1
|
van den Dolder FW, Dinani R, Warnaar VAJ, Vučković S, Passadouro AS, Nassar AA, Ramsaroep AX, Burchell GB, Schoonmade LJ, van der Velden J, Goversen B. Experimental Models of Hypertrophic Cardiomyopathy: A Systematic Review. JACC Basic Transl Sci 2025; 10:511-546. [PMID: 40306862 DOI: 10.1016/j.jacbts.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 05/02/2025]
Abstract
To advance research in hypertrophic cardiomyopathy (HCM), and guide researchers in choosing the optimal model to answer their research questions, we performed a systematic review of all models investigating HCM induced by gene variants ranging from animal models to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our research question entailed: which experimental models of HCM have been created thus far, and which major hallmarks of HCM do they present? Out of the 603 included papers, the majority included animal models, though a clear transition to hiPSC-CM is visible since 2010. Our review showed that only 36 mouse models showed minimal 4 out of 6 HCM disease markers (cell/cardiac hypertrophy, disarray, fibrosis, diastolic dysfunction, and arrhythmias), while only 17 hiPSC-CM models showed 3 out of 4 HCM cell characteristics. Our review emphasizes the need to better report data on sample size, sex, age, and relevant disease-specific characteristics.
Collapse
Affiliation(s)
- Floor W van den Dolder
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Rafeeh Dinani
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Vincent A J Warnaar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Sofija Vučković
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Adriana S Passadouro
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Ali A Nassar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Azhaar X Ramsaroep
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands
| | - George B Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Linda J Schoonmade
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| | - Birgit Goversen
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
3
|
Pietsch N, Chen CY, Kupsch S, Bacmeister L, Geertz B, Herrera-Rivero M, Siebels B, Voß H, Krämer E, Braren I, Westermann D, Schlüter H, Mearini G, Schlossarek S, van der Velden J, Caporizzo MA, Lindner D, Prosser BL, Carrier L. Chronic Activation of Tubulin Tyrosination Improves Heart Function. Circ Res 2024; 135:910-932. [PMID: 39279670 PMCID: PMC11465905 DOI: 10.1161/circresaha.124.324387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that microtubule detyrosination (dTyr-MT) is markedly elevated in heart failure. Acute reduction of dTyr-MT by inhibition of the detyrosinase (VASH [vasohibin]/SVBP [small VASH-binding protein] complex) or activation of the tyrosinase (TTL [tubulin tyrosine ligase]) markedly improved contractility and reduced stiffness in human failing cardiomyocytes and thus posed a new perspective for HCM treatment. In this study, we tested the impact of chronic tubulin tyrosination in an HCM mouse model (Mybpc3 knock-in), in human HCM cardiomyocytes, and in SVBP-deficient human engineered heart tissues (EHTs). METHODS Adeno-associated virus serotype 9-mediated TTL transfer was applied in neonatal wild-type rodents, in 3-week-old knock-in mice, and in HCM human induced pluripotent stem cell-derived cardiomyocytes. RESULTS We show (1) TTL for 6 weeks dose dependently reduced dTyr-MT and improved contractility without affecting cytosolic calcium transients in wild-type cardiomyocytes; (2) TTL for 12 weeks reduced the abundance of dTyr-MT in the myocardium, improved diastolic filling, compliance, cardiac output, and stroke volume in knock-in mice; (3) TTL for 10 days normalized cell area in HCM human induced pluripotent stem cell-derived cardiomyocytes; (4) TTL overexpression activated transcription of tubulins and other cytoskeleton components but did not significantly impact the proteome in knock-in mice; (5) SVBP-deficient EHTs exhibited reduced dTyr-MT levels, higher force, and faster relaxation than TTL-deficient and wild-type EHTs. RNA sequencing and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-deficient versus TTL-deficient EHTs. CONCLUSIONS This study provides the first proof of concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the nonsarcomeric cytoskeleton in heart disease.
Collapse
Affiliation(s)
- Niels Pietsch
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Christina Y. Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (C.Y.C., M.A.C., B.L.P.)
- Now with Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA (C.Y.C.)
| | - Svenja Kupsch
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (S.K.)
| | - Lucas Bacmeister
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Faculty of Medicine, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Germany (L.B., D.W., D.L.)
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marisol Herrera-Rivero
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (M.H.-R.)
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster, Germany (M.H.-R.)
| | - Bente Siebels
- Section Mass Spectrometric Proteomics (B.S., H.V., H.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section Mass Spectrometric Proteomics (B.S., H.V., H.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Krämer
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingke Braren
- Vector Facility, Department of Experimental Pharmacology and Toxicology (I.B.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Westermann
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Faculty of Medicine, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Germany (L.B., D.W., D.L.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics (B.S., H.V., H.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Jolanda van der Velden
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands (J.v.d.V.)
| | - Matthew A. Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (C.Y.C., M.A.C., B.L.P.)
- Now with Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT (M.A.C.)
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Faculty of Medicine, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Germany (L.B., D.W., D.L.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Benjamin L. Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (C.Y.C., M.A.C., B.L.P.)
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| |
Collapse
|
4
|
Ribeiro M, Jager J, Furtado M, Carvalho T, Cabral JMS, Brito D, Carmo-Fonseca M, Martins S, da Rocha ST. Generation of induced pluripotent stem cells from an individual with early onset and severe hypertrophic cardiomyopathy linked to MYBPC3: c.772G > A mutation. Hum Cell 2024; 37:1205-1214. [PMID: 38762696 PMCID: PMC11194200 DOI: 10.1007/s13577-024-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the MYPBC3 gene, which encodes the cardiac myosin-binding protein C (cMyBP-C). Most pathogenic variants in MYPBC3 are either nonsense mutations or result in frameshifts, suggesting that the primary disease mechanism involves reduced functional cMyBP-C protein levels within sarcomeres. However, a subset of MYPBC3 variants are missense mutations, and the molecular mechanisms underlying their pathogenicity remain elusive. Upon in vitro differentiation into cardiomyocytes, induced pluripotent stem cells (iPSCs) derived from HCM patients represent a valuable resource for disease modeling. In this study, we generated two iPSC lines from peripheral blood mononuclear cells (PBMCs) of a female with early onset and severe HCM linked to the MYBPC3: c.772G > A variant. Although this variant was initially classified as a missense mutation, recent studies indicate that it interferes with splicing and results in a frameshift. The generated iPSC lines exhibit a normal karyotype and display hallmark characteristics of pluripotency, including the ability to undergo trilineage differentiation. These novel iPSCs expand the existing repertoire of MYPBC3-mutated cell lines, broadening the spectrum of resources for exploring how diverse mutations induce HCM. They additionally offer a platform to study potential secondary genetic elements contributing to the pronounced disease severity observed in this individual.
Collapse
Affiliation(s)
- Marta Ribeiro
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joanna Jager
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Marta Furtado
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Carvalho
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Dulce Brito
- Heart and Vessels Department, Cardiology Division, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Martins
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.
| | - Simão Teixeira da Rocha
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
5
|
Satsuka A, Ribeiro AJS, Kawagishi H, Yanagida S, Hirata N, Yoshinaga T, Kurokawa J, Sugiyama A, Strauss DG, Kanda Y. Contractility assessment using aligned human iPSC-derived cardiomyocytes. J Pharmacol Toxicol Methods 2024; 128:107530. [PMID: 38917571 DOI: 10.1016/j.vascn.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Cardiac safety assessment, such as lethal arrhythmias and contractility dysfunction, is critical during drug development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been shown to be useful in predicting drug-induced proarrhythmic risk through international validation studies. Although cardiac contractility is another key function, fit-for-purpose hiPSC-CMs in evaluating drug-induced contractile dysfunction remain poorly understood. In this study, we investigated whether alignment of hiPSC-CMs on nanopatterned culture plates can assess drug-induced contractile changes more efficiently than non-aligned monolayer culture. METHODS Aligned hiPSC-CMs were obtained by culturing on 96-well culture plates with a ridge-groove-ridge nanopattern on the bottom surface, while non-aligned hiPSC-CMs were cultured on regular 96-well plates. Next-generation sequencing and qPCR experiments were performed for gene expression analysis. Contractility of the hiPSC-CMs was assessed using an imaging-based motion analysis system. RESULTS When cultured on nanopatterned plates, hiPSC-CMs exhibited an aligned morphology and enhanced expression of genes encoding proteins that regulate contractility, including myosin heavy chain, calcium channel, and ryanodine receptor. Compared to cultures on regular plates, the aligned hiPSC-CMs also showed both enhanced contraction and relaxation velocity. In addition, the aligned hiPSC-CMs showed a more physiological response to positive and negative inotropic agents, such as isoproterenol and verapamil. DISCUSSION Taken together, the aligned hiPSC-CMs exhibited enhanced structural and functional properties, leading to an improved capacity for contractility assessment compared to the non-aligned cells. These findings suggest that the aligned hiPSC-CMs can be used to evaluate drug-induced cardiac contractile changes.
Collapse
Affiliation(s)
- Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Silver Spring, MD 20903, USA
| | - Hiroyuki Kawagishi
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Takashi Yoshinaga
- Advanced Biosignal Safety Assessment, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
| |
Collapse
|
6
|
Steczina S, Mohran S, Bailey LRJ, McMillen TS, Kooiker KB, Wood NB, Davis J, Previs MJ, Olivotto I, Pioner JM, Geeves MA, Poggesi C, Regnier M. MYBPC3-c.772G>A mutation results in haploinsufficiency and altered myosin cycling kinetics in a patient induced stem cell derived cardiomyocyte model of hypertrophic cardiomyopathy. J Mol Cell Cardiol 2024; 191:27-39. [PMID: 38648963 PMCID: PMC11116032 DOI: 10.1016/j.yjmcc.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/13/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Approximately 40% of hypertrophic cardiomyopathy (HCM) mutations are linked to the sarcomere protein cardiac myosin binding protein-C (cMyBP-C). These mutations are either classified as missense mutations or truncation mutations. One mutation whose nature has been inconsistently reported in the literature is the MYBPC3-c.772G > A mutation. Using patient-derived human induced pluripotent stem cells differentiated to cardiomyocytes (hiPSC-CMs), we have performed a mechanistic study of the structure-function relationship for this MYBPC3-c.772G > A mutation versus a mutation corrected, isogenic cell line. Our results confirm that this mutation leads to exon skipping and mRNA truncation that ultimately suggests ∼20% less cMyBP-C protein (i.e., haploinsufficiency). This, in turn, results in increased myosin recruitment and accelerated myofibril cycling kinetics. Our mechanistic studies suggest that faster ADP release from myosin is a primary cause of accelerated myofibril cross-bridge cycling due to this mutation. Additionally, the reduction in force generating heads expected from faster ADP release during isometric contractions is outweighed by a cMyBP-C phosphorylation mediated increase in myosin recruitment that leads to a net increase of myofibril force, primarily at submaximal calcium activations. These results match well with our previous report on contractile properties from myectomy samples of the patients from whom the hiPSC-CMs were generated, demonstrating that these cell lines are a good model to study this pathological mutation and extends our understanding of the mechanisms of altered contractile properties of this HCM MYBPC3-c.772G > A mutation.
Collapse
Affiliation(s)
- Sonette Steczina
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Saffie Mohran
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Logan R J Bailey
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Molecular and Cellular Biology, University of Washington, Seattle, WA 98109, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
| | - Timothy S McMillen
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Kristina B Kooiker
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Neil B Wood
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05404, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05404, USA
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Italy
| | | | | | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
Lee S, Vander Roest AS, Blair CA, Kao K, Bremner SB, Childers MC, Pathak D, Heinrich P, Lee D, Chirikian O, Mohran SE, Roberts B, Smith JE, Jahng JW, Paik DT, Wu JC, Gunawardane RN, Ruppel KM, Mack DL, Pruitt BL, Regnier M, Wu SM, Spudich JA, Bernstein D. Incomplete-penetrant hypertrophic cardiomyopathy MYH7 G256E mutation causes hypercontractility and elevated mitochondrial respiration. Proc Natl Acad Sci U S A 2024; 121:e2318413121. [PMID: 38683993 PMCID: PMC11087781 DOI: 10.1073/pnas.2318413121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the β-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Soah Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Biopharmaceutical Convergence, Sungkyunkwan University School of Pharmacy, Suwon, Gyeonggi-do16419South Korea
- School of Pharmacy, Sungkyunkwan University School of Pharmacy, Suwon, Gyeonggi-do16419, South Korea
| | - Alison S. Vander Roest
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA94305
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Cheavar A. Blair
- Biological Engineering, University of California, Santa Barbara, CA93106
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY40536
| | - Kerry Kao
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Samantha B. Bremner
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Matthew C. Childers
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Divya Pathak
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Orlando Chirikian
- Biological Engineering, University of California, Santa Barbara, CA93106
| | - Saffie E. Mohran
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | | | | | - James W. Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - David T. Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | | | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - David L. Mack
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Beth L. Pruitt
- Biological Engineering, University of California, Santa Barbara, CA93106
| | - Michael Regnier
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Sean M. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
8
|
Mohran S, Steczina S, Mandrycky C, Kao K, Regnier M. Measuring the Contractile Kinetics of Isolated Myofibrils from Human-Induced Pluripotent Stem Cell Derived Cardiomyocyte (hiPSC-CM) Models of Cardiomyopathy. Methods Mol Biol 2024; 2735:213-233. [PMID: 38038851 DOI: 10.1007/978-1-0716-3527-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Isolated myofibrils provide biomechanical data at the contractile organelle level that are independent of cellular calcium handling and signaling pathways. These myofibrils can be harvested from animal tissue, human muscle biopsies, or stem cell-derived striated muscle. Here we present our myofibril isolation and rapid solution switching protocols, which allow for precise measurements of activation (kinetics and tension generation) and a biphasic relaxation relationship (initial slow isometric relaxation followed by a fast exponential decay in tension). This experiment is generated on a custom-built myofibril apparatus utilizing a two-photodiode array to detect micron level deflection of our forged glass tip force transducers. A complete activation/relaxation curve can be produced from a single myofibril in under 30 minutes.
Collapse
Affiliation(s)
- Saffie Mohran
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Sonette Steczina
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Christian Mandrycky
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kerry Kao
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Kaplan JL, Rivas VN, Connolly DJ. Advancing Treatments for Feline Hypertrophic Cardiomyopathy: The Role of Animal Models and Targeted Therapeutics. Vet Clin North Am Small Anim Pract 2023; 53:1293-1308. [PMID: 37414693 DOI: 10.1016/j.cvsm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Feline HCM is the most common cardiovascular disease in cats, leading to devastating outcomes, including congestive heart failure (CHF), arterial thromboembolism (ATE), and sudden death. Evidence demonstrating long-term survival benefit with currently available therapies is lacking. Therefore, it is imperative to explore intricate genetic and molecular pathways that drive HCM pathophysiology to inspire the development of novel therapeutics. Several clinical trials exploring new drug therapies are currently underway, including those investigating small molecule inhibitors and rapamycin. This article outlines the key work performed using cellular and animal models that has led to and continues to guide the development of new innovative therapeutic strategies.
Collapse
Affiliation(s)
- Joanna L Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Victor N Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - David J Connolly
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
10
|
Rodriguez Garcia M, Schmeckpeper J, Landim-Vieira M, Coscarella IL, Fang X, Ma W, Spran PA, Yuan S, Qi L, Kahmini AR, Shoemaker MB, Atkinson JB, Kekenes-Huskey PM, Irving TC, Chase PB, Knollmann BC, Pinto JR. Disruption of Z-Disc Function Promotes Mechanical Dysfunction in Human Myocardium: Evidence for a Dual Myofilament Modulatory Role by Alpha-Actinin 2. Int J Mol Sci 2023; 24:14572. [PMID: 37834023 PMCID: PMC10572656 DOI: 10.3390/ijms241914572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.
Collapse
Affiliation(s)
| | - Jeffrey Schmeckpeper
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Xuan Fang
- Department of Cell & Molecular Physiology, Loyola University, Chicago, IL 60660, USA
| | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Payton A. Spran
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shengyao Yuan
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Lin Qi
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Aida Rahimi Kahmini
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - M. Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James B. Atkinson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Thomas C. Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Björn C. Knollmann
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jose Renato Pinto
- Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
11
|
Lee S, Roest ASV, Blair CA, Kao K, Bremner SB, Childers MC, Pathak D, Heinrich P, Lee D, Chirikian O, Mohran S, Roberts B, Smith JE, Jahng JW, Paik DT, Wu JC, Gunawardane RN, Spudich JA, Ruppel K, Mack D, Pruitt BL, Regnier M, Wu SM, Bernstein D. Multi-scale models reveal hypertrophic cardiomyopathy MYH7 G256E mutation drives hypercontractility and elevated mitochondrial respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544276. [PMID: 37333118 PMCID: PMC10274883 DOI: 10.1101/2023.06.08.544276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Rationale Over 200 mutations in the sarcomeric protein β-myosin heavy chain (MYH7) have been linked to hypertrophic cardiomyopathy (HCM). However, different mutations in MYH7 lead to variable penetrance and clinical severity, and alter myosin function to varying degrees, making it difficult to determine genotype-phenotype relationships, especially when caused by rare gene variants such as the G256E mutation. Objective This study aims to determine the effects of low penetrant MYH7 G256E mutation on myosin function. We hypothesize that the G256E mutation would alter myosin function, precipitating compensatory responses in cellular functions. Methods We developed a collaborative pipeline to characterize myosin function at multiple scales (protein to myofibril to cell to tissue). We also used our previously published data on other mutations to compare the degree to which myosin function was altered. Results At the protein level, the G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 50.9%, suggesting more myosins available for contraction. Myofibrils isolated from hiPSC-CMs CRISPR-edited with G256E (MYH7 WT/G256E ) generated greater tension, had faster tension development and slower early phase relaxation, suggesting altered myosin-actin crossbridge cycling kinetics. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. Single-cell transcriptomic and metabolic profiling demonstrated upregulation of mitochondrial genes and increased mitochondrial respiration, suggesting altered bioenergetics as an early feature of HCM. Conclusions MYH7 G256E mutation causes structural instability in the transducer region, leading to hypercontractility across scales, perhaps from increased myosin recruitment and altered crossbridge cycling. Hypercontractile function of the mutant myosin was accompanied by increased mitochondrial respiration, while cellular hypertrophy was modest in the physiological stiffness environment. We believe that this multi-scale platform will be useful to elucidate genotype-phenotype relationships underlying other genetic cardiovascular diseases.
Collapse
|
12
|
Weymann A, Foroughi J, Vardanyan R, Punjabi PP, Schmack B, Aloko S, Spinks GM, Wang CH, Arjomandi Rad A, Ruhparwar A. Artificial Muscles and Soft Robotic Devices for Treatment of End-Stage Heart Failure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207390. [PMID: 36269015 DOI: 10.1002/adma.202207390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/19/2022] [Indexed: 05/12/2023]
Abstract
Medical soft robotics constitutes a rapidly developing field in the treatment of cardiovascular diseases, with a promising future for millions of patients suffering from heart failure worldwide. Herein, the present state and future direction of artificial muscle-based soft robotic biomedical devices in supporting the inotropic function of the heart are reviewed, focusing on the emerging electrothermally artificial heart muscles (AHMs). Artificial muscle powered soft robotic devices can mimic the action of complex biological systems such as heart compression and twisting. These artificial muscles possess the ability to undergo complex deformations, aiding cardiac function while maintaining a limited weight and use of space. Two very promising candidates for artificial muscles are electrothermally actuated AHMs and biohybrid actuators using living cells or tissue embedded with artificial structures. Electrothermally actuated AHMs have demonstrated superior force generation while creating the prospect for fully soft robotic actuated ventricular assist devices. This review will critically analyze the limitations of currently available devices and discuss opportunities and directions for future research. Last, the properties of the cardiac muscle are reviewed and compared with those of different materials suitable for mechanical cardiac compression.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Javad Foroughi
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Robert Vardanyan
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Prakash P Punjabi
- Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, 72 Du Cane Rd, London, W12 0HS, UK
| | - Bastian Schmack
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Sinmisola Aloko
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Arian Arjomandi Rad
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Arjang Ruhparwar
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| |
Collapse
|
13
|
De Bortoli M, Meraviglia V, Mackova K, Frommelt LS, König E, Rainer J, Volani C, Benzoni P, Schlittler M, Cattelan G, Motta BM, Volpato C, Rauhe W, Barbuti A, Zacchigna S, Pramstaller PP, Rossini A. Modeling incomplete penetrance in arrhythmogenic cardiomyopathy by human induced pluripotent stem cell derived cardiomyocytes. Comput Struct Biotechnol J 2023; 21:1759-1773. [PMID: 36915380 PMCID: PMC10006475 DOI: 10.1016/j.csbj.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are commonly used to model arrhythmogenic cardiomyopathy (ACM), a heritable cardiac disease characterized by severe ventricular arrhythmias, fibrofatty myocardial replacement and progressive ventricular dysfunction. Although ACM is inherited as an autosomal dominant disease, incomplete penetrance and variable expressivity are extremely common, resulting in different clinical manifestations. Here, we propose hiPSC-CMs as a powerful in vitro model to study incomplete penetrance in ACM. Six hiPSC lines were generated from blood samples of three ACM patients carrying a heterozygous deletion of exon 4 in the PKP2 gene, two asymptomatic (ASY) carriers of the same mutation and one healthy control (CTR), all belonging to the same family. Whole exome sequencing was performed in all family members and hiPSC-CMs were examined by ddPCR, western blot, Wes™ immunoassay system, patch clamp, immunofluorescence and RNASeq. Our results show molecular and functional differences between ACM and ASY hiPSC-CMs, including a higher amount of mutated PKP2 mRNA, a lower expression of the connexin-43 protein, a lower overall density of sodium current, a higher intracellular lipid accumulation and sarcomere disorganization in ACM compared to ASY hiPSC-CMs. Differentially expressed genes were also found, supporting a predisposition for a fatty phenotype in ACM hiPSC-CMs. These data indicate that hiPSC-CMs are a suitable model to study incomplete penetrance in ACM.
Collapse
Key Words
- ABC, active ß-catenin
- ACM, arrhythmogenic cardiomyopathy
- ASY, asymptomatic
- Arrhythmogenic cardiomyopathy
- BBB, bundle-branch block
- CMs, cardiomyocytes
- CTR, control
- Cx43, connexin-43
- DEGs, differentially expressed genes
- GATK, Genome Analysis Toolkit
- Human induced pluripotent stem cell derived cardiomyocytes
- ICD, implantable cardioverter-defibrillator
- ID, intercalated disk
- Incomplete penetrance
- LBB, left bundle-branch block
- MRI, magnetic resonance imagingmut, mutated
- NSVT, non-sustained ventricular tachycardia
- RV, right ventricle
- hiPSC, human induced pluripotent stem cell
- wt, wild type
Collapse
Affiliation(s)
- Marzia De Bortoli
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Viviana Meraviglia
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy.,Department of Anatomy and Embryology, Leiden University Medical Center, 2316 Leiden, the Netherlands
| | - Katarina Mackova
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Laura S Frommelt
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Eva König
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Johannes Rainer
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Chiara Volani
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy.,Universita` degli Studi di Milano, The Cell Physiology MiLab, Department of Biosciences, Milano, Italy
| | - Patrizia Benzoni
- Universita` degli Studi di Milano, The Cell Physiology MiLab, Department of Biosciences, Milano, Italy
| | - Maja Schlittler
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Giada Cattelan
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Benedetta M Motta
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Claudia Volpato
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Werner Rauhe
- San Maurizio Hospital, Department of Cardiology, Bolzano, Italy
| | - Andrea Barbuti
- Universita` degli Studi di Milano, The Cell Physiology MiLab, Department of Biosciences, Milano, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cardiovascular Biology Laboratory, Trieste, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Alessandra Rossini
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| |
Collapse
|
14
|
Vučković S, Dinani R, Nollet EE, Kuster DWD, Buikema JW, Houtkooper RH, Nabben M, van der Velden J, Goversen B. Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling. STEM CELL RESEARCH & THERAPY 2022; 13:332. [PMID: 35870954 PMCID: PMC9308297 DOI: 10.1186/s13287-022-03021-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/25/2022] [Indexed: 12/02/2022]
Abstract
Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have emerged as a powerful tool for disease modeling, though their immature nature currently limits translation into clinical practice. Maturation strategies increasingly pay attention to cardiac metabolism because of its pivotal role in cardiomyocyte development and function. Moreover, aberrances in cardiac metabolism are central to the pathogenesis of cardiac disease. Thus, proper modeling of human cardiac disease warrants careful characterization of the metabolic properties of iPSC-CMs. Methods Here, we examined the effect of maturation protocols on healthy iPSC-CMs applied in 23 studies and compared fold changes in functional metabolic characteristics to assess the level of maturation. In addition, pathological metabolic remodeling was assessed in 13 iPSC-CM studies that focus on hypertrophic cardiomyopathy (HCM), which is characterized by abnormalities in metabolism. Results Matured iPSC-CMs were characterized by mitochondrial maturation, increased oxidative capacity and enhanced fatty acid use for energy production. HCM iPSC-CMs presented varying degrees of metabolic remodeling ranging from compensatory to energy depletion stages, likely due to the different types of mutations and clinical phenotypes modeled. HCM further displayed early onset hypertrophy, independent of the type of mutation or disease stage. Conclusions Maturation strategies improve the metabolic characteristics of iPSC-CMs, but not to the level of the adult heart. Therefore, a combination of maturation strategies might prove to be more effective. Due to early onset hypertrophy, HCM iPSC-CMs may be less suitable to detect early disease modifiers in HCM and might prove more useful to examine the effects of gene editing and new drugs in advanced disease stages. With this review, we provide an overview of the assays used for characterization of cardiac metabolism in iPSC-CMs and advise on which metabolic assays to include in future maturation and disease modeling studies.
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03021-9.
Collapse
|
15
|
Li J, Feng X, Wei X. Modeling hypertrophic cardiomyopathy with human cardiomyocytes derived from induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:232. [PMID: 35659761 PMCID: PMC9166443 DOI: 10.1186/s13287-022-02905-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
One of the obstacles in studying the pathogenesis of hypertrophic cardiomyopathy (HCM) is the poor availability of myocardial tissue samples at the early stages of disease development. This has been addressed by the advent of induced pluripotent stem cells (iPSCs), which allow us to differentiate patient-derived iPSCs into cardiomyocytes (iPSC-CMs) in vitro. In this review, we summarize different approaches to establishing iPSC models and the application of genome editing techniques in iPSC. Because iPSC-CMs cultured at the present stage are immature in structure and function, researchers have attempted several methods to mature iPSC-CMs, such as prolonged culture duration, and mechanical and electrical stimulation. Currently, many researchers have established iPSC-CM models of HCM and employed diverse methods for performing measurements of cellular morphology, contractility, electrophysiological property, calcium handling, mitochondrial function, and metabolism. Here, we review published results in humans to date within the growing field of iPSC-CM models of HCM. Although there is no unified consensus, preliminary results suggest that this approach to modeling disease would provide important insights into our understanding of HCM pathogenesis and facilitate drug development and safety testing.
Collapse
Affiliation(s)
- Jiangtao Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
16
|
Bremner SB, Gaffney KS, Sniadecki NJ, Mack DL. A Change of Heart: Human Cardiac Tissue Engineering as a Platform for Drug Development. Curr Cardiol Rep 2022; 24:473-486. [PMID: 35247166 PMCID: PMC8897733 DOI: 10.1007/s11886-022-01668-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Human cardiac tissue engineering holds great promise for early detection of drug-related cardiac toxicity and arrhythmogenicity during drug discovery and development. We describe shortcomings of the current drug development pathway, recent advances in the development of cardiac tissue constructs as drug testing platforms, and the challenges remaining in their widespread adoption. RECENT FINDINGS Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been used to develop a variety of constructs including cardiac spheroids, microtissues, strips, rings, and chambers. Several ambitious studies have used these constructs to test a significant number of drugs, and while most have shown proper negative inotropic and arrhythmogenic responses, few have been able to demonstrate positive inotropy, indicative of relative hPSC-CM immaturity. Several engineered human cardiac tissue platforms have demonstrated native cardiac physiology and proper drug responses. Future studies addressing hPSC-CM immaturity and inclusion of patient-specific cell lines will further advance the utility of such models for in vitro drug development.
Collapse
Affiliation(s)
- Samantha B. Bremner
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Karen S. Gaffney
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Nathan J. Sniadecki
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - David L. Mack
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA USA
| |
Collapse
|
17
|
Querceto S, Santoro R, Gowran A, Grandinetti B, Pompilio G, Regnier M, Tesi C, Poggesi C, Ferrantini C, Pioner JM. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. J Mol Cell Cardiol 2022; 166:36-49. [PMID: 35139328 PMCID: PMC11270945 DOI: 10.1016/j.yjmcc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/27/2022]
Abstract
The quest for novel methods to mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for cardiac regeneration, modelling and drug testing has emphasized a need to create microenvironments with physiological features. Many studies have reported on how cardiomyocytes sense substrate stiffness and adapt their morphological and functional properties. However, these observations have raised new biological questions and a shared vision to translate it into a tissue or organ context is still elusive. In this review, we will focus on the relevance of substrates mimicking cardiac extracellular matrix (cECM) rigidity for the understanding of the biomechanical crosstalk between the extracellular and intracellular environment. The ability to opportunely modulate these pathways could be a key to regulate in vitro hiPSC-CM maturation. Therefore, both hiPSC-CM models and substrate stiffness appear as intriguing tools for the investigation of cECM-cell interactions. More understanding of these mechanisms may provide novel insights on how cECM affects cardiac cell function in the context of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Silvia Querceto
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, FI, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chiara Tesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Josè Manuel Pioner
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
18
|
Marston S. Force Measurements From Myofibril to Filament. Front Physiol 2022; 12:817036. [PMID: 35153821 PMCID: PMC8829514 DOI: 10.3389/fphys.2021.817036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Contractility, the generation of force and movement by molecular motors, is the hallmark of all muscles, including striated muscle. Contractility can be studied at every level of organization from a whole animal to single molecules. Measurements at sub-cellular level are particularly useful since, in the absence of the excitation-contraction coupling system, the properties of the contractile proteins can be directly investigated; revealing mechanistic details not accessible in intact muscle. Moreover, the conditions can be manipulated with ease, for instance changes in activator Ca2+, small molecule effector concentration or phosphorylation levels and introducing mutations. Subcellular methods can be successfully applied to frozen materials and generally require the smallest amount of tissue, thus greatly increasing the range of possible experiments compared with the study of intact muscle and cells. Whilst measurement of movement at the subcellular level is relatively simple, measurement of force is more challenging. This mini review will describe current methods for measuring force production at the subcellular level including single myofibril and single myofilament techniques.
Collapse
|
19
|
Moore J, Emili A. Mass-Spectrometry-Based Functional Proteomic and Phosphoproteomic Technologies and Their Application for Analyzing Ex Vivo and In Vitro Models of Hypertrophic Cardiomyopathy. Int J Mol Sci 2021; 22:13644. [PMID: 34948439 PMCID: PMC8709159 DOI: 10.3390/ijms222413644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease thought to be principally caused by mutations in sarcomeric proteins. Despite extensive genetic analysis, there are no comprehensive molecular frameworks for how single mutations in contractile proteins result in the diverse assortment of cellular, phenotypic, and pathobiological cascades seen in HCM. Molecular profiling and system biology approaches are powerful tools for elucidating, quantifying, and interpreting dynamic signaling pathways and differential macromolecule expression profiles for a wide range of sample types, including cardiomyopathy. Cutting-edge approaches combine high-performance analytical instrumentation (e.g., mass spectrometry) with computational methods (e.g., bioinformatics) to study the comparative activity of biochemical pathways based on relative abundances of functionally linked proteins of interest. Cardiac research is poised to benefit enormously from the application of this toolkit to cardiac tissue models, which recapitulate key aspects of pathogenesis. In this review, we evaluate state-of-the-art mass-spectrometry-based proteomic and phosphoproteomic technologies and their application to in vitro and ex vivo models of HCM for global mapping of macromolecular alterations driving disease progression, emphasizing their potential for defining the components of basic biological systems, the fundamental mechanistic basis of HCM pathogenesis, and treating the ensuing varied clinical outcomes seen among affected patient cohorts.
Collapse
Affiliation(s)
- Jarrod Moore
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
- MD-PhD Program, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
20
|
Knight WE, Cao Y, Dillon P, Song K. A simple protocol to produce mature human-induced pluripotent stem cell-derived cardiomyocytes. STAR Protoc 2021; 2:100912. [PMID: 34755117 PMCID: PMC8561014 DOI: 10.1016/j.xpro.2021.100912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
When cultured under typical conditions, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are structurally and functionally immature. We have previously demonstrated that culture of hiPSC-CMs in maturation medium containing fatty acids, in combination with culture on micropatterned surfaces, produces cells that demonstrate a more mature phenotype compared to standard approaches. Here, we show in detail the steps needed to produce mature hiPSC-CMs. Compared with many approaches, our protocol is relatively simple and can be easily adapted to new laboratories. For complete details on the use and execution of this protocol, please refer to Knight et al. (2021).
Collapse
Affiliation(s)
- Walter E. Knight
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Phoebe Dillon
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Denver, Denver, CO 80210, USA
| | - Kunhua Song
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021; 10:cells10123483. [PMID: 34943991 PMCID: PMC8699880 DOI: 10.3390/cells10123483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.
Collapse
|
22
|
Vander Roest AS, Liu C, Morck MM, Kooiker KB, Jung G, Song D, Dawood A, Jhingran A, Pardon G, Ranjbarvaziri S, Fajardo G, Zhao M, Campbell KS, Pruitt BL, Spudich JA, Ruppel KM, Bernstein D. Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proc Natl Acad Sci U S A 2021. [PMID: 34117120 DOI: 10.1073/pnas.2025030118/suppl_file/pnas.2025030118.sm02.avi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in β-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.
Collapse
Affiliation(s)
- Alison Schroer Vander Roest
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Chao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Makenna M Morck
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kristina Bezold Kooiker
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- School of Medicine, University of Washington, Seattle, WA 98109
| | - Gwanghyun Jung
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Dan Song
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Aminah Dawood
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Arnav Jhingran
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
| | - Gaspard Pardon
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Sara Ranjbarvaziri
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Giovanni Fajardo
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Mingming Zhao
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY 40536
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Mechanical and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106
| | - James A Spudich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathleen M Ruppel
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
23
|
Vander Roest AS, Liu C, Morck MM, Kooiker KB, Jung G, Song D, Dawood A, Jhingran A, Pardon G, Ranjbarvaziri S, Fajardo G, Zhao M, Campbell KS, Pruitt BL, Spudich JA, Ruppel KM, Bernstein D. Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proc Natl Acad Sci U S A 2021; 118:e2025030118. [PMID: 34117120 PMCID: PMC8214707 DOI: 10.1073/pnas.2025030118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in β-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.
Collapse
Affiliation(s)
- Alison Schroer Vander Roest
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Chao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Makenna M Morck
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kristina Bezold Kooiker
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- School of Medicine, University of Washington, Seattle, WA 98109
| | - Gwanghyun Jung
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Dan Song
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Aminah Dawood
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Arnav Jhingran
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
| | - Gaspard Pardon
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Sara Ranjbarvaziri
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Giovanni Fajardo
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Mingming Zhao
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY 40536
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Mechanical and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106
| | - James A Spudich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathleen M Ruppel
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
24
|
Iorga B, Kraft T. Why make a strong muscle weaker? J Gen Physiol 2021; 153:212267. [PMID: 34106212 PMCID: PMC8193566 DOI: 10.1085/jgp.202112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Bogdan Iorga
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.,Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Theresia Kraft
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Gerbin KA, Grancharova T, Donovan-Maiye RM, Hendershott MC, Anderson HG, Brown JM, Chen J, Dinh SQ, Gehring JL, Johnson GR, Lee H, Nath A, Nelson AM, Sluzewski MF, Viana MP, Yan C, Zaunbrecher RJ, Cordes Metzler KR, Gaudreault N, Knijnenburg TA, Rafelski SM, Theriot JA, Gunawardane RN. Cell states beyond transcriptomics: Integrating structural organization and gene expression in hiPSC-derived cardiomyocytes. Cell Syst 2021; 12:670-687.e10. [PMID: 34043964 DOI: 10.1016/j.cels.2021.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/07/2020] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Although some cell types may be defined anatomically or by physiological function, a rigorous definition of cell state remains elusive. Here, we develop a quantitative, imaging-based platform for the systematic and automated classification of subcellular organization in single cells. We use this platform to quantify subcellular organization and gene expression in >30,000 individual human induced pluripotent stem cell-derived cardiomyocytes, producing a publicly available dataset that describes the population distributions of local and global sarcomere organization, mRNA abundance, and correlations between these traits. While the mRNA abundance of some phenotypically important genes correlates with subcellular organization (e.g., the beta-myosin heavy chain, MYH7), these two cellular metrics are heterogeneous and often uncorrelated, which suggests that gene expression alone is not sufficient to classify cell states. Instead, we posit that cell state should be defined by observing full distributions of quantitative, multidimensional traits in single cells that also account for space, time, and function.
Collapse
Affiliation(s)
- Kaytlyn A Gerbin
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Tanya Grancharova
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | | | - Helen G Anderson
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jackson M Brown
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jianxu Chen
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Stephanie Q Dinh
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jamie L Gehring
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Gregory R Johnson
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - HyeonWoo Lee
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Aditya Nath
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | - M Filip Sluzewski
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Matheus P Viana
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Calysta Yan
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | | | | | | | | | - Julie A Theriot
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
26
|
Campostrini G, Meraviglia V, Giacomelli E, van Helden RW, Yiangou L, Davis RP, Bellin M, Orlova VV, Mummery CL. Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nat Protoc 2021; 16:2213-2256. [PMID: 33772245 PMCID: PMC7611409 DOI: 10.1038/s41596-021-00497-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/11/2021] [Indexed: 02/01/2023]
Abstract
Tissue-like structures from human pluripotent stem cells containing multiple cell types are transforming our ability to model and understand human development and disease. Here we describe a protocol to generate cardiomyocytes (CMs), cardiac fibroblasts (CFs) and cardiac endothelial cells (ECs), the three principal cell types in the heart, from human induced pluripotent stem cells (hiPSCs) and combine them in three-dimensional (3D) cardiac microtissues (MTs). We include details of how to differentiate, isolate, cryopreserve and thaw the component cells and how to construct and analyze the MTs. The protocol supports hiPSC-CM maturation and allows replacement of one or more of the three heart cell types in the MTs with isogenic variants bearing disease mutations. Differentiation of each cell type takes ~30 d, while MT formation and maturation requires another 20 d. No specialist equipment is needed and the method is inexpensive, requiring just 5,000 cells per MT.
Collapse
Affiliation(s)
- Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ruben W.J. van Helden
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands,Department of Biology, University of Padua, 35121 Padua, Italy,Veneto Institute of Molecular Medicine, 35129 Padua, Italy,Correspondence to , or
| | - Valeria V. Orlova
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands,Correspondence to , or
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands,Department of Applied Stem Cell Technologies, University of Twente, The Netherlands,Correspondence to , or
| |
Collapse
|
27
|
Genetic Cardiomyopathies: The Lesson Learned from hiPSCs. J Clin Med 2021; 10:jcm10051149. [PMID: 33803477 PMCID: PMC7967174 DOI: 10.3390/jcm10051149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic cardiomyopathies represent a wide spectrum of inherited diseases and constitute an important cause of morbidity and mortality among young people, which can manifest with heart failure, arrhythmias, and/or sudden cardiac death. Multiple underlying genetic variants and molecular pathways have been discovered in recent years; however, assessing the pathogenicity of new variants often needs in-depth characterization in order to ascertain a causal role in the disease. The application of human induced pluripotent stem cells has greatly helped to advance our knowledge in this field and enabled to obtain numerous in vitro patient-specific cellular models useful to study the underlying molecular mechanisms and test new therapeutic strategies. A milestone in the research of genetically determined heart disease was the introduction of genomic technologies that provided unparalleled opportunities to explore the genetic architecture of cardiomyopathies, thanks to the generation of isogenic pairs. The aim of this review is to provide an overview of the main research that helped elucidate the pathophysiology of the most common genetic cardiomyopathies: hypertrophic, dilated, arrhythmogenic, and left ventricular noncompaction cardiomyopathies. A special focus is provided on the application of gene-editing techniques in understanding key disease characteristics and on the therapeutic approaches that have been tested.
Collapse
|
28
|
Knight WE, Cao Y, Lin YH, Chi C, Bai B, Sparagna GC, Zhao Y, Du Y, Londono P, Reisz JA, Brown BC, Taylor MRG, Ambardekar AV, Cleveland JC, McKinsey TA, Jeong MY, Walker LA, Woulfe KC, D'Alessandro A, Chatfield KC, Xu H, Bristow MR, Buttrick PM, Song K. Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes Enables Modeling of Human Hypertrophic Cardiomyopathy. Stem Cell Reports 2021; 16:519-533. [PMID: 33636116 PMCID: PMC7940251 DOI: 10.1016/j.stemcr.2021.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for biomedical research. However, they are immature, which is a barrier to modeling adult-onset cardiovascular disease. Here, we sought to develop a simple method that could drive cultured hiPSC-CMs toward maturity across a number of phenotypes, with the aim of utilizing mature hiPSC-CMs to model human cardiovascular disease. hiPSC-CMs were cultured in fatty acid-based medium and plated on micropatterned surfaces. These cells display many characteristics of adult human cardiomyocytes, including elongated cell morphology, sarcomeric maturity, and increased myofibril contractile force. In addition, mature hiPSC-CMs develop pathological hypertrophy, with associated myofibril relaxation defects, in response to either a pro-hypertrophic agent or genetic mutations. The more mature hiPSC-CMs produced by these methods could serve as a useful in vitro platform for characterizing cardiovascular disease. Standard (glucose) cultured hiPSC-CMs demonstrate a blunted hypertrophic response A maturation method induces hiPSC-CM maturation and suppresses HIF1A expression Mature hiPSC-CMs demonstrate improved sarcomeric morphology and contractility Mature hiPSC-CMs respond to agonist- or mutation-induced hypertrophy
Collapse
Affiliation(s)
- Walter E Knight
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ying-Hsi Lin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Betty Bai
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuanbiao Zhao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yanmei Du
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pilar Londono
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin C Brown
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew R G Taylor
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joseph C Cleveland
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mark Y Jeong
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Michael R Bristow
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter M Buttrick
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Liu M, Li N, Qu C, Gao Y, Wu L, Hu LG. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol 2021; 4:188. [PMID: 33580152 PMCID: PMC7881154 DOI: 10.1038/s42003-021-01676-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperamylinemia induces amylin aggregation and toxicity in the pancreas and contributes to the development of type-2 diabetes (T2D). Cardiac amylin deposition in patients with obesity and T2D was found to accelerate heart dysfunction. Non-human primates (NHPs) have similar genetic, metabolic, and cardiovascular processes as humans. However, the underlying mechanisms of cardiac amylin in NHPs, particularly related to the hypoxia inducible factor (HIF)1α and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling pathways, are unknown. Here, we demonstrate that in NHPs, amylin deposition in heart failure (HF) contributes to cardiac dysfunction via activation of HIF1α and PFKFB3 signaling. This was confirmed in two in vitro cardiomyocyte models. Furthermore, alterations of intracellular Ca2+, reactive oxygen species, mitochondrial function, and lactate levels were observed in amylin-treated cells. Our study demonstrates a pathological role for amylin in the activation of HIF1α and PFKFB3 signaling in NHPs with HF, establishing amylin as a promising target for heart disease patients.
Collapse
Affiliation(s)
- Miao Liu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Nan Li
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Qu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Yilin Gao
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Lijie Wu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Liangbiao George Hu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China.
| |
Collapse
|
30
|
Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol Life Sci 2021; 78:7309-7337. [PMID: 34704115 PMCID: PMC8629898 DOI: 10.1007/s00018-021-03971-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023]
Abstract
Human atrial and ventricular contractions have distinct mechanical characteristics including speed of contraction, volume of blood delivered and the range of pressure generated. Notably, the ventricle expresses predominantly β-cardiac myosin while the atrium expresses mostly the α-isoform. In recent years exploration of the properties of pure α- & β-myosin isoforms have been possible in solution, in isolated myocytes and myofibrils. This allows us to consider the extent to which the atrial vs ventricular mechanical characteristics are defined by the myosin isoform expressed, and how the isoform properties are matched to their physiological roles. To do this we Outline the essential feature of atrial and ventricular contraction; Explore the molecular structural and functional characteristics of the two myosin isoforms; Describe the contractile behaviour of myocytes and myofibrils expressing a single myosin isoform; Finally we outline the outstanding problems in defining the differences between the atria and ventricles. This allowed us consider what features of contraction can and cannot be ascribed to the myosin isoforms present in the atria and ventricles.
Collapse
|
31
|
Santini L, Palandri C, Nediani C, Cerbai E, Coppini R. Modelling genetic diseases for drug development: Hypertrophic cardiomyopathy. Pharmacol Res 2020; 160:105176. [DOI: 10.1016/j.phrs.2020.105176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
|
32
|
Pioner JM, Guan X, Klaiman JM, Racca AW, Pabon L, Muskheli V, Macadangdang J, Ferrantini C, Hoopmann MR, Moritz RL, Kim DH, Tesi C, Poggesi C, Murry CE, Childers MK, Mack DL, Regnier M. Absence of full-length dystrophin impairs normal maturation and contraction of cardiomyocytes derived from human-induced pluripotent stem cells. Cardiovasc Res 2020; 116:368-382. [PMID: 31049579 DOI: 10.1093/cvr/cvz109] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
AIMS Heart failure invariably affects patients with various forms of muscular dystrophy (MD), but the onset and molecular sequelae of altered structure and function resulting from full-length dystrophin (Dp427) deficiency in MD heart tissue are poorly understood. To better understand the role of dystrophin in cardiomyocyte development and the earliest phase of Duchenne muscular dystrophy (DMD) cardiomyopathy, we studied human cardiomyocytes differentiated from induced pluripotent stem cells (hiPSC-CMs) obtained from the urine of a DMD patient. METHODS AND RESULTS The contractile properties of patient-specific hiPSC-CMs, with no detectable dystrophin (DMD-CMs with a deletion of exon 50), were compared to CMs containing a CRISPR-Cas9 mediated deletion of a single G base at position 263 of the dystrophin gene (c.263delG-CMs) isogenic to the parental line of hiPSC-CMs from a healthy individual. We hypothesized that the absence of a dystrophin-actin linkage would adversely affect myofibril and cardiomyocyte structure and function. Cardiomyocyte maturation was driven by culturing long-term (80-100 days) on a nanopatterned surface, which resulted in hiPSC-CMs with adult-like dimensions and aligned myofibrils. CONCLUSIONS Our data demonstrate that lack of Dp427 results in reduced myofibril contractile tension, slower relaxation kinetics, and to Ca2+ handling abnormalities, similar to DMD cells, suggesting either retarded or altered maturation of cardiomyocyte structures associated with these functions. This study offers new insights into the functional consequences of Dp427 deficiency at an early stage of cardiomyocyte development in both patient-derived and CRISPR-generated models of dystrophin deficiency.
Collapse
Affiliation(s)
- J Manuel Pioner
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | - Xuan Guan
- Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Alice W Racca
- School of Biosciences, University of Kent, Canterbury, UK
| | - Lil Pabon
- Pathology, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Veronica Muskheli
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | | | - Cecilia Ferrantini
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | | | | | - Deok-Ho Kim
- Bioengineering, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Chiara Tesi
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | - Corrado Poggesi
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | - Charles E Murry
- Bioengineering, University of Washington, Seattle, WA, USA.,Pathology, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Martin K Childers
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA.,Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - David L Mack
- Bioengineering, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA.,Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Michael Regnier
- Bioengineering, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| |
Collapse
|
33
|
Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, van Helden RWJ, Krotenberg Garcia A, Mircea M, Kostidis S, Davis RP, van Meer BJ, Jost CR, Koster AJ, Mei H, Míguez DG, Mulder AA, Ledesma-Terrón M, Pompilio G, Sala L, Salvatori DCF, Slieker RC, Sommariva E, de Vries AAF, Giera M, Semrau S, Tertoolen LGJ, Orlova VV, Bellin M, Mummery CL. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell 2020; 26:862-879.e11. [PMID: 32459996 PMCID: PMC7284308 DOI: 10.1016/j.stem.2020.05.004] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening. Cardiac fibroblasts and endothelial cells induce hiPSC-cardiomyocyte maturation CX43 gap junctions form between cardiac fibroblasts and cardiomyocytes cAMP-pathway activation contributes to hiPSC-cardiomyocyte maturation Patient-derived hiPSC-cardiac fibroblasts cause arrhythmia in microtissues
Collapse
Affiliation(s)
- Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Xu Cao
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ruben W J van Helden
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ana Krotenberg Garcia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Maria Mircea
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Carolina R Jost
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - David G Míguez
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aat A Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Mario Ledesma-Terrón
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, VU University Medical Center, 1007 Amsterdam, the Netherlands
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Leon G J Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Biology, University of Padua, 35121 Padua, Italy; Veneto Institute of Molecular Medicine, 35129 Padua, Italy.
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Applied Stem Cell Technologies, University of Twente, 7500 Enschede, the Netherlands.
| |
Collapse
|
34
|
Pioner JM, Fornaro A, Coppini R, Ceschia N, Sacconi L, Donati MA, Favilli S, Poggesi C, Olivotto I, Ferrantini C. Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy. Front Physiol 2020; 11:368. [PMID: 32477154 PMCID: PMC7235370 DOI: 10.3389/fphys.2020.00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM) is mostly caused by mutations in genes encoding cytoskeletal and sarcomeric proteins. In the pediatric population, DCM is the predominant type of primitive myocardial disease. A severe form of DCM is associated with mutations in the DMD gene encoding dystrophin, which are the cause of Duchenne Muscular Dystrophy (DMD). DMD-associated cardiomyopathy is still poorly understood and orphan of a specific therapy. In the last 5 years, a rise of interest in disease models using human induced pluripotent stem cells (hiPSCs) has led to more than 50 original studies on DCM models. In this review paper, we provide a comprehensive overview on the advances in DMD cardiomyopathy disease modeling and highlight the most remarkable findings obtained from cardiomyocytes differentiated from hiPSCs of DMD patients. We will also describe how hiPSCs based studies have contributed to the identification of specific myocardial disease mechanisms that may be relevant in the pathogenesis of DCM, representing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | | | - Raffaele Coppini
- Department of NeuroFarBa, Università degli Studi di Firenze, Florence, Italy
| | - Nicole Ceschia
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Leonardo Sacconi
- LENS, Università degli Studi di Firenze and National Institute of Optics (INO-CNR), Florence, Italy
| | | | - Silvia Favilli
- Pediatric Cardiology, Meyer Children's Hospital, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
35
|
Weber N, Kowalski K, Holler T, Radocaj A, Fischer M, Thiemann S, de la Roche J, Schwanke K, Piep B, Peschel N, Krumm U, Lingk A, Wendland M, Greten S, Schmitto JD, Ismail I, Warnecke G, Zywietz U, Chichkov B, Meißner J, Haverich A, Martin U, Brenner B, Zweigerdt R, Kraft T. Advanced Single-Cell Mapping Reveals that in hESC Cardiomyocytes Contraction Kinetics and Action Potential Are Independent of Myosin Isoform. Stem Cell Reports 2020; 14:788-802. [PMID: 32302556 PMCID: PMC7220955 DOI: 10.1016/j.stemcr.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/14/2023] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent an attractive model to investigate CM function and disease mechanisms. One characteristic marker of ventricular specificity of human CMs is expression of the ventricular, slow β-myosin heavy chain (MyHC), as opposed to the atrial, fast α-MyHC. The main aim of this study was to investigate at the single-cell level whether contraction kinetics and electrical activity of hESC-CMs are influenced by the relative expression of α-MyHC versus β-MyHC. For effective assignment of functional parameters to the expression of both MyHC isoforms at protein and mRNA levels in the very same hESC-CMs, we developed a single-cell mapping technique. Surprisingly, α- versus β-MyHC was not related to specific contractile or electrophysiological properties of the same cells. The multiparametric cell-by-cell analysis suggests that in hESC-CMs the expression of genes associated with electrical activity, contraction, calcium handling, and MyHCs is independently regulated.
Collapse
Affiliation(s)
- Natalie Weber
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany.
| | - Kathrin Kowalski
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Tim Holler
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Ante Radocaj
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Martin Fischer
- Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Stefan Thiemann
- Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Jeanne de la Roche
- Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Birgit Piep
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Neele Peschel
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Uwe Krumm
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Alexander Lingk
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Meike Wendland
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Stephan Greten
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Jan Dieter Schmitto
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Issam Ismail
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Gregor Warnecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Urs Zywietz
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Boris Chichkov
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Joachim Meißner
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| |
Collapse
|
36
|
Wijnker PJM, van der Velden J. Mutation-specific pathology and treatment of hypertrophic cardiomyopathy in patients, mouse models and human engineered heart tissue. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165774. [PMID: 32217077 DOI: 10.1016/j.bbadis.2020.165774] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/04/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy and is characterized by asymmetric left ventricular hypertrophy and diastolic dysfunction, and a frequent cause of sudden cardiac death at young age. Pharmacological treatment to prevent or reverse HCM is lacking. This may be partly explained by the variety of underlying disease causes. Over 1500 mutations have been associated with HCM, of which the majority reside in genes encoding sarcomere proteins, the cardiac contractile building blocks. Several mutation-mediated disease mechanisms have been identified, with proof for gene- and mutation-specific cellular perturbations. In line with mutation-specific changes in cellular pathology, the response to treatment may depend on the underlying sarcomere gene mutation. In this review, we will discuss evidence for mutation-specific pathology and treatment responses in HCM patients, mouse models and engineered heart tissue. The pros and cons of these experimental models for studying mutation-specific HCM pathology and therapies will be outlined.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands.
| |
Collapse
|
37
|
Mosqueira D, Mannhardt I, Bhagwan JR, Lis-Slimak K, Katili P, Scott E, Hassan M, Prondzynski M, Harmer SC, Tinker A, Smith JGW, Carrier L, Williams PM, Gaffney D, Eschenhagen T, Hansen A, Denning C. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur Heart J 2019; 39:3879-3892. [PMID: 29741611 PMCID: PMC6234851 DOI: 10.1093/eurheartj/ehy249] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022] Open
Abstract
Aims Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 [(p.R453C-β-myosin heavy chain (MHC)] in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias, and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-βMHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and αMHC to energy-efficient βMHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7: MYH6 and mutant: wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms. ![]()
Collapse
Affiliation(s)
- Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Katarzyna Lis-Slimak
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Puspita Katili
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Elizabeth Scott
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Mustafa Hassan
- The Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - Maksymilian Prondzynski
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Stephen C Harmer
- The Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - James G W Smith
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Philip M Williams
- Molecular Therapeutics and Formulation. School of Pharmacy, University of Nottingham, UK
| | - Daniel Gaffney
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| |
Collapse
|
38
|
Zaunbrecher RJ, Abel AN, Beussman K, Leonard A, von Frieling-Salewsky M, Fields PA, Pabon L, Reinecke H, Yang X, Macadangdang J, Kim DH, Linke WA, Sniadecki NJ, Regnier M, Murry CE. Cronos Titin Is Expressed in Human Cardiomyocytes and Necessary for Normal Sarcomere Function. Circulation 2019; 140:1647-1660. [PMID: 31587567 PMCID: PMC6911360 DOI: 10.1161/circulationaha.119.039521] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND The giant sarcomere protein titin is important in both heart health and disease. Mutations in the gene encoding for titin (TTN) are the leading known cause of familial dilated cardiomyopathy. The uneven distribution of these mutations within TTN motivated us to seek a more complete understanding of this gene and the isoforms it encodes in cardiomyocyte (CM) sarcomere formation and function. METHODS To investigate the function of titin in human CMs, we used CRISPR/Cas9 to generate homozygous truncations in the Z disk (TTN-Z-/-) and A-band (TTN-A-/-) regions of the TTN gene in human induced pluripotent stem cells. The resulting CMs were characterized with immunostaining, engineered heart tissue mechanical measurements, and single-cell force and calcium measurements. RESULTS After differentiation, we were surprised to find that despite the more upstream mutation, TTN-Z-/--CMs had sarcomeres and visibly contracted, whereas TTN-A-/--CMs did not. We hypothesized that sarcomere formation was caused by the expression of a recently discovered isoform of titin, Cronos, which initiates downstream of the truncation in TTN-Z-/--CMs. Using a custom Cronos antibody, we demonstrate that this isoform is expressed and integrated into myofibrils in human CMs. TTN-Z-/--CMs exclusively express Cronos titin, but these cells produce lower contractile force and have perturbed myofibril bundling compared with controls expressing both full-length and Cronos titin. Cronos titin is highly expressed in human fetal cardiac tissue, and when knocked out in human induced pluripotent stem cell derived CMs, these cells exhibit reduced contractile force and myofibrillar disarray despite the presence of full-length titin. CONCLUSIONS We demonstrate that Cronos titin is expressed in developing human CMs and is able to support partial sarcomere formation in the absence of full-length titin. Furthermore, Cronos titin is necessary for proper sarcomere function in human induced pluripotent stem cell derived CMs. Additional investigation is necessary to understand the molecular mechanisms of this novel isoform and how it contributes to human cardiac disease.
Collapse
Affiliation(s)
- Rebecca J. Zaunbrecher
- Department of Bioengineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Ashley N. Abel
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Kevin Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | | | - Paul A. Fields
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Lil Pabon
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Xiulan Yang
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, D-48149 Muenster, Germany
- Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Goettingen, Germany
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Charles E. Murry
- Department of Bioengineering, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA
| |
Collapse
|
39
|
Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J Mol Cell Cardiol 2019; 138:1-11. [PMID: 31655038 DOI: 10.1016/j.yjmcc.2019.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
Recent advances in the understanding and use of pluripotent stem cells have produced major changes in approaches to the diagnosis and treatment of human disease. An obstacle to the use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for regenerative medicine, disease modeling and drug discovery is their immature state relative to adult myocardium. We show the effects of a combination of biochemical factors, thyroid hormone, dexamethasone, and insulin-like growth factor-1 (TDI) on the maturation of hiPSC-CMs in 3D cardiac microtissues (CMTs) that recapitulate aspects of the native myocardium. Based on a comparison of the gene expression profiles and the structural, ultrastructural, and electrophysiological properties of hiPSC-CMs in monolayers and CMTs, and measurements of the mechanical and pharmacological properties of CMTs, we find that TDI treatment in a 3D tissue context yields a higher fidelity adult cardiac phenotype, including sarcoplasmic reticulum function and contractile properties consistent with promotion of the maturation of hiPSC derived cardiomyocytes.
Collapse
|
40
|
Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatr Cardiol 2019; 40:1367-1387. [PMID: 31388700 PMCID: PMC6786957 DOI: 10.1007/s00246-019-02165-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer a multifaceted platform to study cardiac developmental biology, understand disease mechanisms, and develop novel therapies. Remarkable progress over the last two decades has led to methods to obtain highly pure hPSC-derived cardiomyocytes (hPSC-CMs) with reasonable ease and scalability. Nevertheless, a major bottleneck for the translational application of hPSC-CMs is their immature phenotype, resembling that of early fetal cardiomyocytes. Overall, bona fide maturation of hPSC-CMs represents one of the most significant goals facing the field today. Developmental biology studies have been pivotal in understanding the mechanisms to differentiate hPSC-CMs. Similarly, evaluation of developmental cues such as electrical and mechanical activities or neurohormonal and metabolic stimulations revealed the importance of these pathways in cardiomyocyte physiological maturation. Those signals cooperate and dictate the size and the performance of the developing heart. Likewise, this orchestra of stimuli is important in promoting hPSC-CM maturation, as demonstrated by current in vitro maturation approaches. Different shades of adult-like phenotype are achieved by prolonging the time in culture, electromechanical stimulation, patterned substrates, microRNA manipulation, neurohormonal or metabolic stimulation, and generation of human-engineered heart tissue (hEHT). However, mirroring this extremely dynamic environment is challenging, and reproducibility and scalability of these approaches represent the major obstacles for an efficient production of mature hPSC-CMs. For this reason, understanding the pattern behind the mechanisms elicited during the late gestational and early postnatal stages not only will provide new insights into postnatal development but also potentially offer new scalable and efficient approaches to mature hPSC-CMs.
Collapse
|
41
|
Lin YH, Yap J, Ramachandra CJ, Hausenloy DJ. New insights provided by myofibril mechanics in inherited cardiomyopathies. CONDITIONING MEDICINE 2019; 2:213-224. [PMID: 32133438 PMCID: PMC7055865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cardiomyopathies represent a heterogeneous group of cardiac disorders that perturb cardiac contraction and/or relaxation, and can result in arrhythmias, heart failure, and sudden cardiac death. Based on morphological and functional differences, cardiomyopathies have been classified into hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). It has been well documented that mutations in genes encoding sarcomeric proteins are associated with the onset of inherited cardiomyopathies. However, correlating patient genotype to the clinical phenotype has been challenging because of the complex genetic backgrounds, environmental influences, and lifestyles of individuals. Thus, "scaling down" the focus to the basic contractile unit of heart muscle using isolated single myofibril function techniques is of great importance and may be used to understand the molecular basis of disease-causing sarcomeric mutations. Single myofibril bundles harvested from diseased human or experimental animal hearts, as well as cultured adult cardiomyocytes or human cardiomyocytes derived from induced pluripotent stem cells, can be used, thereby providing an ideal multi-level, cross-species platform to dissect sarcomeric function in cardiomyopathies. Here, we will review the myofibril function technique, and discuss alterations in myofibril mechanics, which are known to occur in sarcomeric genetic mutations linked to inherited HCM, DCM, and RCM, and describe the therapeutic potential for future target identification.
Collapse
Affiliation(s)
- Ying-Hsi Lin
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - Chrishan J.A. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals
- Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| |
Collapse
|
42
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
43
|
Pioner JM, Santini L, Palandri C, Martella D, Lupi F, Langione M, Querceto S, Grandinetti B, Balducci V, Benzoni P, Landi S, Barbuti A, Ferrarese Lupi F, Boarino L, Sartiani L, Tesi C, Mack DL, Regnier M, Cerbai E, Parmeggiani C, Poggesi C, Ferrantini C, Coppini R. Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates. Int J Mol Sci 2019; 20:ijms20153799. [PMID: 31382622 PMCID: PMC6695920 DOI: 10.3390/ijms20153799] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are the most promising human source with preserved genetic background of healthy individuals or patients. This study aimed to establish a systematic procedure for exploring development of hiPSC-CM functional output to predict genetic cardiomyopathy outcomes and identify molecular targets for therapy. Biomimetic substrates with microtopography and physiological stiffness can overcome the immaturity of hiPSC-CM function. We have developed a custom-made apparatus for simultaneous optical measurements of hiPSC-CM action potential and calcium transients to correlate these parameters at specific time points (day 60, 75 and 90 post differentiation) and under inotropic interventions. In later-stages, single hiPSC-CMs revealed prolonged action potential duration, increased calcium transient amplitude and shorter duration that closely resembled those of human adult cardiomyocytes from fresh ventricular tissue of patients. Thus, the major contribution of sarcoplasmic reticulum and positive inotropic response to β-adrenergic stimulation are time-dependent events underlying excitation contraction coupling (ECC) maturation of hiPSC-CM; biomimetic substrates can promote calcium-handling regulation towards adult-like kinetics. Simultaneous optical recordings of long-term cultured hiPSC-CMs on biomimetic substrates favor high-throughput electrophysiological analysis aimed at testing (mechanistic hypothesis on) disease progression and pharmacological interventions in patient-derived hiPSC-CMs.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy.
| | - Lorenzo Santini
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Chiara Palandri
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
- National Institute of Optics, CNR-INO, 50125 Florence, Italy
| | - Flavia Lupi
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
| | - Marianna Langione
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - Silvia Querceto
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
| | | | - Patrizia Benzoni
- Department of Biosciences, Università degli studi di Milano, 20137 Milan, Italy
| | - Sara Landi
- Department of Biosciences, Università degli studi di Milano, 20137 Milan, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli studi di Milano, 20137 Milan, Italy
| | | | - Luca Boarino
- Istituto Nazionale di Ricerca Metrologica INRiM, 10129 Turin, Italy
| | - Laura Sartiani
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98108, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98108, USA
| | - Elisabetta Cerbai
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, 50134 Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
| | - Raffaele Coppini
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
44
|
Bowman PRT, Smith GL, Gould GW. GLUT4 expression and glucose transport in human induced pluripotent stem cell-derived cardiomyocytes. PLoS One 2019; 14:e0217885. [PMID: 31344028 PMCID: PMC6657831 DOI: 10.1371/journal.pone.0217885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
Induced pluripotent stem cell derived cardiomyocytes (iPSC-CM) have the potential to transform regenerative cardiac medicine and the modelling of cardiac disease. This is of particular importance in the context of diabetic cardiomyopathy where diabetic individuals exhibit reduced cardiac diastolic contractile performance in the absence of vascular disease, significantly contributing towards high cardiovascular morbidity. In this study, the capacity of iPSC-CM to act as a novel cellular model of cardiomyocytes was assessed. The diabetic phenotype is characterised by insulin resistance, therefore there was a specific focus upon metabolic parameters. Despite expressing crucial insulin signalling intermediates and relevant trafficking proteins, it was identified that iPSC-CM do not exhibit insulin-stimulated glucose uptake. iPSC-CM are spontaneously contractile however contraction mediated uptake was not found to mask any insulin response. The fundamental limitation identified in these cells was a critical lack of expression of the insulin sensitive glucose transporter GLUT4. Using comparative immunoblot analysis and the GLUT-selective inhibitor BAY-876 to quantify expression of these transporters, we show that iPSC-CM express high levels of GLUT1 and low levels of GLUT4 compared to primary cardiomyocytes and cultured adipocytes. Interventions to overcome this limitation were unsuccessful. We suggest that the utility of iPSC-CMs to study cardiac metabolic disorders may be limited by their apparent foetal-like phenotype.
Collapse
Affiliation(s)
- Peter R T Bowman
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
45
|
Mosqueira D, Smith JGW, Bhagwan JR, Denning C. Modeling Hypertrophic Cardiomyopathy: Mechanistic Insights and Pharmacological Intervention. Trends Mol Med 2019; 25:775-790. [PMID: 31324451 DOI: 10.1016/j.molmed.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular disease where cardiac dysfunction often associates with mutations in sarcomeric genes. Various models based on tissue explants, isolated cardiomyocytes, skinned myofibrils, and purified actin/myosin preparations have uncovered disease hallmarks, enabling the development of putative therapeutics, with some reaching clinical trials. Newly developed human pluripotent stem cell (hPSC)-based models could be complementary by overcoming some of the inconsistencies of earlier systems, whilst challenging and/or clarifying previous findings. In this article we compare recent progress in unveiling multiple HCM mechanisms in different models, highlighting similarities and discrepancies. We explore how insight is facilitating the design of new HCM therapeutics, including those that regulate metabolism, contraction and heart rhythm, providing a future perspective for treatment of HCM.
Collapse
Affiliation(s)
- Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - James G W Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
46
|
Sewanan LR, Campbell SG. Modelling sarcomeric cardiomyopathies with human cardiomyocytes derived from induced pluripotent stem cells. J Physiol 2019; 598:2909-2922. [PMID: 30624779 DOI: 10.1113/jp276753] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) provide a unique opportunity to understand the pathophysiological effects of genetic cardiomyopathy mutations. In particular, these cells hold the potential to unmask the effects of mutations on contractile behaviour in vitro, providing new insights into genotype-phenotype relationships. With this goal in mind, several groups have established iPSC lines that contain sarcomeric gene mutations linked to cardiomyopathy in patient populations. Their studies have employed diverse systems and methods for performing mechanical measurements of contractility, ranging from single cell techniques to multicellular tissue-like constructs. Here, we review published results to date within the growing field of iPSC-based sarcomeric cardiomyopathy disease models. We devote special attention to the methods of mechanical characterization selected in each case, and how these relate to the paradigms of classical muscle mechanics. An appreciation of these somewhat subtle paradigms can inform efforts to compare the results of different studies and possibly reconcile discrepancies. Although more work remains to be done to improve and possibly standardize methods for producing, maturing, and mechanically interrogating iPSC-derived cardiomyocytes, the initial results indicate that this approach to modelling cardiomyopathies will continue to provide critical insights into these devastating diseases.
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
47
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
48
|
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res 2018; 114:1828-1842. [PMID: 30169602 PMCID: PMC6887927 DOI: 10.1093/cvr/cvy208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.
Collapse
Affiliation(s)
- Alain van Mil
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geerthe Margriet Balk
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Klaus Neef
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan Willem Buikema
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter A Doevendans
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
49
|
Eschenhagen T, Carrier L. Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes-a systematic review. Pflugers Arch 2018; 471:755-768. [PMID: 30324321 PMCID: PMC6475632 DOI: 10.1007/s00424-018-2214-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
Human-induced pluripotent stem cells (hiPSC) can be differentiated to cardiomyocytes at high efficiency and are increasingly used to study cardiac disease in a human context. This review evaluated 38 studies on hypertrophic (HCM) and dilated cardiomyopathy (DCM) of different genetic causes asking to which extent published data allow the definition of an in vitro HCM/DCM hiPSC-CM phenotype. The data are put in context with the prevailing hypotheses on HCM/DCM dysfunction and pathophysiology. Relatively consistent findings in HCM not reported in DCM were larger cell size (156 ± 85%, n = 15), more nuclear localization of nuclear factor of activated T cells (NFAT; 175 ± 65%, n = 3), and higher β-myosin heavy chain gene expression levels (500 ± 547%, n = 8) than respective controls. Conversely, DCM lines showed consistently less force development than controls (47 ± 23%, n = 9), while HCM forces scattered without clear trend. Both HCM and DCM lines often showed sarcomere disorganization, higher NPPA/NPPB expression levels, and arrhythmic beating behaviour. The data have to be taken with the caveat that reporting frequencies of the various parameters (e.g. cell size, NFAT expression) differ widely between HCM and DCM lines, in which data scatter is large and that only 9/38 studies used isogenic controls. Taken together, the current data provide interesting suggestions for disease-specific phenotypes in HCM/DCM hiPSC-CM but indicate that the field is still in its early days. Systematic, quantitative comparisons and robust, high content assays are warranted to advance the field.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research), Hamburg, Germany.
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research), Hamburg, Germany.
| |
Collapse
|
50
|
Edwards SL, Zlochiver V, Conrad DB, Vaidyanathan R, Valiquette AM, Joshi-Mukherjee R. A Multiwell Cardiac μGMEA Platform for Action Potential Recordings from Human iPSC-Derived Cardiomyocyte Constructs. Stem Cell Reports 2018; 11:522-536. [PMID: 30033088 PMCID: PMC6092761 DOI: 10.1016/j.stemcr.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/14/2023] Open
Abstract
Multielectrode array (MEA) technology has been extensively used for field potential recordings from excitable cells. However, its application for action potential (AP) measurements has not been harnessed. Here, we report a novel platform for high-resolution intracellular AP recordings from induced pluripotent stem cell-cardiomyocyte constructs derived from human cardiac fibroblasts. To gain intracellular access, micro-gold MEAs were used to electroporate multiple constructs simultaneously. High-throughput AP measurements were obtained from 41 multicellular constructs. Repeated electroporations of the same cells did not affect the signal stability. Our model has the capability to distinguish subtle differences in AP morphology to characterize the network profile. Furthermore, we confirm the reliability of the system by recapitulating known drug-induced physiological and arrhythmogenic responses. Overall, the model provides a unique cardio-electronic interface for non-invasive measurements of AP dynamics for drug screening and disease modeling. This technology opens the door for identifying novel cardio-factors to enhance electrophysiological maturation. Electroporation-mediated action potential (AP) recordings using MEA technology Simultaneous high-throughput AP measurement from multiple cell networks Multiple electroporations of the same cells over days with stable signal Model validation for developmental, disease, and drug screening studies
Collapse
Affiliation(s)
- Stacie L Edwards
- Aurora Research Institute, Aurora Health Care, 960 N 12th Avenue, Milwaukee, WI 53233, USA
| | - Viviana Zlochiver
- Aurora Research Institute, Aurora Health Care, 960 N 12th Avenue, Milwaukee, WI 53233, USA
| | - Donald B Conrad
- Aurora Research Institute, Aurora Health Care, 960 N 12th Avenue, Milwaukee, WI 53233, USA
| | - Ravi Vaidyanathan
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin, Madison, WI 53705, USA
| | | | - Rosy Joshi-Mukherjee
- Aurora Research Institute, Aurora Health Care, 960 N 12th Avenue, Milwaukee, WI 53233, USA; Department of Medicine-Cardiovascular, School of Medicine, Johns Hopkins University; Baltimore, MD 21205, USA.
| |
Collapse
|