1
|
Xing Y, Lin X. Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res 2025; 71:317-335. [PMID: 38909884 DOI: 10.1016/j.jare.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
INTRODUCTION Atherosclerosis, traditionally considered a lipid-related disease, is now understood as a chronic inflammatory condition with significant global health implications. OBJECTIVES This review aims to delve into the complex interactions among immune cells, cytokines, and the inflammatory cascade in atherosclerosis, shedding light on how these elements influence both the initiation and progression of the disease. METHODS This review draws on recent clinical research to elucidate the roles of key immune cells, macrophages, T cells, endothelial cells, and clonal hematopoiesis in atherosclerosis development. It focuses on how these cells and process contribute to disease initiation and progression, particularly through inflammation-driven processes that lead to plaque formation and stabilization. Macrophages ingest oxidized low-density lipoprotein (oxLDL), which partially converts to high-density lipoprotein (HDL) or accumulates as lipid droplets, forming foam cells crucial for plaque stability. Additionally, macrophages exhibit diverse phenotypes within plaques, with pro-inflammatory types predominating and others specializing in debris clearance at rupture sites. The involvement of CD4+ T and CD8+ T cells in these processes promotes inflammatory macrophage states, suppresses vascular smooth muscle cell proliferation, and enhances plaque instability. RESULTS The nuanced roles of macrophages, T cells, and the related immune cells within the atherosclerotic microenvironment are explored, revealing insights into the cellular and molecular pathways that fuel inflammation. This review also addresses recent advancements in imaging and biomarker technology that enhance our understanding of disease progression. Moreover, it points out the limitations of current treatment and highlights the potential of emerging anti-inflammatory strategies, including clinical trials for agents such as p38MAPK, tumor necrosis factor α (TNF-α), and IL-1β, their preliminary outcomes, and the promising effects of canakinumab, colchicine, and IL-6R antagonists. CONCLUSION This review explores cutting-edge anti-inflammatory interventions, their potential efficacy in preventing and alleviating atherosclerosis, and the role of nanotechnology in delivering drugs more effectively and safely.
Collapse
Affiliation(s)
- Yiming Xing
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China.
| |
Collapse
|
2
|
Li X, Li Y, Yu H, Men LL, Deng G, Liu Z, Du JL. Oxidized Low-Density Lipoprotein Decreases the Survival of Bone Marrow Stem Cells via Inhibition of Bcl-2 Expression. Tissue Eng Part A 2025; 31:325-333. [PMID: 38818810 DOI: 10.1089/ten.tea.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Therapy with mesenchymal stem cells (MSCs) is considered an attractive strategy for the repair or regeneration of damaged tissues. However, low survival of MSCs limits their applications clinically. Oxidized low-density lipoprotein (ox-LDL) is significantly increased in patients with hyperlipidemia and decreases the survival of MSCs. Bcl-2 is critically involved in important cell functions, including cell membrane integrity and cell survival. The present study was designed to test the hypothesis that ox-LDL attenuates the survival of MSCs through suppression of Bcl-2 expression. Bone marrow MSCs from C57BL/6 mice were cultured with ox-LDL at different concentrations (0-140 μg/mL) for 24 h with native LDL as control. Ox-LDL treatment substantially decreased the survival of MSCs dose-dependently and enhanced the release of intracellular lactate dehydrogenase (LDH) in association with a significant decrease in Bcl-2 protein level without change in BAX protein expression in MSCs. Bcl-2 overexpression effectively protected MSCs against ox-LDL-induced damages with preserved cell numbers without significant increase in LDH release. Treatment with N-acetylcysteine (NAC) (1 mM) effectively preserved Bcl-2 protein expression in MSCs and significantly attenuated ox-LDL-induced decrease of cell number and increase in the release of intracellular LDH. These data indicated that ox-LDL treatment resulted in a significant damage of cell membrane and dramatically decreased the survival of MSCs dose-dependently through inhibition of Bcl-2 expression. NAC treatment significantly protected MSCs against the damage of cell membrane by ox-LDL and promoted the survival of MSCs in association with preserved Bcl-2 expression.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Endocrinology, Ningbo No 2 Hospital, Ningbo, China
| | - Yu Li
- Department of Endocrinology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hao Yu
- Department of Endocrinology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Li-Li Men
- Department of Endocrinology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Glenn Deng
- Research Center for Single-Cell Omics and Personalized Medicine, Ningbo No 2 Hospital, Ningbo, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jian-Ling Du
- Department of Endocrinology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Xing M, Wang F, Chu R, Wang H, Sun Y, Qian M, Jiang H, Midgley AC, Dai G, Zhao Q. Localized COUP-TFII pDNA Delivery Modulates Stem/Progenitor Cell Differentiation to Enhance Endothelialization and Inhibit Calcification of Decellularized Allografts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409744. [PMID: 39656938 PMCID: PMC11792037 DOI: 10.1002/advs.202409744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/12/2024] [Indexed: 12/17/2024]
Abstract
Decellularized allografts have emerged as promising candidates for vascular bypass grafting, owing to their inherent bioactivity and minimal immunogenicity. However, graft failure that results from suboptimal regeneration and pathological remodeling has hindered their clinical adoption. Recent advances in vascular biology highlight the pivotal role of COUP-TFII in orchestrating endothelial identity, angiogenesis, safeguarding against atherosclerosis, and mitigating vascular calcification. Here, plasmid DNA (pDNA) encoding COUP-TFII is incorporated into decellularized allografts to realize localized delivery. Comprehensive in vitro investigation complemented by a bone marrow transplantation model on genetic-lineage-tracing mouse revealed the underlying mechanisms of COUP-TFII in regulating vascular regeneration and remodeling. COUP-TFII augmented endothelialization and inhibited calcification in decellularized allografts by modulating the Ang1/Tie2/PI3K/AKT signaling pathway that dictates the fate of Sca-1+ stem/progenitor cells. Heparin-polyethyleneimine nanoparticles (HEPI) are prepared as COUP-TFII pDNA nanocarriers (COUP-TFII@HPEI) and used to modify decellularized allografts, achieving long-term and stable overexpression of COUP-TFII. Functionalized grafts are evaluated in rat abdominal artery replacement models, demonstrating enhanced neo-artery regeneration without calcification. The study provides an effective strategy to enhance the applicability of decellularized allograft and illustrates their translational prospects for vascular bypass grafting.
Collapse
Affiliation(s)
- Mengmeng Xing
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Ruowen Chu
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - He Wang
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Yuyao Sun
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Meng Qian
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Huan Jiang
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Adam C. Midgley
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Guohao Dai
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
| | - Qiang Zhao
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and RemodelingHealth Science CenterPeking UniversityBeijing100191China
| |
Collapse
|
4
|
Li C, Pan Y, Wang Y, Li X, Tie Y, Li S, Wang R, Zhao X, Fan J, Yan X, Wang Y, Sun X. Single-cell RNA sequencing of the carotid artery and femoral artery of rats exposed to hindlimb unloading. Cell Mol Life Sci 2025; 82:50. [PMID: 39833543 PMCID: PMC11747068 DOI: 10.1007/s00018-024-05572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Prolonged spaceflight is known to cause vascular deconditioning and remodeling. Tail suspension, a widely used spaceflight analog, is reported to result in vascular remodeling of rats. However, little is known about the cellular atlas of the heterogeneous cells of CA and FA from hindlimb-unloaded rats. METHODS Firstly, we leveraged scRNA-seq to perform clustering analysis to identify diverse cell populations and sub-clusters within CA and FA from rats subjected to 3 months of hindlimb unloading. The dysregulated genes specific for artery types and cell types in HU group compared to Con were unraveled. Then R package "Cellchat" was used to reveal ligand-receptor cellular communication. At last, the TF network analysis was performed using the SCENIC R package to predict the pivotal TFs in rat artery remodeling induced by hindlimb unloading. RESULTS Clustering analysis identified ECs, SMCs, fibroblasts, and a spectrum of immune cells, as well as neuronal and stem cells. Notably, an increased percentage of ECs in the CA and a diminished proportion of SMCs in both CA and FA were observed following tail suspension. Intersection of dysregulated genes specific for artery type and cell type after tail suspension revealed several gene sets involved in ECM remodeling, inflammation, vasoconstriction, etc. Fibroblasts, in particular, exhibited the most significant gene expression variability, highlighting their plasticity. Subclustering within ECs, SMCs and fibroblasts revealed specialized subsets engaged in processes such as EndoMT and cell cycle checkpoint regulation. Additionally, enhanced intercellular interactions among major cell types, especially between SMC and fibroblast, underscored the importance of cell communication in vascular remodeling. Several TFs were identified as potentially influential in the vascular remodeling process under simulated microgravity conditions. CONCLUSIONS This study presents the first cellular atlas of the conductive arteries in hindlimb-unloaded rats, revealing a spectrum of dysregulated gene profiles. The identification of the subclusters of ECs, SMCs and fibroblasts, cellular communication analysis and transcription factors prediction are also included in this work. The findings provide a reference for future research on vascular deconditioning following long-duration spaceflight.
Collapse
Affiliation(s)
- Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yikai Pan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yuan Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xi Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yateng Tie
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Shuhan Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Ruonan Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xingcheng Zhao
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Jieyi Fan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| | - Xiqing Sun
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| |
Collapse
|
5
|
Torimoto K, Elliott K, Nakayama Y, Yanagisawa H, Eguchi S. Cardiac and perivascular myofibroblasts, matrifibrocytes, and immune fibrocytes in hypertension; commonalities and differences with other cardiovascular diseases. Cardiovasc Res 2024; 120:567-580. [PMID: 38395029 PMCID: PMC11485269 DOI: 10.1093/cvr/cvae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Elliott
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Sun X, Lu Y, Wu J, Wen Q, Li Z, Tang Y, Shi Y, He T, Liu L, Huang W, Weng C, Wu Q, Xiao Q, Yuan H, Xu Q, Cai J. Meta-Analysis of Single-Cell RNA-Seq Data Reveals the Mechanism of Formation and Heterogeneity of Tertiary Lymphoid Organ in Vascular Disease. Arterioscler Thromb Vasc Biol 2023; 43:1867-1886. [PMID: 37589134 PMCID: PMC10521807 DOI: 10.1161/atvbaha.123.318762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Tertiary lymphoid organs (TLOs) are ectopic lymphoid organs developed in nonlymphoid tissues with chronic inflammation, but little is known about their existence in different types of vascular diseases and the mechanism that mediated their development. METHODS To take advantage of single-cell RNA sequencing techniques, we integrated 28 single-cell RNA sequencing data sets containing 5 vascular disease models (atherosclerosis, abdominal aortic aneurysm, intimal hyperplasia, isograft, and allograft) to explore TLOs existence and environment supporting its growth systematically. We also searched Medline, Embase, PubMed, and Web of Science from inception to January 2022 for published histological images of vascular remodeling for histological evidence to support TLO genesis. RESULTS Accumulation and infiltration of innate and adaptive immune cells have been observed in various remodeling vessels. Interestingly, the proportion of such immune cells incrementally increases from atherosclerosis to intimal hyperplasia, abdominal aortic aneurysm, isograft, and allograft. Importantly, we uncovered that TLO structure cells, such as follicular helper T cells and germinal center B cells, present in all remodeled vessels. Among myeloid cells and lymphocytes, inflammatory macrophages, and T helper 17 cells are the major lymphoid tissue inducer cells which were found to be positively associated with the numbers of TLO structural cells in remodeled vessels. Vascular stromal cells also actively participate in vascular TLO genesis by communicating with myeloid cells and lymphocytes via CCLs (C-C motif chemokine ligands), CXCL (C-X-C motif ligand), lymphotoxin, BMP (bone morphogenetic protein) chemotactic, FGF-2 (fibroblast growth factor-2), and IGF (insulin growth factor) proliferation mechanisms, particularly for lymphoid tissue inducer cell aggregation. Additionally, the interaction between stromal cells and immune cells modulates extracellular matrix remodeling. Among TLO structure cells, follicular helper T, and germinal center B cells have strong interactions via TCR (T-cell receptor), CD40 (cluster of differentiation 40), and CXCL signaling, to promote the development and maturation of the germinal center in TLO. Consistently, by reviewing the histological images from the literature, TLO genesis was found in those vascular remodeling models. CONCLUSIONS Our analysis showed the existence of TLOs across 5 models of vascular diseases. The mechanisms that support TLOs formation in different models are heterogeneous. This study could be a valuable resource for understanding and discovering new therapeutic targets for various forms of vascular disease.
Collapse
Affiliation(s)
- Xuejing Sun
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Yao Lu
- The Center of Clinical Pharmacology (Y.L., H.Y.), Central South University, Changsha, China
| | - Junru Wu
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Qing Wen
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Zhengxin Li
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Yan Tang
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Yunmin Shi
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Tian He
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Lun Liu
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Wei Huang
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Chunyan Weng
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Qing Wu
- The Third Xiangya Hospital and High-Performance Computing Center (Q. Wu), Central South University, Changsha, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
| | - Hong Yuan
- The Center of Clinical Pharmacology (Y.L., H.Y.), Central South University, Changsha, China
| | - Qingbo Xu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (Q. Xu)
| | - Jingjing Cai
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| |
Collapse
|
7
|
van Kuijk K, McCracken IR, Tillie RJHA, Asselberghs SEJ, Kheder DA, Muitjens S, Jin H, Taylor RS, Wichers Schreur R, Kuppe C, Dobie R, Ramachandran P, Gijbels MJ, Temmerman L, Kirkwoord PM, Luyten J, Li Y, Noels H, Goossens P, Wilson-Kanamori JR, Schurgers LJ, Shen YH, Mees BME, Biessen EAL, Henderson NC, Kramann R, Baker AH, Sluimer JC. Human and murine fibroblast single-cell transcriptomics reveals fibroblast clusters are differentially affected by ageing and serum cholesterol. Cardiovasc Res 2023; 119:1509-1523. [PMID: 36718802 PMCID: PMC10318398 DOI: 10.1093/cvr/cvad016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 02/01/2023] Open
Abstract
AIMS Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing. METHODS AND RESULTS Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers. Immunohistochemistry and flow cytometry validated platelet-derived growth factor receptor alpha (PDGFRA) and dipeptidase 1 (DPEP1) across human and murine aorta, carotid, and femoral arteries, whereas traditional markers such as the cluster of differentiation (CD)90 and vimentin also marked transgelin+ vascular smooth muscle cells. Next, pseudotime analysis showed multiple fibroblast clusters differentiating along trajectories. Three trajectories, marked by CD55 (Cd55+), Cxcl chemokine 14 (Cxcl14+), and lysyl oxidase (Lox+), were reproduced in an independent RNA-seq dataset. Gene ontology (GO) analysis showed divergent functional profiles of the three trajectories, related to vascular development, antigen presentation, and/or collagen fibril organization, respectively. Trajectory-specific genes included significantly more genes with known genome-wide associations (GWAS) to CVD than expected by chance, implying a role in CVD. Indeed, differential regulation of fibroblast clusters by CVD risk factors was shown in the adventitia of aged C57BL/6J mice, and mildly hypercholesterolaemic LDLR KO mice on chow by flow cytometry. The expansion of collagen-related CXCL14+ and LOX+ fibroblasts in aged and hypercholesterolaemic aortic adventitia, respectively, coincided with increased adventitial collagen. Immunohistochemistry, bulk, and single-cell transcriptomics of human carotid and aorta specimens emphasized translational value as CD55+, CXCL14+ and LOX+ fibroblasts were observed in healthy and atherosclerotic specimens. Also, trajectory-specific gene sets are differentially correlated with human atherosclerotic plaque traits. CONCLUSION We provide two adventitial fibroblast-specific markers, PDGFRA and DPEP1, and demonstrate fibroblast heterogeneity in health and CVD in humans and mice. Biological relevance is evident from the regulation of fibroblast clusters by age and hypercholesterolaemia in vivo, associations with human atherosclerotic plaque traits, and enrichment of genes with a GWAS for CVD.
Collapse
Affiliation(s)
- Kim van Kuijk
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ian R McCracken
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Renée J H A Tillie
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Sebastiaan E J Asselberghs
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dlzar A Kheder
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Stan Muitjens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Han Jin
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Richard S Taylor
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ruud Wichers Schreur
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Prakesh Ramachandran
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marion J Gijbels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, Amsterdam, The Netherlands
- GROW, School for Oncology and Development Biology, Maastricht University, Maastricht, The Netherlands
| | - Lieve Temmerman
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Phoebe M Kirkwoord
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Joris Luyten
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yanming Li
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, USA
| | - Heidi Noels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Pieter Goossens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - John R Wilson-Kanamori
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Leon J Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, USA
| | - Barend M E Mees
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Erik A L Biessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Neil C Henderson
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andrew H Baker
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Judith C Sluimer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
8
|
Shi C, Zhang K, Zhao Z, Wang Y, Xu H, Wei W. Correlation between stem cell molecular phenotype and atherosclerotic plaque neointima formation and analysis of stem cell signal pathways. Front Cell Dev Biol 2023; 11:1080563. [PMID: 36711040 PMCID: PMC9877345 DOI: 10.3389/fcell.2023.1080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Vascular stem cells exist in the three-layer structure of blood vessel walls and play an indispensable role in angiogenesis under physiological conditions and vascular remodeling under pathological conditions. Vascular stem cells are mostly quiescent, but can be activated in response to injury and participate in endothelial repair and neointima formation. Extensive studies have demonstrated the differentiation potential of stem/progenitor cells to repair endothelium and participate in neointima formation during vascular remodeling. The stem cell population has markers on the surface of the cells that can be used to identify this cell population. The main positive markers include Stem cell antigen-1 (Sca1), Sry-box transcription factor 10 (SOX10). Stromal cell antigen 1 (Stro-1) and Stem cell growth factor receptor kit (c-kit) are still controversial. Different parts of the vessel have different stem cell populations and multiple markers. In this review, we trace the role of vascular stem/progenitor cells in the progression of atherosclerosis and neointima formation, focusing on the expression of stem cell molecular markers that occur during neointima formation and vascular repair, as well as the molecular phenotypic changes that occur during differentiation of different stem cell types. To explore the correlation between stem cell molecular markers and atherosclerotic diseases and neointima formation, summarize the differential changes of molecular phenotype during the differentiation of stem cells into smooth muscle cells and endothelial cells, and further analyze the signaling pathways and molecular mechanisms of stem cells expressing different positive markers participating in intima formation and vascular repair. Summarizing the limitations of stem cells in the prevention and treatment of atherosclerotic diseases and the pressing issues that need to be addressed, we provide a feasible scheme for studying the signaling pathways of vascular stem cells involved in vascular diseases.
Collapse
Affiliation(s)
- Chuanxin Shi
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kefan Zhang
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenyu Zhao
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Wang
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haozhe Xu
- Department of Biotherapy, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wei
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Wei Wei,
| |
Collapse
|
9
|
McQueen LW, Ladak SS, Abbasciano R, George SJ, Suleiman MS, Angelini GD, Murphy GJ, Zakkar M. Next-Generation and Single-Cell Sequencing Approaches to Study Atherosclerosis and Vascular Inflammation Pathophysiology: A Systematic Review. Front Cardiovasc Med 2022; 9:849675. [PMID: 35419441 PMCID: PMC8996078 DOI: 10.3389/fcvm.2022.849675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background and Aims Atherosclerosis is a chronic inflammatory disease that remains the leading cause of morbidity and mortality worldwide. Despite decades of research into the development and progression of this disease, current management and treatment approaches remain unsatisfactory and further studies are required to understand the exact pathophysiology. This review aims to provide a comprehensive assessment of currently published data utilizing single-cell and next-generation sequencing techniques to identify key cellular and molecular contributions to atherosclerosis and vascular inflammation. Methods Electronic searches of Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE databases were undertaken from inception until February 2022. A narrative synthesis of all included studies was performed for all included studies. Quality assessment and risk of bias analysis was evaluated using the ARRIVE and SYRCLE checklist tools. Results Thirty-four studies were eligible for narrative synthesis, with 16 articles utilizing single-cell exclusively, 10 utilizing next-generation sequencing and 8 using a combination of these approaches. Studies investigated numerous targets, ranging from exploratory tissue and plaque analysis, cell phenotype investigation and physiological/hemodynamic contributions to disease progression at both the single-cell and whole genome level. A significant area of focus was placed on smooth muscle cell, macrophage, and stem/progenitor contributions to disease, with little focus placed on contributions of other cell types including lymphocytes and endothelial cells. A significant level of heterogeneity exists in the outcomes from single-cell sequencing of similar samples, leading to inter-sample and inter-study variation. Conclusions Single-cell and next-generation sequencing methodologies offer novel means of elucidating atherosclerosis with significantly higher resolution than previous methodologies. These approaches also show significant potential for translatability into other vascular disease states, by facilitating cell-specific gene expression profiles between disease states. Implementation of these technologies may offer novel approaches to understanding the disease pathophysiology and improving disease prevention, management, and treatment.Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021229960, identifier: CRD42021229960.
Collapse
Affiliation(s)
- Liam W. McQueen
- Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Shameem S. Ladak
- Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Riccardo Abbasciano
- Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Sarah J. George
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - M-Saadeh Suleiman
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Gianni D. Angelini
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Gavin J. Murphy
- Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
10
|
Failure Analysis of TEVG’s II: Late Failure and Entering the Regeneration Pathway. Cells 2022; 11:cells11060939. [PMID: 35326390 PMCID: PMC8946846 DOI: 10.3390/cells11060939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) are a promising alternative to treat vascular disease under complex hemodynamic conditions. However, despite efforts from the tissue engineering and regenerative medicine fields, the interactions between the material and the biological and hemodynamic environment are still to be understood, and optimization of the rational design of vascular grafts is an open challenge. This is of special importance as TEVGs not only have to overcome the surgical requirements upon implantation, they also need to withhold the inflammatory response and sustain remodeling of the tissue. This work aims to analyze and evaluate the bio-molecular interactions and hemodynamic phenomena between blood components, cells and materials that have been reported to be related to the failure of the TEVGs during the regeneration process once the initial stages of preimplantation have been resolved, in order to tailor and refine the needed criteria for the optimal design of TEVGs.
Collapse
|
11
|
Wang H, Xing M, Deng W, Qian M, Wang F, Wang K, Midgley AC, Zhao Q. Anti-Sca-1 antibody-functionalized vascular grafts improve vascular regeneration via selective capture of endogenous vascular stem/progenitor cells. Bioact Mater 2022; 16:433-450. [PMID: 35415291 PMCID: PMC8965769 DOI: 10.1016/j.bioactmat.2022.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
|
12
|
Jiang L, Sun X, Deng J, Hu Y, Xu Q. Different Roles of Stem/Progenitor Cells in Vascular Remodeling. Antioxid Redox Signal 2021; 35:192-203. [PMID: 33107320 DOI: 10.1089/ars.2020.8199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Since the discovery of vascular stem cells, there has been considerable advancement in comprehending the nature and functions of these cells. Due to their differentiation potential to repair endothelial cells and to participate in lesion formation during vascular remodeling, it is crucial to elucidate vascular stem cell behaviors and the mechanisms underlying this process, which could provide new chances for the design of clinical therapeutic application of stem cells. Recent Advances: Over the past decades, major progress has been made on progenitor/vascular stem cells in the field of cardiovascular research. Vascular stem cells are mostly latent in their niches and can be bioactivated in response to damage and get involved in endothelial repair and smooth muscle cell aggregation to generate neointima. Accumulating evidence has been shown recently, using genetic lineage tracing mouse models, to particularly provide solutions to the nature of vascular stem cells and to monitor both cell migration and the process of differentiation during physiological angiogenesis and in vascular diseases. Critical Issues: This article reviews and summarizes the current research progress of vascular stem cells in this field and highlights future prospects for stem cell research in regenerative medicine. Future Directions: Despite recent advances and achievements of stem cells in cardiovascular research, the nature and cell fate of vascular stem cells remain elusive. Further comprehensive studies using new techniques including genetic cell lineage tracing and single-cell RNA sequencing are essential to fully illuminate the role of stem cells in vascular development and diseases. Antioxid. Redox Signal. 35, 192-203.
Collapse
Affiliation(s)
- Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolei Sun
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiacheng Deng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Wu Y, Li YJ, Shi LL, Liu Y, Wang Y, Bao X, Xu W, Yao LY, Mbadhi MN, Chen L, Li S, Li XY, Zhang ZF, Zhao S, Zhang RN, Chen SY, Zhang JX, Jun-mingTang. Spatio-temporal model of Meox1 expression control involvement of Sca-1-positive stem cells in neointima formation through the synergistic effect of Rho/CDC42 and SDF-1α/CXCR4. Stem Cell Res Ther 2021; 12:387. [PMID: 34233723 PMCID: PMC8262022 DOI: 10.1186/s13287-021-02466-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 08/30/2023] Open
Abstract
AIMS Neointimal hyperplasia remains a major obstacle in vascular regeneration. Sca-1-positive progenitor cells residing within the vascular adventitia play a crucial role in the assemblage of vascular smooth muscle cell (VSMC) and the formation of the intimal lesion. However, the underlying mechanisms during vascular injury are still unknown. METHODS AND RESULTS Aneointimal formation rat model was prepared by carotid artery injury using 2F-Forgaty. After vascular injury, Meox1 expressions time-dependently increased during the neointima formation, with its levels concurrently increasing in the adventitia, media, and neointima. Meox1 was highly expressed in the adventitia on the first day after vascular injury compared to the expression levels in the media. Conversely, by the 14th day post-injury, Meox1 was extensively expressed more in the media and neointima than the adventitia. Analogous to the change of Meox1 in injured artery, Sca-1+ progenitor cells increased in the adventitia wall in a time-dependent manner and reached peak levels on the 7th day after injury. More importantly, this effect was abolished by Meox1 knockdown with shRNA. The enhanced expression of SDF-1α after vascular injury was associated with the markedly enhanced expression levels of Sca1+ progenitor cell, and these levels were relatively synchronously increased within neointima by the 7th day after vascular injury. These special effects were abolished by the knockdown of Meox1 with shRNA and inhibition of CXCR4 by its inhibitor, AMD3100. Finally, Meox1 concurrently regulated SDF-1α expressions in VSMC via activating CDC42, and CDC42 inhibition abolished these effects by its inhibitor, ZCL278. Also, Meox1 was involved in activation of the CXCR4 expression of Sca-1+ progenitor cells by CDC42. CONCLUSIONS Spatio-temporal model of Meox1 expression regulates theSca-1+progenitor cell migration during the formation of the neointima through the synergistic effect of Rho/CDC42 and SDF-1α/CXCR4.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Yuan-Jin Li
- Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Liu-Liu Shi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Yun Liu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xin Bao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Wei Xu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Lu-Yuan Yao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Magdaleena Naemi Mbadhi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Long Chen
- Cental Lab, Guoyao-Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shan Li
- Department of Biochemistry, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xing-Yuan Li
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Zhi-Feng Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Sen Zhao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Ruo-Nan Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shi-You Chen
- The Department of Surgery, University of Missouri, Columbia, USA
| | - Jing-Xuan Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Jun-mingTang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Jolly AJ, Lu S, Strand KA, Dubner AM, Mutryn MF, Nemenoff RA, Majesky MW, Moulton KS, Weiser-Evans MCM. Heterogeneous subpopulations of adventitial progenitor cells regulate vascular homeostasis and pathological vascular remodeling. Cardiovasc Res 2021; 118:1452-1465. [PMID: 33989378 DOI: 10.1093/cvr/cvab174] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are characterized by chronic vascular dysfunction and provoke pathological remodeling events such as neointima formation, atherosclerotic lesion development, and adventitial fibrosis. While lineage-tracing studies have shown that phenotypically modulated smooth muscle cells (SMCs) are the major cellular component of neointimal lesions, the cellular origins and microenvironmental signaling mechanisms that underlie remodeling along the adventitial vascular layer are not fully understood. However, a growing body of evidence supports a unique population of adventitial lineage-restricted progenitor cells expressing the stem cell marker, stem cell antigen-1 (Sca1; AdvSca1 cells) as important effectors of adventitial remodeling and suggests that they are at least partially responsible for subsequent pathological changes that occur in the media and intima. AdvSca1 cells are being studied in murine models of atherosclerosis, perivascular fibrosis, and neointima formation in response to acute vascular injury. Depending on the experimental conditions, AdvSca1 cells exhibit the capacity to differentiate into SMCs, endothelial cells, chondrocytes, adipocytes, and pro-remodeling cells such as myofibroblasts and macrophages. These data indicate that AdvSca1 cells may be a targetable cell population to influence the outcomes of pathologic vascular remodeling. Important questions remain regarding the origins of AdvSca1 cells and the essential signaling mechanisms and microenvironmental factors that regulate both maintenance of their stem-like, progenitor phenotype and their differentiation into lineage-specified cell types. Adding complexity to the story, recent data indicate that the collective population of adventitial progenitor cells is likely composed of several smaller, lineage-restricted subpopulations which are not fully defined by their transcriptomic profile and differentiation capabilities. The aim of this review is to outline the heterogeneity of Sca1+ adventitial progenitor cells, summarize their role in vascular homeostasis and remodeling, and comment on their translational relevance in humans.
Collapse
Affiliation(s)
- Austin J Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Keith A Strand
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Allison M Dubner
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Marie F Mutryn
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension.,School of Medicine,Consortium for Fibrosis Research and Translation
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101.,Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, 98195
| | | | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension.,School of Medicine,Consortium for Fibrosis Research and Translation.,Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
15
|
Wu H, Zhou X, Gong H, Ni Z, Xu Q. Perivascular tissue stem cells are crucial players in vascular disease. Free Radic Biol Med 2021; 165:324-333. [PMID: 33556462 DOI: 10.1016/j.freeradbiomed.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Perivascular tissue including adipose layer and adventitia have been considered to play pivotal roles in vascular development and disease progression. Recent studies showed that abundant stem/progenitorcells (SPCs) are present in perivascular tissues. These SPCs exhibit capability to proliferate and differentiate into specific terminal cells. Adult perivascular SPCs are quiescent in normal condition, once activated by specific molecules (e.g., cytokines), they migrate toward the lumen side where they differentiate into both smooth muscle cells (SMCs) and endothelial cells (ECs), thus promoting intima hyperplasia or endothelial regeneration. In addition, perivascular SPCs can also regulate vascular diseases via other ways including but not limited to paracrine effects, matrix protein modulation and microvessel formation. Perivascular SPCs have also been shown to possess therapeutic potentials due to the capability to differentiate into vascular cells and regenerate vascular structures. This review summarizes current knowledge on resident SPCs features and discusses the potential benefits of SPCs therapy in vascular diseases.
Collapse
Affiliation(s)
- Hong Wu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xuhao Zhou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hui Gong
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Zhichao Ni
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
16
|
Wang D, Rabhi N, Yet SF, Farmer SR, Layne MD. Aortic carboxypeptidase-like protein regulates vascular adventitial progenitor and fibroblast differentiation through myocardin related transcription factor A. Sci Rep 2021; 11:3948. [PMID: 33597582 PMCID: PMC7889889 DOI: 10.1038/s41598-021-82941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The vascular adventitia contains numerous cell types including fibroblasts, adipocytes, inflammatory cells, and progenitors embedded within a complex extracellular matrix (ECM) network. In response to vascular injury, adventitial progenitors and fibroblasts become activated and exhibit increased proliferative capacity and differentiate into contractile cells that remodel the ECM. These processes can lead to vascular fibrosis and disease progression. Our previous work established that the ECM protein aortic carboxypeptidase-like protein (ACLP) promotes fibrotic remodeling in the lung and is activated by vascular injury. It is currently unknown what controls vascular adventitial cell differentiation and if ACLP has a role in this process. Using purified mouse aortic adventitia Sca1+ progenitors, ACLP repressed stem cell markers (CD34, KLF4) and upregulated smooth muscle actin (SMA) and collagen I expression. ACLP enhanced myocardin-related transcription factor A (MRTFA) activity in adventitial cells by promoting MRTFA nuclear translocation. Sca1 cells from MRTFA-null mice exhibited reduced SMA and collagen expression induced by ACLP, indicating Sca1 cell differentiation is regulated in part by the ACLP-MRTFA axis. We determined that ACLP induced vessel contraction and increased adventitial collagen in an explant model. Collectively these studies identified ACLP as a mediator of adventitial cellular differentiation, which may result in pathological vessel remodeling.
Collapse
Affiliation(s)
- Dahai Wang
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA.,Department of Hematology, Boston Children's Hospital, Boston, MA, USA
| | - Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA.
| |
Collapse
|
17
|
Zhang Q, Chen T, Zhang Y, Lyu L, Zhang B, Huang C, Zhou X, Wu Y, Li Z. MiR-30c-5p regulates adventitial progenitor cells differentiation to vascular smooth muscle cells through targeting OPG. Stem Cell Res Ther 2021; 12:67. [PMID: 33468212 PMCID: PMC7814722 DOI: 10.1186/s13287-020-02127-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Background As the most important component of the vascular wall, vascular smooth muscle cells (VSMCs) participate in the pathological process by phenotype transformation or differentiation from stem/progenitor cells. The main purpose of this study was to reveal the role and related molecular mechanism of microRNA-30c-5p (miR-30c-5p) in VSMC differentiation from adventitial progenitor cells expressing stem cell antigen-1(Sca-1). Methods In this study, we detected the expression of miR-30c-5p in human normal peripheral arteries and atherosclerotic arteries. In vitro, a stable differentiation model from adventitial Sca-1+ progenitor cells to VSMCs was established using transforming growth factor-β1 (TGF-β1) induction and the expression of miR-30c-5p during the process was observed. Then, we explored the effect of miR-30c-5p overexpression and inhibition on the differentiation from adventitial Sca-1+ progenitor cells to VSMCs. The target genes of miR-30c-5p were identified by protein chip and biological analyses and the expression of these genes in the differentiation process were detected. Further, the relationship between the target gene and miR-30c-5p and its effect on differentiation were evaluated. Finally, the co-transfection of miR-30c-5p inhibitor and small interfering RNA (siRNA) of the target gene was implemented to verify the functional target gene of miR-30c-5p during the differentiation from adventitial Sca-1+ progenitor cells to VSMCs, and the dual-luciferase reporter gene assay was performed to detect whether the mRNA 3′untranslated region (UTR) of the target gene is the direct binding site of miR-30c-5p. Results The expression of miR-30c-5p in the human atherosclerotic arteries was significantly lower than that in the normal arteries. During the differentiation from adventitial Sca-1+ progenitor cells to VSMCs, the expression of VSMC special markers including smooth muscle α-actin (SMαA), smooth muscle-22α (SM22α), smooth muscle myosin heavy chain (SMMHC), and h1-caponin increased accompanied with cell morphology changing from elliptic to fusiform. Meanwhile, the expression of miR-30c-5p decreased significantly. In functional experiments, overexpression of miR-30c-5p inhibited SMαA, SM22α, SMMHC, and h1-caponin at the mRNA and protein levels. In contrast, inhibition of miR-30c-5p promoted the expression of SMαA, SM22α, SMMHC, and h1-caponin. The target gene, osteoprotegerin (OPG), was predicted through protein chip and bioinformatics analyses. Overexpression of miR-30c-5p inhibited OPG expression while inhibition of miR-30c-5p had an opposite effect. Co-transfection experiments showed that low expression of OPG could weaken the promotion effect of miR-30c-5p inhibitor on the differentiation from adventitial Sca-1+ progenitor cells to VSMCs and the dual-luciferase reporter gene assay demonstrated that miR-30c-5p could target the mRNA 3′UTR of OPG directly. Conclusions This study demonstrates that miR-30c-5p expression was significantly decreased in atherosclerotic arteries and miR-30c-5p inhibited VSMC differentiation from adventitial Sca-1+ progenitor cells through targeting OPG, which may provide a new target for the treatment of VSMCs-associated diseases.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Yun Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Lingxia Lyu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Bohuan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Chengchen Huang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Xuhao Zhou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Yutao Wu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, P.R. China.
| | - Zhoubin Li
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, P.R. China.
| |
Collapse
|
18
|
Angbohang A, Huang L, Li Y, Zhao Y, Gong Y, Fu Y, Mao C, Morales J, Luo P, Ehteramyan M, Gao Y, Margariti A, Gu W, Zhang M, Smith A, Shah AM, Li T, Kong W, Zeng L. X-box binding protein 1-mediated COL4A1s secretion regulates communication between vascular smooth muscle and stem/progenitor cells. J Biol Chem 2021; 296:100541. [PMID: 33722606 PMCID: PMC8063738 DOI: 10.1016/j.jbc.2021.100541] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) contribute to the deposition of extracellular matrix proteins (ECMs), including Type IV collagen, in the vessel wall. ECMs coordinate communication among different cell types, but mechanisms underlying this communication remain unclear. Our previous studies have demonstrated that X-box binding protein 1 (XBP1) is activated and contributes to VSMC phenotypic transition in response to vascular injury. In this study, we investigated the participation of XBP1 in the communication between VSMCs and vascular progenitor cells (VPCs). Immunofluorescence and immunohistology staining revealed that Xbp1 gene was essential for type IV collagen alpha 1 (COL4A1) expression during mouse embryonic development and vessel wall ECM deposition and stem cell antigen 1-positive (Sca1+)-VPC recruitment in response to vascular injury. The Western blot analysis elucidated an Xbp1 gene dose-dependent effect on COL4A1 expression and that the spliced XBP1 protein (XBP1s) increased protease-mediated COL4A1 degradation as revealed by Zymography. RT-PCR analysis revealed that XBP1s in VSMCs not only upregulated COL4A1/2 transcription but also induced the occurrence of a novel transcript variant, soluble type IV collagen alpha 1 (COL4A1s), in which the front part of exon 4 is joined with the rear part of exon 42. Chromatin-immunoprecipitation, DNA/protein pulldown and in vitro transcription demonstrated that XBP1s binds to exon 4 and exon 42, directing the transcription from exon 4 to exon 42. This leads to transcription complex bypassing the internal sequences, producing a shortened COL4A1s protein that increased Sca1+-VPC migration. Taken together, these results suggest that activated VSMCs may recruit Sca1+-VPCs via XBP1s-mediated COL4A1s secretion, leading to vascular injury repair or neointima formation.
Collapse
Affiliation(s)
- Angshumonik Angbohang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Lei Huang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK; Department of Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, P.R. China
| | - Yi Li
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Yue Zhao
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK; Department of Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, P.R. China
| | - Yijie Gong
- The Third Central Clinical College of Tianjin Medical University, Tianjin, P.R. China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P.R. China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P.R. China
| | - Jose Morales
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Peiyi Luo
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Mazdak Ehteramyan
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, P.R. China; Tianjin Institute of Hepatobiliary Disease, the Third Affiliated Hospital of Nankai University, Tianjin, P.R. China
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Min Zhang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Alberto Smith
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Tong Li
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, P.R. China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P.R. China.
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK.
| |
Collapse
|
19
|
Lin Y, Zhu W, Chen X. The involving progress of MSCs based therapy in atherosclerosis. Stem Cell Res Ther 2020; 11:216. [PMID: 32503682 PMCID: PMC7275513 DOI: 10.1186/s13287-020-01728-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive vascular inflammation characterized by lipid deposition and plaque formation, for which vascular cell dysfunction and impaired immune responses are involved. Up to now, lipid-lowering drugs remain the main therapy for treating atherosclerosis; however, the surgical or interventional therapy is often applied, and yet, morbidity and mortality of such cardiovascular disease remain high worldwide. Over the past decades, an anti-inflammatory approach has become an important therapeutic target for dealing with atherosclerosis, as altered immune responses have been regarded as an essential player in the pathological process of vascular abnormality induced by hyperlipidemia. Interestingly, mesenchymal stem cells, one type of stem cells with the capabilities of self-renewal and multi-potential, have demonstrated their unique immunomodulatory function in the various pathological process, especially in atherosclerosis. While some controversies remain regarding their therapeutic efficacy and working mechanisms, our present review aims to summarize the current research progress on stem cell-based therapy, focusing on its immunomodulatory effects on the pathogenesis of atherosclerosis and how endothelial cells, smooth muscle cells, and other immune cells are regulated by MSC-based therapy.
Collapse
Affiliation(s)
- Ying Lin
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.,Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
20
|
van Kuijk K, Kuppe C, Betsholtz C, Vanlandewijck M, Kramann R, Sluimer JC. Heterogeneity and plasticity in healthy and atherosclerotic vasculature explored by single-cell sequencing. Cardiovasc Res 2019; 115:1705-1715. [PMID: 31350876 PMCID: PMC6873093 DOI: 10.1093/cvr/cvz185] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular characteristics and their adjustment to a state of disease have become more evident due to recent advances in imaging, fluorescent reporter mice, and whole genome RNA sequencing. The uncovered cellular heterogeneity and/or plasticity potentially complicates experimental studies and clinical applications, as markers derived from whole tissue 'bulk' sequencing is unable to yield a subtype transcriptome and specific markers. Here, we propose definitions on heterogeneity and plasticity, discuss current knowledge thereof in the vasculature and how this may be improved by single-cell sequencing (SCS). SCS is emerging as an emerging technique, enabling researchers to investigate different cell populations in more depth than ever before. Cell selection methods, e.g. flow assisted cell sorting, and the quantity of cells can influence the choice of SCS method. Smart-Seq2 offers sequencing of the complete mRNA molecule on a low quantity of cells, while Drop-seq is possible on large numbers of cells on a more superficial level. SCS has given more insight in heterogeneity in healthy vasculature, where it revealed that zonation is crucial in gene expression profiles among the anatomical axis. In diseased vasculature, this heterogeneity seems even more prominent with discovery of new immune subsets in atherosclerosis as proof. Vascular smooth muscle cells and mesenchymal cells also share these plastic characteristics with the ability to up-regulate markers linked to stem cells, such as Sca-1 or CD34. Current SCS studies show some limitations to the number of replicates, quantity of cells used, or the loss of spatial information. Bioinformatical tools could give some more insight in current datasets, making use of pseudo-time analysis or RNA velocity to investigate cell differentiation or polarization. In this review, we discuss the use of SCS in unravelling heterogeneity in the vasculature, its current limitations and promising future applications.
Collapse
Affiliation(s)
- Kim van Kuijk
- Pathology Department, CARIM School for Cardiovascular Diseases, MUMC Maastricht, P. Debyelaan 25, Maastricht, the Netherlands
| | | | - Christer Betsholtz
- Integrated Cardio Metabolic Centre, Karolinska Institute Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Integrated Cardio Metabolic Centre, Karolinska Institute Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Judith C Sluimer
- Pathology Department, CARIM School for Cardiovascular Diseases, MUMC Maastricht, P. Debyelaan 25, Maastricht, the Netherlands
- British Heart Foundation Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Issa Bhaloo S, Wu Y, Le Bras A, Yu B, Gu W, Xie Y, Deng J, Wang Z, Zhang Z, Kong D, Hu Y, Qu A, Zhao Q, Xu Q. Binding of Dickkopf-3 to CXCR7 Enhances Vascular Progenitor Cell Migration and Degradable Graft Regeneration. Circ Res 2019; 123:451-466. [PMID: 29980568 PMCID: PMC6092110 DOI: 10.1161/circresaha.118.312945] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Vascular progenitor cells play key roles in physiological and pathological vascular remodeling—a process that is crucial for the regeneration of acellular biodegradable scaffolds engineered as vital strategies against the limited availability of healthy autologous vessels for bypass grafting. Therefore, understanding the mechanisms driving vascular progenitor cells recruitment and differentiation could help the development of new strategies to improve tissue-engineered vessel grafts and design drug-targeted therapy for vessel regeneration. Objective: In this study, we sought to investigate the role of Dkk3 (dickkopf-3), recently identified as a cytokine promotor of endothelial repair and smooth muscle cell differentiation, on vascular progenitor cells cell migration and vascular regeneration and to identify its functional receptor that remains unknown. Methods and Results: Vascular stem/progenitor cells were isolated from murine aortic adventitia and selected for the Sca-1 (stem cell antigen-1) marker. Dkk3 induced the chemotaxis of Sca-1+ cells in vitro in transwell and wound healing assays and ex vivo in the aortic ring assay. Functional studies to identify Dkk3 receptor revealed that overexpression or knockdown of chemokine receptor CXCR7 (C-X-C chemokine receptor type 7) in Sca-1+ cells resulted in alterations in cell migration. Coimmunoprecipitation experiments using Sca-1+ cell extracts treated with Dkk3 showed the physical interaction between DKK3 and CXCR7, and specific saturation binding assays identified a high-affinity Dkk3-CXCR7 binding with a dissociation constant of 14.14 nmol/L. Binding of CXCR7 by Dkk3 triggered the subsequent activation of ERK1/2 (extracellular signal-regulated kinases 1/2)-, PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)-, Rac1 (Ras-related C3 botulinum toxin substrate 1)-, and RhoA (Ras homolog gene family, member A)-signaling pathways involved in Sca-1+ cell migration. Tissue-engineered vessel grafts were fabricated with or without Dkk3 and implanted to replace the rat abdominal aorta. Dkk3-loaded tissue-engineered vessel grafts showed efficient endothelization and recruitment of vascular progenitor cells, which had acquired characteristics of mature smooth muscle cells. CXCR7 blocking using specific antibodies in this vessel graft model hampered stem/progenitor cell recruitment into the vessel wall, thus compromising vascular remodeling. Conclusions: We provide a novel and solid evidence that CXCR7 serves as Dkk3 receptor, which mediates Dkk3-induced vascular progenitor migration in vitro and in tissue-engineered vessels, hence harnessing patent grafts resembling native blood vessels.
Collapse
Affiliation(s)
- Shirin Issa Bhaloo
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Yifan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China (Y.W., Z.W., D.K., Q.Z.)
| | - Alexandra Le Bras
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (B.Y., A.Q.)
| | - Wenduo Gu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Yao Xie
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Jiacheng Deng
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Zhihong Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China (Y.W., Z.W., D.K., Q.Z.)
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China (Y.W., Z.W., D.K., Q.Z.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (B.Y., A.Q.)
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China (Y.W., Z.W., D.K., Q.Z.)
| | - Qingbo Xu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (S.I.B., A.L.B., W.G., Y.X., J.D., Z.Z., Y.H., Q.X.)
| |
Collapse
|
22
|
Wu Y, Liu X, Guo LY, Zhang L, Zheng F, Li S, Li XY, Yuan Y, Liu Y, Yan YW, Chen SY, Wang JN, Zhang JX, Tang JM. S100B is required for maintaining an intermediate state with double-positive Sca-1+ progenitor and vascular smooth muscle cells during neointimal formation. Stem Cell Res Ther 2019; 10:294. [PMID: 31547879 PMCID: PMC6757428 DOI: 10.1186/s13287-019-1400-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Accumulation of vascular smooth muscle cells (VSMCs) within the neointimal region is a hallmark of atherosclerosis and vessel injury. Evidence has shown that Sca-1-positive (Sca-1+) progenitor cells residing in the vascular adventitia play a crucial role in VSMC assemblages and intimal lesions. However, the underlying mechanisms, especially in the circumstances of vascular injury, remain unknown. Methods and results The neointimal formation model in rats was established by carotid artery balloon injury using a 2F-Forgaty catheter. Most Sca-1+ cells first appeared at the adventitia of the vascular wall. S100B expressions were highest within the adventitia on the first day after vessel injury. Along with the sequentially increasing trend of S100B expression in the intima, media, and adventitia, respectively, the numbers of Sca-1+ cells were prominently increased at the media or neointima during the time course of neointimal formation. Furthermore, the Sca-1+ cells were markedly increased in the tunica media on the third day of vessel injury, SDF-1α expressions were obviously increased, and SDF-1α levels and Sca-1+ cells were almost synchronously increased within the neointima on the seventh day of vessel injury. These effects could effectually be reversed by knockdown of S100B by shRNA, RAGE inhibitor (SPF-ZM1), or CXCR4 blocker (AMD3100), indicating that migration of Sca-1+ cells from the adventitia into the neointima was associated with S100B/RAGE and SDF-1α/CXCR4. More importantly, the intermediate state of double-positive Sca-1+ and α-SMA cells was first found in the neointima of injured arteries, which could be substantially abrogated by using shRNA for S100B or blockade of CXCR4. S100B dose-dependently regulated SDF-1α expressions in VSMCs by activating PI3K/AKT and NF-κB, which were markedly abolished by PI3K/AKT inhibitor wortmannin and enhanced by p65 blocker PDTC. Furthermore, S100B was involved in human umbilical cord-derived Sca-1+ progenitor cells’ differentiation into VSMCs, especially in maintaining the intermediate state of double-positive Sca-1+ and α-SMA. Conclusions S100B triggered neointimal formation in rat injured arteries by maintaining the intermediate state of double-positive Sca-1+ progenitor and VSMCs, which were associated with direct activation of RAGE by S100B and indirect induction of SDF-1α by activating PI3K/AKT and NF-κB. Electronic supplementary material The online version of this article (10.1186/s13287-019-1400-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xin Liu
- Laboratory Animal Center, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ling-Yun Guo
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Lei Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Fei Zheng
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shan Li
- Department of Biochemistry, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xing-Yuan Li
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ye Yuan
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu Liu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu-Wen Yan
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shi-You Chen
- Department of Physiology & Pharmacology, The University of Georgia, Athens, GA, 30602, USA
| | - Jia-Ning Wang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jin-Xuan Zhang
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Jun-Ming Tang
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
23
|
Gu W, Ni Z, Tan YQ, Deng J, Zhang SJ, Lv ZC, Wang XJ, Chen T, Zhang Z, Hu Y, Jing ZC, Xu Q. Adventitial Cell Atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-Deficient Mice Defined by Single-Cell RNA Sequencing. Arterioscler Thromb Vasc Biol 2019; 39:1055-1071. [PMID: 30943771 PMCID: PMC6553510 DOI: 10.1161/atvbaha.119.312399] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Objective- Vascular adventitia encompasses progenitors and is getting recognized as the major site of inflammation in early stage of atherosclerosis. However, the cellular atlas of the heterogeneous adventitial cells, the intercellular communication, the cellular response of adventitia to hyperlipidemia, and its contribution to atherosclerosis have been elusive. Approach and Results- Single-cell RNA sequencing was applied to wt (wild type) and ApoE (apolipoprotein E)-deficient aortic adventitia from 12-week-old C57BL/6J mice fed on normal laboratory diet with early stage of atherosclerosis. Unbiased clustering analysis revealed that the landscape of adventitial cells encompassed adventitial mesenchyme cells, immune cells (macrophages, T cells, and B cells), and some types of rare cells, for example, neuron, lymphatic endothelial cells, and innate lymphoid cells. Seurat clustering analysis singled out 6 nonimmune clusters with distinct transcriptomic profiles, in which there predominantly were stem/progenitor cell-like and proinflammatory population (Mesen II). In ApoE-deficient adventitia, resident macrophages were activated and related to increased myeloid cell infiltration in the adventitia. Cell communication analysis further elucidated enhanced interaction between a mesenchyme cluster and inflammatory macrophages in ApoE-deficient adventitia. In vitro transwell assay confirmed the proinflammatory role of SCA1+ (stem cell antigen 1 positive) Mesen II population with increased CCL2 (chemokine [C-C motif] ligand 2) secretion and thus increased capacity to attract immune cells in ApoE-deficient adventitia. Conclusions- Cell atlas defined by single-cell RNA sequencing depicted the heterogeneous cellular landscape of the adventitia and uncovered several types of cell populations. Furthermore, resident cell interaction with immune cells appears crucial at the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Wenduo Gu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Zhichao Ni
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Yuan-Qing Tan
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Jiacheng Deng
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Si-Jin Zhang
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Zi-Chao Lv
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Xiao-Jian Wang
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, China (T.C., Q.X.)
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Zhi-Cheng Jing
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Qingbo Xu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, China (T.C., Q.X.)
| |
Collapse
|
24
|
Cheng J, Wen J, Wang N, Wang C, Xu Q, Yang Y. Ion Channels and Vascular Diseases. Arterioscler Thromb Vasc Biol 2019; 39:e146-e156. [DOI: 10.1161/atvbaha.119.312004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jun Cheng
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Jing Wen
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Na Wang
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Claire Wang
- Gonville and Caius College, University of Cambridge, United Kingdom (C.W.)
| | - Qingbo Xu
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, London, United Kingdom (Q.X.)
| | - Yan Yang
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| |
Collapse
|
25
|
Ye M, Ruan CC, Fu M, Xu L, Chen D, Zhu M, Zhu D, Gao P. Developmental and functional characteristics of the thoracic aorta perivascular adipocyte. Cell Mol Life Sci 2019; 76:777-789. [PMID: 30448891 PMCID: PMC11105183 DOI: 10.1007/s00018-018-2970-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/01/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Thoracic aorta perivascular adipose tissue (T-PVAT) has critical roles in regulating vascular homeostasis. However, the developmental characteristics and cellular lineage of adipocyte in the T-PVAT remain unclear. We show that T-PVAT contains three long strip-shaped fat depots, anterior T-PVAT (A-T-PVAT), left lateral T-PVAT (LL-T-PVAT), and right lateral T-PVAT (RL-T-PVAT). A-T-PVAT displays a distinct transcriptional profile and developmental origin compared to the two lateral T-PVATs (L-T-PVAT). Lineage tracing studies indicate that A-T-PVAT adipocytes are primarily derived from SM22α+ progenitors, whereas L-T-PVAT contains both SM22α+ and Myf5+ cells. We also show that L-T-PVAT contains more UCP1+ brown adipocytes than A-T-PVAT, and L-T-PVAT exerts a greater relaxing effect on aorta than A-T-PVAT. Angiotensin II-infused hypertensive mice display greater macrophage infiltration into A-T-PVAT than L-T-PVAT. These combined results indicate that L-T-PVAT has a distinct development from A-T-PVAT with different cellular lineage, and suggest that L-T-PVAT and A-T-PVAT have different physiological and pathological functions.
Collapse
Affiliation(s)
- Maoqing Ye
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheng-Chao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Mengxia Fu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian Xu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongrui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minsheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Dingliang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pingjin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat Commun 2018; 9:4567. [PMID: 30385745 PMCID: PMC6212435 DOI: 10.1038/s41467-018-06891-x] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) show pronounced heterogeneity across and within vascular beds, with direct implications for their function in injury response and atherosclerosis. Here we combine single-cell transcriptomics with lineage tracing to examine VSMC heterogeneity in healthy mouse vessels. The transcriptional profiles of single VSMCs consistently reflect their region-specific developmental history and show heterogeneous expression of vascular disease-associated genes involved in inflammation, adhesion and migration. We detect a rare population of VSMC-lineage cells that express the multipotent progenitor marker Sca1, progressively downregulate contractile VSMC genes and upregulate genes associated with VSMC response to inflammation and growth factors. We find that Sca1 upregulation is a hallmark of VSMCs undergoing phenotypic switching in vitro and in vivo, and reveal an equivalent population of Sca1-positive VSMC-lineage cells in atherosclerotic plaques. Together, our analyses identify disease-relevant transcriptional signatures in VSMC-lineage cells in healthy blood vessels, with implications for disease susceptibility, diagnosis and prevention.
Collapse
|
27
|
Chen T, Wu Y, Gu W, Xu Q. Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia. Cell Mol Life Sci 2018; 75:4079-4091. [PMID: 29946805 PMCID: PMC11105685 DOI: 10.1007/s00018-018-2859-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a variable number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for vascular diseases and shed new light on regenerative medicine.
Collapse
Affiliation(s)
- Ting Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yutao Wu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
28
|
CD90 Identifies Adventitial Mesenchymal Progenitor Cells in Adult Human Medium- and Large-Sized Arteries. Stem Cell Reports 2018; 11:242-257. [PMID: 30008326 PMCID: PMC6067150 DOI: 10.1016/j.stemcr.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) reportedly exist in a vascular niche occupying the outer adventitial layer. However, these cells have not been well characterized in vivo in medium- and large-sized arteries in humans, and their potential pathological role is unknown. To address this, healthy and diseased arterial tissues were obtained as surplus surgical specimens and freshly processed. We identified that CD90 marks a rare adventitial population that co-expresses MSC markers including PDGFRα, CD44, CD73, and CD105. However, unlike CD90, these additional markers were widely expressed by other cells. Human adventitial CD90+ cells fulfilled standard MSC criteria, including plastic adherence, spindle morphology, passage ability, colony formation, and differentiation into adipocytes, osteoblasts, and chondrocytes. Phenotypic and transcriptomic profiling, as well as adoptive transfer experiments, revealed a potential role in vascular disease pathogenesis, with the transcriptomic disease signature of these cells being represented in an aortic regulatory gene network that is operative in atherosclerosis. We identify, in situ and in vivo, adventitial CD90+ MSCs in human arteries Human adventitial CD90+ cells fulfill all criteria for an MSC population Other markers, such as CD44 and PDGFRα, were non-specific for adventitial MSCs The CD90+ MSC transcriptomic signature suggests a major role in vascular disease
Collapse
|
29
|
Abstract
Vascular, resident stem cells are present in all 3 layers of the vessel wall; they play a role in vascular formation under physiological conditions and in remodeling in pathological situations. Throughout development and adult early life, resident stem cells participate in vessel formation through vasculogenesis and angiogenesis. In adults, the vascular stem cells are mostly quiescent in their niches but can be activated in response to injury and participate in endothelial repair and smooth muscle cell accumulation to form neointima. However, delineation of the characteristics and of the migration and differentiation behaviors of these stem cells is an area of ongoing investigation. A set of genetic mouse models for cell lineage tracing has been developed to specifically address the nature of these cells and both migration and differentiation processes during physiological angiogenesis and in vascular diseases. This review summarizes the current knowledge on resident stem cells, which has become more defined and refined in vascular biology research, thus contributing to the development of new potential therapeutic strategies to promote endothelial regeneration and ameliorate vascular disease development.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| | - Ting Chen
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences (B.Z.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| |
Collapse
|
30
|
Xie Y, Potter CMF, Le Bras A, Nowak WN, Gu W, Bhaloo SI, Zhang Z, Hu Y, Zhang L, Xu Q. Leptin Induces Sca-1 + Progenitor Cell Migration Enhancing Neointimal Lesions in Vessel-Injury Mouse Models. Arterioscler Thromb Vasc Biol 2017; 37:2114-2127. [PMID: 28935755 PMCID: PMC5671780 DOI: 10.1161/atvbaha.117.309852] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Leptin is an adipokine initially thought to be a metabolic factor. Recent publications have shown its roles in inflammation and vascular disease, to which Sca-1+ vascular progenitor cells within the vessel wall may contribute. We sought to elucidate the effects of leptin on Sca-1+ progenitor cells migration and neointimal formation and to understand the underlying mechanisms. Approach and Results— Sca-1+ progenitor cells from the vessel wall of Lepr+/+ and Lepr−/− mice were cultured and purified. The migration of Lepr+/+ Sca-1+ progenitor cells in vitro was markedly induced by leptin. Western blotting and kinase assays revealed that leptin induced the activation of phosphorylated signal transducer and activator of transcription 3, phosphorylated extracellular signal–regulated kinases 1/2, pFAK (phosphorylated focal adhesion kinase), and Rac1 (ras-related C3 botulinum toxin substrate 1)/Cdc42 (cell division control protein 42 homolog). In a mouse femoral artery guidewire injury model, an increased expression of leptin in both injured vessels and serum was observed 24 hours post-surgery. RFP (red fluorescent protein)-Sca-1+ progenitor cells in Matrigel were applied to the adventitia of the injured femoral artery. RFP+ cells were observed in the intima 24 hours post-surgery, subsequently increasing neointimal lesions at 2 weeks when compared with the arteries without seeded cells. This increase was reduced by pre-treatment of Sca-1+ cells with a leptin antagonist. Guidewire injury could only induce minor neointima in Lepr−/− mice 2 weeks post-surgery. However, transplantation of Lepr+/+ Sca-1+ progenitor cells into the adventitial side of injured artery in Lepr−/− mice significantly enhanced neointimal formation. Conclusions— Upregulation of leptin levels in both the vessel wall and the circulation after vessel injury promoted the migration of Sca-1+ progenitor cells via leptin receptor–dependent signal transducer and activator of transcription 3- Rac1/Cdc42-ERK (extracellular signal–regulated kinase)-FAK pathways, which enhanced neointimal formation.
Collapse
Affiliation(s)
- Yao Xie
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Claire M F Potter
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Alexandra Le Bras
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Witold N Nowak
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Wenduo Gu
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Shirin Issa Bhaloo
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Zhongyi Zhang
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Yanhua Hu
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Li Zhang
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.).
| |
Collapse
|