1
|
Snoeck HW. Direct megakaryopoiesis. Curr Opin Hematol 2025; 32:213-220. [PMID: 40197720 DOI: 10.1097/moh.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Megakaryocytes are large, polyploid cells that produce platelets and originate from hematopoietic stem cells (HSCs) in the bone marrow. While in the classical paradigm, megakaryocytes are generated in a stepwise fashion through increasingly committed progenitor stages, studies using in-vivo barcoding, transplantation, and in-vitro culture have suggested that, in addition, a more direct pathway existed. The relevance of this direct pathway and its functional and phenotypic characteristics were unclear, however. RECENT FINDINGS Recent publications using fate-mapping and single-cell transplantation now unequivocally demonstrate the existence of a direct megakaryocyte differentiation pathway, provide molecular characterization, and indicate distinct roles and regulation of both pathways. The direct pathway originates from a separate subset of 'top' HSCs, is enhanced by hematopoietic stress, inflammation and aging, bypasses multipotential progenitors, may be more active in myeloproliferative neoplasms, and generates phenotypically distinct megakaryocyte progenitors and more reactive platelets. SUMMARY Novel insights into the direct megakaryocyte differentiation pathway provide a deeper understanding of HSC biology, hematological recovery after myeloablation, and aging of the hematopoietic system, and suggest that this pathway may contribute to the increase in thrombotic incidents with age and in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons
- Division of Pulmonary Medicine, Allergy and Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Ren X, Wang Y, Zhang Y. Targeted depletion of dysfunctional hematopoietic stem cells mitigates myeloid-biased differentiation in aged mice. Cell Discov 2025; 11:56. [PMID: 40490480 DOI: 10.1038/s41421-025-00810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 05/12/2025] [Indexed: 06/11/2025] Open
Affiliation(s)
- Xiangle Ren
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yuting Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, WAB-149G, Boston, MA, USA.
| |
Collapse
|
3
|
Jang G, Park R, Esteva E, Hsu PF, Feng J, Upadhaya S, Sawai CM, Aifantis I, Fooksman DR, Reizis B. Leukemogenic Kras mutation reprograms multipotent progenitors to facilitate its spread through the hematopoietic system. J Exp Med 2025; 222:e20240587. [PMID: 40072317 PMCID: PMC11899982 DOI: 10.1084/jem.20240587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/09/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Leukemia-driving mutations are thought to arise in hematopoietic stem cells (HSC), yet the natural history of their spread is poorly understood. We genetically induced mutations within endogenous murine HSC and traced them in unmanipulated animals. In contrast to mutations associated with clonal hematopoiesis (such as Tet2 deletion), the leukemogenic KrasG12D mutation dramatically accelerated HSC contribution to all hematopoietic lineages. The acceleration was mediated by KrasG12D-expressing multipotent progenitors (MPP) that lacked self-renewal but showed increased proliferation and aberrant transcriptome. The deletion of osteopontin, a secreted negative regulator of stem/progenitor cells, delayed the early expansion of mutant progenitors. KrasG12D-carrying cells showed increased CXCR4-driven motility in the bone marrow, and the blockade of CXCR4 reduced the expansion of MPP in vivo. Finally, therapeutic blockade of KRASG12D spared mutant HSC but reduced the expansion of mutant MPP and their mature progeny. Thus, transforming mutations facilitate their own spread from stem cells by reprogramming MPP, creating a preleukemic state via a two-component stem/progenitor circuit.
Collapse
Affiliation(s)
- Geunhyo Jang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rosa Park
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY, USA
| | - Pei-Feng Hsu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jue Feng
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - David R. Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Gong Y, Zhan H, Wei N, Liu M, Liu Y, Guan P, Xie Y, Deng Y, Pu Q, Lou X, Wang X, Zhang R, Wang P, Jin X, Wang X, Xu Z, Gao L, Wang X, He S, Lu Y, Hu M, Li W, Zheng K, Peng Y, Lei P, Xu H, Shi Y, Qin J, Hu H, Zhang H, Dai L. Acetylation profiling by Iseq-Kac reveals insights into HSC aging and lineage decision. Nat Chem Biol 2025:10.1038/s41589-025-01916-1. [PMID: 40419771 DOI: 10.1038/s41589-025-01916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/17/2025] [Indexed: 05/28/2025]
Abstract
Profiling post-translational modifications face challenges with low-input samples. We developed Iseq-Kac (internal standard-assisted enrichment-free approach for high-throughput quantitative analysis of lysine acetylation) to profile the acetylome in as few as 103-104 cells. By using a hyperacetylated internal standard, Iseq-Kac can be used in mass spectrometry (MS) to enhance MS1 signals and facilitate MS2 fragmentation of acetylated peptides. Using Iseq-Kac, we quantified 675-1,471 acetylated peptides per analysis from 104 hematopoietic stem cells (HSCs) or multipotent progenitors. Validation by targeted MS, site-specific antibodies and functional assays linked aging-related proteome and acetylome changes to HSC lineage decision. A pronounced decrease in acetylation at H4 lysine 77 (H4K77ac) was observed in aged HSCs, linked to histone deacetylase 3 (HDAC3) activity. HDAC3 inhibition or knockdown in HSCs significantly promoted lymphocyte differentiation. Mimicking H4K77ac through H4K77Q expression enhanced B cell differentiation while repressing myeloid differentiation. Overall, Iseq-Kac enables robust low-input acetylome profiling and reveals epigenetic mechanisms underlying lineage skewing in aged HSCs.
Collapse
Affiliation(s)
- Yanqiu Gong
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiwen Zhan
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Wei
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Liu
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pengbo Guan
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yusi Xie
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Deng
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qianlun Pu
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxian Lou
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Wang
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rou Zhang
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Xiuxiu Jin
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuxuan Wang
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqiang Xu
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Gao
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyuan Wang
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Siyu He
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanmeng Li
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zheng
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Institute of Lifeomics, Beijing, China
| | - Hongbo Hu
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
- Tianfu Jincheng Laboratory, Chengdu, China.
| | - Huiyuan Zhang
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Lunzhi Dai
- Center for Hematology and Immunology and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
5
|
Scherer M, Singh I, Braun MM, Szu-Tu C, Sanchez Sanchez P, Lindenhofer D, Jakobsen NA, Körber V, Kardorff M, Nitsch L, Kautz P, Rühle J, Bianchi A, Cozzuto L, Frömel R, Beneyto-Calabuig S, Lareau C, Satpathy AT, Beekman R, Steinmetz LM, Raffel S, Ludwig LS, Vyas P, Rodriguez-Fraticelli A, Velten L. Clonal tracing with somatic epimutations reveals dynamics of blood ageing. Nature 2025:10.1038/s41586-025-09041-8. [PMID: 40399669 DOI: 10.1038/s41586-025-09041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/17/2025] [Indexed: 05/23/2025]
Abstract
Current approaches used to track stem cell clones through differentiation require genetic engineering1,2 or rely on sparse somatic DNA variants3,4, which limits their wide application. Here we discover that DNA methylation of a subset of CpG sites reflects cellular differentiation, whereas another subset undergoes stochastic epimutations and can serve as digital barcodes of clonal identity. We demonstrate that targeted single-cell profiling of DNA methylation5 at single-CpG resolution can accurately extract both layers of information. To that end, we develop EPI-Clone, a method for transgene-free lineage tracing at scale. Applied to mouse and human haematopoiesis, we capture hundreds of clonal differentiation trajectories across tens of individuals and 230,358 single cells. In mouse ageing, we demonstrate that myeloid bias and low output of old haematopoietic stem cells6 are restricted to a small number of expanded clones, whereas many functionally young-like clones persist in old age. In human ageing, clones with and without known driver mutations of clonal haematopoieis7 are part of a spectrum of age-related clonal expansions that display similar lineage biases. EPI-Clone enables accurate and transgene-free single-cell lineage tracing on hematopoietic cell state landscapes at scale.
Collapse
Affiliation(s)
- Michael Scherer
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Indranil Singh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Martina Maria Braun
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Chelsea Szu-Tu
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Sanchez Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Dominik Lindenhofer
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Verena Körber
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Michael Kardorff
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lena Nitsch
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Pauline Kautz
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Technische Universität Berlin, Institute of Biotechnology, Berlin, Germany
| | - Julia Rühle
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Agostina Bianchi
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luca Cozzuto
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Robert Frömel
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi Beneyto-Calabuig
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Caleb Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Renée Beekman
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Palo Alto, CA, USA
| | - Simon Raffel
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Leif S Ludwig
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alejo Rodriguez-Fraticelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Lars Velten
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
6
|
Perçin G, Riege K, Fröbel J, Metz J, Culemann S, Lesche M, Reinhardt S, Höfer T, Hoffmann S, Waskow C. Embryonic macrophages orchestrate niche cell homeostasis for the establishment of the definitive hematopoietic stem cell pool. Nat Commun 2025; 16:4428. [PMID: 40368907 PMCID: PMC12078706 DOI: 10.1038/s41467-025-59059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 03/25/2025] [Indexed: 05/16/2025] Open
Abstract
Embryonic macrophages emerge before the onset of definitive hematopoiesis, seed into discrete tissues and contribute to specialized resident macrophages throughout life. Presence of embryonic macrophages in the bone marrow and functional impact on hematopoietic stem cells (HSC) or the niche remains unclear. Here we show that bone marrow macrophages consist of two ontogenetically distinct cell populations from embryonic and adult origin. Newborn mice lacking embryonic macrophages have decreased HSC numbers in the bone marrow suggesting an important function for embryo-derived macrophages in orchestrating HSC trafficking around birth. The establishment of a normal cellular niche space in the bone marrow critically depends on embryonic macrophages that are important for the development of mesenchymal stromal cells, but not other non-hematopoietic niche cells, providing evidence for a specific role for embryo-derived macrophages in the establishment of the niche environment pivotal for the establishment of a normally sized HSC pool.
Collapse
Affiliation(s)
- Gülce Perçin
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Konstantin Riege
- Computational Biology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jonas Metz
- Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Stephan Culemann
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, c/o CMCB Center for Molecular and Cellular Bioengineering Technology Platform of the TUD Dresden University of Technology, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, c/o CMCB Center for Molecular and Cellular Bioengineering Technology Platform of the TUD Dresden University of Technology, Dresden, Germany
| | - Thomas Höfer
- Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Steve Hoffmann
- Computational Biology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany.
- Department of Medicine III, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Li M, Wang X, He W, Zhou H. Drug-tolerant persister cells in acute myeloid leukemia: pressing challenge and promising new strategies for treatment. Front Med (Lausanne) 2025; 12:1586552. [PMID: 40443513 PMCID: PMC12120853 DOI: 10.3389/fmed.2025.1586552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Acute myeloid leukemia (AML) exhibits a pronounced ability to develop drug resistance and undergo disease relapse. Recent research has noticed that resistance to treatments could substantially be attributed to drug-tolerant persister (DTP) cells, which are capable of surviving under therapeutic pressures. These are transient, reversibly dormant cells with the capability to act as a reservoir for disease relapse. DTP cells utilize diverse adaptive strategies to optimize the ecological niche, undergo metabolic reprogramming, and interact with microenvironment. The persister state of AML is established through transient cellular reprogramming, thus allowing cells to survive the initial phase of drug therapy and develop drug resistance. Our review explores the identification and phenotypic characteristics of AML DTP cells, as well as their clinical relevance. We summarize the mechanisms underlying the persistence of AML DTP cells and the molecular attributes that define the DTP state. We further address the current challenges and future prospects of DTP-targeting approaches. Understanding these features may provide critical insights into novel therapeutic strategies aimed at targeting AML DTP cells, especially in the new era of immunotherapy against AML.
Collapse
Affiliation(s)
- Meng Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjuan He
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Sarji M, Ankawa R, Yampolsky M, Fuchs Y. A near death experience: The secret stem cell life of caspase-3. Semin Cell Dev Biol 2025; 171:103617. [PMID: 40344690 DOI: 10.1016/j.semcdb.2025.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Caspase-3 is known to play a pivotal role in mediating apoptosis, a key programmed cell death pathway. While extensive research has focused on understanding how caspase-3 is activated and functions during apoptosis, emerging evidence has revealed its significant non-apoptotic roles across various cell types, including stem cells. This review explores the critical involvement of caspase-3 in regulating stem cell properties, maintaining stem cell populations, and facilitating tissue regeneration. We also explore the potential pathological consequences of caspase-3 dysfunction in stem cells and cancer cells alongside the therapeutic opportunities of targeting caspase-3.
Collapse
Affiliation(s)
- Mahasen Sarji
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Roi Ankawa
- Augmanity, Rehovot, Israel; Elixr Bio, Rehovot, Israel
| | | | - Yaron Fuchs
- Augmanity, Rehovot, Israel; Elixr Bio, Rehovot, Israel.
| |
Collapse
|
9
|
Tang X, Wang Y, Xu R. Phase separation participates in the genetic regulation mechanism of hematopoietic stem cells: potential therapeutic methods. Stem Cell Res Ther 2025; 16:214. [PMID: 40312729 PMCID: PMC12044980 DOI: 10.1186/s13287-025-04350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
Hematopoietic stem cells (HSCs) are the primitive cells that give rise to common precursors for all blood cell lineages. Abnormalities in their number and/or function are important factors leading to the decline of immune function and the occurrence of various systemic diseases. Phase separation refers to a physicochemical mechanism in which intracellular liquid-liquid phase separation (LLPS) forms membrane-less organelles. It participates in various physiological activities and is related to the occurrence of diseases. Studies have shown that the functional activity of HSCs is regulated by complex mechanisms, and phase separation is closely related to these complex mechanisms such as genetic regulation, epigenetic regulation, microenvironment regulation, gene expression, autophagy degradation, and cell proliferation. With the deepening of research, the importance of phase separation in the pathogenesis and treatment of diseases such as leukemia and tumors has gradually emerged, but the deep mechanism of its regulation of HSCs genetic regulation still lacks exploration, and the direction of clinical targeted therapy is not yet clear. Here, we will summarize and elaborate the genetic regulation mechanism of HSCs, discuss the relationship between phase separation and the functional regulation of HSCs, and analyze the possibility of phase separation participating in the genetic regulation of HSCs to treat diseases, in order to provide help for the clinical implementation of targeted therapy for HSCs regulation.
Collapse
Affiliation(s)
- XinYu Tang
- Doctoral student of Grade 2024, First Clinical Medical College of, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - RuiRong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
10
|
John T, Czechowicz A. Clinical hematopoietic stem cell-based gene therapy. Mol Ther 2025:S1525-0016(25)00308-9. [PMID: 40285354 DOI: 10.1016/j.ymthe.2025.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Hematopoietic stem cell (HSC)-based gene therapies have seen extraordinary progress since their initial conception, now fundamentally transforming the treatment paradigms for various inherited hematologic, immunologic, and metabolic conditions-with additional use cases under exploration. Decades worth of work with advances in viral vector technologies and cell manufacturing have paved the way for HSC gene therapy with marked improvement in the safety and efficiency of gene delivery into HSCs. These have been augmented by the recent rise of innovative genome-editing techniques, particularly using clustered regularly interspaced short palindromic repeats CRISPR-associated proteins (CRISPR-Cas)-based technologies, which have enabled more precise and reproducible genome alterations in HSCs and fostered opportunities for targeted gene modification or gene correction. These breakthroughs have led to the development of many active clinical trials and culminated in the recent federal regulatory-agency approvals of multiple clinical HSC gene therapies for various indications that are now becoming available across different geographies. These treatments aim to offer significant, long-lasting benefits to patients worldwide without the toxicities of alternative treatment approaches. This review explores the history and advancements in HSC gene therapies and provides a comprehensive overview of the latest clinical innovations and cell-therapy products. Further, it concludes with a discussion of the persistent challenges that have limited adoption and potential future opportunities that aspire to enable curative treatment of many different patients through such personalized medicines.
Collapse
Affiliation(s)
- Tami John
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, and Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Agnieszka Czechowicz
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, and Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Liao W, Zai X, Zhang J, Xu J. Hematopoietic stem cell state and fate in trained immunity. Cell Commun Signal 2025; 23:182. [PMID: 40229653 PMCID: PMC11995595 DOI: 10.1186/s12964-025-02192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025] Open
Abstract
Trained immunity serves as a de facto memory for innate immune responses, resulting in long-term functional reprogramming of innate immune cells. It enhances resistance to pathogens and augments immunosurveillance under physiological conditions. Given that innate immune cells typically have a short lifespan and do not divide, persistent innate immune memory may be mediated by epigenetic and metabolic changes in long-lived hematopoietic stem cells (HSCs) in the bone marrow. HSCs fine-tune their state and fate in various training conditions, thereby generating functionally adapted progeny cells that orchestrate innate immune plasticity. Notably, both beneficial and maladaptive trained immunity processes can comprehensively influence HSC state and fate, leading to divergent hematopoiesis and immune outcomes. However, the underlying mechanisms are still not fully understood. In this review, we summarize recent advances regarding HSC state and fate in the context of trained immunity. By elucidating the stem cell-intrinsic and extrinsic regulatory network, we aim to refine current models of innate immune memory and provide actionable insights for developing targeted therapies against infectious diseases and chronic inflammation. Furthermore, we propose a conceptual framework for engineering precision-trained immunity through HSC-targeted interventions.
Collapse
Affiliation(s)
- Weinian Liao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
12
|
Park CS, Bridges CS, Lewis AH, Chen TJ, Shai S, Du W, Puppi M, Zorman B, Pavel S, Lacorazza HD. KLF4 enhances transplantation-induced hematopoiesis by inhibiting TLRs and noncanonical NFκB signaling at a steady state. Exp Hematol 2025; 144:104730. [PMID: 39900173 DOI: 10.1016/j.exphem.2025.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025]
Abstract
The transcription factor Krüppel-like factor 4 (KLF4) acts as a transcriptional activator and repressor. KLF4 plays a role in various cellular processes, including the dedifferentiation of somatic cells into induced pluripotent stem cells. Although it has been shown to enhance self-renewal in embryonic and leukemia stem cells, its role in adult hematopoietic stem cells (HSCs) remains underexplored. We demonstrate that conditional deletion of the Klf4 gene in hematopoietic cells led to an increased frequency of immunophenotypic HSCs in the bone marrow, along with a normal distribution of lymphoid and myeloid progenitor cells. Noncompetitive bone marrow transplants showed normal engraftment and multilineage reconstitution, except for monocytes and T cells. However, the loss of KLF4 hindered hematologic reconstitution in competitive serial bone marrow transplants, highlighting a critical role for KLF4 in stress-induced hematopoiesis. Transcriptome analysis revealed an upregulation of NFκB2 and toll-like receptors (e.g., TLR4) in Klf4-null HSCs during homeostasis. Flow cytometry and immunoblot analysis confirmed the increased cell surface expression of TLR4 and the activation of NFκB2 in HSCs under homeostatic conditions, whereas NFκB2 expression drops after radiation compared with steady-state levels. Our findings suggest that the constitutive activation of the TLR4-NFκB2 pathway inhibits the ability of HSCs to regenerate blood after transplantation in cytoablated bone marrow.
Collapse
Affiliation(s)
- Chun Shik Park
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Texas Children's Hospital, Houston, TX; Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Cory S Bridges
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Texas Children's Hospital, Houston, TX
| | - Andrew H Lewis
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Texas Children's Hospital, Houston, TX
| | - Taylor J Chen
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Texas Children's Hospital, Houston, TX
| | - Saptarsi Shai
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Texas Children's Hospital, Houston, TX
| | - Wa Du
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Texas Children's Hospital, Houston, TX; Department of Cancer Biology, University of Cincinnati, OH
| | - Monica Puppi
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Texas Children's Hospital, Houston, TX
| | - Barry Zorman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Sumazin Pavel
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - H Daniel Lacorazza
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Texas Children's Hospital, Houston, TX.
| |
Collapse
|
13
|
Gao D, Yi WW, Liu B, Zhang CE, Yang CC, Zeng L, Li L, Luo G, Zhang L, Ju ZY, Wang JB. Tetrahydroxy stilbene glucoside rejuvenates aging hematopoietic stem cells with predilection for lymphoid differentiation via AMPK and Tet2. J Adv Res 2025; 70:515-529. [PMID: 38704089 PMCID: PMC11976424 DOI: 10.1016/j.jare.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Aging of hematopoietic stem cells (HSCs) has emerged as an important challenge to human health. Recent advances have raised the prospect of rejuvenating aging HSCs via specific medical interventions, including pharmacological treatments. Nonetheless, efforts to develop such drugs are still in infancy until now. OBJECTIVES We aimed to screen the prospective agents that can rejuvenate aging HSCs and explore the potential mechanisms. METHODS We screened a set of natural anti-aging compounds through oral administration to sub-lethally irradiated mice, and identified 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) as a potent rejuvenating agent for aging HSCs. Then naturally aged mice were used for the follow-up assessment to determine the HSC rejuvenating potential of TSG. Finally, based on the transcriptome and DNA methylation analysis, we validated the role of the AMP-activated protein kinase (AMPK)-ten-eleven-translocation 2 (Tet2) axis (the AMPK-Tet2 axis) as the underlying mechanisms of TSG for ameliorating HSCs aging. RESULTS TSG treatment not only significantly increased the absolute number of common lymphoid progenitors (CLPs) along with B lymphocytes, but also boosted the HSCs/CLPs repopulation potential of aging mice. Further elaborated mechanism research demonstrated that TSG supplementation restored the stemness of aging HSCs, as well as promoted an epigenetic reprograming that was associated with an improved regenerative capacity and an increased rate of lymphopoiesis. Such effects were diminished when the mice were co-treated with an AMPK inhibitor, or when it was performed in Tet2 knockout mice as well as senescent cells assay. CONCLUSION TSG is effective in rejuvenating aging HSCs by modulating the AMPK- Tet2 axis and thus represents a potential candidate for developing effective HSC rejuvenating therapies.
Collapse
Affiliation(s)
- Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Wei-Wei Yi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bo Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Cong-En Zhang
- Department of Pharmacy, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Cui-Cui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Guangbin Luo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106-1712, USA; Centre for Translational Medicine, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518101, China.
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| | - Zhen-Yu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Jia-Bo Wang
- School of Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Wang K, Saniei S, Poddar N, Autar S, Carcamo S, Sreenath M, Peplinski JH, Ries RE, Martinez IG, Chao C, Mei AHC, Rahman N, Mekerishvili L, Quijada-Álamo M, Freed G, Zhang M, Lachman K, Diaz Z, Gonzalez MM, Zhang J, Pham G, Filipescu D, Berisa M, Balestra T, Reisz JA, D'Alessandro A, Puleston DJ, Bernstein E, Chipuk JE, Wunderlich M, Tasian SK, Marcellino BK, Glass IA, Sturgeon CM, Landau DA, Chen Z, Papapetrou EP, Izzo F, Meshinchi S, Hasson D, Wagenblast E. Ontogeny Dictates Oncogenic Potential, Lineage Hierarchy, and Therapy Response in Pediatric Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.643917. [PMID: 40166161 PMCID: PMC11957141 DOI: 10.1101/2025.03.19.643917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Accumulating evidence links pediatric cancers to prenatal transformation events, yet the influence of the developmental stage on oncogenesis remains elusive. We investigated how hematopoietic stem cell developmental stages affect leukemic transformation, disease progression, and therapy response using a novel, humanized model of NUP98∷NSD1-driven pediatric acute myeloid leukemia, that is particularly aggressive with WT1 co-mutations. Fetal-derived hematopoietic stem cells readily transform into leukemia, and WT1 mutations further enhance stemness and alter lineage hierarchy. In contrast, stem cells from later developmental stages become progressively resistant to transformation. Single-cell analyses revealed that fetal-origin leukemia stem cells exhibit greater quiescence and reliance on oxidative phosphorylation than their postnatal counterparts. These differences drive distinct therapeutic responses, despite identical oncogenic mutations. In patients, onco-fetal transcriptional programs correlate with worse outcomes. By targeting key vulnerabilities of fetal-origin leukemia cells, we identified combination therapies that significantly reduce aggressiveness, highlighting the critical role of ontogeny in pediatric cancer treatment.
Collapse
Affiliation(s)
- Ke Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shayan Saniei
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikita Poddar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Subrina Autar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Meghana Sreenath
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack H Peplinski
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Isabella G Martinez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clifford Chao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Huo-Chang Mei
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noshin Rahman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Levan Mekerishvili
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Miguel Quijada-Álamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Grace Freed
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mimi Zhang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine Lachman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zayna Diaz
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel M Gonzalez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Zhang
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giang Pham
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mirela Berisa
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tommaso Balestra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel J Puleston
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Bridget K Marcellino
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington, WA, USA
| | - Christopher M Sturgeon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan A Landau
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Zhihong Chen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Franco Izzo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elvin Wagenblast
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Fotopoulou F, Rodríguez-Correa E, Dussiau C, Milsom MD. Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging? Exp Hematol 2025; 143:104698. [PMID: 39725143 DOI: 10.1016/j.exphem.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Aging exerts a profound impact on the hematopoietic system, leading to increased susceptibility to infections, autoimmune diseases, chronic inflammation, anemia, thrombotic events, and hematologic malignancies. Within the field of experimental hematology, the functional decline of hematopoietic stem cells (HSCs) is often regarded as a primary driver of age-related hematologic conditions. However, aging is clearly a complex multifaceted process involving not only HSCs but also mature blood cells and their interactions with other tissues. This review reappraises an HSC-centric view of hematopoietic aging by exploring how the entire hematopoietic hierarchy, from stem cells to mature cells, contributes to age-related disorders. It highlights the decline of both innate and adaptive immunity, leading to increased susceptibility to infections and cancer, and the rise of autoimmunity as peripheral immune cells undergo aging-induced changes. It explores the concept of "inflammaging," where persistent, low-grade inflammation driven by old immune cells creates a cycle of tissue damage and disease. Additionally, this review delves into the roles of inflammation and homeostatic regulation in age-related conditions such as thrombotic events and anemia, arguing that these issues arise from broader dysfunctions rather than stemming from HSC functional attrition alone. In summary, this review highlights the importance of taking a holistic approach to studying hematopoietic aging and its related pathologies. By looking beyond just stem cells and considering the full spectrum of age-associated changes, one can better capture the complexity of aging and attempt to develop preventative or rejuvenation strategies that target multiple facets of this process.
Collapse
Affiliation(s)
- Foteini Fotopoulou
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Esther Rodríguez-Correa
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Charles Dussiau
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.
| |
Collapse
|
16
|
Strullu M, Arfeuille C, Caye‐Eude A, Maillard L, Lainey E, Piques F, Cassinat B, Guimiot F, Dalle J, Baruchel A, Chomienne C, Bonnet D, Souyri M, Cavé H. Two distinct fetal-type signatures characterize juvenile myelomonocytic leukemia. Hemasphere 2025; 9:e70104. [PMID: 40134525 PMCID: PMC11934893 DOI: 10.1002/hem3.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 01/06/2025] [Indexed: 03/27/2025] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive clonal myeloproliferative neoplasm that affects infants and young children. The narrow window of onset suggests that age-related factors are involved in leukemogenesis. To investigate whether ontogeny-related features are involved in JMML oncogenesis, we compared the gene expression profile of hematopoietic progenitor cells isolated from JMML patients with that of healthy individuals at different stages of ontogeny. This analysis identified two main groups of JMML patients. In the first group, JMML progenitors exhibited a gene expression profile similar to that of embryo-fetal progenitors. Progenitors showed a strong monocytic identity as evidenced by the overexpression of monocytic/dendritic, inflammasome, and innate immune markers. This resembled the monocyte-predominant myelopoiesis characteristic of normal fetal hematopoiesis. However, in the second group, despite evidence of developmental dysregulation as indicated by the aberrant signature of the master oncofetal regulator LIN28B, JMML clustered separately from healthy prenatal and postnatal fractions. These findings highlight the intricate relationship between JMML and development, which will help inform future therapeutic approaches for this rare but severe form of leukemia.
Collapse
Affiliation(s)
- Marion Strullu
- INSERM UMR_S1131, Institut de Recherche Saint‐Louis, Université Paris‐CitéParisFrance
| | - Chloé Arfeuille
- INSERM UMR_S1131, Institut de Recherche Saint‐Louis, Université Paris‐CitéParisFrance
- Département de GénétiqueUF de Génétique moléculaire, Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Robert DebréParisFrance
| | - Aurélie Caye‐Eude
- INSERM UMR_S1131, Institut de Recherche Saint‐Louis, Université Paris‐CitéParisFrance
- Département de GénétiqueUF de Génétique moléculaire, Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Robert DebréParisFrance
| | - Loïc Maillard
- INSERM UMR_S1131, Institut de Recherche Saint‐Louis, Université Paris‐CitéParisFrance
| | - Elodie Lainey
- INSERM UMR_S1131, Institut de Recherche Saint‐Louis, Université Paris‐CitéParisFrance
- Service d'Hématologie Biologique Hôpital Robert Debré, APHPParisFrance
| | - Florian Piques
- INSERM UMR_S1131, Institut de Recherche Saint‐Louis, Université Paris‐CitéParisFrance
- Département de GénétiqueUF de Génétique moléculaire, Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Robert DebréParisFrance
| | - Bruno Cassinat
- INSERM UMR_S1131, Institut de Recherche Saint‐Louis, Université Paris‐CitéParisFrance
- Service de Biologie Cellulaire, Hôpital Saint Louis, APHPParisFrance
| | - Fabien Guimiot
- Département de GénétiqueUF de Fœtopathologie, Hôpital Robert DebréParisFrance
| | - Jean‐Hugues Dalle
- Service d'Hématologie pédiatrique Hôpital Robert Debré, APHPParisFrance
| | - André Baruchel
- Service d'Hématologie pédiatrique Hôpital Robert Debré, APHPParisFrance
| | - Christine Chomienne
- INSERM UMR_S1131, Institut de Recherche Saint‐Louis, Université Paris‐CitéParisFrance
| | - Dominique Bonnet
- Francis Crick Institute, Haematopoietic Stem Cell LaboratoryLondonUK
| | - Michèle Souyri
- INSERM UMR_S1131, Institut de Recherche Saint‐Louis, Université Paris‐CitéParisFrance
| | - Hélène Cavé
- INSERM UMR_S1131, Institut de Recherche Saint‐Louis, Université Paris‐CitéParisFrance
- Département de GénétiqueUF de Génétique moléculaire, Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Robert DebréParisFrance
| |
Collapse
|
17
|
Li X, Wang J, Hu L, Cheng T. How age affects human hematopoietic stem and progenitor cells and the strategies to mitigate aging. Exp Hematol 2025; 143:104711. [PMID: 39788412 DOI: 10.1016/j.exphem.2025.104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Hematopoietic stem cells (HSCs) are central to blood formation and play a pivotal role in hematopoietic and systemic aging. With aging, HSCs undergo significant functional changes, such as an increased stem cell pool, declined homing and reconstitution capacity, and skewed differentiation toward myeloid and megakaryocyte/platelet progenitors. These phenotypic alterations are likely due to the expansion of certain clones, known as clonal hematopoiesis (CH), which leads to disrupted hematopoietic homeostasis, including anemia, impaired immunity, higher risks of hematological malignancies, and even associations with cardiovascular disease, highlighting the broader impact of HSC aging on overall health. HSC aging is driven by a range of mechanisms involving both intrinsic and extrinsic factors, such as DNA damage accumulation, epigenetic remodeling, inflammaging and metabolic regulation. In this review, we summarize the updated understanding of age-related changes in hematopoietic stem and progenitor cells (HSPCs) and the mechanisms underlying the aging process in mammalian models, especially in human study. Additionally, we provide insights into potential therapeutic strategies to counteract aging process and enhance HSC regenerative capacity, which will support therapeutic interventions and promote healthy aging.
Collapse
Affiliation(s)
- Xueling Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Jianwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Linping Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
18
|
Han X, Zhao M, Wang K, Ma W, Wu B, Yu Y, Liang X, Mo W, Chen X, Zhou M, Li Y, Xu S, Yu U, Yang Y, Lei P, Zhou R, Wang S. IFN alpha signaling drives hematopoietic stem cells malfunction under acute inflammation. Int Immunopharmacol 2025; 147:114012. [PMID: 39764994 DOI: 10.1016/j.intimp.2025.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/29/2025]
Abstract
Inflammation stimulation regulates the activity of hematopoietic stem cells (HSCs) through direct-sensing and cytokine-mediation. It is known that HSCs directly sense lipopolysaccharide (LPS), a classical infection-related inflammatory signal, via toll like receptor 4 (TLR4) and subsequently become active. However, the mechanism underlying the activity change of HSCs induced by LPS remains incompletely disclosed. Here we explored that under LPS stimulation, the activation of interferon alpha (IFNα) signal pathway resulted in the activation and exhaustion of HSCs in vitro, indicating HSCs directly responded to LPS through the downstream IFNα signal pathway. We also discovered the increased production of IFNα in mice bone marrow and expression of interferon-α/β receptor (IFNAR) on mice HSCs after LPS stimulation. Creatine, an IFNα inhibitor, could reverse the activation and prevent the exhaustion of HSCs caused by LPS by suppressing the expressions of genes associated with the IFNα signal pathway both in vitro and in vivo. Furthermore, we found that the IFNAR deficiency in mice effectively protected HSCs from activation, elevated apoptosis and impaired reconstitution ability under LPS stimulation in vivo. This finding further supports the notion that LPS activates and injures HSCs indirectly via promoting IFNα secretion in the bone marrow environment. Overall, our findings reveal that LPS causes the injury to HSCs either through direct or cytokine-mediated indirect activation of the IFNα signal pathway.
Collapse
Affiliation(s)
- Xue Han
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Minyi Zhao
- The Department of Hematology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kexin Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Weiwei Ma
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Binghuo Wu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yueyang Yu
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaomei Liang
- The Department of Hematology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaowei Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Ming Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yumiao Li
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Shilin Xu
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Uet Yu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yalan Yang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Peng Lei
- Department of Biomedical Engineering, GBA Institute of Collaborative Innovation, Guangzhou, Guangdong, China.
| | - Ruiqing Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Long J, Lai H, Huang Y, You F, Jiang Y, Kuang Q. Unraveling the pathogenesis of bone marrow hematopoietic injury and the therapeutic potential of natural products. Pharmacol Res 2025; 212:107589. [PMID: 39778641 DOI: 10.1016/j.phrs.2025.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing. Furthermore, we explored the potential and application prospects of natural products in the treatment of bone marrow hematopoietic injury. Natural products, particularly those derived from Chinese herbal medicines and other natural sources, have emerged as promising therapeutic options due to their distinctive mechanisms and minimal side effects. A deeper understanding of the underlying mechanisms of bone marrow hematopoietic injury could illuminate how natural products exert their effects, thereby optimizing treatment strategies and offering safer, more effective options for patients. Future research should leverage emerging technologies to further elucidate the composition and interactions within the bone marrow microenvironment, as well as the specific pathways through which natural products modulate hematopoietic dysfunction.
Collapse
Affiliation(s)
- Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hengzhou Lai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yuqing Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Qixuan Kuang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
20
|
Kohutek ZA, Caslin HL, Fehrenbach DJ, Heimlich JB, Brown JD, Madhur MS, Ferrell PB, Doran AC. Bone Marrow Niche in Cardiometabolic Disease: Mechanisms and Therapeutic Potential. Circ Res 2025; 136:325-353. [PMID: 39883790 PMCID: PMC11790260 DOI: 10.1161/circresaha.124.323778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis. Under normal conditions, this niche ensures a return to immune homeostasis after acute stress. However, in the setting of inflammatory conditions such as those seen in cardiometabolic diseases, it becomes dysregulated, leading to enhanced myelopoiesis and immune activation. This review explores the reciprocal relationship between the bone marrow niche and cardiometabolic diseases, highlighting how alterations in the niche contribute to disease development and progression. The niche regulates HSCs through complex interactions with stromal cells, endothelial cells, and signaling molecules. However, in the setting of chronic diseases such as hypertension, atherosclerosis, and diabetes, inflammatory signals disrupt the balance between HSC self-renewal and differentiation, promoting the excessive production of proinflammatory myeloid cells that exacerbate the disease. Key mechanisms discussed include the effects of hyperlipidemia, hyperglycemia, and sympathetic nervous system activation on HSC proliferation and differentiation. Furthermore, the review emphasizes the role of epigenetic modifications and metabolic reprogramming in creating trained immunity, a phenomenon whereby HSCs acquire long-term proinflammatory characteristics that sustain disease states. Finally, we explore therapeutic strategies aimed at targeting the bone marrow niche to mitigate chronic inflammation and its sequelae. Novel interventions that modulate hematopoiesis and restore niche homeostasis hold promise for the treatment of cardiometabolic diseases. By interrupting the vicious cycle of inflammation and marrow dysregulation, such therapies may offer new avenues for reducing cardiovascular risk and improving patient outcomes.
Collapse
Affiliation(s)
- Zachary A. Kohutek
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heather L. Caslin
- Department of Health and Human Performance, University of Houston, Houston, TX 77204, USA
| | - Daniel J. Fehrenbach
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - J. Brett Heimlich
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan D. Brown
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meena S. Madhur
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - P. Brent Ferrell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN 37212, USA
| | - Amanda C. Doran
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
21
|
Watt SM, Roubelakis MG. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. Int J Mol Sci 2025; 26:671. [PMID: 39859383 PMCID: PMC11766050 DOI: 10.3390/ijms26020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (1011-1012) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.5 million hematopoietic cell transplants (HCTs) globally, making this the most successful regenerative therapy to date. We will commence this review by briefly highlighting selected key achievements (from 1868 to the end of the 20th century) that have contributed to this accomplishment. Much of our knowledge of hematopoiesis is based on small animal models that, despite their enormous importance, do not always recapitulate human hematopoiesis. Given this, we will critically review the progress and challenges faced in identifying adult human HSCs and tracing their lineage differentiation trajectories, referring to murine studies as needed. Moving forward and given that human hematopoiesis is dynamic and can readily adjust to a variety of stressors, we will then discuss recent research advances contributing to understanding (i) which HSPCs maintain daily steady state human hematopoiesis, (ii) where these are located, and (iii) which mechanisms come into play when homeostatic hematopoiesis switches to stress-induced or emergency hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece;
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| |
Collapse
|
22
|
Cain TL, Derecka M, McKinney-Freeman S. The role of the haematopoietic stem cell niche in development and ageing. Nat Rev Mol Cell Biol 2025; 26:32-50. [PMID: 39256623 DOI: 10.1038/s41580-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Blood production depends on rare haematopoietic stem cells (HSCs) and haematopoietic stem and progenitor cells (HSPCs) that ultimately take up residence in the bone marrow during development. HSPCs and HSCs are subject to extrinsic regulation by the bone marrow microenvironment, or niche. Studying the interactions between HSCs and their niche is critical for improving ex vivo culturing conditions and genetic manipulation of HSCs, which is pivotal for improving autologous HSC therapies and transplantations. Additionally, understanding how the complex molecular network in the bone marrow is altered during ageing is paramount for developing novel therapeutics for ageing-related haematopoietic disorders. HSCs are unique amongst stem and progenitor cell pools in that they engage with multiple physically distinct niches during their ontogeny. HSCs are specified from haemogenic endothelium in the aorta, migrate to the fetal liver and, ultimately, colonize their final niche in the bone marrow. Recent studies employing single-cell transcriptomics and microscopy have identified novel cellular interactions that govern HSC specification and engagement with their niches throughout ontogeny. New lineage-tracing models and microscopy tools have raised questions about the numbers of HSCs specified, as well as the functional consequences of HSCs interacting with each developmental niche. Advances have also been made in understanding how these niches are modified and perturbed during ageing, and the role of these altered interactions in haematopoietic diseases. In this Review, we discuss these new findings and highlight the questions that remain to be explored.
Collapse
Affiliation(s)
- Terri L Cain
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marta Derecka
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
23
|
Liu Y, Geng N, Huang X. Molecular regulators of chemotaxis in human hematopoietic stem cells. Biochem Soc Trans 2024; 52:2427-2437. [PMID: 39584478 DOI: 10.1042/bst20240288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Hematopoietic stem cells (HSCs), essential for lifelong blood cell regeneration, are clinically utilized to treat various hematological disorders. These cells originate in the aorta-gonad-mesonephros region, expand in the fetal liver, and mature in the bone marrow. Chemotaxis, involving gradient sensing, polarization, and migration, directs HSCs and is crucial for their homing and mobilization. The molecular regulation of HSC chemotaxis involves chemokines, chemokine receptors, signaling pathways, and cytoskeletal proteins. Recent advances in understanding these regulatory mechanisms have deepened insights into HSC development and hematopoiesis, offering new avenues for therapeutic innovations. Strategies including glucocorticoid receptor activation, modulation of histone acetylation, stimulation of nitric oxide signaling, and interference with m6A RNA modification have shown potential in enhancing CXCR4 expression, thereby improving the chemotactic response and homing capabilities of human HSCs. This review synthesizes current knowledge on the molecular regulation of human HSC chemotaxis and its implications for health and disease.
Collapse
Affiliation(s)
- Yining Liu
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Nanxi Geng
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinxin Huang
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Feng C, Fan H, Tie R, Xin S, Chen M. Deciphering the evolving niche interactome of human hematopoietic stem cells from ontogeny to aging. Front Mol Biosci 2024; 11:1479605. [PMID: 39698109 PMCID: PMC11652281 DOI: 10.3389/fmolb.2024.1479605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Hematopoietic stem cells (HSC) reside within specialized microenvironments that undergo dynamic changes throughout development and aging to support HSC function. However, the evolving cell-cell communication networks within these niches remain largely unexplored. This study integrates single-cell RNA sequencing datasets to systematically characterize the HSC niche interactome from ontogeny to aging. We reconstructed single-cell atlases of HSC niches at different developmental stages, revealing stage-specific cellular compositions and interactions targeting HSC. During HSC maturation, our analysis identified distinct patterns of ligand-receptor interactions and signaling pathways that govern HSC emergence, expansion, and maintenance. HSC aging was accompanied by a decrease in supportive niche interactions, followed by an adaptive increase in interaction strength in old adult bone marrow. This complex aging process involved the emergence of interactions associated with inflammation, altered stem cell function, and a decline in the efficacy of key signaling pathways. Our findings provide a comprehensive understanding of the dynamic remodeling of the HSC niche interactome throughout life, paving the way for targeted interventions to maintain HSC function and promote healthy aging. This study offers valuable insights into the intricate cell-cell communication networks that govern HSC behavior and fate, with implications for hematological disorders and regenerative medicine.
Collapse
Affiliation(s)
- Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoyan Fan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Zhang S, Ayemoba CE, Di Staulo AM, Joves K, Patel CM, Leung EHW, Ong SG, Nerlov C, Maryanovich M, Chronis C, Pinho S. Platelet Factor 4 (PF4) Regulates Hematopoietic Stem Cell Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625252. [PMID: 39651177 PMCID: PMC11623642 DOI: 10.1101/2024.11.25.625252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hematopoietic stem cells (HSCs) responsible for blood cell production and their bone marrow regulatory niches undergo age-related changes, impacting immune responses and predisposing individuals to hematologic malignancies. Here, we show that the age-related alterations of the megakaryocytic niche and associated downregulation of Platelet Factor 4 (PF4) are pivotal mechanisms driving HSC aging. PF4-deficient mice display several phenotypes reminiscent of accelerated HSC aging, including lymphopenia, increased myeloid output, and DNA damage, mimicking physiologically aged HSCs. Remarkably, recombinant PF4 administration restored old HSCs to youthful functional phenotypes characterized by improved cell polarity, reduced DNA damage, enhanced in vivo reconstitution capacity, and balanced lineage output. Mechanistically, we identified LDLR and CXCR3 as the HSC receptors transmitting the PF4 signal, with double knockout mice showing exacerbated HSC aging phenotypes similar to PF4-deficient mice. Furthermore, human HSCs across various age groups also respond to the youthful PF4 signaling, highlighting its potential for rejuvenating aged hematopoietic systems. These findings pave the way for targeted therapies aimed at reversing age-related HSC decline with potential implications in the prevention or improvement of the course of age-related hematopoietic diseases. Key Points Age-related attrition of the megakaryocytic niche and associated PF4 downregulation is a central mechanism in HSC aging.PF4 supplementation, acting on LDLR and CXCR3 receptors, rejuvenates the function of aged HSCs.
Collapse
|
26
|
Zhang S, Pinho S. Delivery of Stem Cell-Rejuvenating Compounds via Subcutaneous Osmotic Pumps. Methods Mol Biol 2024:10.1007/7651_2024_573. [PMID: 39520594 PMCID: PMC12064785 DOI: 10.1007/7651_2024_573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aging is widely regarded as an irreversible physiological process throughout the mammalian lifespan, characterized by functional tissue deterioration and increased disease incidence. One hallmark of mammalian aging is reduced tissue regeneration, primarily attributed to the declining function of tissue-specific stem cells. In recent years, various strategies aimed at rejuvenating stem cells through drug-delivery systems have been extensively explored. Here we describe a method for the long-term, controlled, systemic delivery of drugs using subcutaneous implantations of osmotic pumps.
Collapse
Affiliation(s)
- Sen Zhang
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Cancer Biology Research Program, University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
27
|
Popravko A, Mackintosh L, Dzierzak E. A life-time of hematopoietic cell function: ascent, stability, and decline. FEBS Lett 2024; 598:2755-2764. [PMID: 38439688 PMCID: PMC11586595 DOI: 10.1002/1873-3468.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Aging is a set of complex processes that occur temporally and continuously. It is generally a unidirectional progression of cellular and molecular changes occurring during the life stages of cells, tissues and ultimately the whole organism. In vertebrate organisms, this begins at conception from the first steps in blastocyst formation, gastrulation, germ layer differentiation, and organogenesis to a continuum of embryonic, fetal, adolescent, adult, and geriatric stages. Tales of the "fountain of youth" and songs of being "forever young" are dominant ideas informing us that growing old is something science should strive to counteract. Here, we discuss the normal life stages of the blood system, particularly the historical recognition of its importance in the early growth stages of vertebrates, and what this means with respect to progressive gain and loss of hematopoietic function in the adult.
Collapse
Affiliation(s)
- Anna Popravko
- Institute for Regeneration and RepairUniversity of EdinburghUK
| | | | - Elaine Dzierzak
- Institute for Regeneration and RepairUniversity of EdinburghUK
| |
Collapse
|
28
|
Du C, Liu C, Yu K, Zhang S, Fu Z, Chen X, Liao W, Chen J, Zhang Y, Wang X, Chen M, Chen F, Shen M, Wang C, Chen S, Wang S, Wang J. Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury. Cell Stem Cell 2024; 31:1484-1500.e9. [PMID: 39181130 DOI: 10.1016/j.stem.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.
Collapse
Affiliation(s)
- Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Chaonan Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Frontier Medical Training Brigade, Army Medical University (Third Military Medical University), Xinjiang 831200, China
| | - Kuan Yu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shuzhen Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zeyu Fu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinliang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weinian Liao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yimin Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinmiao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Hematology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610008, China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
29
|
Cobaleda C, Vicente-Dueñas C, Nichols KE, Sanchez-Garcia I. Childhood B cell leukemia: Intercepting the paths to progression. Bioessays 2024; 46:e2400033. [PMID: 39058907 PMCID: PMC11864036 DOI: 10.1002/bies.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
B-cell Acute Lymphoblastic Leukemia (B-ALL) is the most common pediatric cancer, arising most often in children aged 2-5 years. This distinctive age distribution hints at an association between B-ALL development and disrupted immune system function during a susceptible period during childhood, possibly triggered by early exposure to infection. While cure rates for childhood B-ALL surpass 90% in high-income nations, survivors suffer from diminished quality of life due to the side effects of treatment. Consequently, understanding the origins and evolution of B-ALL, and how to prevent this prevalent childhood cancer, is paramount to alleviate this substantial health burden. This article provides an overview of our current understanding of the etiology of childhood B-ALL and explores how this knowledge can inform preventive strategies.
Collapse
Affiliation(s)
- Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM, CSIC-UAM), Madrid, Spain
| | - Carolina Vicente-Dueñas
- Institute for Biomedical Research of Salamanca (IBSAL), Department of Pediatrics, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Kim E. Nichols
- Division of Cancer Predisposition, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Isidro Sanchez-Garcia
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
30
|
Chaudhary R, Smith JNP, Tiwari R, Klein BR, Cordova BA, Petroze F, Richardson B, Broncano AV, Lee J, Parthasarathy PB, De Carvalho KIL, Cameron SJ, Lathia JD, Goodman WA, Cameron MJ, Desai AB. Sex-dependent niche responses modulate steady-state and regenerative hematopoiesis. Exp Hematol 2024; 137:104247. [PMID: 38848877 PMCID: PMC11810041 DOI: 10.1016/j.exphem.2024.104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Hematopoietic stem cells (HSCs) adapt to organismal blood production needs by balancing self-renewal and differentiation, adjusting to physiological demands and external stimuli. Although sex differences have been implicated in differential hematopoietic function in males versus females, the mediators responsible for these effects require further study. Here, we characterized hematopoiesis at a steady state and during regeneration following hematopoietic stem cell transplantation (HST). RNA sequencing of lineage(-) bone marrow cells from C57/Bl6 mice revealed a broad transcriptional similarity between the sexes. However, we identified distinct sex differences in key biological pathways, with female cells showing reduced expression of signatures involved in inflammation and enrichment of genes related to glycolysis, hypoxia, and cell cycle regulation, suggesting a more quiescent and less inflammatory profile compared with male cells. To determine the functional impacts of the observed transcriptomic differences, we performed sex-matched and mismatched transplantation studies of lineage(-) donor cells. During short-term 56-day HST recovery, we found a male donor cell proliferative advantage, coinciding with elevated serum TNF-α, and a male recipient engraftment advantage, coinciding with increased serum CXCL12. Together, we show that sex-specific cell responses, marked by differing expression of pathways regulating metabolism, hypoxia, and inflammation, shape normal and regenerative hematopoiesis, with implications for the clinical understanding of hematopoietic function.
Collapse
Affiliation(s)
- Rahul Chaudhary
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Julianne N P Smith
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Riya Tiwari
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Bailey R Klein
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Brittany A Cordova
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Frederick Petroze
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Brian Richardson
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Alyssia V Broncano
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Juyeun Lee
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | - Scott J Cameron
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Justin D Lathia
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Wendy A Goodman
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Mark J Cameron
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Amar B Desai
- Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
31
|
Mi B, Xiong Y, Knoedler S, Alfertshofer M, Panayi AC, Wang H, Lin S, Li G, Liu G. Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system. Bone Res 2024; 12:42. [PMID: 39103328 PMCID: PMC11300832 DOI: 10.1038/s41413-024-00346-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues, including the skeletal and immune systems. Recent studies have elucidated the intricate bidirectional interactions between these two systems. In this review, we provide a comprehensive synthesis of molecular mechanisms of cell ageing. We further discuss how age-related skeletal changes influence the immune system and the consequent impact of immune system alterations on the skeletal system. Finally, we highlight the clinical implications of these findings and propose potential strategies to promote healthy ageing and reduce pathologic deterioration of both the skeletal and immune systems.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
32
|
Watanuki S, Kobayashi H, Sugiura Y, Yamamoto M, Karigane D, Shiroshita K, Sorimachi Y, Morikawa T, Fujita S, Shide K, Haraguchi M, Tamaki S, Mikawa T, Kondoh H, Nakano H, Sumiyama K, Nagamatsu G, Goda N, Okamoto S, Nakamura-Ishizu A, Shimoda K, Suematsu M, Suda T, Takubo K. SDHAF1 confers metabolic resilience to aging hematopoietic stem cells by promoting mitochondrial ATP production. Cell Stem Cell 2024; 31:1145-1161.e15. [PMID: 38772377 DOI: 10.1016/j.stem.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.
Collapse
Affiliation(s)
- Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kotaro Shide
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Miho Haraguchi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Takumi Mikawa
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Kenta Sumiyama
- Laboratory of Animal Genetics and Breeding, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan; RIKEN Center for Biosystems Dynamics Research, Laboratory for Mouse Genetic Engineering, Osaka 565-0871, Japan
| | - Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu 400-8501, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Live Imaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki 210-0821, Japan
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
33
|
Dellorusso PV, Proven MA, Calero-Nieto FJ, Wang X, Mitchell CA, Hartmann F, Amouzgar M, Favaro P, DeVilbiss A, Swann JW, Ho TT, Zhao Z, Bendall SC, Morrison S, Göttgens B, Passegué E. Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells. Cell Stem Cell 2024; 31:1020-1037.e9. [PMID: 38754428 PMCID: PMC11350610 DOI: 10.1016/j.stem.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.
Collapse
Affiliation(s)
- Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Melissa A Proven
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Fernando J Calero-Nieto
- Welcome and MRC Cambridge Stem Cell Institute, Department of Haematology, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Xiaonan Wang
- Welcome and MRC Cambridge Stem Cell Institute, Department of Haematology, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Felix Hartmann
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meelad Amouzgar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia Favaro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew DeVilbiss
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James W Swann
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Theodore T Ho
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhiyu Zhao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean Morrison
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Berthold Göttgens
- Welcome and MRC Cambridge Stem Cell Institute, Department of Haematology, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
34
|
Hofmann J, Kokkaliaris KD. Bone marrow niches for hematopoietic stem cells: life span dynamics and adaptation to acute stress. Blood 2024; 144:21-34. [PMID: 38579285 DOI: 10.1182/blood.2023023788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) are instrumental for organismal survival because they are responsible for lifelong production of mature blood lineages in homeostasis and response to external stress. To fulfill their function, HSCs rely on reciprocal interactions with specialized tissue microenvironments, termed HSC niches. From embryonic development to advanced aging, HSCs transition through several hematopoietic organs in which they are supported by distinct extrinsic cues. Here, we describe recent discoveries on how HSC niches collectively adapt to ensure robust hematopoietic function during biological aging and after exposure to acute stress. We also discuss the latest strategies leveraging niche-derived signals to revert aging-associated phenotypes and enhance hematopoietic recovery after myeloablation.
Collapse
Affiliation(s)
- Johanna Hofmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department 15, Biosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- University Cancer Center, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Wu J, Liu T, Tang M, Liu Y, Wang W, Wang C, Ju Y, Zhao Y, Zhang Y. Ex Vivo Evaluation of the Function of Hematopoietic Stem Cells in Toxicology of Metals. Curr Protoc 2024; 4:e1038. [PMID: 38967962 DOI: 10.1002/cpz1.1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A variety of metals, e.g., lead (Pb), cadmium (Cd), and lithium (Li), are in the environment and are toxic to humans. Hematopoietic stem cells (HSCs) reside at the apex of hematopoiesis and are capable of generating all kinds of blood cells and self-renew to maintain the HSC pool. HSCs are sensitive to environmental stimuli. Metals may influence the function of HSCs by directly acting on HSCs or indirectly by affecting the surrounding microenvironment for HSCs in the bone marrow (BM) or niche, including cellular and extracellular components. Investigating the impact of direct and/or indirect actions of metals on HSCs contributes to the understanding of immunological and hematopoietic toxicology of metals. Treatment of HSCs with metals ex vivo, and the ensuing HSC transplantation assays, are useful for evaluating the impacts of the direct actions of metals on the function of HSCs. Investigating the mechanisms involved, given the rarity of HSCs, methods that require large numbers of cells are not suitable for signal screening; however, flow cytometry is a useful tool for signal screening HSCs. After targeting signaling pathways, interventions ex vivo and HSCs transplantation are required to confirm the roles of the signaling pathways in regulating the function of HSCs exposed to metals. Here, we describe protocols to evaluate the mechanisms of direct and indirect action of metals on HSCs. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Identify the impact of a metal on the competence of HSCs Basic Protocol 2: Identify the impact of a metal on the lineage bias of HSC differentiation Basic Protocol 3: Screen the potential signaling molecules in HSCs during metal exposure Alternate Protocol 1: Ex vivo treatment with a metal on purified HSCs Alternate Protocol 2: Ex vivo intervention of the signaling pathway regulating the function of HSCs during metal exposure.
Collapse
Affiliation(s)
- Jiaojiao Wu
- Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China
| | - Ting Liu
- Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China
| | - Mengke Tang
- Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China
| | - Yalin Liu
- Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China
| | - Wei Wang
- Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China
| | - Chuanxuan Wang
- Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China
| | - Yingzi Ju
- Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China
| | - Yifan Zhao
- Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China
| | - Yubin Zhang
- Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Yokomizo T, Oshima M, Iwama A. Epigenetics of hematopoietic stem cell aging. Curr Opin Hematol 2024; 31:207-216. [PMID: 38640057 DOI: 10.1097/moh.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW The development of new antiaging medicines is of great interest to the current elderly and aging population. Aging of the hematopoietic system is attributed to the aging of hematopoietic stem cells (HSCs), and epigenetic alterations are the key effectors driving HSC aging. Understanding the epigenetics of HSC aging holds promise of providing new insights for combating HSC aging and age-related hematological malignancies. RECENT FINDINGS Aging is characterized by the progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. During aging, the HSCs undergo both quantitative and qualitative changes. These functional changes in HSCs cause dysregulated hematopoiesis, resulting in anemia, immune dysfunction, and an increased risk of hematological malignancies. Various cell-intrinsic and cell-extrinsic effectors influencing HSC aging have also been identified. Epigenetic alterations are one such mechanism. SUMMARY Cumulative epigenetic alterations in aged HSCs affect their fate, leading to aberrant self-renewal, differentiation, and function of aged HSCs. In turn, these factors provide an opportunity for aged HSCs to expand by modulating their self-renewal and differentiation balance, thereby contributing to the development of hematological malignancies.
Collapse
Affiliation(s)
- Takako Yokomizo
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
37
|
Yamada Y, Zheng Z, Jad AK, Yamashita M. Lethal and sublethal effects of programmed cell death pathways on hematopoietic stem cells. Exp Hematol 2024; 134:104214. [PMID: 38582294 DOI: 10.1016/j.exphem.2024.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Programmed cell death is an evolutionally conserved cellular process in multicellular organisms that eliminates unnecessary or rogue cells during development, infection, and carcinogenesis. Hematopoietic stem cells (HSCs) are a rare, self-renewing, and multipotent cell population necessary for the establishment and regeneration of the hematopoietic system. Counterintuitively, key components necessary for programmed cell death induction are abundantly expressed in long-lived HSCs, which often survive myeloablative stress by engaging a prosurvival response that counteracts cell death-inducing stimuli. Although HSCs are well known for their apoptosis resistance, recent studies have revealed their unique vulnerability to certain types of programmed necrosis, such as necroptosis and ferroptosis. Moreover, emerging evidence has shown that programmed cell death pathways can be sublethally activated to cause nonlethal consequences such as innate immune response, organelle dysfunction, and mutagenesis. In this review, we summarized recent findings on how divergent cell death programs are molecularly regulated in HSCs. We then discussed potential side effects caused by sublethal activation of programmed cell death pathways on the functionality of surviving HSCs.
Collapse
Affiliation(s)
- Yuta Yamada
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Zhiqian Zheng
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alaa K Jad
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
38
|
Prasad P, Cancelas JA. From Marrow to Bone and Fat: Exploring the Multifaceted Roles of Leptin Receptor Positive Bone Marrow Mesenchymal Stromal Cells. Cells 2024; 13:910. [PMID: 38891042 PMCID: PMC11171870 DOI: 10.3390/cells13110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The bone marrow (BM) stromal cell microenvironment contains non-hematopoietic stromal cells called mesenchymal stromal cells (MSCs). MSCs are plastic adherent, form CFU-Fs, and give rise to osteogenic, adipogenic, chondrogenic progenitors, and most importantly provide HSC niche factor chemokine C-X-C motif ligand 12 (CXCL12) and stem cell factor (SCF). Different authors have defined different markers for mouse MSC identification like PDGFR+Sca-1+ subsets, Nestin+, or LepR+ cells. Of these, the LepR+ cells are the major source of SCF and CXCL12 in the BM microenvironment and play a major role in HSC maintenance and hematopoiesis. LepR+ cells give rise to most of the bones and BM adipocytes, further regulating the microenvironment. In adult BM, LepR+ cells are quiescent but after fracture or irradiation, they proliferate and differentiate into mesenchymal lineage osteogenic, adipogenic and/or chondrogenic cells. They also play a crucial role in the steady-state hematopoiesis process, as well as hematopoietic regeneration and the homing of hematopoietic stem cells (HSCs) after myeloablative injury and/or HSC transplantation. They line the sinusoidal cavities, maintain the trabeculae formation, and provide the space for HSC homing and retention. However, the LepR+ cell subset is heterogeneous; some subsets have higher adipogenic potential, while others express osteollineage-biased genes. Different transcription factors like Early B cell factor 3 (EBF3) or RunX2 help maintain this balance between the self-renewing and committed states, whether osteogenic or adipogenic. The study of LepR+ MSCs holds immense promise for advancing our understanding of HSC biology, tissue regeneration, metabolic disorders, and immune responses. In this review, we will discuss the origin of the BM resident LepR+ cells, different subtypes, and the role of LepR+ cells in maintaining hematopoiesis, osteogenesis, and BM adipogenesis following their multifaceted impact.
Collapse
Affiliation(s)
| | - Jose A. Cancelas
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
39
|
Poulos MG, Ramalingam P, Winiarski A, Gutkin MC, Katsnelson L, Carter C, Pibouin-Fragner L, Eichmann A, Thomas JL, Miquerol L, Butler JM. Complementary and Inducible creER T2 Mouse Models for Functional Evaluation of Endothelial Cell Subtypes in the Bone Marrow. Stem Cell Rev Rep 2024; 20:1135-1149. [PMID: 38438768 PMCID: PMC11087254 DOI: 10.1007/s12015-024-10703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
In the adult bone marrow (BM), endothelial cells (ECs) are an integral component of the hematopoietic stem cell (HSC)-supportive niche, which modulates HSC activity by producing secreted and membrane-bound paracrine signals. Within the BM, distinct vascular arteriole, transitional, and sinusoidal EC subtypes display unique paracrine expression profiles and create anatomically-discrete microenvironments. However, the relative contributions of vascular endothelial subtypes in supporting hematopoiesis is unclear. Moreover, constitutive expression and off-target activity of currently available endothelial-specific and endothelial-subtype-specific murine cre lines potentially confound data analysis and interpretation. To address this, we describe two tamoxifen-inducible cre-expressing lines, Vegfr3-creERT2 and Cx40-creERT2, that efficiently label sinusoidal/transitional and arteriole endothelium respectively in adult marrow, without off-target activity in hematopoietic or perivascular cells. Utilizing an established mouse model in which cre-dependent recombination constitutively-activates MAPK signaling within adult endothelium, we identify arteriole ECs as the driver of MAPK-mediated hematopoietic dysfunction. These results define complementary tamoxifen-inducible creERT2-expressing mouse lines that label functionally-discrete and non-overlapping sinusoidal/transitional and arteriole EC populations in the adult BM, providing a robust toolset to investigate the differential contributions of vascular subtypes in maintaining hematopoietic homeostasis.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA
| | - Pradeep Ramalingam
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA
| | - Agatha Winiarski
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
| | - Michael C Gutkin
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lizabeth Katsnelson
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Cody Carter
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
| | | | - Anne Eichmann
- Université de Paris Cité, Inserm, PARCC, 75015, Paris, France
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Paris Brain Institute, Université Pierre et Marie Curie Paris, 06 UMRS1127, Sorbonne Université, Paris Brain Institute, Paris, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13288, Marseille, France
| | - Jason M Butler
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA.
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA.
| |
Collapse
|
40
|
Chen X, Liu C, Wang J, Du C. Hematopoietic Stem Cells as an Integrative Hub Linking Lifestyle to Cardiovascular Health. Cells 2024; 13:712. [PMID: 38667327 PMCID: PMC11049205 DOI: 10.3390/cells13080712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite breakthroughs in modern medical care, the incidence of cardiovascular disease (CVD) is even more prevalent globally. Increasing epidemiologic evidence indicates that emerging cardiovascular risk factors arising from the modern lifestyle, including psychosocial stress, sleep problems, unhealthy diet patterns, physical inactivity/sedentary behavior, alcohol consumption, and tobacco smoking, contribute significantly to this worldwide epidemic, while its underpinning mechanisms are enigmatic. Hematological and immune systems were recently demonstrated to play integrative roles in linking lifestyle to cardiovascular health. In particular, alterations in hematopoietic stem cell (HSC) homeostasis, which is usually characterized by proliferation, expansion, mobilization, megakaryocyte/myeloid-biased differentiation, and/or the pro-inflammatory priming of HSCs, have been shown to be involved in the persistent overproduction of pro-inflammatory myeloid leukocytes and platelets, the cellular protagonists of cardiovascular inflammation and thrombosis, respectively. Furthermore, certain lifestyle factors, such as a healthy diet pattern and physical exercise, have been documented to exert cardiovascular protective effects through promoting quiescence, bone marrow retention, balanced differentiation, and/or the anti-inflammatory priming of HSCs. Here, we review the current understanding of and progression in research on the mechanistic interrelationships among lifestyle, HSC homeostasis, and cardiovascular health. Given that adhering to a healthy lifestyle has become a mainstream primary preventative approach to lowering the cardiovascular burden, unmasking the causal links between lifestyle and cardiovascular health from the perspective of hematopoiesis would open new opportunities to prevent and treat CVD in the present age.
Collapse
Affiliation(s)
| | | | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| |
Collapse
|
41
|
Mapperley C, Kranc KR. HOXA9 and β-catenin safeguard HSC integrity. Blood 2024; 143:1554-1556. [PMID: 38635250 DOI: 10.1182/blood.2023023755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
|
42
|
Li L, Huang J, Zhang S, Yao C, Chen Y, Wang H, Guo B. The Chaperone Protein Cct5 is Essential for Hematopoietic Stem Cell Maintenance. Stem Cell Rev Rep 2024; 20:769-778. [PMID: 38153635 DOI: 10.1007/s12015-023-10670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Proper proteostasis is indispensable for the long-term maintenance of hematopoietic stem and progenitor cells (HSPCs). The TRiC/CCT (chaperonin-containing TCP-1) complex, a key constituent of cellular machinery facilitating accurate protein folding, has remained enigmatic in its specific function within HSPCs. Here we show that conditional knockout (KO) of Cct5 significantly impairs the maintenance of murine HSPCs. Primary and secondary transplantation experiments unequivocally demonstrate the incapacity of Cct5 KO HSPCs to reconstitute both myeloid and lymphoid lineage cells in recipient mice, highlighting the pivotal role of the TRiC/CCT complex in governing these cellular lineages. Furthermore, leveraging an integrated approach that merges a Protein-Protein Interaction (PPI) database with RNA sequencing (RNA-seq) data of HSPCs, our analysis reveals intricate interactions between Cct5 and vital transcription factors crucial for HSC homeostasis. Notably, Cct5 engages with MYC, PIAS1, TP53, ESR1, HOXA1, and JUN, intricately regulating the transcriptional landscape governing autophagy, myeloid differentiation, and cytoskeleton organization within HSPCs. Our study unveils the profound significance of TRiC/CCT complex-mediated proteostasis in orchestrating the maintenance and functionality of HSPCs.
Collapse
Affiliation(s)
- Linxi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280, Chong-Qing South Road, West Bldg #2, Rm 804, Shanghai, 200025, China
| | - Jie Huang
- Children's Hospital, Fudan University, Minhang, Shanghai, China
| | - Suping Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280, Chong-Qing South Road, West Bldg #2, Rm 804, Shanghai, 200025, China
| | - Chunxu Yao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280, Chong-Qing South Road, West Bldg #2, Rm 804, Shanghai, 200025, China
| | - Yandan Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280, Chong-Qing South Road, West Bldg #2, Rm 804, Shanghai, 200025, China.
- Department of Hematology, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200090, China.
| | - Haitao Wang
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280, Chong-Qing South Road, West Bldg #2, Rm 804, Shanghai, 200025, China.
- Department of Hematology, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200090, China.
| |
Collapse
|
43
|
Kasu YAT, Signer RAJ. Anti-ageing antibodies revive the immune system. Nature 2024; 628:43-45. [PMID: 38538888 DOI: 10.1038/d41586-024-00680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
|
44
|
Chagraoui J, Girard S, Mallinger L, Mayotte N, Tellechea MF, Sauvageau G. KBTBD4-mediated reduction of MYC is critical for hematopoietic stem cell expansion upon UM171 treatment. Blood 2024; 143:882-894. [PMID: 38207291 DOI: 10.1182/blood.2023021342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Ex vivo expansion of hematopoietic stem cells (HSCs) is gaining importance for cell and gene therapy, and requires a shift from dormancy state to activation and cycling. However, abnormal or excessive HSC activation results in reduced self-renewal ability and increased propensity for myeloid-biased differentiation. We now report that activation of the E3 ligase complex CRL3KBTBD4 by UM171 not only induces epigenetic changes through CoREST1 degradation but also controls chromatin-bound master regulator of cell cycle entry and proliferative metabolism (MYC) levels to prevent excessive activation and maintain lympho-myeloid potential of expanded populations. Furthermore, reconstitution activity and multipotency of UM171-treated HSCs are specifically compromised when MYC levels are experimentally increased despite degradation of CoREST1.
Collapse
Affiliation(s)
- Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Simon Girard
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Laure Mallinger
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Nadine Mayotte
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Maria Florencia Tellechea
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|