1
|
Liu Z, Tan Y, Flynn WF, Sun L, Pratumkaew P, Alcoforado Diniz J, Oliveira NAJ, McDonough JA, Skarnes WC, Robson P. HAND1, partially mediated through ape-specific LTR binding, is essential for human extra-embryonic mesenchyme derivation from iPSCs. Cell Rep 2025; 44:115568. [PMID: 40220298 DOI: 10.1016/j.celrep.2025.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
The specification of extra-embryonic mesenchyme (ExMC) is a prime example of developmental divergence between mouse and human. Derived from definitive mesoderm during mouse gastrulation, the human ExMC first appears at peri-implantation prior to gastrulation and therefore its human cellular origin, still unknown, must differ. In a human pluripotent stem cell model, we report that ExMC shares progenitor cells with trophoblast, suggesting a trophectoderm origin. This ability to form ExMC appears to extend to human trophoblast stem cell lines. We define HAND1 as an essential regulator of ExMC specification, with null cells remaining in the trophoblast lineage. Bound by HAND1, ape-specific, endogenous retrovirus-derived LTR2B contributes to unique features of ExMC. Additionally, ExMC supports the maintenance of pluripotent stem cells, possibly reflecting a role in maintaining epiblast pluripotency through peri-implantation development. Our data emphasize the nascent evolutionary innovation in human early development and provide a cellular system to study this.
Collapse
Affiliation(s)
- Zukai Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yuliana Tan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Lili Sun
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ponthip Pratumkaew
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA.
| |
Collapse
|
2
|
Nakanoh S. Exploring early extraembryonic cells of epiblast origin: Questions on human amniotic ectoderm and extraembryonic mesoderm. Dev Biol 2025:S0012-1606(25)00105-8. [PMID: 40228781 DOI: 10.1016/j.ydbio.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/29/2025] [Accepted: 04/12/2025] [Indexed: 04/16/2025]
Abstract
Extraembryonic tissues are essential for proper fetal development and exhibit great diversity across species. Despite its importance, human extraembryonic development has been relatively overlooked. Previously, we established an in vitro model to study human amniogenesis and extraembryonic mesoderm formation. In this article, I develop discussions on four topics inspired by this study: (1) Features of amniotic cell populations described to date. A recently reported early amniotic cell type is examined based on its signature genes to consider how this population should be incorporated into models of primate amniogenesis. (2) Molecular mechanisms underlying the effect of cell density in regulating non-neural ectoderm specification. Fate specification by positional cues in mouse is revisited and possible mechanisms are suggested by drawing insights from human epiblast models. (3) Potential applications of the three-dimensional culture we established. Primate amniotic ectoderm is postulated as a gastrulation-inducing signaling center, and our technique could be used to effectively model its interactions with epiblast. (4) Extraembryonic mesoderm development in human embryos. The obscure origin of primate extraembryonic mesoderm and implications from recent in vitro differentiation models using human pluripotent stem cells are explained. The key concepts explored here will stimulate further studies into both amnion and extraembryonic mesoderm during human and non-human primate development.
Collapse
Affiliation(s)
- Shota Nakanoh
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
3
|
Sozen B, Tam PPL, Pera MF. Pluripotent cell states and fates in human embryo models. Development 2025; 152:dev204565. [PMID: 40171916 PMCID: PMC11993252 DOI: 10.1242/dev.204565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Pluripotency, the capacity to generate all cells of the body, is a defining property of a transient population of epiblast cells found in pre-, peri- and post-implantation mammalian embryos. As development progresses, the epiblast cells undergo dynamic transitions in pluripotency states, concurrent with the specification of extra-embryonic and embryonic lineages. Recently, stem cell-based models of pre- and post-implantation human embryonic development have been developed using stem cells that capture key properties of the epiblast at different developmental stages. Here, we review early primate development, comparing pluripotency states of the epiblast in vivo with cultured pluripotent cells representative of these states. We consider how the pluripotency status of the starting cells influences the development of human embryo models and, in turn, what we can learn about the human pluripotent epiblast. Finally, we discuss the limitations of these models and questions arising from the pioneering studies in this emerging field.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
| | - Patrick P. L. Tam
- Embryology Research Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Martin F. Pera
- The Jackson Laboratory, Mammalian Genetics, Bar Harbor, ME 04609, USA
| |
Collapse
|
4
|
Chen S, He Y, Lv L, Liu B, Li C, Deng H, Xu J. Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1084-1101. [PMID: 39825205 DOI: 10.1007/s11427-024-2660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 01/20/2025]
Abstract
Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages. Here we show that transient treatment with a cocktail of small molecule epigenetic modulators imparts trophectoderm lineage potentials to human primed pluripotent stem cells while preserving their embryonic potential. These chemically treated cells can generate trophectoderm-like cells and downstream trophoblast stem cells, diverging into syncytiotrophoblast and extravillous trophoblast lineages. Transcriptomic and CUT&Tag analyses reveal that these induced cells share transcriptional profiles with in vivo trophectoderm and cytotrophoblast, and exhibit reduced H3K27me3 modification at gene loci specific to trophoblast lineages compared with primed pluripotent cells. Mechanistic exploration highlighted the critical roles of epigenetic modulators HDAC2, EZH1/2, and KDM5s in the activation of trophoblast lineage potential. Our findings demonstrate that transient epigenetic resetting activates unrestricted lineage potential in human primed pluripotent stem cells, and offer new mechanistic insights into human trophoblast lineage specification and in vitro models for studying placental development and related disorders.
Collapse
Affiliation(s)
- Shi Chen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yuanyuan He
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lejun Lv
- BeiCell Therapeutics, Beijing, 100094, China
| | - Bei Liu
- BeiCell Therapeutics, Beijing, 100094, China.
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, 100871, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Neupane J, Lubatti G, Gross-Thebing T, Ruiz Tejada Segura ML, Butler R, Gross-Thebing S, Dietmann S, Scialdone A, Surani MA. The emergence of human primordial germ cell-like cells in stem cell-derived gastruloids. SCIENCE ADVANCES 2025; 11:eado1350. [PMID: 40138398 PMCID: PMC11939039 DOI: 10.1126/sciadv.ado1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Most advances in early human postimplantation development depend on animal studies and stem cell-based embryo models. Here, we present self-organized three-dimensional human gastruloids (hGs) derived from embryonic stem cells. The transcriptome profile of day 3 hGs aligned with Carnegie stage 7 human gastrula, with cell types and differentiation trajectories consistent with human gastrulation. Notably, we observed the emergence of nascent primordial germ cell-like cells (PGCLCs), but without exogenous bone morphogenetic protein (BMP) signaling, which is essential for the PGCLC fate. A mutation in the ISL1 gene affects amnion-like cells and leads to a loss of PGCLCs; the addition of exogenous BMP2 rescues the PGCLC fate, indicating that the amnion may provide endogenous BMP signaling. Our model of early human embryogenesis will enable further exploration of the germ line and other early human lineages.
Collapse
Affiliation(s)
- Jitesh Neupane
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - Gabriele Lubatti
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Theresa Gross-Thebing
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - Mayra Luisa Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Richard Butler
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Sabine Dietmann
- Department of Development Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - M. Azim Surani
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Yu H, Wang Z, Ma J, Wang R, Yao S, Gu Z, Lin K, Li J, Young RS, Yu Y, Yu Y, Jin M, Chen D. The establishment and regulation of human germ cell lineage. Stem Cell Res Ther 2025; 16:139. [PMID: 40102947 PMCID: PMC11921702 DOI: 10.1186/s13287-025-04171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/23/2025] [Indexed: 03/20/2025] Open
Abstract
The specification of primordial germ cells (PGCs) during early embryogenesis initiates the development of the germ cell lineage that ensures the perpetuation of genetic and epigenetic information from parents to offspring. Defects in germ cell development may lead to infertility or birth defects. Historically, our understanding of human PGCs (hPGCs) regulation has primarily been derived from studies in mice, given the ethical restrictions and practical limitations of human embryos at the stage of PGC specification. However, recent studies have increasingly highlighted significant mechanistic differences for PGC development in humans and mice. The past decade has witnessed the establishment of human pluripotent stem cell (hPSC)-derived hPGC-like cells (hPGCLCs) as new models for studying hPGC fate specification and differentiation. In this review, we systematically summarize the current hPSC-derived models for hPGCLC induction, and how these studies uncover the regulatory machinery for human germ cell fate specification and differentiation, forming the basis for reconstituting gametogenesis in vitro from hPSCs for clinical applications and disease modeling.
Collapse
Affiliation(s)
- Honglin Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ziqi Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jiayue Ma
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ruoming Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Shuo Yao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Zhaoyu Gu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Kexin Lin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jinlan Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Robert S Young
- Center for Global Health Research, Usher Institute, University of Edinburgh, 5-7 Little France Road, Edinburgh, EH16 4UX, UK
- Zhejiang University - University of Edinburgh Institute, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ya Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - You Yu
- Center for Infection Immunity, Cancer of Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Min Jin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, 314400, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Cui L, Lin S, Yang X, Xie X, Wang X, He N, Yang J, Zhang X, Lu X, Yan X, Guo Y, Zhang B, Li R, Miao H, Ji M, Zhang R, Yu L, Xiao Z, Wei Y, Guo J. Spatial transcriptomic characterization of a Carnegie stage 7 human embryo. Nat Cell Biol 2025; 27:360-369. [PMID: 39794460 DOI: 10.1038/s41556-024-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Gastrulation marks a pivotal stage in mammalian embryonic development, establishing the three germ layers and body axis through lineage diversification and morphogenetic movements. However, studying human gastrulating embryos is challenging due to limited access to early tissues. Here we show the use of spatial transcriptomics to analyse a fully intact Carnegie stage 7 human embryo at single-cell resolution, along with immunofluorescence validations in a second embryo. Employing 82 serial cryosections and Stereo-seq technology, we reconstructed a three-dimensional model of the embryo. Our findings reveal early specification of distinct mesoderm subtypes and the presence of the anterior visceral endoderm. Notably, primordial germ cells were located in the connecting stalk, and haematopoietic stem cell-independent haematopoiesis was observed in the yolk sac. This study advances our understanding of human gastrulation and provides a valuable dataset for future research in early human development.
Collapse
Affiliation(s)
- Lina Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Sirui Lin
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaolong Yang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinwei Xie
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyu Yang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xin Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaojian Lu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaodi Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yifei Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bailing Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ran Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hefan Miao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runzhao Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Leqian Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Zhenyu Xiao
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Yulei Wei
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China.
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Jingtao Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Zhao C, Plaza Reyes A, Schell JP, Weltner J, Ortega NM, Zheng Y, Björklund ÅK, Baqué-Vidal L, Sokka J, Trokovic R, Cox B, Rossant J, Fu J, Petropoulos S, Lanner F. A comprehensive human embryo reference tool using single-cell RNA-sequencing data. Nat Methods 2025; 22:193-206. [PMID: 39543283 PMCID: PMC11725501 DOI: 10.1038/s41592-024-02493-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024]
Abstract
Stem cell-based embryo models offer unprecedented experimental tools for studying early human development. The usefulness of embryo models hinges on their molecular, cellular and structural fidelities to their in vivo counterparts. To authenticate human embryo models, single-cell RNA sequencing has been utilized for unbiased transcriptional profiling. However, an organized and integrated human single-cell RNA-sequencing dataset, serving as a universal reference for benchmarking human embryo models, remains unavailable. Here we developed such a reference through the integration of six published human datasets covering development from the zygote to the gastrula. Lineage annotations are contrasted and validated with available human and nonhuman primate datasets. Using stabilized Uniform Manifold Approximation and Projection, we constructed an early embryogenesis prediction tool, where query datasets can be projected on the reference and annotated with predicted cell identities. Using this reference tool, we examined published human embryo models, highlighting the risk of misannotation when relevant references are not utilized for benchmarking and authentication.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Alvaro Plaza Reyes
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Department of Integrative Pathophysiology and Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - John Paul Schell
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Jere Weltner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Nicolás M Ortega
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Laura Baqué-Vidal
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Joonas Sokka
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Ras Trokovic
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Brian Cox
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, Quebec, Canada.
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Ming Wai Lau Center for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Yachimura T, Wang H, Imoto Y, Yoshida M, Tasaki S, Kojima Y, Yabuta Y, Saitou M, Hiraoka Y. scEGOT: single-cell trajectory inference framework based on entropic Gaussian mixture optimal transport. BMC Bioinformatics 2024; 25:388. [PMID: 39710672 DOI: 10.1186/s12859-024-05988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Time-series scRNA-seq data have opened a door to elucidate cell differentiation, and in this context, the optimal transport theory has been attracting much attention. However, there remain critical issues in interpretability and computational cost. RESULTS We present scEGOT, a comprehensive framework for single-cell trajectory inference, as a generative model with high interpretability and low computational cost. Applied to the human primordial germ cell-like cell (PGCLC) induction system, scEGOT identified the PGCLC progenitor population and bifurcation time of segregation. Our analysis shows TFAP2A is insufficient for identifying PGCLC progenitors, requiring NKX1-2. Additionally, MESP1 and GATA6 are also crucial for PGCLC/somatic cell segregation. CONCLUSIONS These findings shed light on the mechanism that segregates PGCLC from somatic lineages. Notably, not limited to scRNA-seq, scEGOT's versatility can extend to general single-cell data like scATAC-seq, and hence has the potential to revolutionize our understanding of such datasets and, thereby also, developmental biology.
Collapse
Affiliation(s)
- Toshiaki Yachimura
- Mathematical Science Center for Co-creative Society, Tohoku University, Sendai, 980-0845, Japan.
| | - Hanbo Wang
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yusuke Imoto
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Momoko Yoshida
- Faculty of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sohei Tasaki
- Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yoji Kojima
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuaki Hiraoka
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
10
|
Cordazzo Vargas B, Shioda T. Association Between Activated Loci of HML-2 Primate-Specific Endogenous Retrovirus and Newly Formed Chromatin Contacts in Human Primordial Germ Cell-like Cells. Int J Mol Sci 2024; 25:13639. [PMID: 39769401 PMCID: PMC11728338 DOI: 10.3390/ijms252413639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The pluripotent stem cell (PSC)-derived human primordial germ cell-like cells (PGCLCs) are a cell culture-derived surrogate model of embryonic primordial germ cells. Upon differentiation of PSCs to PGCLCs, multiple loci of HML-2, the hominoid-specific human endogenous retrovirus (HERV), are strongly activated, which is necessary for PSC differentiation to PGCLCs. In PSCs, strongly activated loci of HERV-H family HERVs create chromatin contacts, which are required for the pluripotency. Chromatin contacts in the genome of human PSCs and PGCLCs were determined by Hi-C sequencing, and their locations were compared with those of HML-2 loci strongly activated in PGCLCs but silenced in the precursor naïve iPSCs. In both iPSCs and PGCLCs, the size of chromatin contacts were found to be around one megabase, which corresponds to the Topologically Associated Domains in the human genome but is slightly larger in PGCLCs than iPSCs. The number of small-sized chromatin contacts diminished while numbers of larger-sized contacts increased. The distances between chromatin contacts newly formed in PGCLCs and the degrees of activation of the closest HML-2 loci showed significant inverse correlation. Our study provides evidence that strong activation of HML-2 provirus loci may be associated with newly formed chromatin contacts in their vicinity, potentially contributing to PSC differentiation to the germ cell lineage.
Collapse
Affiliation(s)
- Bianca Cordazzo Vargas
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02114, USA
- Computational Biomedicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Toshihiro Shioda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02114, USA
| |
Collapse
|
11
|
Zhang R, Wu M, Xiang D, Zhu J, Zhang Q, Zhong H, Peng Y, Wang Z, Ma G, Li G, Liu F, Ye W, Shi R, Zhou X, Babarinde IA, Su H, Chen J, Zhang X, Qin D, Hutchins AP, Pei D, Li D. A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development. Cell Stem Cell 2024; 31:1298-1314.e8. [PMID: 39146934 DOI: 10.1016/j.stem.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/β-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/β-catenin signaling and cell type commitment in somatic development.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Menghua Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Dan Xiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Hui Zhong
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Yuling Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Fengping Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Weipeng Ye
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemeng Zhou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Xiaofei Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| |
Collapse
|
12
|
Sekulovski N, Carleton AE, Rengarajan AA, Lin CW, Juga LN, Whorton AE, Schmidt JK, Golos TG, Taniguchi K. Temporally resolved single cell transcriptomics in a human model of amniogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556553. [PMID: 39026707 PMCID: PMC11257495 DOI: 10.1101/2023.09.07.556553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amniogenesis is triggered in a collection of pluripotent epiblast cells as the human embryo implants. To gain insights into the critical but poorly understood transcriptional machinery governing amnion fate determination, we examined the evolving transcriptome of a developing human pluripotent stem cell-derived amnion model at the single cell level. This analysis revealed several continuous amniotic fate progressing states with state-specific markers, which include a previously unrecognized CLDN10+ amnion progenitor state. Strikingly, we found that expression of CLDN10 is restricted to the amnion-epiblast boundary region in the human post-implantation amniotic sac model as well as in a peri-gastrula cynomolgus macaque embryo, bolstering the growing notion that, at this stage, the amnion-epiblast boundary is a site of active amniogenesis. Bioinformatic analysis of published primate peri-gastrula single cell sequencing data further confirmed that CLDN10 is expressed in cells progressing to amnion. Additionally, our loss of function analysis shows that CLDN10 promotes amniotic but suppresses primordial germ cell-like fate. Overall, this study presents a comprehensive amniogenic single cell transcriptomic resource and identifies a previously unrecognized CLDN10+ amnion progenitor population at the amnion-epiblast boundary of the primate peri-gastrula.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anusha A. Rengarajan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison E. Whorton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Richardson LS, Severino ME, Chauhan R, Zhang W, Kacerovsky M, Bhavnani SK, Menon R. Spatial transcriptomics of fetal membrane-Decidual interface reveals unique contributions by cell types in term and preterm births. PLoS One 2024; 19:e0309063. [PMID: 39159152 PMCID: PMC11332933 DOI: 10.1371/journal.pone.0309063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
During pregnancy, two fetomaternal interfaces, the placenta-decidua basalis and the fetal membrane-decidua parietals, allow for fetal growth and maturation and fetal-maternal crosstalk, and protect the fetus from infectious and inflammatory signaling that could lead to adverse pregnancy outcomes. While the placenta has been studied extensively, the fetal membranes have been understudied, even though they play critical roles in pregnancy maintenance and the initiation of term or preterm parturition. Fetal membrane dysfunction has been associated with spontaneous preterm birth (PTB, < 37 weeks gestation) and preterm prelabor rupture of the membranes (PPROM), which is a disease of the fetal membranes. However, it is unknown how the individual layers of the fetal membrane decidual interface (the amnion epithelium [AEC], the amnion mesenchyme [AMC], the chorion [CTC], and the decidua [DEC]) contribute to these pregnancy outcomes. In this study, we used a single-cell transcriptomics approach to unravel the transcriptomics network at spatial levels to discern the contributions of each layer of the fetal membranes and the adjoining maternal decidua during the following conditions: scheduled caesarian section (term not in labor [TNIL]; n = 4), vaginal term in labor (TIL; n = 3), preterm labor with and without rupture of membranes (PPROM; n = 3; and PTB; n = 3). The data included 18,815 genes from 13 patients (including TIL, PTB, PPROM, and TNIL) expressed across the four layers. After quality control, there were 11,921 genes and 44 samples. The data were processed by two pipelines: one by hierarchical clustering the combined cases and the other to evaluate heterogeneity within the cases. Our visual analytical approach revealed spatially recognized differentially expressed genes that aligned with four gene clusters. Cluster 1 genes were present predominantly in DECs and Cluster 3 centered around CTC genes in all labor phenotypes. Cluster 2 genes were predominantly found in AECs in PPROM and PTB, while Cluster 4 contained AMC and CTC genes identified in term labor cases. We identified the top 10 differentially expressed genes and their connected pathways (kinase activation, NF-κB, inflammation, cytoskeletal remodeling, and hormone regulation) per cluster in each tissue layer. An in-depth understanding of the involvement of each system and cell layer may help provide targeted and tailored interventions to reduce the risk of PTB.
Collapse
Affiliation(s)
- Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Mary Elise Severino
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Rahul Chauhan
- Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Weibin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Suresh K. Bhavnani
- Department of Epidemiology and Biostatistics, School of Public Health, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
14
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early bone morphogenetic protein-driven transcriptional cascade during human amnion specification. eLife 2024; 12:RP89367. [PMID: 39051990 PMCID: PMC11272160 DOI: 10.7554/elife.89367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Jenna C Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Amber E Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Lauren N Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Linnea E Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
- Versiti Blood Research InstituteMilwaukeeUnited States
| | - Jenna K Schmidt
- Wisconsin National Primate Research CenterMilwaukeeUnited States
| | - Thaddeus G Golos
- Wisconsin National Primate Research CenterMilwaukeeUnited States
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public HealthMadisonUnited States
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary MedicineMadisonUnited States
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
16
|
Wu J, Fu J. Toward developing human organs via embryo models and chimeras. Cell 2024; 187:3194-3219. [PMID: 38906095 PMCID: PMC11239105 DOI: 10.1016/j.cell.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Azagury M, Buganim Y. Unlocking trophectoderm mysteries: In vivo and in vitro perspectives on human and mouse trophoblast fate induction. Dev Cell 2024; 59:941-960. [PMID: 38653193 DOI: 10.1016/j.devcel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.
Collapse
Affiliation(s)
- Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
18
|
Rodriguez-Polo I, Moris N. Using Embryo Models to Understand the Development and Progression of Embryonic Lineages: A Focus on Primordial Germ Cell Development. Cells Tissues Organs 2024; 213:503-522. [PMID: 38479364 PMCID: PMC7616515 DOI: 10.1159/000538275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Recapitulating mammalian cell type differentiation in vitro promises to improve our understanding of how these processes happen in vivo, while bringing additional prospects for biomedical applications. The establishment of stem cell-derived embryo models and embryonic organoids, which have experienced explosive growth over the last few years, opens new avenues for research due to their scale, reproducibility, and accessibility. Embryo models mimic various developmental stages, exhibit different degrees of complexity, and can be established across species. Since embryo models exhibit multiple lineages organized spatially and temporally, they are likely to provide cellular niches that, to some degree, recapitulate the embryonic setting and enable "co-development" between cell types and neighbouring populations. One example where this is already apparent is in the case of primordial germ cell-like cells (PGCLCs). SUMMARY While directed differentiation protocols enable the efficient generation of high PGCLC numbers, embryo models provide an attractive alternative as they enable the study of interactions of PGCLCs with neighbouring cells, alongside the regulatory molecular and biophysical mechanisms of PGC competency. Additionally, some embryo models can recapitulate post-specification stages of PGC development (including migration or gametogenesis), mimicking the inductive signals pushing PGCLCs to mature and differentiate and enabling the study of PGCLC development across stages. Therefore, in vitro models may allow us to address questions of cell type differentiation, and PGC development specifically, that have hitherto been out of reach with existing systems. KEY MESSAGE This review evaluates the current advances in stem cell-based embryo models, with a focus on their potential to model cell type-specific differentiation in general and in particular to address open questions in PGC development and gametogenesis.
Collapse
Affiliation(s)
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| |
Collapse
|
19
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early BMP-driven transcriptional cascade during human amnion specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.19.545574. [PMID: 38496419 PMCID: PMC10942271 DOI: 10.1101/2023.06.19.545574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that BMP signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hours after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna C. Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Linnea E. Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226 USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
20
|
Okubo T, Rivron N, Kabata M, Masaki H, Kishimoto K, Semi K, Nakajima-Koyama M, Kunitomi H, Kaswandy B, Sato H, Nakauchi H, Woltjen K, Saitou M, Sasaki E, Yamamoto T, Takashima Y. Hypoblast from human pluripotent stem cells regulates epiblast development. Nature 2024; 626:357-366. [PMID: 38052228 PMCID: PMC10849967 DOI: 10.1038/s41586-023-06871-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.
Collapse
Affiliation(s)
- Takumi Okubo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Mio Kabata
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideki Masaki
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Katsunori Semi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - May Nakajima-Koyama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Haruko Kunitomi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Belinda Kaswandy
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideyuki Sato
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Knut Woltjen
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| | - Yasuhiro Takashima
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
21
|
Esfahani SN, Zheng Y, Arabpour A, Irizarry AMR, Kobayashi N, Xue X, Shao Y, Zhao C, Agranonik NL, Sparrow M, Hunt TJ, Faith J, Lara MJ, Wu QY, Silber S, Petropoulos S, Yang R, Chien KR, Clark AT, Fu J. Derivation of human primordial germ cell-like cells in an embryonic-like culture. Nat Commun 2024; 15:167. [PMID: 38167821 PMCID: PMC10762101 DOI: 10.1038/s41467-023-43871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of sperm and eggs. They transmit genetic and epigenetic information across generations. Given the prominent role of germline defects in diseases such as infertility, detailed understanding of human PGC (hPGC) development has important implications in reproductive medicine and studying human evolution. Yet, hPGC specification remains an elusive process. Here, we report the induction of hPGC-like cells (hPGCLCs) in a bioengineered human pluripotent stem cell (hPSC) culture that mimics peri-implantation human development. In this culture, amniotic ectoderm-like cells (AMLCs), derived from hPSCs, induce hPGCLC specification from hPSCs through paracrine signaling downstream of ISL1. Our data further show functional roles of NODAL, WNT, and BMP signaling in hPGCLC induction. hPGCLCs are successfully derived from eight non-obstructive azoospermia (NOA) participant-derived hPSC lines using this biomimetic platform, demonstrating its promise for screening applications.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Auriana Arabpour
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Norio Kobayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, 100084, Beijing, China
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Instituet, 14186, Stockholm, Sweden
| | - Nicole L Agranonik
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Megan Sparrow
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy J Hunt
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jared Faith
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mary Jasmine Lara
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Qiu Ya Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sherman Silber
- Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, MO, 63017, USA
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Instituet, 14186, Stockholm, Sweden
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, QC, H2X 19A, Canada
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, QC, Canada
| | - Ran Yang
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Amander T Clark
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
22
|
Zheng Y. Stem Cell-Derived Microfluidic Amniotic Sac Embryoid (μPASE). Methods Mol Biol 2024; 2767:75-84. [PMID: 36749485 DOI: 10.1007/7651_2022_470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The microfluidic amniotic sac embryoid (μPASE) is a human pluripotent stem cell (hPSC)-derived multicellular human embryo-like structure with molecular and morphological features resembling the progressive development of the early post-implantation human embryonic sac. The microfluidic device is specifically designed to control the formation of hPSC clusters and expose the clusters to different morphogen environments, allowing the development of μPASEs in a highly controllable, reproducible, and scalable fashion. The μPASE model displays human embryonic developmental landmarks such as lumenogenesis of the epiblast, amniotic cavity formation, and the specification of primordial germ cells and gastrulating cells (or mesendoderm cells). Here, we provide detailed instructions needed to reproduce μPASEs, including the immunofluorescence staining and cell retrieval protocols for characterizing μPASEs obtained under different experimental conditions.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
23
|
Stringa B, Solnica-Krezel L. Signaling mechanisms that direct cell fate specification and morphogenesis in human embryonic stem cells-based models of human gastrulation. Emerg Top Life Sci 2023; 7:383-396. [PMID: 38087898 DOI: 10.1042/etls20230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
During mammalian gastrulation, a mass of pluripotent cells surrounded by extraembryonic tissues differentiates into germ layers, mesoderm, endoderm, and ectoderm. The three germ layers are then organized into a body plan with organ rudiments via morphogenetic gastrulation movements of emboly, epiboly, convergence, and extension. Emboly is the most conserved gastrulation movement, whereby mesodermal and endodermal progenitors undergo epithelial-to-mesenchymal transition (EMT) and move via a blastopore/primitive streak beneath the ectoderm. Decades of embryologic, genetic, and molecular studies in invertebrates and vertebrates, delineated a BMP > WNT > NODAL signaling cascade underlying mesoderm and endoderm specification. Advances have been made in the research animals in understanding the cellular and molecular mechanisms underlying gastrulation morphogenesis. In contrast, little is known about human gastrulation, which occurs in utero during the third week of gestation and its investigations face ethical and methodological limitations. This is changing with the unprecedented progress in modeling aspects of human development, using human pluripotent stem cells (hPSCs), including embryonic stem cells (hESC)-based embryo-like models (SCEMs). In one approach, hESCs of various pluripotency are aggregated to self-assemble into structures that resemble pre-implantation or post-implantation embryo-like structures that progress to early gastrulation, and some even reach segmentation and neurulation stages. Another approach entails coaxing hESCs with biochemical signals to generate germ layers and model aspects of gastrulation morphogenesis, such as EMT. Here, we review the recent advances in understanding signaling cascades that direct germ layers specification and the early stages of gastrulation morphogenesis in these models. We discuss outstanding questions, challenges, and opportunities for this promising area of developmental biology.
Collapse
Affiliation(s)
- Blerta Stringa
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| |
Collapse
|
24
|
Sun S, Xue X, Fu J. Modeling development using microfluidics: bridging gaps to foster fundamental and translational research. Curr Opin Genet Dev 2023; 82:102097. [PMID: 37573835 PMCID: PMC11193336 DOI: 10.1016/j.gde.2023.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 08/15/2023]
Abstract
In vitro stem cell-derived embryo and organ models, termed embryoids and organoids, respectively, provide promising experimental tools to study physiological and pathological processes in mammalian development and organ formation. Most of current embryoid and organoid systems are developed using conventional three-dimensional cultures that lack controls of spatiotemporal extracellular signals. Microfluidics, an established technology for quantitative controls and quantifications of dynamic chemical and physical environments, has recently been utilized for developing next-generation embryoids and organoids in a controllable and reproducible manner. In this review, we summarize recent progress in constructing microfluidics-based embryoids and organoids. Development of these models demonstrates the successful applications of microfluidics in establishing morphogen gradients, accelerating medium transport, exerting mechanical forces, facilitating tissue coculture studies, and improving assay throughput, thus supporting using microfluidics for building next-generation embryoids and organoids for fundamental and translational research.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Abstract
Male germ cells undergo a complex sequence of developmental events throughout fetal and postnatal life that culminate in the formation of haploid gametes: the spermatozoa. Errors in these processes result in infertility and congenital abnormalities in offspring. Male germ cell development starts when pluripotent cells undergo specification to sexually uncommitted primordial germ cells, which act as precursors of both oocytes and spermatozoa. Male-specific development subsequently occurs in the fetal testes, resulting in the formation of spermatogonial stem cells: the foundational stem cells responsible for lifelong generation of spermatozoa. Although deciphering such developmental processes is challenging in humans, recent studies using various models and single-cell sequencing approaches have shed new insight into human male germ cell development. Here, we provide an overview of cellular, signaling and epigenetic cascades of events accompanying male gametogenesis, highlighting conserved features and the differences between humans and other model organisms.
Collapse
Affiliation(s)
- John Hargy
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Sun T, Xu Y, Xiang Y, Ou J, Soderblom EJ, Diao Y. Crosstalk between RNA m 6A and DNA methylation regulates transposable element chromatin activation and cell fate in human pluripotent stem cells. Nat Genet 2023; 55:1324-1335. [PMID: 37474847 PMCID: PMC10766344 DOI: 10.1038/s41588-023-01452-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Transposable elements (TEs) are parasitic DNA sequences accounting for over half of the human genome. Tight control of the repression and activation states of TEs is critical for genome integrity, development, immunity and diseases, including cancer. However, precisely how this regulation is achieved remains unclear. Here we develop a targeted proteomic proximity labeling approach to capture TE-associated proteins in human embryonic stem cells (hESCs). We find that the RNA N6-methyladenosine (m6A) reader, YTHDC2, occupies genomic loci of the primate-specific TE, LTR7/HERV-H, specifically through its interaction with m6A-modified HERV-H RNAs. Unexpectedly, YTHDC2 recruits the DNA 5-methylcytosine (5mC)-demethylase, TET1, to remove 5mC from LTR7/HERV-H and prevent epigenetic silencing. Functionally, the YTHDC2/LTR7 axis inhibits neural differentiation of hESCs. Our results reveal both an underappreciated crosstalk between RNA m6A and DNA 5mC, the most abundant regulatory modifications of RNA and DNA in eukaryotes, and the fact that in hESCs this interplay controls TE activity and cell fate.
Collapse
Affiliation(s)
- Tongyu Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Yueyuan Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Proteomics and Metabolomics Shared Resource, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.
- Department of Orthopaedics Surgery, Duke University Medical Center, Durham, NC, USA.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
27
|
DiRusso JA, Clark AT. Transposable elements in early human embryo development and embryo models. Curr Opin Genet Dev 2023; 81:102086. [PMID: 37441874 PMCID: PMC10917458 DOI: 10.1016/j.gde.2023.102086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Transposable elements (TEs), long discounted as 'selfish genomic elements,' are increasingly appreciated as the drivers of genomic evolution, genome organization, and gene regulation. TEs are particularly important in early embryo development, where advances in stem cell technologies, in tandem with improved computational and next-generation sequencing approaches, have provided an unprecedented opportunity to study the contribution of TEs to early mammalian development. Here, we summarize advances in our understanding of TEs in early human development and expand on how new stem cell-based embryo models can be leveraged to augment this understanding.
Collapse
Affiliation(s)
- Jonathan A DiRusso
- Department of Molecular, Cell and Developmental Biology, University of California, 90095 Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, 90095 Los Angeles, CA, USA.; Molecular Biology Institute, University of California, 90095 Los Angeles, CA, USA; Center for Reproductive Science, Health and Education, University of California, 90095 Los Angeles, CA, USA
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, 90095 Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, 90095 Los Angeles, CA, USA.; Molecular Biology Institute, University of California, 90095 Los Angeles, CA, USA; Center for Reproductive Science, Health and Education, University of California, 90095 Los Angeles, CA, USA.
| |
Collapse
|
28
|
Overeem AW, Chang YW, Moustakas I, Roelse CM, Hillenius S, Helm TVD, Schrier VFVD, Gonçalves MA, Mei H, Freund C, Chuva de Sousa Lopes SM. Efficient and scalable generation of primordial germ cells in 2D culture using basement membrane extract overlay. CELL REPORTS METHODS 2023; 3:100488. [PMID: 37426764 PMCID: PMC10326346 DOI: 10.1016/j.crmeth.2023.100488] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/02/2023] [Accepted: 05/02/2023] [Indexed: 07/11/2023]
Abstract
Current methods to generate human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) can be inefficient, and it is challenging to generate sufficient hPGCLCs to optimize in vitro gametogenesis. We present a differentiation method that uses diluted basement membrane extract (BMEx) and low BMP4 concentration to efficiently induce hPGCLC differentiation in scalable 2D cell culture. We show that BMEx overlay potentiated BMP/SMAD signaling, induced lumenogenesis, and increased expression of key hPGCLC-progenitor markers such as TFAP2A and EOMES. hPGCLCs that were generated using the BMEx overlay method were able to upregulate more mature germ cell markers, such as DAZL and DDX4, in human fetal ovary reconstitution culture. These findings highlight the importance of BMEx during hPGCLC differentiation and demonstrate the potential of the BMEx overlay method to interrogate the formation of PGCs and amnion in humans, as well as to investigate the next steps to achieve in vitro gametogenesis.
Collapse
Affiliation(s)
- Arend W. Overeem
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Yolanda W. Chang
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Celine M. Roelse
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Sanne Hillenius
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Talia Van Der Helm
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | | | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Christian Freund
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- Leiden University Medical Center hiPSC Hotel, Leiden University Medical Centre, 2333 ZC Leiden, the Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Ávila-González D, Gidi-Grenat MÁ, García-López G, Martínez-Juárez A, Molina-Hernández A, Portillo W, Díaz-Martínez NE, Díaz NF. Pluripotent Stem Cells as a Model for Human Embryogenesis. Cells 2023; 12:1192. [PMID: 37190101 PMCID: PMC10136597 DOI: 10.3390/cells12081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Pluripotent stem cells (PSCs; embryonic stem cells and induced pluripotent stem cells) can recapitulate critical aspects of the early stages of embryonic development; therefore, they became a powerful tool for the in vitro study of molecular mechanisms that underlie blastocyst formation, implantation, the spectrum of pluripotency and the beginning of gastrulation, among other processes. Traditionally, PSCs were studied in 2D cultures or monolayers, without considering the spatial organization of a developing embryo. However, recent research demonstrated that PSCs can form 3D structures that simulate the blastocyst and gastrula stages and other events, such as amniotic cavity formation or somitogenesis. This breakthrough provides an unparalleled opportunity to study human embryogenesis by examining the interactions, cytoarchitecture and spatial organization among multiple cell lineages, which have long remained a mystery due to the limitations of studying in utero human embryos. In this review, we will provide an overview of how experimental embryology currently utilizes models such as blastoids, gastruloids and other 3D aggregates derived from PSCs to advance our understanding of the intricate processes involved in human embryo development.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Mikel Ángel Gidi-Grenat
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Alejandro Martínez-Juárez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Néstor Emmanuel Díaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| |
Collapse
|
30
|
Abstract
The complex process by which a single-celled zygote develops into a viable embryo is nothing short of a miraculous wonder of the natural world. Elucidating how this process is orchestrated in humans has long eluded the grasp of scientists due to ethical and practical limitations. Thankfully, pluripotent stem cells that resemble early developmental cell types possess the ability to mimic specific embryonic events. As such, murine and human stem cells have been leveraged by scientists to create in vitro models that aim to recapitulate different stages of early mammalian development. Here, we examine the wide variety of stem cell-based embryo models that have been developed to recapitulate and study embryonic events, from pre-implantation development through to early organogenesis. We discuss the applications of these models, key considerations regarding their importance within the field, and how such models are expected to grow and evolve to achieve exciting new milestones in the future.
Collapse
Affiliation(s)
- Aidan H. Terhune
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeyoon Bok
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Li C, Ren J, Zhang M, Wang H, Yi F, Wu J, Tang Y. The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cell Mol Life Sci 2022; 79:511. [PMID: 36066650 PMCID: PMC11803019 DOI: 10.1007/s00018-022-04536-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.
Collapse
Affiliation(s)
- Chaoyi Li
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Ren
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengfei Zhang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huakun Wang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Yi
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Tang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
- The Biobank of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|