a system that can independently vary fibrillar content and bulk modulus. Analysis of the effective crosslinks, thiol-ene network mesh size, and burst release of the polymer indicated synergistic interactions of the NorCMC thiol-ene and CNFs networks. These interactions enhanced modulus and degradation control of the network under physiological conditions.
Collapse
Affiliation(s)
| | - William M Gramlich
- Department of Chemistry, University of Maine, Orono, ME 04469, USA; Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, USA; Institute of Medicine, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
27
|
Tournier P, Saint‐Pé G, Lagneau N, Loll F, Halgand B, Tessier A, Guicheux J, Visage CL, Delplace V. Clickable Dynamic Bioinks Enable Post-Printing Modifications of Construct Composition and Mechanical Properties Controlled over Time and Space. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300055. [PMID: 37712185 PMCID: PMC10602521 DOI: 10.1002/advs.202300055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Indexed: 09/16/2023]
Abstract
Bioprinting is a booming technology, with numerous applications in tissue engineering and regenerative medicine. However, most biomaterials designed for bioprinting depend on the use of sacrificial baths and/or non-physiological stimuli. Printable biomaterials also often lack tunability in terms of their composition and mechanical properties. To address these challenges, the authors introduce a new biomaterial concept that they have termed "clickable dynamic bioinks". These bioinks use dynamic hydrogels that can be printed, as well as chemically modified via click reactions to fine-tune the physical and biochemical properties of printed objects after printing. Specifically, using hyaluronic acid (HA) as a polymer of interest, the authors investigate the use of a boronate ester-based crosslinking reaction to produce dynamic hydrogels that are printable and cytocompatible, allowing for bioprinting. The resulting dynamic bioinks are chemically modified with bioorthogonal click moieties to allow for a variety of post-printing modifications with molecules carrying the complementary click function. As proofs of concept, the authors perform various post-printing modifications, including adjusting polymer composition (e.g., HA, chondroitin sulfate, and gelatin) and stiffness, and promoting cell adhesion via adhesive peptide immobilization (i.e., RGD peptide). The results also demonstrate that these modifications can be controlled over time and space, paving the way for 4D bioprinting applications.
Collapse
Affiliation(s)
- Pierre Tournier
- RMeS – Regenerative Medicine and Skeleton (INSERM UMR 1229)Oniris, CHU Nantes, INSERMNantes UniversitéNantesF‐44000France
| | - Garance Saint‐Pé
- RMeS – Regenerative Medicine and Skeleton (INSERM UMR 1229)Oniris, CHU Nantes, INSERMNantes UniversitéNantesF‐44000France
| | - Nathan Lagneau
- RMeS – Regenerative Medicine and Skeleton (INSERM UMR 1229)Oniris, CHU Nantes, INSERMNantes UniversitéNantesF‐44000France
| | - François Loll
- RMeS – Regenerative Medicine and Skeleton (INSERM UMR 1229)Oniris, CHU Nantes, INSERMNantes UniversitéNantesF‐44000France
| | - Boris Halgand
- RMeS – Regenerative Medicine and Skeleton (INSERM UMR 1229)Oniris, CHU Nantes, INSERMNantes UniversitéNantesF‐44000France
| | - Arnaud Tessier
- Laboratoire CEISAM (UMR CNRS 6230)Nantes UniversitéNantesF‐44000France
| | - Jérôme Guicheux
- RMeS – Regenerative Medicine and Skeleton (INSERM UMR 1229)Oniris, CHU Nantes, INSERMNantes UniversitéNantesF‐44000France
| | - Catherine Le Visage
- RMeS – Regenerative Medicine and Skeleton (INSERM UMR 1229)Oniris, CHU Nantes, INSERMNantes UniversitéNantesF‐44000France
| | - Vianney Delplace
- RMeS – Regenerative Medicine and Skeleton (INSERM UMR 1229)Oniris, CHU Nantes, INSERMNantes UniversitéNantesF‐44000France
| |
Collapse
|
28
|
Murota Y, Nagane M, Wu M, Santra M, Venkateswaran S, Tanaka S, Bradley M, Taga T, Tabu K. A niche-mimicking polymer hydrogel-based approach to identify molecular targets for tackling human pancreatic cancer stem cells. Inflamm Regen 2023; 43:46. [PMID: 37759310 PMCID: PMC10523636 DOI: 10.1186/s41232-023-00296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is one of the most fatal human cancers, but effective therapies remain to be established. Cancer stem cells (CSCs) are highly resistant to anti-cancer drugs and a deeper understanding of their microenvironmental niche has been considered important to provide understanding and solutions to cancer eradication. However, as the CSC niche is composed of a wide variety of biological and physicochemical factors, the development of multidisciplinary tools that recapitulate their complex features is indispensable. Synthetic polymers have been studied as attractive biomaterials due to their tunable biofunctionalities, while hydrogelation technique further renders upon them a diversity of physical properties, making them an attractive tool for analysis of the CSC niche. METHODS To develop innovative materials that recapitulate the CSC niche in pancreatic cancers, we performed polymer microarray analysis to identify niche-mimicking scaffolds that preferentially supported the growth of CSCs. The niche-mimicking activity of the identified polymers was further optimized by polyethylene glycol (PEG)-based hydrogelation. To reveal the biological mechanisms behind the activity of the optimized hydrogels towards CSCs, proteins binding onto the hydrogel were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and the potential therapeutic targets were validated by looking at gene expression and patients' outcome in the TCGA database. RESULTS PA531, a heteropolymer composed of 2-methoxyethyl methacrylate (MEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) (5.5:4.5) that specifically supports the growth and maintenance of CSCs was identified by polymer microarray screening using the human PAAD cell line KLM1. The polymer PA531 was converted into five hydrogels (PA531-HG1 to HG5) and developed to give an optimized scaffold with the highest CSC niche-mimicking activities. From this polymer that recapitulated CSC binding and control, the proteins fetuin-B and angiotensinogen were identified as candidate target molecules with clinical significance due to the correlation between gene expression levels and prognosis in PAAD patients and the proteins associated with the niche-mimicking polymer. CONCLUSION This study screened for biofunctional polymers suitable for recapitulation of the pancreatic CSC niche and one hydrogel with high niche-mimicking abilities was successfully fabricated. Two soluble factors with clinical significance were identified as potential candidates for biomarkers and therapeutic targets in pancreatic cancers. Such a biomaterial-based approach could be a new platform in drug discovery and therapy development against CSCs, via targeting of their niche.
Collapse
Affiliation(s)
- Yoshitaka Murota
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Mariko Nagane
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Mei Wu
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Mithun Santra
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Seshasailam Venkateswaran
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
29
|
Bondarenko V, Nikolaev M, Kromm D, Belousov R, Wolny A, Blotenburg M, Zeller P, Rezakhani S, Hugger J, Uhlmann V, Hufnagel L, Kreshuk A, Ellenberg J, van Oudenaarden A, Erzberger A, Lutolf MP, Hiiragi T. Embryo-uterine interaction coordinates mouse embryogenesis during implantation. EMBO J 2023; 42:e113280. [PMID: 37522872 PMCID: PMC10476174 DOI: 10.15252/embj.2022113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Embryo implantation into the uterus marks a key transition in mammalian development. In mice, implantation is mediated by the trophoblast and is accompanied by a morphological transition from the blastocyst to the egg cylinder. However, the roles of trophoblast-uterine interactions in embryo morphogenesis during implantation are poorly understood due to inaccessibility in utero and the remaining challenges to recapitulate it ex vivo from the blastocyst. Here, we engineer a uterus-like microenvironment to recapitulate peri-implantation development of the whole mouse embryo ex vivo and reveal essential roles of the physical embryo-uterine interaction. We demonstrate that adhesion between the trophoblast and the uterine matrix is required for in utero-like transition of the blastocyst to the egg cylinder. Modeling the implanting embryo as a wetting droplet links embryo shape dynamics to the underlying changes in trophoblast adhesion and suggests that the adhesion-mediated tension release facilitates egg cylinder formation. Light-sheet live imaging and the experimental control of the engineered uterine geometry and trophoblast velocity uncovers the coordination between trophoblast motility and embryo growth, where the trophoblast delineates space for embryo morphogenesis.
Collapse
Affiliation(s)
- Vladyslav Bondarenko
- European Molecular Biology LaboratoryDevelopmental Biology UnitHeidelbergGermany
- Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany
- Present address:
Weizmann Institute of ScienceRehovotIsrael
| | - Mikhail Nikolaev
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Present address:
Institute of Human Biology (IHB)Roche Pharma Research and Early DevelopmentBaselSwitzerland
| | - Dimitri Kromm
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
- Present address:
Delft Center for Systems and ControlDelft University of TechnologyDelftThe Netherlands
| | - Roman Belousov
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
| | - Adrian Wolny
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
| | | | | | - Saba Rezakhani
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Present address:
Novartis Institutes for BioMedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Johannes Hugger
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
- EMBL‐EBI, Wellcome Genome CampusHinxtonUK
| | | | - Lars Hufnagel
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
- Present address:
Veraxa BiotechHeidelbergGermany
| | - Anna Kreshuk
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
| | - Jan Ellenberg
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
| | | | - Anna Erzberger
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
- Department of Physics and AstronomyHeidelberg UniversityHeidelbergGermany
| | - Matthias P Lutolf
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Present address:
Institute of Human Biology (IHB)Roche Pharma Research and Early DevelopmentBaselSwitzerland
| | - Takashi Hiiragi
- European Molecular Biology LaboratoryDevelopmental Biology UnitHeidelbergGermany
- Hubrecht InstituteUtrechtThe Netherlands
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Developmental BiologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
30
|
Debruyne AC, Okkelman IA, Dmitriev RI. Balance between the cell viability and death in 3D. Semin Cell Dev Biol 2023; 144:55-66. [PMID: 36117019 DOI: 10.1016/j.semcdb.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Cell death is a phenomenon, frequently perceived as an absolute event for cell, tissue and the organ. However, the rising popularity and complexity of such 3D multicellular 'tissue building blocks' as heterocellular spheroids, organoids, and 'assembloids' prompts to revise the definition and quantification of cell viability and death. It raises several questions on the overall viability of all the cells within 3D volume and on choosing the appropriate, continuous, and non-destructive viability assay enabling for a single-cell analysis. In this review, we look at cell viability and cell death modalities with attention to the intrinsic features of such 3D models as spheroids, organoids, and bioprints. Furthermore, we look at emerging and promising methodologies, which can help define and understand the balance between cell viability and death in dynamic and complex 3D environments. We conclude that the recent innovations in biofabrication, biosensor probe development, and fluorescence microscopy can help answer these questions.
Collapse
Affiliation(s)
- Angela C Debruyne
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Irina A Okkelman
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
31
|
Fung SL, Cohen JP, Pashuck ET, Miles CE, Freeman JW, Kohn J. Rational design of poly(peptide-ester) block copolymers for enzyme-specific surface resorption. J Mater Chem B 2023; 11:6621-6633. [PMID: 37358375 PMCID: PMC10519181 DOI: 10.1039/d3tb00265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Tissue resorption and remodeling are pivotal steps in successful healing and regeneration, and it is important to design biomaterials that are responsive to regenerative processes in native tissue. The cell types responsible for remodeling, such as macrophages in the soft tissue wound environment and osteoclasts in the bone environment, utilize a class of enzymes called proteases to degrade the organic matrix. Many hydrophobic thermoplastics used in tissue regeneration are designed to degrade and resorb passively through hydrolytic mechanisms, leaving the potential of proteolytic-guided degradation underutilized. Here, we report the design and synthesis of a tyrosol-derived peptide-polyester block copolymer where protease-mediated resorption is tuned through changing the chemistry of the base polymer backbone and protease specificity is imparted through incorporation of specific peptide sequences. Quartz crystal microbalance was used to quantify polymer surface resorption upon exposure to various enzymes. Aqueous solubility of the diacids and the thermal properties of the resulting polymer had a significant effect on enzyme-mediated polymer resorption. While peptide incorporation at 2 mol% had little effect on the final thermal and physical properties of the block copolymers, its incorporation improved polymer resorption significantly in a peptide sequence- and protease-specific manner. To our knowledge, this is the first example of a peptide-incorporated linear thermoplastic with protease-specific sensitivity reported in the literature. The product is a modular system for engineering specificity in how polyesters can resorb under physiological conditions, thus providing a potential framework for improving vascularization and integration of biomaterials used in tissue engineering.
Collapse
Affiliation(s)
- Stephanie L Fung
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Jarrod P Cohen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - E Thomas Pashuck
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18018, USA
| | - Catherine E Miles
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol 2023; 24:495-516. [PMID: 36849594 PMCID: PMC10656994 DOI: 10.1038/s41580-023-00583-1] [Citation(s) in RCA: 249] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/01/2023]
Abstract
Mechanical properties of extracellular matrices (ECMs) regulate essential cell behaviours, including differentiation, migration and proliferation, through mechanotransduction. Studies of cell-ECM mechanotransduction have largely focused on cells cultured in 2D, on top of elastic substrates with a range of stiffnesses. However, cells often interact with ECMs in vivo in a 3D context, and cell-ECM interactions and mechanisms of mechanotransduction in 3D can differ from those in 2D. The ECM exhibits various structural features as well as complex mechanical properties. In 3D, mechanical confinement by the surrounding ECM restricts changes in cell volume and cell shape but allows cells to generate force on the matrix by extending protrusions and regulating cell volume as well as through actomyosin-based contractility. Furthermore, cell-matrix interactions are dynamic owing to matrix remodelling. Accordingly, ECM stiffness, viscoelasticity and degradability often play a critical role in regulating cell behaviours in 3D. Mechanisms of 3D mechanotransduction include traditional integrin-mediated pathways that sense mechanical properties and more recently described mechanosensitive ion channel-mediated pathways that sense 3D confinement, with both converging on the nucleus for downstream control of transcription and phenotype. Mechanotransduction is involved in tissues from development to cancer and is being increasingly harnessed towards mechanotherapy. Here we discuss recent progress in our understanding of cell-ECM mechanotransduction in 3D.
Collapse
Affiliation(s)
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
33
|
Wang L, Yang J, Hu X, Wang S, Wang Y, Sun T, Wang D, Wang W, Ma H, Wang Y, Song K, Li W. A decellularized lung extracellular matrix/chondroitin sulfate/gelatin/chitosan-based 3D culture system shapes breast cancer lung metastasis. BIOMATERIALS ADVANCES 2023; 152:213500. [PMID: 37336011 DOI: 10.1016/j.bioadv.2023.213500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 05/09/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
Distal metastasis of breast cancer is a primary cause of death, and the lung is a common metastatic target of breast cancer. However, the role of the lung niche in promoting breast cancer progression is not well understood. Engineered three-dimensional (3D) in vitro models capable of bridging this knowledge gap can be specifically designed to mimic crucial characteristics of the lung niche in a more physiologically relevant context than conventional two-dimensional systems. In this study, two 3D culture systems were developed to mimic the late stage of breast cancer progression at a lung metastatic site. These 3D models were created based on a novel decellularized lung extracellular matrix/chondroitin sulfate/gelatin/chitosan composite material and on a porcine decellularized lung matrix (PDLM), with the former tailored with comparable properties (stiffness, pore size, biochemical composition, and microstructure) to that of the in vivo lung matrix. The different microstructure and stiffness of the two types of scaffolds yielded diverse presentations of MCF-7 cells in terms of cell distribution, cell morphology, and migration. Cells showed better extensions with apparent pseudopods and more homogeneous and reduced migration activity on the composite scaffold compared to those on the PDLM scaffold. Furthermore, alveolar-like structures with superior porous connectivity in the composite scaffold remarkably promoted aggressive cell proliferation and viability. In conclusion, a novel lung matrix-mimetic 3D in vitro breast cancer lung metastasis model was developed to clarify the underlying correlativity between lung ECM and breast cancer cells after lung colonization. A better understanding of the effects of biochemical and biophysical environments of the lung matrix on cell behaviors can help elucidate the potential mechanisms of breast cancer progression and further improve target discovery of therapeutic strategies.
Collapse
Affiliation(s)
- Le Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Jianye Yang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuping Wang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Yanxia Wang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
| | - Tongyi Sun
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Dan Wang
- Department of Physical Education, School of Foundation Medical, Weifang Medical University, Weifang 261053, China
| | - Wenchi Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yingshuai Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wenfang Li
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
34
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
35
|
Garibyan M, Hoffman T, Makaske T, Do S, March AR, Cho N, Pedroncelli N, Lima RE, Soto J, Jackson B, Khademhosseini A, Li S, McCain M, Morsut L. Engineering Programmable Material-To-Cell Pathways Via Synthetic Notch Receptors To Spatially Control Cellular Phenotypes In Multi-Cellular Constructs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541497. [PMID: 37293089 PMCID: PMC10245658 DOI: 10.1101/2023.05.19.541497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic Notch (synNotch) receptors are modular synthetic components that are genetically engineered into mammalian cells to detect signals presented by neighboring cells and respond by activating prescribed transcriptional programs. To date, synNotch has been used to program therapeutic cells and pattern morphogenesis in multicellular systems. However, cell-presented ligands have limited versatility for applications that require spatial precision, such as tissue engineering. To address this, we developed a suite of materials to activate synNotch receptors and serve as generalizable platforms for generating user-defined material-to-cell signaling pathways. First, we demonstrate that synNotch ligands, such as GFP, can be conjugated to cell- generated ECM proteins via genetic engineering of fibronectin produced by fibroblasts. We then used enzymatic or click chemistry to covalently link synNotch ligands to gelatin polymers to activate synNotch receptors in cells grown on or within a hydrogel. To achieve microscale control over synNotch activation in cell monolayers, we microcontact printed synNotch ligands onto a surface. We also patterned tissues comprising cells with up to three distinct phenotypes by engineering cells with two distinct synthetic pathways and culturing them on surfaces microfluidically patterned with two synNotch ligands. We showcase this technology by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined spatial patterns towards the engineering of muscle tissue with prescribed vascular networks. Collectively, this suite of approaches extends the synNotch toolkit and provides novel avenues for spatially controlling cellular phenotypes in mammalian multicellular systems, with many broad applications in developmental biology, synthetic morphogenesis, human tissue modeling, and regenerative medicine.
Collapse
|
36
|
Locke RC, Zlotnick HM, Stoeckl BD, Fryhofer GW, Galarraga JH, Dhand AP, Zgonis MH, Carey JL, Burdick JA, Mauck RL. Linguistic Analysis Identifies Emergent Biomaterial Fabrication Trends for Orthopaedic Applications. Adv Healthc Mater 2023; 12:e2202591. [PMID: 36657736 PMCID: PMC10121863 DOI: 10.1002/adhm.202202591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/20/2022] [Indexed: 01/21/2023]
Abstract
The expanse of publications in tissue engineering (TE) and orthopedic TE (OTE) over the past 20 years presents an opportunity to probe emergent trends in the field to better guide future technologies that can make an impact on musculoskeletal therapies. Leveraging this trove of knowledge, a hierarchical systematic search method and trend analysis using connected network mapping of key terms is developed. Within discrete time intervals, an accelerated publication rate for anatomic orthopedic tissue engineering (AOTE) of osteochondral defects, tendons, menisci, and entheses is identified. Within these growing fields, the top-listed key terms are extracted and stratified into evident categories, such as biomaterials, delivery method, or 3D printing and biofabrication. It is then identified which categories decreased, remained constant, increased, or emerged over time, identifying the specific emergent categories currently driving innovation in orthopedic repair technologies. Together, these data demonstrate a significant convergence of material types and descriptors used across tissue types. From this convergence, design criteria to support future research of anatomic constructs that mimic both the form and function of native tissues are formulated. In summary, this review identifies large-scale trends and predicts new directions in orthopedics that will define future materials and technologies.
Collapse
Affiliation(s)
- Ryan C. Locke
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Veterans Affairs, CMCVAMC, Philadelphia, PA, USA
| | - Hannah M. Zlotnick
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Veterans Affairs, CMCVAMC, Philadelphia, PA, USA
| | - Brendan D. Stoeckl
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Veterans Affairs, CMCVAMC, Philadelphia, PA, USA
| | - George W. Fryhofer
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Abhishek P. Dhand
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Miltiadis H. Zgonis
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - James L. Carey
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason A. Burdick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Veterans Affairs, CMCVAMC, Philadelphia, PA, USA
| |
Collapse
|
37
|
Heran W, Xin L, Qi G, Xiongfei Z. Vascularized organ bioprinting: From strategy to paradigm. Cell Prolif 2023; 56:e13453. [PMID: 36929675 DOI: 10.1111/cpr.13453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Over the past two decades, bioprinting has become a popular research topic worldwide, as it is the most promising approach for manufacturing vascularized organ in vitro. However, transitioning bioprinting from simple tissue models to real biomedical applications is still a challenge due to the lack of interdisciplinary theoretical knowledge and perfect multitechnology integration. This review examines the goals of vasculature manufacturing and proposes the objectives in three stages. We then outline a bidirectional manufacturing strategy consisting of top-down reproduction (bioprinting) and bottom-up regeneration (cellular behaviour). We also provide an in-depth analysis of the views from the four aspects of design, ink, printing, and culture. Furthermore, we present the 'constructing-comprehension cycle' research paradigm in Strategic Priority Research Program and the 'math-model-based batch insights generator' research paradigm for the future, which have the potential to revolutionize the biomedical field.
Collapse
Affiliation(s)
- Wang Heran
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gu Qi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Xiongfei
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| |
Collapse
|
38
|
Zhou Y, Zhao Q, Wang M. Biomanufacturing of biomimetic three-dimensional nanofibrous multicellular constructs for tissue regeneration. Colloids Surf B Biointerfaces 2023; 223:113189. [PMID: 36736173 DOI: 10.1016/j.colsurfb.2023.113189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Biomanufacturing of functional tissue analogues is of great importance in regenerative medicine. However, this is still highly challenging due to extreme difficulties in recreating/recapitulating complicated anatomies of body tissues that have both well-defined three-dimensional (3D) multicellular organizations and bioactive nanofibrous extracellular matrix (ECM). In the current investigation, a biomanufacturing approach via concurrent emulsion electrospinning and coaxial cell electrospraying was developed, which could fabricate 3D nanofibrous multicellular constructs that resemble both the multicellular organizations and bioactive nanofibrous microenvironments of body tissues. In the proof-of-concept study, endothelial cells (ECs) and smooth muscle cells (SMCs) were placed in respective layers of multilayer-structured constructs. The two different construct layers consisted of nanofibers providing different topographies (randomly oriented nanofibers or aligned nanofibers) and contained different growth factors (vascular endothelial growth factor or platelet-derived growth factor). The ECs and SMCs in the different construct layers showed high cell densities (> 4 ×105 cells/cm2 after 4-day incubation) and high cell viabilities (> 95%). Owing to the contact guidance/stimulation by different fibrous topographies and sequential release of different growth factors, ECs and SMCs exhibited distinct morphologies (uniformly stretched plaque-shaped or directionally elongated) and displayed enhanced proliferative activities. Our biomanufacturing approach is shown to be effective and efficient in reconstituting/replicating cell-ECM organizations as well as their interactions similar to those in body tissues such as blood vessels, indicating the great promise to produce a range of tissue analogues with biomimetic structures and functions for modeling or regenerating body tissues.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Qilong Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
39
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
40
|
Rana D, Padmanaban P, Becker M, Stein F, Leijten J, Koopman B, Rouwkema J. Spatial control of self-organizing vascular networks with programmable aptamer-tethered growth factor photopatterning. Mater Today Bio 2023; 19:100551. [PMID: 36747582 PMCID: PMC9898740 DOI: 10.1016/j.mtbio.2023.100551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Given the dynamic nature of engineered vascular networks within biofabricated tissue analogues, it is instrumental to have control over the constantly evolving biochemical cues within synthetic matrices throughout tissue remodeling. Incorporation of pro-angiogenic vascular endothelial growth factor (VEGF165) specific aptamers into cell-instructive polymer networks is shown to be pivotal for spatiotemporally controlling the local bioactivity of VEGF that selectively elicit specific cell responses. To harness this effect and quantitatively unravel its spatial resolution, herein, bicomponent micropatterns consisting of VEGF165 specific aptamer-functionalized gelatin methacryloyl (GelMA) (aptamer regions) overlaid with pristine GelMA regions using visible-light photoinitiators (Ru/SPS) were fabricated via two-step photopatterning approach. For the 3D co-culture study, human umbilical vein-derived endothelial cells and mesenchymal stromal cells were used as model cell types. Bicomponent micropatterns with spatially defined spacings (300/500/800 μm) displayed high aptamer retention, aptamer-fluorescent complementary sequence (CSF) molecular recognition and VEGF sequestration localized within patterned aptamer regions. Stiffness gradient at the interface of aptamer and GelMA regions was observed with high modulus in aptamer region followed by low stiffness GelMA regions. Leveraging aptamer-tethered VEGF's dynamic affinity interactions with CS that upon hybridization facilitates triggered VEGF release, co-culture studies revealed unique characteristics of aptamer-tethered VEGF to form spatially defined luminal vascular networks covered with filopodia-like structures in vitro (spatial control) and highlights their ability to control network properties including orientation over time using CS as an external trigger (temporal control). Moreover, the comparison of single and double exposed regions within micropatterns revealed differences in cell behavior among both regions. Specifically, the localized aptamer-tethered VEGF within single exposed aptamer regions exhibited higher cellular alignment within the micropatterns till d5 of culture. Taken together, this study highlights the potential of photopatterned aptamer-tethered VEGF to spatiotemporally regulate vascular morphogenesis as a tool for controlling vascular remodeling in situ.
Collapse
Affiliation(s)
- Deepti Rana
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7522NB Enschede, the Netherlands
| | - Prasanna Padmanaban
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7522NB Enschede, the Netherlands
| | - Malin Becker
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, the Netherlands
| | - Fabian Stein
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7522NB Enschede, the Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, the Netherlands
| | - Bart Koopman
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7522NB Enschede, the Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7522NB Enschede, the Netherlands,Corresponding author.
| |
Collapse
|
41
|
Gao Q, Lee JS, Kim BS, Gao G. Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: A future direction of precision medicine. Int J Bioprint 2022; 9:638. [PMID: 36636137 PMCID: PMC9830998 DOI: 10.18063/ijb.v9i1.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
Three-dimensional (3D) printing, which is a valuable technique for the fabrication of tissue-engineered constructs and biomedical devices with complex architectures, has brought about considerable progress in regenerative medicine, drug delivery, and diagnosis of diseases. However, because of the static and inanimate properties of conventional 3D-printed structures, it is difficult to use them in therapies for active and precise medicine, such as improved tissue regeneration, targeted or controlled drug delivery, and advanced pathophysiological monitoring. The integration of stimuli-responsive biomaterials into 3D printing provides a potential strategy for designing and building smart constructs that exhibit programmed functions and controllable changes in properties in response to exogenous and autogenous stimuli. These features make 3D-printed smart constructs the next generation of tissue-engineered products. In this review, we introduce the prevalent 3D printing techniques (with an emphasis on the differences between 3D printing and bioprinting, and biomaterials and bioink), the working principle of each technique, and the advantages of using 3D printing for the fabrication of smart constructs. Stimuli-responsive biomaterials that are widely used for 3D printing of smart constructs are categorized, followed by a summary of their applications in tissue regeneration, drug delivery, and biosensors. Finally, the challenges and future perspectives of 3D-printed smart constructs are discussed.
Collapse
Affiliation(s)
- Qiqi Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Jae-Seong Lee
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, South Korea
| | - Byoung Soo Kim
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, South Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, South Korea
| | - Ge Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
42
|
Advances of Engineered Hydrogel Organoids within the Stem Cell Field: A Systematic Review. Gels 2022; 8:gels8060379. [PMID: 35735722 PMCID: PMC9222364 DOI: 10.3390/gels8060379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Organoids are novel in vitro cell culture models that enable stem cells (including pluripotent stem cells and adult stem cells) to grow and undergo self-organization within a three-dimensional microenvironment during the process of differentiation into target tissues. Such miniature structures not only recapitulate the histological and genetic characteristics of organs in vivo, but also form tissues with the capacity for self-renewal and further differentiation. Recent advances in biomaterial technology, particularly hydrogels, have provided opportunities to improve organoid cultures; by closely integrating the mechanical and chemical properties of the extracellular matrix microenvironment, with novel synthetic materials and stem cell biology. This systematic review critically examines recent advances in various strategies and techniques utilized for stem-cell-derived organoid culture, with particular emphasis on the application potential of hydrogel technology in organoid culture. We hope this will give a better understanding of organoid cultures for modelling diseases and tissue engineering applications.
Collapse
|