1
|
Wang LT, Wang HH, Jiang SS, Chang CC, Hsu PJ, Liu KJ, Sytwu HK, Yen BL, Yen ML. Lack of IFN-γ response of human uterine myometrium-derived MSCs significantly improve multiple IBD parameters compared to bone marrow MSCs: Implications for anti-TNFα-refractory patients. Pharmacol Res 2025; 215:107716. [PMID: 40154933 DOI: 10.1016/j.phrs.2025.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The clinical efficacy of mesenchymal stem cell (MSC) therapy for inflammatory bowel disease (IBD) is inconsistent and often fails to match promising preclinical findings. To improve outcome, we compared MSCs isolated from human uterine myometrium (Ut), a readily-available tissue source from a unique immune niche, to bone marrow (BM) MSCs, the most common source, in a murine IBD model with mechanisms underlying differential effects. In this study, human BMMSCs and UtMSCs were intravenously administered to mice with dextran sulfate sodium-induced colitis and evaluated for disease activity, microbiome composition, and cellular immunity. Bioinformatics analyses including patient data were performed to further specify involved mechanisms with subsequent functional validation performed. We found that UtMSC but not BMMSC treatment significantly reversed disease parameters by improving microbiome and reducing mesenteric lymph node IFN-γ and IL-17A-secreting T cells. Transcriptomic analysis revealed UtMSCs had reduced MHC II pathway activation compared to BMMSCs. Functional validation confirmed UtMSCs compared to BMMSCs expressed lower IFN-γ receptors, prevent MHC II-mediated human unstimulated T cell activation, and modulated stimulated T helper (Th) cells away from effector phenotypes while increasing regulatory T cells (Tregs) and IL-10 levels. Bioinformatics from IBD patients resistant to non-T cell-specific therapies implicated persistent MHC II-mediated Th1/Th17 activation as key drivers of disease. Overall, UtMSCs outperformed BMMSCs in improving microbiota, avoiding IFN-γ responses, and modulating overall Th responses, suggesting this MSC source may offer more significant effectiveness for IBD and Th1/Th17-mediated conditions. Our findings also highlight that understanding MSC source-specific therapeutic mechanisms is crucial for optimizing clinical therapies.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Huan Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | | | - Chia-Chih Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Ko-Jiunn Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan; Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan; Department of Obstetrics & Gynecology, Cathay General Hospital Shiji, New Taipei, Taiwan.
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan.
| |
Collapse
|
2
|
Azami P, Mohammadzadeh S, Seirafi S, Razeghian-Jahromi I. A review of cutting-edge biomarkers for diagnosing coronary artery disease. Medicine (Baltimore) 2025; 104:e41377. [PMID: 39854741 PMCID: PMC11771658 DOI: 10.1097/md.0000000000041377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic coronary artery disease (CAD) remains a significant global healthcare burden. Current risk assessment methods have notable limitations in early detection and risk stratification. Hence, there is an urgent need for innovative biomarkers that facilitate the premature CAD diagnosis, ultimately leading to reduction in associated morbidity and mortality rates. This review comprehensively examines recent advances in emerging biomarkers for CAD detection. Our analysis delves into various aspects of these biomarkers such as their mechanisms of action, roles in the pathophysiology of the disease, and different measurement techniques employed in clinical practice. Comparative assessment of biomarker performance between CAD patients and control groups was also presented relying on their sensitivity, specificity, and area under the curve at specific cutoff points. In this regard, prominent biomarkers including Tenascin-C, IL-37, PTX3, transthyretin, soluble interleukin-6 receptor α, and miR-15a are identified as having high diagnostic potential for chronic CAD that indeed showcase promising performance metrics. These findings underscore the role of novel biomarkers in enhancing CAD risk stratification and improving patient outcomes through early intervention. However, the pursuit of an ideal and inclusive biomarker continues due to the multifaceted nature of CAD. Future randomized controlled trials are essential to bridge the gap between research findings and clinical practice in order to augment the practical application of these biomarkers in routine healthcare settings.
Collapse
Affiliation(s)
- Pouria Azami
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Soroush Seirafi
- Department of Cardiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
3
|
Huang WC, Li YC, Chen PX, Ma KSK, Wang LT. Mesenchymal stem cell therapy as a game-changer in liver diseases: review of current clinical trials. Stem Cell Res Ther 2025; 16:3. [PMID: 39762946 PMCID: PMC11705688 DOI: 10.1186/s13287-024-04127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic liver diseases, including cirrhosis and liver failure, remain formidable challenges due to their complex progression and limited therapeutic options. Mesenchymal stem cell (MSC) therapy has emerged as a game-changing approach, leveraging its potent immunomodulatory, anti-fibrotic, and regenerative capabilities, along with the ability to transdifferentiate into hepatocytes. This review delves into the latest advances in MSC-based treatments for chronic and end-stage liver diseases, as highlighted in current clinical trials. MSCs derived from bone marrow and umbilical cord have shown remarkable promise in reversing liver damage, improving liver function, and providing hope for patients who do not respond to conventional therapies. When administered through hepatic, portal, or peripheral veins, MSCs have significantly improved liver histology, reduced fibrosis, and restored functional capacity. Furthermore, MSC-derived materials, such as extracellular vesicles and exosomes, are emerging as cutting-edge tools for treating liver failure and mitigating post-transplant complications. While autologous MSC-derived hepatocytes hold promise for non-fatal cirrhosis, allogeneic MSCs are being applied in more severe conditions, including liver failure and transplantation cases. Despite these promising early outcomes, larger trials and long-term studies are essential to fully harness MSCs as a transformative, off-the-shelf alternative to liver transplantation, heralding a new era in regenerative liver therapies.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Laboratory of Clinical Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Chi Li
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan
| | - Pin-Xuan Chen
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan
| | - Kevin Sheng-Kai Ma
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-Tzu Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan.
- Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Lin ECY, Davis MP, Lee MS, Ma G, Xu W, Chang YI, Li WJ. Advancing immunomodulatory functions in mesenchymal stem/stromal cells through targeting the GATA6-mediated pathway. Cytotherapy 2025; 27:85-97. [PMID: 39207345 PMCID: PMC11668624 DOI: 10.1016/j.jcyt.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AIMS The immunomodulatory capacity of mesenchymal stem/stromal cells (MSCs) is a key feature that makes them particularly valuable for regenerative medicine. However, this potential is affected by the chronological aging of the donors and the cell expansion procedures in culture. We have demonstrated that GATA binding protein 6 (GATA6) plays a pivotal role in the aging of MSCs and inhibiting GATA6 rejuvenates the characteristics of MSCs. METHODS In this study, we compared the immunomodulatory capabilities of young and old MSC models, using induced pluripotent stem cells-derived rejuvenated MSCs (rMSCs) and their parental MSCs (pMSCs), respectively, to identify a key mechanism involved in the differential regulation of these capabilities. Additionally, we explored the role of GATA6 in mediating the mechanism. RESULTS Our results demonstrated that rMSCs exhibited downregulated aging-associated regulators, including p53, p21 and GATA6, and showed enhanced suppression of T cell proliferation compared to pMSCs. Through analyzing our previous RNA-seq data and employing target gene knockdown, we determined both suppressors of cytokine signaling 3 (SOCS3) and interleukin 6 were involved in GATA6-induced regulation, collectively affecting the expression of programmed death ligand 1 (PDL1) in both pMSCs and rMSCs. CONCLUSIONS Our findings underline the significance of the GATA6/SOCS3/PDL1 pathway in regulating aging-associated changes in MSC immunomodulatory activity, providing valuable insights into the potential use of rMSCs in the treatment of immune diseases and regenerative medicine.
Collapse
Affiliation(s)
- Eric Chang-Yi Lin
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA; Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Madison P Davis
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ming-Song Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gui Ma
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuan-I Chang
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
Vlajic K, Bie W, Gilic MB, Tyner AL. Impaired activation of succinate-induced type 2 immunity and secretory cell production in the small intestines of Ptk6-/- male mice. Cell Death Dis 2024; 15:777. [PMID: 39461944 PMCID: PMC11513114 DOI: 10.1038/s41419-024-07149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to the SRC family of tyrosine kinases. It is expressed in epithelial linings and regulates regeneration and repair of the intestinal epithelium. Analysis of publicly available datasets showed Ptk6 is upregulated in tuft cells upon activation of type 2 immunity. We found that disruption of Ptk6 influences gene expression involved in intestinal immune responses. Administration of succinate, which mimics infection and activates tuft cells, revealed PTK6-dependent activation of innate immune responses in male but not female mice. In contrast to all wild type and Ptk6-/- female mice, Ptk6-/- male mice do not activate innate immunity or upregulate differentiation of the tuft and goblet secretory cell lineages following succinate treatment. Mechanistically, we found that PTK6 regulates Il25 and Irag2, genes that are required for tuft cell effector functions and activation of type 2 innate immunity, in organoids derived from intestines of male but not female mice. In patients with Crohn's disease, PTK6 is upregulated in tuft cells in noninflamed regions of intestine. These data highlight roles for PTK6 in contributing to sex differences in intestinal innate immunity and provide new insights into the regulation of IL-25.
Collapse
Affiliation(s)
- Katarina Vlajic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- University of Washington, Seattle, WA, USA
| | - Wenjun Bie
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Milica B Gilic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- St Jude Children's Hospital, Memphis, TN, USA
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
6
|
Margiana R. Mesenchymal stem cell-derived exosomes in preeclampsia: A next-generation therapeutic tool. Cell Biochem Funct 2024; 42:e3908. [PMID: 38269498 DOI: 10.1002/cbf.3908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
Preeclampsia (PE) is a major gestational disorder that causes both long- and short-term damage to both the mother and the fetus. Endometrium decidualization and the formation of the placenta are orchestrated by mesenchymal stem cells (MSCs). MSCs obtained from patients with PE exhibit an elevated rate of aging and apoptosis, which impairs the interplay between MSCs and endothelium, trophoblast, and immune cells in the placenta, accelerating the onset of PE. Preclinical and clinical evidence imply that the MSC-based therapy approach for PE is prospective. Importantly, as a novel cell-free approach, MSC-derived exosomes can improve symptoms and maternal-fetal survival in PE models by raising cell metabolism, encouraging angiogenesis balance, and regulating immune responses. Even following allogeneic administration, the likelihood of immune rejection is very limited as a result of the small quantity of exosome membrane-bound proteins. Furthermore, because exosomes do not expand, developing tumors is not probable. As a result, MSC-derived exosomes show superiority over MSCs in terms of safety. For the first time, we outline the properties of MSC-exosomes and highlight their functions and potential as a new paradigm for PE therapy in this review.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
7
|
Wang J, Liu H, Yue G, Deng Y, Cai W, Xu J. Human placenta-derived mesenchymal stem cells ameliorate diabetic kidney disease by modulating the T helper 17 cell/ regulatory T-cell balance through the programmed death 1 / programmed death-ligand 1 pathway. Diabetes Obes Metab 2024; 26:32-45. [PMID: 37722965 DOI: 10.1111/dom.15282] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
AIM To investigate the therapeutic effects and immunomodulatory mechanisms of human placenta-derived mesenchymal stem cells (PMSCs) in diabetic kidney disease (DKD). METHODS Streptozotocin-induced DKD rats were administered an equivalent volume of saline or PMSCs (1 × 106 in 2 mL phosphate-buffered saline per rat) for 3 weeks. Eight weeks after treatment, we examined the biochemical parameters in the blood and urine, the ratio of T helper 17 cells (Th17) and regulatory T cells (Treg) in the blood, cytokine levels in the kidney and blood, and renal histopathological changes. In addition, we performed PMSC tracing and renal transcriptomic analyses using RNA-sequencing. Finally, we determined whether PMSCs modulated the Th17/Treg balance by upregulating programmed death 1 (PD-1) in vitro. RESULTS The PMSCs significantly improved renal function, which was assessed by serum creatinine levels, urea nitrogen, cystatin C levels, urinary albumin-creatinine ratio, and the kidney index. Further, PMSCs alleviated pathological changes, including tubular vacuolar degeneration, mesangial matrix expansion, and glomerular filtration barrier injury. In the DKD rats in our study, PMSCs were mainly recruited to immune organs, rather than to the kidney or pancreas. PMSCs markedly promoted the Th17/Treg balance and reduced the levels of pro-inflammatory cytokines (interleukin [IL]-17A and IL-1β) in the kidney and blood of DKD rats. In vitro experiments showed that PMSCs significantly reduced the proportion of Th17 cells and increased the proportion of Treg cells by upregulating PD-1 in a cell-cell contact manner and downregulating programmed death-ligand 1 (PD-L1) expression in PMSCs, which reversed the Th17/Treg balance. CONCLUSION We found that PMSCs improved renal function and pathological damage in DKD rats and modulated Th17/Treg balance through the PD-1/PD-L1 pathway. These findings provide a novel mechanism and basis for the clinical use of PMSCs in the treatment of DKD.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Honghong Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guanru Yue
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| |
Collapse
|
8
|
Chen Z, Yao MW, Ao X, Gong QJ, Yang Y, Liu JX, Lian QZ, Xu X, Zuo LJ. The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells. Chin J Traumatol 2024; 27:1-10. [PMID: 38065706 PMCID: PMC10859298 DOI: 10.1016/j.cjtee.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 02/05/2024] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of Orthopedics, 953 Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, Tibet Autonomous Region, China
| | - Qing-Jia Gong
- College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Xia Liu
- Department of Obstetrics and Gynecology, Chongqing People's Hospital, Chongqing, 401121, China
| | - Qi-Zhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Ling-Jing Zuo
- Department of Nuclear Medicine, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650034, China.
| |
Collapse
|
9
|
Loacker L, Egger A, Fux V, Bellmann-Weiler R, Weiss G, Griesmacher A, Hoermann G, Ratzinger F, Haslacher H, Schrezenmeier H, Anliker M. Serum sPD-L1 levels are elevated in patients with viral diseases, bacterial sepsis or in patients with impaired renal function compared to healthy blood donors. Clin Chem Lab Med 2023; 61:2248-2255. [PMID: 37401452 DOI: 10.1515/cclm-2023-0232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Immune checkpoints play an important role in maintaining the balance of the immune system and in the development of autoimmune diseases. A central checkpoint molecule is the programmed cell death protein 1 (PD-1, CD279) which is typically located on the surface of T cells. Its primary ligand PD-L1 is expressed on antigen presenting cells and on cancer cells. Several variants of PD-L1 exist, among these soluble molecules (sPD-L1) present in serum at low concentrations. sPD-L1 was found elevated in cancer and several other diseases. sPD-L1 in infectious diseases has received relatively little attention so far and is therefore subject of this study. METHODS sPD-L1 serum levels were determined in 170 patients with viral infections (influenza, varicella, measles, Dengue fever, SARS-CoV2) or bacterial sepsis by ELISA and compared to the levels obtained in 11 healthy controls. RESULTS Patients with viral infections and bacterial sepsis generally show significantly higher sPD-L1 serum levels compared to healthy donors, except for varicella samples where results do not reach significance. sPD-L1 is increased in patients with impaired renal function compared to those with normal renal function, and sPD-L1 correlates significantly with serum creatinine. Among sepsis patients with normal renal function, sPD-L1 serum levels are significantly higher in Gram-negative sepsis compared to Gram-positive sepsis. In addition, in sepsis patients with impaired renal function, sPD-L1 correlates positively with ferritin and negatively with transferrin. CONCLUSIONS sPD-L1 serum levels are significantly elevated in patients with sepsis, influenza, mesasles, Dengue fever or SARS-CoV2. Highest levels are detectable in patients with measles and Dengue fever. Also impaired renal function causes an increase in levels of sPD-L1. As a consequence, renal function has to be taken into account in the interpretation of sPD-L1 levels in patients.
Collapse
Affiliation(s)
- Lorin Loacker
- Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Alexander Egger
- Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Vilmos Fux
- Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria
| | | | | | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany
| | - Markus Anliker
- Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria
| |
Collapse
|
10
|
Chang C, Chen G, Wu W, Chen D, Chen S, Gao J, Feng Y, Zhen G. Exogenous IL-25 ameliorates airway neutrophilia via suppressing macrophage M1 polarization and the expression of IL-12 and IL-23 in asthma. Respir Res 2023; 24:260. [PMID: 37898756 PMCID: PMC10613395 DOI: 10.1186/s12931-023-02557-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Severe asthma is associated with substantial mortality and has unmet therapeutic need. A subset of severe asthma is characterized by neutrophilic airway inflammation. Classically activated (or M1) macrophages which express IL-12 and IL-23 are associated with airway neutrophilia in asthma. Exogenous IL-25 was reported to suppress intestinal inflammation in animal models of inflammatory bowel diseases via suppressing IL-12 and IL-23 production. We hypothesize that IL-25 ameliorates airway neutrophilia via inhibiting macrophage M1 polarization and the expression of IL-12 and IL-23 in asthma. METHODS In a mouse model of neutrophil-dominant allergic airway inflammation, the effect of mouse recombinant IL-25 on airway inflammation were assessed by H&E staining and bronchoalveolar lavage (BAL) cell counting. The percentage of M1 macrophages in lung tissue and BAL cells were analyzed by flow cytometry. Quantitative PCR and immunostaining were performed to measure the expression of Il12, Il23, and inflammatory cytokines. Mechanistic experiments were performed in primary culture of macrophages from mouse lungs. The expression of IL-12, IL-23 and IL-25 in sputum was analyzed in a cohort of severe asthma and subjects with eosinophilic or non-eosinophilic asthma. RESULTS Intranasal administration of IL-25 markedly decreased the number of neutrophils in BAL cells in a murine model of neutrophil-dominant allergic airway inflammation. Moreover, exogenous IL-25 decreased the number of M1 macrophages, and reduced the expression of IL-12, IL-23 in the lungs of the mouse model. Exogenous IL-25 also inhibited the expression of inflammatory cytokines IL-1β, IFN-γ, TNF-α and IL-17 A. In vitro, IL-25 suppressed IL-12 and IL-23 expression in lipopolysaccharide (LPS)-stimulated primary culture of mouse pulmonary macrophages. Mechanistically, IL-25 inhibited LPS-induced c-Rel translocation to nucleus via STAT3-dependent signaling. In a cohort of severe asthma, IL-25 protein levels in sputum were significantly lower than control subjects. The transcript levels of IL-12 and IL-23 were increased whereas IL-25 transcripts were decreased in sputum cells from subjects with non-eosinophilic asthma compared to eosinophilic asthma. CONCLUSIONS IL-25 expression is downregulated in subjects with severe or non-eosinophilic asthma. Exogenous IL-25 ameliorates airway neutrophilia, at least in part, via inhibiting macrophage M1 polarization and the expression of IL-12 and IL-23.
Collapse
Affiliation(s)
- Chenli Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Gongqi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Wenliang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Dian Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Shengchong Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Jiali Gao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Yuchen Feng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
- Division of Pulmonary and Critical Care Medicine, Tongji Hospital, 1095 Jiefang Avenue, 430030, Wuhan, China.
| | - Guohua Zhen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
- Division of Respiratory and Critical Care Medicine, Tongji Hospital, 430030, Wuhan, China.
| |
Collapse
|
11
|
Chen Z, Yao MW, Shen ZL, Li SD, Xing W, Guo W, Li Z, Wu XF, Ao LQ, Lu WY, Lian QZ, Xu X, Ao X. Interferon-gamma and tumor necrosis factor-alpha synergistically enhance the immunosuppressive capacity of human umbilical-cord-derived mesenchymal stem cells by increasing PD-L1 expression. World J Stem Cells 2023; 15:787-806. [PMID: 37700823 PMCID: PMC10494569 DOI: 10.4252/wjsc.v15.i8.787] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the "license" of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1 (PD-L1), which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases. In MSCs, interferon-gamma (IFN-γ) is a key inducer of PD-L1 expression, which is synergistically enhanced by tumor necrosis factor-alpha (TNF-α); however, the underlying mechanism is unclear. AIM To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis. METHODS We assessed PD-L1 expression in human umbilical-cord-derived MSCs (hUC-MSCs) induced by IFN-γ and TNF-α, alone or in combination. Additionally, we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γ alone or in combination with TNF-α induces PD-L1 expression. Moreover, we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters. Finally, we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γ and TNF-α in both an in vitro mixed lymphocyte culture assay, and in vivo in mice with dextran sulfate sodium-induced acute colitis. RESULTS Our results suggest that IFN-γ induction alone upregulates PD-L1 expression in hUC-MSCs while TNF-α alone does not, and that the co-induction of IFN-γ and TNF-α promotes higher expression of PD-L1. IFN-γ induces hUC-MSCs to express PD-L1, in which IFN-γ activates the JAK/STAT1 signaling pathway, up-regulates the expression of the interferon regulatory factor 1 (IRF1) transcription factor, promotes the binding of IRF1 and the PD-L1 gene promoter, and finally promotes PD-L1 mRNA. Although TNF-α alone did not induce PD-L1 expression in hUC-MSCs, the addition of TNF-α significantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation. TNF-α up-regulated IFN-γ receptor expression through activation of the nuclear factor kappa-B signaling pathway, which significantly enhanced IFN-γ signaling. Finally, co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation, and significantly ameliorate weight loss, mucosal damage, inflammatory cell infiltration, and up-regulation of inflammatory factors in colitis mice. CONCLUSION Overall, our results suggest that IFN-γ and TNF-α enhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
- College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhi-Lin Shen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shi-Dan Li
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiao-Feng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Luo-Quan Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wen-Yong Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, The South of Shangcai Village, Wenzhou 325005, Zhejiang Province, China
| | - Qi-Zhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
- Department of Orthopedics, 953 Hospital of PLA Army, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse 857000, Tibet Autonomous Region, China.
| |
Collapse
|
12
|
Yang G, Fan X, Liu Y, Jie P, Mazhar M, Liu Y, Dechsupa N, Wang L. Immunomodulatory Mechanisms and Therapeutic Potential of Mesenchymal Stem Cells. Stem Cell Rev Rep 2023; 19:1214-1231. [PMID: 37058201 PMCID: PMC10103048 DOI: 10.1007/s12015-023-10539-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
Mesenchymal stem cells (MSCs) are regarded as highly promising cells for allogeneic cell therapy, owing to their multipotent nature and ability to display potent and varied functions in different diseases. The functions of MSCs, including native immunomodulation, high self-renewal characteristic, and secretory and trophic properties, can be employed to improve the immune-modulatory functions in diseases. MSCs impact most immune cells by directly contacting and/or secreting positive microenvironmental factors to influence them. Previous studies have reported that the immunomodulatory role of MSCs is basically dependent on their secretion ability from MSCs. This review discusses the immunomodulatory capabilities of MSCs and the promising strategies to successfully improve the potential utilization of MSCs in clinical research.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Yingchun Liu
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Pingping Jie
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Yong Liu
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
13
|
Jiang W, Wang Z, Zhang J, Li M. Interleukin 25 and its biological features and function in intestinal diseases. Cent Eur J Immunol 2023; 47:362-372. [PMID: 36817397 PMCID: PMC9901255 DOI: 10.5114/ceji.2022.124416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Interleukin 25 (IL-25), also known as IL-17E, is a member of the IL-17 cytokine family and an important regulator of the type 2 immune response. Accumulating evidence suggests that IL-25 interacts with diverse immune as well as non-immune cells and plays a rather complicated role in different backgrounds of multiple organs. IL-25 has been studied in the physiology and pathology of the intestine to some extent. With epithelial cells being an important source in the intestine, IL-25 plays a key role in intestinal immune responses and is associated with inappropriate allergic reactions, autoimmune diseases, and cancer tumorigenesis. In this review, we discuss the emerging comprehension of the biology of IL-25, as well as its cellular sources, targets, and signaling transduction. In particular, we discuss how IL-25 participates in the development of intestinal diseases including helminth infection, inflammatory bowel diseases, food allergy and colorectal cancer, as well as its underlying role in future therapy.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zehui Wang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Minghui Li
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
14
|
Li L, Zhang M, Liu T, Li J, Sun S, Chen J, Liu Z, Zhang Z, Zhang L. Quercetin-ferrum nanoparticles enhance photothermal therapy by modulating the tumor immunosuppressive microenvironment. Acta Biomater 2022; 154:454-466. [PMID: 36243377 DOI: 10.1016/j.actbio.2022.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Photothermal therapy (PTT) was reported to induce synergistic immunogenic cell death (ICD) which may convert tumor cells into "therapeutic vaccines". However, this is often insufficient to prevent tumor recurrence, in part because of the immunosuppressive microenvironment in tumors. Therefore, remodeling tumor microenvironment is of great importance to enhance the therapeutic efficacy of PTT. We herein fabricated a versatile nano-photosensitizer by assembling quercetin and Ferrum ion (QFN). The released quercetin from QFN could reduce programmed death ligand 1 (PD-L1) in tumor cells by inhibiting the phosphorylation of JAK2 and STAT3, and reshape extracellular matrix (ECM) by down-regulating α-SMA+ fibroblast in tumors. Moreover, QFN could capture tumor antigen and deliver it to the tumor-draining lymph nodes after PTT, which further enhanced the activation of antigen-presenting cells. As a result, QFN-based PTT eliminated melanoma and induced long-term immune memory to prevent tumor metastasis and recurrence. This study provides an effective and translationally feasible photothermic agent for photothermal/immunotherapy. STATEMENT OF SIGNIFICANCE: The efficacy of photothermal therapy (PTT) in cancer treatment is often limited by the immunosuppressive microenvironment in tumors. Herein, we prepared a versatile photosensitizer by assembling quercetin and Ferrum ion (QFN). Upon near-infrared light irradiation, QFN-PTT induced cancer cells destruction and tumor antigen release. QFN then captured antigen and delivered it to the tumor-draining lymph nodes, thus promoting dendritic cell maturation and T cells activation. Quercetin released from QFN in tumors improved T cells infiltration and activation in tumor by regulating immunosuppressive microenvironment. The QFN-PTT-treated mice exhibited significantly elongated survival time, and gained strong anti-tumor immune memory to prevent tumor metastasis and recurrence. Thus, this work provided a simple and versatile photothermic agent, and it has important implications for designing effective and translationally feasible photosensitizers for PTT.
Collapse
Affiliation(s)
- Lin Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mengxing Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Tiantian Liu
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shili Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Junjie Chen
- West China School of medicine, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zhenmi Liu
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Ling Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
15
|
Shi MY, Liu L, Yang FY. Strategies to improve the effect of mesenchymal stem cell therapy on inflammatory bowel disease. World J Stem Cells 2022; 14:684-699. [PMID: 36188115 PMCID: PMC9516464 DOI: 10.4252/wjsc.v14.i9.684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn’s disease and ulcerative colitis and is an idiopathic, chronic inflammatory disease of the colonic mucosa. The occurrence of IBD, causes irreversible damage to the colon and increases the risk of carcinoma. The routine clinical treatment of IBD includes drug treatment, endoscopic treatment and surgery. The vast majority of patients are treated with drugs and biological agents, but the complete cure of IBD is difficult. Mesenchymal stem cells (MSCs) have become a new type of cell therapy for the treatment of IBD due to their immunomodulatory and nutritional functions, which have been confirmed in many clinical trials. This review discusses some potential mechanisms of MSCs in the treatment of IBD, summarizes the experimental results, and provides new insights to enhance the therapeutic effects of MSCs in future applications.
Collapse
Affiliation(s)
- Meng-Yue Shi
- School of Medicine, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Fu-Yuan Yang
- Health Science Center, Yangtze University, Jingzhou 434020, Hubei Province, China
| |
Collapse
|
16
|
Pischiutta F, Caruso E, Cavaleiro H, Salgado AJ, Loane DJ, Zanier ER. Mesenchymal stromal cell secretome for traumatic brain injury: Focus on immunomodulatory action. Exp Neurol 2022; 357:114199. [PMID: 35952763 DOI: 10.1016/j.expneurol.2022.114199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022]
Abstract
The severity and long-term consequences of brain damage in traumatic brain injured (TBI) patients urgently calls for better neuroprotective/neuroreparative strategies for this devastating disorder. Mesenchymal stromal cells (MSCs) hold great promise and have been shown to confer neuroprotection in experimental TBI, mainly through paracrine mechanisms via secreted bioactive factors (i.e. secretome), which indicates significant potential for a cell-free neuroprotective approach. The secretome is composed of cytokines, chemokines, growth factors, proteins, lipids, nucleic acids, metabolites, and extracellular vesicles; it may offer advantages over MSCs in terms of delivery, safety, and variability of therapeutic response for brain injury. Immunomodulation by molecular factors secreted by MSCs is considered to be a key mechanism involved in their multi-potential therapeutic effects. Regulated neuroinflammation is required for healthy remodeling of central nervous system during development and adulthood. Moreover, immune cells and their secreted factors can also contribute to tissue repair and neurological recovery following acute brain injury. However, a chronic and maladaptive neuroinflammatory response can exacerbate TBI and contribute to progressive neurodegeneration and long-term neurological impairments. Here, we review the evidence for MSC-derived secretome as a therapy for TBI. Our framework incorporates a detailed analysis of in vitro and in vivo studies investigating the effects of the secretome on clinically relevant neurological and histopathological outcomes. We also describe the activation of immune cells after TBI and the immunomodulatory properties exerted by mediators released in the secretome. We then describe how ageing modifies central and systemic immune responses to TBI and discuss challenges and opportunities of developing secretome based neuroprotective therapies for elderly TBI populations. Finally, strategies aimed at modulating the secretome in order to boost its efficacy for TBI will also be discussed.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| | - Enrico Caruso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy; Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Helena Cavaleiro
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Antonio J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Elisa R Zanier
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy.
| |
Collapse
|
17
|
Zamora Atenza C, Anguera G, Riudavets Melià M, Alserawan De Lamo L, Sullivan I, Barba Joaquin A, Serra Lopez J, Ortiz MA, Mulet M, Vidal S, Majem M. The integration of systemic and tumor PD-L1 as a predictive biomarker of clinical outcomes in patients with advanced NSCLC treated with PD-(L)1blockade agents. Cancer Immunol Immunother 2022; 71:1823-1835. [PMID: 34984538 PMCID: PMC10992196 DOI: 10.1007/s00262-021-03107-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tumor PD-L1 expression is a predictive biomarker for patients with NSCLC receiving PD-(L)1 blockade agents. However, although increased tumor PD-L1 expression predicts responsiveness, clinical benefit has been observed regardless of tumor PD-L1 expression, suggesting the existence of other PD-L1 sources. The aim of our study was to analyze whether integrating systemic and tumor PD-L1 is more predictive of efficacy in patients with advanced NSCLC receiving PD-(L)1 blockade agents. MATERIAL AND METHODS Twenty-nine healthy donors and 119 consecutive patients with advanced NSCLC treated with PD-(L)1 drug were prospectively included. Pretreatment blood samples were collected to evaluate PD-L1 levels on circulating immune cells, platelets (PLTs), platelet microparticles (PMPs), and the plasma soluble PD-L1 concentration (sPD-L1). Tumor PD-L1 status was assessed by immunohistochemistry. The percentages of circulating PD-L1 + leukocytes, sPD-L1 levels, and tumor PD-L1 were correlated with efficacy. RESULTS No differences in the percentages of circulating PD-L1 + leukocytes were observed according to tumor PD-L1 expression. Significantly longer progression-free survival was observed in patients with higher percentages of PD-L1 + CD14 + , PD-L1 + neutrophils, PD-L1 + PLTs, and PD-L1 + PMPs and significantly longer overall survival was observed in patients with higher percentages of PD-L1 + CD14 + and high tumor PD-L1 expression. Integrating the PD-L1 data of circulating and tumor PD-L1 results significantly stratified patients according to the efficacy of PD-(L1) blockade agents. CONCLUSIONS Our results suggest that integrating circulating PD-L1 + leukocytes, PLT, PMPs, and sPD-L1 and tumor PD-L1 expression may be helpful to decide on the best treatment strategy in patients with advanced NSCLC who are candidates for PD-(L)1 blockade agents.
Collapse
Affiliation(s)
- Carlos Zamora Atenza
- Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Geòrgia Anguera
- Department of Medical Oncology, Hospital de La Santa Creu I San Pau. C, Sant Antoni Maria Claret 167 08025, Barcelona, Spain
- Department of Medicine, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain
| | - Mariona Riudavets Melià
- Department of Medical Oncology, Hospital de La Santa Creu I San Pau. C, Sant Antoni Maria Claret 167 08025, Barcelona, Spain
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France
| | | | - Ivana Sullivan
- Department of Medical Oncology, Hospital de La Santa Creu I San Pau. C, Sant Antoni Maria Claret 167 08025, Barcelona, Spain
| | - Andrés Barba Joaquin
- Department of Medical Oncology, Hospital de La Santa Creu I San Pau. C, Sant Antoni Maria Claret 167 08025, Barcelona, Spain
| | - Jorgina Serra Lopez
- Department of Medical Oncology, Hospital de La Santa Creu I San Pau. C, Sant Antoni Maria Claret 167 08025, Barcelona, Spain
| | - M Angels Ortiz
- Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Maria Mulet
- Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sílvia Vidal
- Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Margarita Majem
- Department of Medical Oncology, Hospital de La Santa Creu I San Pau. C, Sant Antoni Maria Claret 167 08025, Barcelona, Spain.
| |
Collapse
|
18
|
Immunomodulation of Mesenchymal Stem Cells in Acute Lung Injury: From Preclinical Animal Models to Treatment of Severe COVID-19. Int J Mol Sci 2022; 23:ijms23158196. [PMID: 35897770 PMCID: PMC9331939 DOI: 10.3390/ijms23158196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health challenge worldwide. Owing to the emergence of novel viral variants, the risks of reinfections and vaccine breakthrough infections has increased considerably despite a mass of vaccination. The formation of cytokine storm, which subsequently leads to acute respiratory distress syndrome, is the major cause of mortality in patients with COVID-19. Based on results of preclinical animal models and clinical trials of acute lung injury and acute respiratory distress syndrome, the immunomodulatory, tissue repair, and antiviral properties of MSCs highlight their potential to treat COVID-19. This review article summarizes the potential mechanisms and outcomes of MSC therapy in COVID-19, along with the pathogenesis of the SARS-CoV-2 infection. The properties of MSCs and lessons from preclinical animal models of acute lung injury are mentioned ahead. Important issues related to the use of MSCs in COVID-19 are discussed finally.
Collapse
|
19
|
Yen BL, Liu K, Sytwu H, Yen M. Clinical implications of differential functional capacity between tissue‐specific human mesenchymal stromal/stem cells. FEBS J 2022. [DOI: 10.1111/febs.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/30/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Affiliation(s)
- B. Linju Yen
- Regenerative Medicine Research Group Institute of Cellular & System Medicine National Health Research Institutes (NHRI) Zhunan Taiwan
- Department of Obstetrics & Gynecology Cathay General Hospital Shiji New Taipei City Taiwan
| | - Ko‐Jiunn Liu
- National Institute of Cancer Research NHRI Zhunan Taiwan
- Institute of Clinical Pharmacy & Pharmaceutical Sciences National Cheng Kung University Tainan Taiwan
- School of Medical Laboratory Science and Biotechnology Taipei Medical University Taiwan
| | - Huey‐Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology NHRI Zhunan Taiwan
- Graduate Institute of Microbiology & Immunology National Defense Medical Center Taipei Taiwan
| | - Men‐Luh Yen
- Department of Obstetrics & Gynecology National Taiwan University (NTU) Hospital & College of Medicine NTU Taipei Taiwan
| |
Collapse
|
20
|
Clinical efficacy and mechanism of mesenchymal stromal cells in treatment of COVID-19. Stem Cell Res Ther 2022; 13:61. [PMID: 35130977 PMCID: PMC8822653 DOI: 10.1186/s13287-022-02743-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious epidemic disease that has seriously affected human health worldwide. To date, however, there is still no definitive drug for the treatment of COVID-19. Cell-based therapies could represent a new breakthrough. Over the past several decades, mesenchymal stromal cells (MSCs) have proven to be ideal candidates for the treatment of many viral infectious diseases due to their immunomodulatory and tissue repair or regeneration promoting properties, and several relevant clinical trials for the treatment of COVID-19 have been registered internationally. Herein, we systematically summarize the clinical efficacy of MSCs in the treatment of COVID-19 based on published results, including mortality, time to symptom improvement, computed tomography (CT) imaging, cytokines, and safety, while elaborating on the possible mechanisms underpinning the effects of MSCs, to provide a reference for subsequent studies.
Collapse
|
21
|
Xiang Y, Dai J, Xu L, Li X, Jiang J, Xu J. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci 2021; 287:120117. [PMID: 34740577 DOI: 10.1016/j.lfs.2021.120117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Denervated skeletal muscular atrophy is primarily characterized by loss of muscle strength and mass and an unideal functional recovery of the muscle after extended denervation. This review emphasizes the interaction between the immune system and the denervated skeletal muscle. Immune cells such as neutrophils, macrophages and T-cells are activated and migrate to denervated muscle, where they release a high concentration of cytokines and chemokines. The migration of these immune cells, the transformation of different functional immune cell subtypes, and the cytokine network in the immune microenvironment may be involved in the regulatory process of muscle atrophy or repair. However, the exact mechanisms of the interaction between these immune cells and immune molecules in skeletal muscles are unclear. In this paper, the immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury is reviewed.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Xiaokang Li
- Natl Res Inst Child Hlth & Dev, Div Transplantat Immunol, Tokyo, Japan
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
22
|
Zhang L, Kuca K, You L, Zhao Y, Musilek K, Nepovimova E, Wu Q, Wu W, Adam V. Signal transducer and activator of transcription 3 signaling in tumor immune evasion. Pharmacol Ther 2021; 230:107969. [PMID: 34450232 DOI: 10.1016/j.pharmthera.2021.107969] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
The underlying mechanism of tumor immune evasion is a highly concerning subject for researchers. Increasing evidences reveal that the over-activated signal transducer and activator of transcription 3 (STAT3) is a crucial molecular hub in malignant tumors. STAT3 controls autophagy molecules that impair CTL-mediated tumor cell lysis, inhibiting natural killer cells and inducing apoptosis in T lymphocytes to create an immunosuppressive environment. STAT3 signaling regulates the expression of immune factors and recruits immunosuppressive cells to establish a tolerant tumor microenvironment (TME). STAT3 signaling regulates the expression of immune factors and recruits immunosuppressive cells to create an immunosuppressive environment. All this aid tumor cells in escaping from immune surveillance. In this review, we outlined the STAT3-mediated mechanisms involved in tumor immune evasion and their potential regulatory functions in the TME. We discussed the impact of STAT3 signaling on PD-L1, HIF-1α, exosome, lncRNA, and autophagy in the promotion of tumor immune evasion and highlighted the recent research on STAT3 signaling and tumor immune evasion that may assist in developing effective STAT3-targeted drugs for advancing immunotherapy.
Collapse
Affiliation(s)
- Luying Zhang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Li You
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yingying Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic.
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno 602 00, Czech Republic.
| |
Collapse
|
23
|
Tynecka M, Moniuszko M, Eljaszewicz A. Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma. Stem Cell Rev Rep 2021; 17:1323-1342. [PMID: 33649900 PMCID: PMC7919631 DOI: 10.1007/s12015-021-10137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, Białystok, 15-276, Poland.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
| |
Collapse
|
24
|
Lee W, Wang LT, Yen ML, Hsu PJ, Lee YW, Liu KJ, Lin KI, Su YW, Sytwu HK, Yen BL. Resident vs nonresident multipotent mesenchymal stromal cell interactions with B lymphocytes result in disparate outcomes. Stem Cells Transl Med 2021; 10:711-724. [PMID: 33506633 PMCID: PMC8046079 DOI: 10.1002/sctm.20-0289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/17/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023] Open
Abstract
Multipotent human mesenchymal stromal cells (MSCs) from multiple organs including the bone marrow (BM) and placenta harbor clinically relevant immunomodulation best demonstrated toward T lymphocytes. Surprisingly, there is limited knowledge on interactions with B lymphocytes, which originate from the BM where there is a resident MSC. With increasing data demonstrating MSC tissue‐specific propensities impacting therapeutic outcome, we therefore investigated the interactions of BM‐MSCs—its resident and “niche” MSC—and placental MSCs (P‐MSCs), another source of MSCs with well‐characterized immunomodulatory properties, on the global functional outcomes of pan‐peripheral B cell populations. We found that P‐MSCs but not BM‐MSCs significantly inhibit proliferation and further differentiation of stimulated human peripheral B populations in vitro. Moreover, although BM‐MSCs preserve multiple IL‐10‐producing regulatory B cell (Breg) subsets, P‐MSCs significantly increase all subsets. To corroborate these in vitro findings in vivo, we used a mouse model of B‐cell activation and found that adoptive transfer of P‐MSCs but not BM‐MSCs significantly decreased activated B220+ B cells. Moreover, adoptive transfer of P‐MSCs but not BM‐MSCs significantly decreased the overall B220+ B‐cell proliferation and further differentiation, similar to the in vitro findings. P‐MSCs also increased two populations of IL‐10‐producing murine Bregs more strongly than BM‐MSCs. Transcriptome analyses demonstrated multifactorial differences between BM‐ and P‐MSCs in the profile of relevant factors involved in B lymphocyte proliferation and differentiation. Our results highlight the divergent outcomes of tissue‐specific MSCs interactions with peripheral B cells, and demonstrate the importance of understanding tissue‐specific differences to achieve more efficacious outcome with MSC therapy.
Collapse
Affiliation(s)
- Wei Lee
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan.,Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, NTU, Taipei, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, NTU, Taipei, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Yu-Wei Lee
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, NHRI, Zhunan, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan.,Graduate Institute of Microbiology & Immunology, NDMC, Taipei, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| |
Collapse
|
25
|
Khan M, Zhao Z, Arooj S, Fu Y, Liao G. Soluble PD-1: Predictive, Prognostic, and Therapeutic Value for Cancer Immunotherapy. Front Immunol 2020; 11:587460. [PMID: 33329567 PMCID: PMC7710690 DOI: 10.3389/fimmu.2020.587460] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Programmed death protein 1 (PD-1) interaction with PD-L1 deliver immunosuppressive environment for tumor growth, and its blockade with directed monoclonal antibodies (anti-PD-1/anti-PD-L1) has shown remarkable clinical outcome. Lately, their soluble counterparts, sPD-1 and sPD-L1, have been detected in plasma, and elevated levels have been associated with advanced disease, clinical stages, and worst prognosis for cancer patients. Elevated plasma levels of sPD-L1 have been correlated with worst prognosis in several studies and has displayed a persistent outlook. On the other hand, sPD-1 levels have been inconsistent in their predictive and prognostic ability. Pretherapeutic higher sPD-1 plasma levels have shown to predict advanced disease state and to a lesser extent worst prognosis. Any increase in sPD-1 plasma level post therapeutically have been correlated with improved survival for various cancers. In vitro and in vivo studies have shown sPD-1 ability to bind PD-L1 and PD-L2 and block PD-1/PD-L1 interaction. Local delivery of sPD-1 in cancer tumor microenvironment through local gene therapy have demonstrated an increase in tumor specific CD8+ T cell immunity and tumor growth reduction. It had also exhibited enhancement of T cell immunity induced by vaccination and other gene therapeutic agents. Furthermore, it may also lessen the inhibitory effect of circulating sPD-L1 and enhance the effects of mAb-based immunotherapy. In this review, we highlight various aspects of sPD-1 role in cancer prediction, prognosis, and anti-cancer immunity, as well as, its therapeutic value for local gene therapy or systemic immunotherapy in blocking the PD-1 and PD-L1 checkpoint interactions.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medicine Centre, Jinan University, Shenzhen, China
| | - Sumbal Arooj
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Yuxiang Fu
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Guixiang Liao
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
26
|
Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, Grioni M, Bellone M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front Immunol 2020; 11:565470. [PMID: 33244315 PMCID: PMC7683804 DOI: 10.3389/fimmu.2020.565470] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The interleukin-(IL-)17 family of cytokines is composed of six members named IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. IL-17A is the prototype of this family, and it was the first to be discovered and targeted in the clinic. IL-17A is essential for modulating the interplay between commensal microbes and epithelial cells at our borders (i.e., skin and mucosae), and yet, for protecting us from microbial invaders, thus preserving mucosal and skin integrity. Interactions between the microbiota and cells producing IL-17A have also been implicated in the pathogenesis of immune mediated inflammatory diseases and cancer. While interactions between microbiota and IL-17B-to-F have only partially been investigated, they are by no means less relevant. The cellular source of IL-17B-to-F, their main targets, and their function in homeostasis and disease distinguish IL-17B-to-F from IL-17A. Here, we intentionally overlook IL-17A, and we focus instead on the role of the other cytokines of the IL-17 family in the interplay between microbiota and epithelial cells that may contribute to cancer pathogenesis and immune surveillance. We also underscore differences and similarities between IL-17A and IL-17B-to-F in the microbiota-immunity-cancer axis, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in diseases.
Collapse
Affiliation(s)
- Arianna Brevi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Laura Lucia Cogrossi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy.,Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Grazia
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Desirée Masciovecchio
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Daniela Impellizzieri
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Lucrezia Lacanfora
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
27
|
Immunological organ modification during Ex Vivo machine perfusion: The future of organ acceptance. Transplant Rev (Orlando) 2020; 35:100586. [PMID: 33876730 DOI: 10.1016/j.trre.2020.100586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Ex vivo machine perfusion (EVMP) has gained revitalized interest in recent years due to the increasing use of marginal organs which poorly tolerate the standard preservation method static cold storage (SCS). EVMP improves on SCS in a number of ways, most notably by the potential for reconditioning of the donor organ prior to transplantation without the ethical concerns associated with organ modulation before procurement. Immunomodulatory therapies administered during EVMP can influence innate and adaptive immune responses to reduce production of inflammatory molecules and polarize tissue-resident immune cells to a regulatory phenotype. The targeted inhibition of an inflammatory response can reduce ischemia-reperfusion injury following organ reoxygenation and therefore reduce incidence of graft dysfunction and rejection. Numerous approaches to modulate the inflammatory response have been applied in experimental models, with the ultimate goal of clinical translatability. Strategies to target the innate immune system include inhibiting inflammatory signaling pathways, upregulating anti-inflammatory mediators, and decreasing mitochondrial damage while those which target the adaptive immune system include mesenchymal stromal cells. Inhibitory RNA approaches target both the innate and adaptive immune systems with a focus on MHC knock-down. Future studies may address issues of therapeutic agent delivery through use of nanoparticles and explore novel strategies such as targeting co-inhibitory molecules to educate T-cells to a tolerogenic state. In this review, we summarize the cellular and acellular contributors to allograft dysfunction and rejection, discuss the strategies which have been employed pre-clinically during EVMP to modulate the donor organ immune environment, and suggest future directions for immunomodulatory EVMP studies.
Collapse
|
28
|
Zheng S, Wei Y, Jiang Y, Hao Y. LRP8 activates STAT3 to induce PD-L1 expression in osteosarcoma. TUMORI JOURNAL 2020; 107:238-246. [PMID: 33054597 DOI: 10.1177/0300891620952872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Targeting programmed death-ligand 1 (PD-L1) may be an effective intervention for osteosarcoma and PD-L1 expression is controlled by diverse regulatory factors. Low-density lipoprotein receptor-related protein 8 (LRP8) regulates osteoblast differentiation and it is unclear whether and how LRP8 could contribute to osteosarcoma pathogenesis. In this study, we investigated the LRP8/signal transducer and activator of transcription 3 (STAT3)/PD-L1 network in osteosarcoma. METHODS The expression of LRP8, STAT3, and PD-L1 was measured in osteosarcoma tissues and paired normal tissues. The effects of LRP8 on STAT3 and PD-L1 expression were investigated in an osteosarcoma cell line. The effects on immunosuppression were investigated in an in vitro co-culture system with Jurkat cell line and osteosarcoma cell line. The effects of LRP8 were blocked by a LRP8 neutralizing antibody, dominant-negative STAT3, or STAT3 inhibitor. RESULTS LRP8 was overexpressed in osteosarcoma compared to normal tissues and its level was correlated with phospho-STAT3 (p-STAT3) level in osteosarcoma tissues. In osteosarcoma cell lines, LRP8 increased p-STAT3 level and promoted nuclear translocation of STAT3. STAT3 activation also increased PD-L1 mRNA, protein, and promoter activity. In addition, LRP8 enhanced PD-L1 expression via STAT3. In a co-culture system, LRP8 overexpression in an osteosarcoma cell line impaired viability and interleukin-2 secretion of Jurkat cells and induced apoptosis of Jurkat cells. The effects of LRP8 could be blocked by neutralizing LRP8 antibody or STAT3 inhibitor. Blocking LRP8 inhibits proliferation and induces apoptosis of osteosarcoma cells. CONCLUSIONS Our results provide evidence for a novel regulation network of LRP8/STAT3/PD-L1 in osteosarcoma and LRP8 may be a potential therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Shiqin Zheng
- Department of Osteoarthrosis, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuxi Wei
- Department of Osteoarthrosis, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu Jiang
- Department of Osteoarthrosis, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yi Hao
- Department of Osteoarthrosis, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
29
|
Song N, Scholtemeijer M, Shah K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol Sci 2020; 41:653-664. [PMID: 32709406 PMCID: PMC7751844 DOI: 10.1016/j.tips.2020.06.009] [Citation(s) in RCA: 537] [Impact Index Per Article: 107.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells that are emerging as the most promising means of allogeneic cell therapy. MSCs have inherent immunomodulatory characteristics, trophic activity, high invitro self-renewal ability, and can be readily engineered to enhance their immunomodulatory functions. MSCs affect the functions of most immune effector cells via direct contact with immune cells and local microenvironmental factors. Previous studies have confirmed that the immunomodulatory effects of MSCs are mainly communicated via MSC-secreted cytokines; however, apoptotic and metabolically inactivated MSCs have more recently been shown to possess immunomodulatory potential, in which regulatory T cells and monocytes play a key role. We review the immunomodulatory aspects of naïve and engineered MSCs, and discuss strategies for increasing the potential of successfully using MSCs in clinical settings.
Collapse
Affiliation(s)
- Na Song
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Martijn Scholtemeijer
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
30
|
Wang LT, Wang HH, Chiang HC, Huang LY, Chiu SK, Siu LK, Liu KJ, Yen ML, Yen BL. Human Placental MSC-Secreted IL-1β Enhances Neutrophil Bactericidal Functions during Hypervirulent Klebsiella Infection. Cell Rep 2020; 32:108188. [PMID: 32997996 DOI: 10.1016/j.celrep.2020.108188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/06/2019] [Accepted: 09/02/2020] [Indexed: 12/29/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) causes severe infections even in healthy individuals by escaping surveillance and killing from polymorphonuclear neutrophils (PMNs), the first-line leukocytes in bacterial infections; moreover, the emergence of multidrug-resistant strains further limits treatment options. We therefore assess whether multilineage mesenchymal stem cells (MSCs), best known for immunomodulation toward T cells, could be therapeutic for highly virulent bacterial infections via modulation of PMNs. We find that both bone marrow MSCs and placental MSCs (PMSCs) preserve in vitro PMN survival, but only PMSCs significantly enhance multiple PMN bactericidal functions, including phagocytosis, through secretion of interleukin-1β (IL-1β). PMSC treatment of hvKP-infected mice suppresses T and natural killer (NK) cell responses as expected but can preferentially recruit PMNs and enhance antibacterial functions to allow for disease survival; IL-1β knockdown in PMSCs significantly decreases hvKP clearance, worsening survival and resulting in 100% lethality. Our data strongly implicate the possible use of PMSCs for infections of PMN-resistant hvKP strains.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, NTU, Taipei 100, Taiwan
| | - Hsiu-Huan Wang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan
| | - Hui-Chun Chiang
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, NTU, Taipei 100, Taiwan
| | - Li-Yueh Huang
- National Institute of Infectious Diseases and Vaccinology, NHRI, Zhunan 350, Taiwan
| | - Sheng-Kang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - L Kristopher Siu
- National Institute of Infectious Diseases and Vaccinology, NHRI, Zhunan 350, Taiwan; Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Zhunan 350, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan 701, Taiwan; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, NTU, Taipei 100, Taiwan.
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan; Department of Obstetrics and Gynecology, Cathay General Hospital Shiji, New Taipei 221, Taiwan.
| |
Collapse
|
31
|
Hu L, Wen Z, Chen J, Chen Y, Jin L, Shi H, Chen J, Chen J. The cytomegalovirus UL146 gene product vCXCL1 promotes the resistance of hepatic cells to CD8 + T cells through up-regulation of PD-L1. Biochem Biophys Res Commun 2020; 532:393-399. [PMID: 32883520 DOI: 10.1016/j.bbrc.2020.08.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023]
Abstract
The HCMV (human cytomegalovirus) encodes numerous proteins which function to evade the immune response, which allows the virus to replicate. Exploring the mechanisms of HCMV immune escape helps to find the strategy to inhibit HCMV replicate. CD8+ T cells play a critical role in the immune response to viral pathogens. However, the mechanisms of HCMV to evade the attack by CD8+ T cells remain largely unknown. Viral CXCL1 (vCXCL1) is the production of HCMV UL146 gene. Here, we found that vCXCL1 promoted the resistance of hepatic cells to CD8+ T cells. vCXCL1 increased the levels of PD-L1 protein expression and mRNA expression. VCXCL1 enhanced the binding of STAT3 transcription factor to the promoter of PD-L1 and increased the activity of PD-L1 promoter. Furthermore, down-regulation of PD-L1 reduced the effects of vCXCL1 on the resistance of hepatic cells to CD8+ T cells. Taken together, vCXCL1 promotes the resistance of hepatic cells to CD8+ T cells through up-regulation of PD-L1. This finding might provide a new mechanism of HCMV immune escape.
Collapse
Affiliation(s)
- Linglong Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Zhengwang Wen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Jingjing Chen
- Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Yiping Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Longteng Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Haifan Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Junya Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Jie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China.
| |
Collapse
|
32
|
Yen BL, Hwa HL, Hsu PJ, Chen PM, Wang LT, Jiang SS, Liu KJ, Sytwu HK, Yen ML. HLA-G Expression in Human Mesenchymal Stem Cells (MSCs) Is Related to Unique Methylation Pattern in the Proximal Promoter as well as Gene Body DNA. Int J Mol Sci 2020; 21:ijms21145075. [PMID: 32708387 PMCID: PMC7404323 DOI: 10.3390/ijms21145075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Multipotent human mesenchymal stem cells (MSCs) harbor clinically relevant immunomodulation, and HLA-G, a non-classical MHC class I molecule with highly restricted tissue expression, is one important molecule involved in these processes. Understanding of the natural regulatory mechanisms involved in expression of this elusive molecule has been difficult, with near exclusive reliance on cancer cell lines. We therefore studied the transcriptional control of HLA-G in primary isolated human bone marrow- (BM), human embryonic stem cell-derived (hE-), as well as placenta-derived MSCs (P-MSCs), and found that all 3 types of MSCs express 3 of the 7 HLA-G isoforms at the gene level; however, fibroblasts did not express HLA-G. Protein validation using BM- and P-MSCs demonstrated expression of 2 isoforms including a larger HLA-G-like protein. Interferon-γ (IFN-γ) stimulation upregulated both gene and protein expression in MSCs but not the constitutively expressing JEG-3 cell line. Most interestingly in human MSCs and placental tissue, hypomethylation of CpG islands not only occurs on the HLA-G proximal promoter but also on the gene body as well, a pattern not seen in either of the 2 commonly used choriocarcinoma cell lines which may contribute to the unique HLA-G expression patterns and IFN-γ-responsiveness in MSCs. Our study implicates the importance of using normal cells and tissues for physiologic understanding of tissue-specific transcriptional regulation, and highlight the utility of human MSCs in unraveling the transcriptional regulation of HLA-G for better therapeutic application.
Collapse
Affiliation(s)
- B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan;
- Department of Obstetrics/Gynecology, Cathay General Hospital Shiji, Taipei 221, Taiwan
- Correspondence: (B.L.Y.); (M.-L.Y.); Tel.: +886-37-246-166 (ext. 37501) (B.L.Y.); +886-2-2312-3456 (ext. 71560) (M.-L.Y.); Fax: +886-37-587-408 (B.L.Y); +886-2-2391-1302 (M.-L.Y.)
| | - Hsiao-Lin Hwa
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, Taipei 100, Taiwan; (H.-L.H.); (P.-M.C.); (L.-T.W.)
- Institute of Forensic Medicine, College of Medicine, NTU, Taipei 100, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan;
| | - Pei-Min Chen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, Taipei 100, Taiwan; (H.-L.H.); (P.-M.C.); (L.-T.W.)
| | - Li-Tzu Wang
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, Taipei 100, Taiwan; (H.-L.H.); (P.-M.C.); (L.-T.W.)
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, NHRI, Zhunan 350, Taiwan; (S.-S.J.); (K.-J.L.)
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Zhunan 350, Taiwan; (S.-S.J.); (K.-J.L.)
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan 350, Taiwan;
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, Taipei 100, Taiwan; (H.-L.H.); (P.-M.C.); (L.-T.W.)
- Correspondence: (B.L.Y.); (M.-L.Y.); Tel.: +886-37-246-166 (ext. 37501) (B.L.Y.); +886-2-2312-3456 (ext. 71560) (M.-L.Y.); Fax: +886-37-587-408 (B.L.Y); +886-2-2391-1302 (M.-L.Y.)
| |
Collapse
|
33
|
Borowczyk J, Buerger C, Tadjrischi N, Drukala J, Wolnicki M, Wnuk D, Modarressi A, Boehncke WH, Brembilla NC. IL-17E (IL-25) and IL-17A Differentially Affect the Functions of Human Keratinocytes. J Invest Dermatol 2020; 140:1379-1389.e2. [DOI: 10.1016/j.jid.2019.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 01/03/2023]
|
34
|
Nguyen HD, Liao YC, Ho YS, Chen LC, Chang HW, Cheng TC, Liu D, Lee WR, Shen SC, Wu CH, Tu SH. The α9 Nicotinic Acetylcholine Receptor Mediates Nicotine-Induced PD-L1 Expression and Regulates Melanoma Cell Proliferation and Migration. Cancers (Basel) 2019; 11:E1991. [PMID: 31835799 PMCID: PMC6966517 DOI: 10.3390/cancers11121991] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoking is associated with an increased risk of melanoma metastasis. Smokers show higher PD-L1 expression and better responses to PD-1/PD-L1 inhibitors than nonsmokers. Here, we investigate whether nicotine, a primary constituent of tobacco, induces PD-L1 expression and promotes melanoma cell proliferation and migration, which is mediated by the α9 nicotinic acetylcholine receptor (α9-nAChR). α9-nAChR overexpression in melanoma using melanoma cell lines, human melanoma tissues, and assessment of publicly available databases. α9-nAChR expression was significantly correlated with PD-L1 expression, clinical stage, lymph node status, and overall survival (OS). Overexpressing or knocking down α9-nAChR in melanoma cells up- or downregulated PD-L1 expression, respectively, and affected melanoma cell proliferation and migration. Nicotine-induced α9-nAChR activity promoted melanoma cell proliferation through stimulation of the α9-nAChR-mediated AKT and ERK signaling pathways. In addition, nicotine-induced α9-nAchR activity promoted melanoma cell migration via activation of epithelial-mesenchymal transition (EMT). Moreover, PD-L1 expression was upregulated in melanoma cells after nicotine treatment via the transcription factor STAT3 binding to the PD-L1 promoter. These results highlight that nicotine-induced α9-nAChR activity promotes melanoma cell proliferation, migration, and PD-L1 upregulation. This study may reveal important insights into the mechanisms underlying nicotine-induced melanoma growth and metastasis through α9-nAChR-mediated carcinogenic signals and PD-L1 expression.
Collapse
Affiliation(s)
- Hai Duong Nguyen
- International Master Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.L.); (W.-R.L.); (S.-C.S.)
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-S.H.); (L.-C.C.)
- Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Laboratory, Taipei Medical University Hospital, Taipei 110, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-S.H.); (L.-C.C.)
- Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Hui-Wen Chang
- Department of Medical Laboratory, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Tzu-Chun Cheng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Donald Liu
- Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City 237, Taiwan;
| | - Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.L.); (W.-R.L.); (S.-C.S.)
- Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City 237, Taiwan;
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.L.); (W.-R.L.); (S.-C.S.)
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 101, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, EnChu Kong Hospital, New Taipei City 237, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shih-Hsin Tu
- Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
35
|
Diedrichs F, Stolk M, Jürchott K, Haag M, Sittinger M, Seifert M. Enhanced Immunomodulation in Inflammatory Environments Favors Human Cardiac Mesenchymal Stromal-Like Cells for Allogeneic Cell Therapies. Front Immunol 2019; 10:1716. [PMID: 31396228 PMCID: PMC6665953 DOI: 10.3389/fimmu.2019.01716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022] Open
Abstract
Rising numbers of patients with cardiovascular diseases and limited availability of donor hearts require new and improved therapy strategies. Human atrial appendage-derived cells (hAACs) are promising candidates for an allogeneic cell-based treatment. In this study, we evaluated their inductive and modulatory capacity regarding immune responses and underlying key mechanisms in vitro. For this, cryopreserved hAACs were either cultured in the presence of interferon-gamma (IFNγ) or left unstimulated. The expression of characteristic mesenchymal stromal cell markers (CD29, CD44, CD73, CD105, CD166) was revealed by flow cytometry that also highlighted a predominant negativity for CD90. A low immunogeneic phenotype in an inflammatory milieu was shown by lacking expression of co-stimulatory molecules and upregulation of the inhibitory ligands PD-L1 and PD-L2, despite de novo expression of HLA-DR. Co-cultures of hAACs with allogeneic peripheral blood mononuclear cells, proved their low immunogeneic state by absence of induced T cell proliferation and activation. Additionally, elevated levels of IL-1β, IL-33, and IL-10 were detectable in those cell culture supernatants. Furthermore, the immunomodulatory potential of hAACs was assessed in co-cultures with αCD3/αCD28-activated peripheral blood mononuclear cells. Here, a strong inhibition of T cell proliferation and reduction of pro-inflammatory cytokines (IFNγ, TNFα, TNFβ, IL-17A, IL-2) were observable after pre-stimulation of hAACs with IFNγ. Transwell experiments confirmed that mostly soluble factors are responsible for these suppressive effects. We were able to identify indolamin-2,3-dioxygenase (IDO) as a potential key player through a genome-wide gene expression analysis and could demonstrate its involvement in the observed immunological responses. While the application of blocking antibodies against both PD-1 ligands did not affect the immunomodulation by hAACs, 1-methyl-L-tryptophan as specific inhibitor of IDO was able to restore proliferation and to lower apoptosis of T cells. In conclusion, hAACs represent a cardiac-derived mesenchymal stromal-like cell type with a high potential for the application in an allogeneic setting, since they do not trigger T cell responses and even increase their immunomodulatory potential in inflammatory environments.
Collapse
Affiliation(s)
- Falk Diedrichs
- Berlin Institute of Health (BIH), Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Meaghan Stolk
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marion Haag
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Sittinger
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martina Seifert
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
36
|
Yuan X, Logan TM, Ma T. Metabolism in Human Mesenchymal Stromal Cells: A Missing Link Between hMSC Biomanufacturing and Therapy? Front Immunol 2019; 10:977. [PMID: 31139179 PMCID: PMC6518338 DOI: 10.3389/fimmu.2019.00977] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are the most commonly-tested adult stem cells in cell therapy. While the initial focus for hMSC clinical applications was to exploit their multi-potentiality for cell replacement therapies, it is now apparent that hMSCs empower tissue repair primarily by secretion of immuno-regulatory and pro-regenerative factors. A growing trend in hMSC clinical trials is the use of allogenic and culture-expanded cells because they are well-characterized and can be produced in large scale from specific donors to compensate for the donor pathological condition(s). However, donor morbidity and large-scale expansion are known to alter hMSC secretory profile and reduce therapeutic potency, which are significant barriers in hMSC clinical translation. Therefore, understanding the regulatory mechanisms underpinning hMSC phenotypic and functional property is crucial for developing novel engineering protocols that maximize yield while preserving therapeutic potency. hMSC are heterogenous at the level of primary metabolism and that energy metabolism plays important roles in regulating hMSC functional properties. This review focuses on energy metabolism in regulating hMSC immunomodulatory properties and its implication in hMSC sourcing and biomanufacturing. The specific characteristics of hMSC metabolism will be discussed with a focus on hMSC metabolic plasticity and donor- and culture-induced changes in immunomodulatory properties. Potential strategies of modulating hMSC metabolism to enhance their immunomodulation and therapeutic efficacy in preclinical models will be reviewed.
Collapse
Affiliation(s)
- Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, United States
| | - Timothy M Logan
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
37
|
Najar M, Lombard CA, Fayyad-Kazan H, Faour WH, Merimi M, Sokal EM, Lagneaux L, Fahmi H. Th17 immune response to adipose tissue-derived mesenchymal stromal cells. J Cell Physiol 2019; 234:21145-21152. [PMID: 31041809 DOI: 10.1002/jcp.28717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
Adipose tissue-derived mesenchymal stromal cells (ASCs) hold the promise of achieving successful immunotherapeutic results due to their ability to regulate different T-cell fate. ASCs also show significant adaptability to environmental stresses by modulating their immunologic profile. Cell-based therapy for inflammatory diseases requires a detailed understanding of the molecular relation between ASCs and Th17 lymphocytes taking into account the influence of inflammation and cell ratio on such interaction. Accordingly, a dose-dependent increase in Th17 generation was only observed in high MSC:T-cell ratio with no significant impact of inflammatory priming. IL-23 receptor (IL-23R) expression by T cells was not modulated by ASCs when compared to levels in activated T cells, while ROR-γt expression was significantly increased reaching a maximum in high (1:5) unprimed ASC:T-cell ratio. Finally, multiplex immunoassay showed substantial changes in the secretory profile of 15 cytokines involved in the Th17 immune response (IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-22, IL-21, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40, and TNF-α), which was modulated by both cell ratio and inflammatory priming. These findings suggest that Th17 lymphocyte pathway is significantly modulated by ASCs that may lead to immunological changes. Therefore, future ASC-based immunotherapy should take into account the complex and detailed molecular interactions that depend on several factors including inflammatory priming and cell ratio.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, Montreal, Quebec, Canada.,Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Catherine A Lombard
- Institut de Recherche Expérimentale and Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain, Brussels, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Makram Merimi
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Etienne M Sokal
- Institut de Recherche Expérimentale and Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Imai D, Yoshizumi T, Okano S, Itoh S, Ikegami T, Harada N, Aishima S, Oda Y, Maehara Y. IFN-γ Promotes Epithelial-Mesenchymal Transition and the Expression of PD-L1 in Pancreatic Cancer. J Surg Res 2019; 240:115-123. [PMID: 30927618 DOI: 10.1016/j.jss.2019.02.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 02/06/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tumor immune reactions not only provide host defense but also accelerate tumor immune escape and phenotype switching. Here, we examined the association of programmed cell death ligand 1 (PD-L1) expression with epithelial-mesenchymal transition (EMT)-associated markers in pancreatic ductal adenocarcinoma (PDA) within the context of the tumor microenvironment. MATERIALS AND METHODS PDA samples from 36 patients were analyzed for PD-L1, vimentin, E-cadherin, and Snail expressions and for PDA cell and immune cell infiltration. PD-L1 expression and EMT in PDA cell lines under conditions of altering interferon gamma (IFN-γ) signals were also assessed. RESULTS Immunohistochemistry revealed a significant correlation between vimentin and PD-L1 expression, whereas double staining showed them to be simultaneously expressed by PDA cells. Positive vimentin expression was associated with the infiltration of a lower number of CD8+ T cells and a higher number of FoxP3+ cells and poor patient prognosis (P = 0.03). PDA tumor cells promoted PD-L1 expression and EMT under the presence of IFN-γ, which was inhibited by the signal transducer and activator of transcription (STAT)1 small interfering RNA. CONCLUSIONS Strong correlations were observed between PD-L1 expression, EMT, and the immunosuppressive tumor microenvironment. Targeting STAT1 combined with PD-1/PD-L1 immunotherapy may improve outcomes for patients with PDA.
Collapse
Affiliation(s)
- Daisuke Imai
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shinji Okano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Saga Medical School Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 2019; 18:10. [PMID: 30646912 PMCID: PMC6332843 DOI: 10.1186/s12943-018-0928-4] [Citation(s) in RCA: 966] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022] Open
Abstract
Tumor immune escape is an important strategy of tumor survival. There are many mechanisms of tumor immune escape, including immunosuppression, which has become a research hotspot in recent years. The programmed death ligand-1/programmed death-1 (PD-L1/PD-1) signaling pathway is an important component of tumor immunosuppression, which can inhibit the activation of T lymphocytes and enhance the immune tolerance of tumor cells, thereby achieving tumor immune escape. Therefore, targeting the PD-L1/PD-1 pathway is an attractive strategy for cancer treatment; however, the therapeutic effectiveness of PD-L1/PD-1 remains poor. This situation requires gaining a deeper understanding of the complex and varied molecular mechanisms and factors driving the expression and activation of the PD-L1/PD-1 signaling pathway. In this review, we summarize the regulation mechanisms of the PD-L1/PD-1 signaling pathway in the tumor microenvironment and their roles in mediating tumor escape. Overall, the evidence accumulated to date suggests that induction of PD-L1 by inflammatory factors in the tumor microenvironment may be one of the most important factors affecting the therapeutic efficiency of PD-L1/PD-1 blocking.
Collapse
Affiliation(s)
- Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jie Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Xiangying Deng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, 58202, USA
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
40
|
Najar M, Fayyad-Kazan H, Faour WH, Merimi M, Sokal EM, Lombard CA, Fahmi H. Immunological modulation following bone marrow-derived mesenchymal stromal cells and Th17 lymphocyte co-cultures. Inflamm Res 2018; 68:203-213. [PMID: 30506263 DOI: 10.1007/s00011-018-1205-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE AND DESIGN The objective of the study is to uncover the influence of human bone marrow-derived mesenchymal stem cells (BM-MSCs) on the generation of Th17 lymphocytes in co-cultures of both BM-MSCs and T cells. MATERIALS AND METHODS BM-MSCs, characterized according to the international society for cellular therapy (ISCT) criteria, were co-cultured with T cells isolated from peripheral blood. The expression levels of IL-17 receptor, RORγt and IL-23 receptor were evaluated using flow cytometry. The levels of cytokines involved in Th17 immunomodulation were measured using multiplex assay. TREATMENT Inflammatory primed and non-primed BM-MSCs were co-cultured with either activated or non-activated T cells either at (1/80) and (1/5) ratio respectively. RESULTS MSC/T-cell ratio and inflammation significantly influenced the effect of BM-MSCs on the generation of Th17 lymphocytes. Cocultures of either primed or non-primed BM-MSCs with activated T cells significantly induced IL-17A-expressing lymphocytes. Interestingly, the expression of the transcription factor RORγt was significantly increased when compared to levels in activated T cells. Finally, both cell ratio and priming of BM-MSCs with cytokines substantially influenced the cytokine profile of BM-MSCs and T cells. CONCLUSION Our findings suggest that BM-MSCs significantly modulate the Th17 lymphocyte pathway in a complex manner.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), 900 rue Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Wissam H Faour
- Pharmacology, Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| | - Makram Merimi
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale and Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Catherine A Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale and Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), 900 rue Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada
| |
Collapse
|
41
|
Keremu A, Aimaiti A, Liang Z, Zou X. Role of the HDAC6/STAT3 pathway in regulating PD-L1 expression in osteosarcoma cell lines. Cancer Chemother Pharmacol 2018; 83:255-264. [PMID: 30430228 DOI: 10.1007/s00280-018-3721-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs), initially described as histone modifiers, have more recently been verified to target various other proteins unrelated to the chromatin environment. On this basis, findings of the current study demonstrates that the pharmacological or genetic abrogation of HDAC6 in osteosarcoma cell lines down-regulates the expression of program death receptor ligand-1 (PD-L1), an important co-stimulatory molecule expressed in cancer cells, which activates the inhibitory regulatory pathway PD-1 in T cells. As shown by our results, the mechanism by which HDAC6 regulated PD-L1 expression was mediated by the transcription factor STAT3. In addition, we observed that selective HDAC6 inhibitors could inhibit tumor progression in vivo. Crucially, these results provide an essential pre-clinical rationale and justification for the necessity of further research on HDAC6 inhibitors as potential immuno-modulatory agents in osteosarcoma.
Collapse
Affiliation(s)
- Ajimu Keremu
- Orthopedic Center, First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar, 844000, Xinjiang, People's Republic of China
| | - Abudusaimi Aimaiti
- Orthopedic Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Zhilin Liang
- Orthopedic Center, First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar, 844000, Xinjiang, People's Republic of China
| | - Xiaoguang Zou
- Orthopedic Center, First People's Hospital of Kashgar, 120 Yingbin Road, Kashgar, 844000, Xinjiang, People's Republic of China.
| |
Collapse
|
42
|
Biological Properties and the Role of IL-25 in Disease Pathogenesis. J Immunol Res 2018; 2018:6519465. [PMID: 30345318 PMCID: PMC6174801 DOI: 10.1155/2018/6519465] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
The interleukin- (IL-) 17 superfamily, a T cell-derived cytokine, consists of 6 ligands (IL-17A-IL-17F) and 5 receptors (IL-17RA-IL-17RE). IL-17A, a prototype member of this family, is involved in the pathogenesis of allergies, autoimmune diseases, allograft transplantations, and malignancies. By contrast, IL-17B is reported to be closely related to certain diseases, particularly tumors such as breast cancer, gastric cancer, and pancreatic cancer. Recently, the biological function of IL-17E (also called IL-25) in disease, particularly airway diseases, has attracted the attention of researchers. However, studies on IL-25 are scant. In this review, we detail the structural characteristics, expression patterns, responder cells, biological properties, and role of IL-25 in disease pathogenesis.
Collapse
|
43
|
Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 2018; 132:1146-1158. [PMID: 30054295 DOI: 10.1182/blood-2018-01-829424] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Mature T-cell lymphomas, including peripheral T-cell lymphoma (PTCL) and extranodal NK/T-cell lymphoma (NKTL), represent a heterogeneous group of non-Hodgkin lymphomas with dismal outcomes and limited treatment options. To determine the extent of involvement of the JAK/STAT pathway in this malignancy, we performed targeted capture sequencing of 188 genes in this pathway in 171 PTCL and NKTL cases. A total of 272 nonsynonymous somatic mutations in 101 genes were identified in 73% of the samples, including 258 single-nucleotide variants and 14 insertions or deletions. Recurrent mutations were most frequently located in STAT3 and TP53 (15%), followed by JAK3 and JAK1 (6%) and SOCS1 (4%). A high prevalence of STAT3 mutation (21%) was observed specifically in NKTL. Novel STAT3 mutations (p.D427H, E616G, p.E616K, and p.E696K) were shown to increase STAT3 phosphorylation and transcriptional activity of STAT3 in the absence of cytokine, in which p.E616K induced programmed cell death-ligand 1 (PD-L1) expression by robust binding of activated STAT3 to the PD-L1 gene promoter. Consistent with these findings, PD-L1 was overexpressed in NKTL cell lines harboring hotspot STAT3 mutations, and similar findings were observed by the overexpression of p.E616K and p.E616G in the STAT3 wild-type NKTL cell line. Conversely, STAT3 silencing and inhibition decreased PD-L1 expression in STAT3 mutant NKTL cell lines. In NKTL tumors, STAT3 activation correlated significantly with PD-L1 expression. We demonstrated that STAT3 activation confers high PD-L1 expression, which may promote tumor immune evasion. The combination of PD-1/PD-L1 antibodies and STAT3 inhibitors might be a promising therapeutic approach for NKTL, and possibly PTCL.
Collapse
|
44
|
Sasidharan Nair V, Toor SM, Ali BR, Elkord E. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opin Ther Targets 2018; 22:547-557. [PMID: 29702007 DOI: 10.1080/14728222.2018.1471137] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Breast cancer is the most commonly diagnosed cancer, and it is a leading cause of cancer-related deaths in females worldwide. Triple-negative breast cancer (TNBC) constitutes 15% of breast cancer and shows distinct metastasis profiles with poor prognosis. Strong PD-L1 expression has been observed in some tumors, supporting their escape from immune surveillance. Targeting PD-L1 could be a promising therapeutic approach in breast cancer patients. We investigated potential molecular mechanisms for constitutive expression of PD-L1 by inhibiting upstream STAT1 and STAT3 signals. METHODS PD-L1 expression in three breast cancer cell lines was measured using quantitative PCR and western blotting. Activation of STAT1 and STAT3 was blocked using pharmacological inhibitors and siRNA. The mechanism underlying the constitutive expression of PD-L1 was investigated using ChIP and co-immunoprecipitation assays. RESULTS We found that individual inhibition of STAT1 and STAT3 activation partially downregulated PD-L1, while combined inhibition completely downregulated PD-L1 expression. Moreover, our results suggest that pSTAT1-pSTAT3 dimerize in cytosol and translocate to the nucleus, where they bind to PD-L1 promoter and induce PD-L1 expression. CONCLUSION These findings provide a rationale for combined targeting of STAT1 and STAT3 for the development of immune-based cancer therapies for down regulation of PD-L1 expression.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- a Cancer Research Center , Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation , Doha , Qatar
| | - Salman M Toor
- a Cancer Research Center , Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation , Doha , Qatar
| | - Bassam R Ali
- b College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates
| | - Eyad Elkord
- a Cancer Research Center , Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation , Doha , Qatar
- c Institute of Cancer Sciences , University of Manchester , Manchester , UK
| |
Collapse
|
45
|
Yang Q, Cao W, Wang Z, Zhang B, Liu J. Regulation of cancer immune escape: The roles of miRNAs in immune checkpoint proteins. Cancer Lett 2018; 431:73-84. [PMID: 29800685 DOI: 10.1016/j.canlet.2018.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/01/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Immune checkpoint proteins (ICPs) are regulators of immune system. The ICP dysregulation silences the host immune response to cancer-specific antigens, contributing to the occurrence and progress of various cancers. MiRNAs are regulatory molecules and function in mRNA silencing and post-transcriptional regulation of gene expression. MiRNAs that modulate the immunity via ICPs have received increasing attention. Many studies have shown that the expressions of ICPs are directly or indirectly repressed by miRNAs in multiple types of cancers. MiRNAs are also subject to regulation by ICPs. In this review, recent studies of the relationship between miRNAs and ICPs (including the PD-1, PD-L1, CTLA-4, ICOS, B7-1, B7-2, B7-H2, B7-H3, CD27, CD70, CD40, and CD40L) in cancer immune escape are comprehensively discussed, which provide critical detailed mechanistic insights into the functions of the miRNA-ICP axes and their effects on immune escape, and will be beneficial for the potential applications of immune checkpoint therapy and miRNA-based guidance for personalized medicine as well as for predicting the prognosis.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; School of Medical Laboratory, Shao Yang University, Hunan Province, 422000, China
| | - Wenjie Cao
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zi Wang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
46
|
Shibahara D, Tanaka K, Iwama E, Kubo N, Ota K, Azuma K, Harada T, Fujita J, Nakanishi Y, Okamoto I. Intrinsic and Extrinsic Regulation of PD-L2 Expression in Oncogene-Driven Non-Small Cell Lung Cancer. J Thorac Oncol 2018; 13:926-937. [PMID: 29596910 DOI: 10.1016/j.jtho.2018.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The interaction of programmed cell death ligand 2 (PD-L2) with programmed cell death 1 is implicated in tumor immune escape. The regulation of PD-L2 expression in tumor cells has remained unclear, however. We here examined intrinsic and extrinsic regulation of PD-L2 expression in NSCLC. METHODS PD-L2 expression was evaluated by reverse transcription and real-time polymerase chain reaction analysis and by flow cytometry. RESULTS BEAS-2B cells stably expressing an activated mutant form of EGFR or the echinoderm microtubule associated protein like 4 (EML4)-ALK receptor tyrosine kinase fusion oncoprotein manifested increased expression of PD-L2 at both the mRNA and protein levels. Furthermore, treatment of NSCLC cell lines that harbor such driver oncogenes with corresponding EGFR or ALK tyrosine kinase inhibitors or depletion of EGFR or ALK by small interfering RNA transfection suppressed expression of PD-L2, demonstrating that activating EGFR mutations or echinoderm microtubule associated protein like 4 gene (EML4)-ALK receptor tyrosine kinase gene (ALK) fusion intrinsically induce PD-L2 expression. We also found that interferon gamma (IFN-γ) extrinsically induced expression of PD-L2 through signal transducer and activator of transcription 1 signaling in NSCLC cells. Oncogene-driven expression of PD-L2 in NSCLC cells was inhibited by knockdown of the transcription factors signal transducer and activator of transcription 3 (STAT3) or c-FOS. IFN-γ also activated STAT3 and c-FOS, suggesting that these proteins may also contribute to the extrinsic induction of PD-L2 expression. CONCLUSIONS Expression of PD-L2 is induced intrinsically by activating EGFR mutations or EML4-ALK fusion and extrinsically by IFN-γ, with STAT3 and c-FOS possibly contributing to both intrinsic and extrinsic pathways. Our results thus provide insight into the complexity of tumor immune escape in NSCLC.
Collapse
Affiliation(s)
- Daisuke Shibahara
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Infectious Disease, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of Ryukyus, Okinawa, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Kubo
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiichi Ota
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Taishi Harada
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan
| | - Jiro Fujita
- Department of Infectious Disease, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of Ryukyus, Okinawa, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
47
|
Wang LT, Jiang SS, Ting CH, Hsu PJ, Chang CC, Sytwu HK, Liu KJ, Yen BL. Differentiation of Mesenchymal Stem Cells from Human Induced Pluripotent Stem Cells Results in Downregulation of c-Myc and DNA Replication Pathways with Immunomodulation Toward CD4 and CD8 Cells. Stem Cells 2018; 36:903-914. [PMID: 29396902 DOI: 10.1002/stem.2795] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
Abstract
Multilineage tissue-source mesenchymal stem cells (MSCs) possess strong immunomodulatory properties and are excellent therapeutic agents, but require constant isolation from donors to combat replicative senescence. The differentiation of human induced pluripotent stem cells (iPSCs) into MSCs offers a renewable source of MSCs; however, reports on their immunomodulatory capacity have been discrepant. Using MSCs differentiated from iPSCs reprogrammed using diverse cell types and protocols, and in comparison to human embryonic stem cell (ESC)-MSCs and bone marrow (BM)-MSCs, we performed transcriptome analyses and assessed for functional immunomodulatory properties. Differentiation of MSCs from iPSCs results in decreased c-Myc expression and its downstream pathway along with a concomitant downregulation in the DNA replication pathway. All four lines of iPSC-MSCs can significantly suppress in vitro activated human peripheral blood mononuclear cell (PBMC) proliferation to a similar degree as ESC-MSCs and BM-MSCs, and modulate CD4 T lymphocyte fate from a type 1 helper T cell (Th1) and IL-17A-expressing (Th17) cell fate to a regulatory T cell (Treg) phenotype. Moreover, iPSC-MSCs significantly suppress cytotoxic CD8 T proliferation, activation, and differentiation into type 1 cytotoxic T (Tc1) and IL-17-expressing CD8 T (Tc17) cells. Coculture of activated PBMCs with human iPSC-MSCs results in an overall shift of secreted cytokine profile from a pro-inflammatory environment to a more immunotolerant milieu. iPSC-MSC immunomodulation was also validated in vivo in a mouse model of induced inflammation. These findings support that iPSC-MSCs possess low oncogenicity and strong immunomodulatory properties regardless of cell-of-origin or reprogramming method and are good potential candidates for therapeutic use. Stem Cells 2018;36:903-914.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan, Republic of China.,Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan, Republic of China
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, NHRI, Tainan, Taiwan, Republic of China
| | - Chiao-Hsuan Ting
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan, Republic of China
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan, Republic of China
| | - Chia-Chi Chang
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan, Republic of China.,Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan, Republic of China
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan, Republic of China.,Department and Graduate Institute of Microbiology and Immunology, NDMC, Taipei, Taiwan, Republic of China
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Tainan, Taiwan, Republic of China
| | - B Linju Yen
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan, Republic of China.,Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan, Republic of China
| |
Collapse
|
48
|
Su J, Xie C, Fan Y, Cheng W, Hu Y, Huang Q, Shi H, Wang L, Ren J. Interleukin-25 enhances the capacity of mesenchymal stem cells to induce intestinal epithelial cell regeneration. Am J Transl Res 2017; 9:5320-5331. [PMID: 29312486 PMCID: PMC5752884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND This study aimed to investigate the influence of IL-25 on the capacity of mesenchymal stem cells (MSCs) to induce intestinal epithelial cell regeneration. METHODS The CD4+IL-25R+ cells and LGR5+IL-25R+ cells in colonic mucosa of Crohn's disease (CD) patients, ulcerative colitis (UC) patients and healthy controls were detected by immunofluorescence staining, and the CD4+IL-25R+ cells in peripheral blood were detected by flow cytometry. Rat MSCs were separated and stimulated with IL-25. Then, MSCs were further incubated in IL-25-free DMEM for 24 h, and this DMEM was collected as conditioned medium (CM). IEC-6 cells were divided into 3 groups: experimental group (CM and TNF-α), control group (DMEM and TNF-α) and negative control group (DMEM). RESULTS The CD4+IL-25R+ cells and LGR5+IL-25R+ cells significantly increased in the colonic mucosa of active CD patients and UC patients compared with IBD patients in remission and healthy controls. The CD4+IL-25R+ cells reduced in peripheral blood of IBD patients, which was inversely correlated with inflammatory markers (ESR and CRP). CM facilitated the migration and proliferation of IEC-6 cells in the presence of TNF-α. The protein expression of AKT, p38 and ERK increased in IEC-6 cells after treatment with CM and TNF-α. CONCLUSION IL-25R is involved in Th-related mucosal inflammation and proliferation of intestinal stem cells in IBD. IL-25 enhances the capacity of MSC to induce intestinal epithelial cell regeneration, and MSC therapy with IL-25 may be a new direction for IBD treatment.
Collapse
Affiliation(s)
- Jingling Su
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| | - Chenxi Xie
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| | - Yanyun Fan
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| | - Weizi Cheng
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| | - Yiqun Hu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| | - Qingwen Huang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| | - Huaxiu Shi
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| | - Lin Wang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| | - Jianlin Ren
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| |
Collapse
|
49
|
Seki N, Kan-O K, Matsumoto K, Fukuyama S, Hamano S, Tonai K, Ota K, Inoue H, Nakanishi Y. Interleukin-22 attenuates double-stranded RNA-induced upregulation of PD-L1 in airway epithelial cells via a STAT3-dependent mechanism. Biochem Biophys Res Commun 2017; 494:242-248. [PMID: 29032197 DOI: 10.1016/j.bbrc.2017.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 01/13/2023]
Abstract
Double-stranded RNA derived from viruses induces host immune responses. PD-L1, also known as B7-H1, is an immune-checkpoint molecule associated with the escape of viruses from host immune systems, which plays a role in the persistence of viral infection, resulting in exacerbations of underlying diseases such as asthma and chronic obstructive pulmonary disease. Interleukin (IL)-22 is produced from various immune cells and has protective properties on mucosal tissue. The binding of IL-22 to IL-22 receptor induces STAT3 activation. We investigated the effect of IL-22 on the expression in airway epithelial cells in vitro and in mouse lungs in vivo after the stimulation with an analog of viral double-stranded RNA, polyinosinic-polycytidylic acid (poly I:C). Stimulation with poly I:C upregulated PD-L1 expression on BEAS-2B cells. This upregulation of PD-L1 was attenuated by IL-22 administration. STAT3 phosphorylation was induced by IL-22 and poly I:C. Treatment of cells with STAT3 siRNA abolished the effect of IL-22 on the poly I:C-induced upregulation of PD-L1. This upregulation of PD-L1 was also attenuated by IL-11, a cytokine inducing STAT3 phosphorylation, in BEAS-2B cells. In mouse lung cells in vivo, IL-22 suppressed poly I:C-induced upregulation of PD-L1. These results suggest that IL-22 attenuates virus-induced upregulation of PD-L1 in airway epithelial cells via a STAT3-dependent mechanism.
Collapse
Affiliation(s)
- Nanae Seki
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Saaka Hamano
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Ken Tonai
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Keiichi Ota
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-0075, Japan.
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
50
|
Liu L, Ho C. Mesenchymal Stem Cell Preparation and Transfection-free Ferumoxytol Labeling for MRI Cell Tracking. ACTA ACUST UNITED AC 2017; 43:2B.7.1-2B.7.14. [PMID: 29140566 DOI: 10.1002/cpsc.38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells and are the most widely studied cell type for stem cell therapies. In vivo cell tracking of MSCs labeled with an FDA-approved superparamagnetic iron-oxide (SPIO) particle by magnetic resonance imaging (MRI) provides essential information, e.g., MSC engraftment, survival, and fate, thus improving cell therapy accuracy. However, current methodology for labeling MSCs with Ferumoxytol (Feraheme® ), the only FDA-approved SPIO particle, needs transfection agents. This unit describes a new "bio-mimicry" protocol to prepare more native MSCs by using more "in vivo environment" of MSCs, so that the phagocytic activity of cultured MSCs is restored and expanded MSCs can be labeled with Ferumoxytol, without the need for transfection agents and/or electroporation. Moreover, MSCs re-size to a more native size, reducing from 32.0 to 19.5 μm. The MSCs prepared from this protocol retain more native properties and would be useful for biomedical applications and MSC-tracking studies by MRI. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Present address: National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland
| | - Chien Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|