1
|
Rose M, Adashi EY. Targeted partial reprogramming as a novel therapeutic strategy for age-related decline. Ageing Res Rev 2025; 108:102731. [PMID: 40096911 DOI: 10.1016/j.arr.2025.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
Cellular reprogramming has emerged as a promising strategy for the amelioration of age-associated cellular phenotypes. In-vivo reprogramming approaches, however, have been limited by a lack of specificity and oncogenic risk. Recent breakthroughs have addressed these limitations, constituting a significant progression toward the development of safe and effective therapeutics for age-related pathologies.
Collapse
Affiliation(s)
- Max Rose
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Eli Y Adashi
- Department of Medical Science, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Adams MT, Jasper H, Mosteiro L. Unlocking regeneration: how partial reprogramming resembles tissue healing. Curr Opin Genet Dev 2025; 93:102351. [PMID: 40311172 DOI: 10.1016/j.gde.2025.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 05/03/2025]
Abstract
Partial reprogramming achieved by the transient expression of the transcription factors (TFs) Oct4, Sox2, Klf4 and C-Myc (abbreviated OSKM) can erase aging and damage features in cells, leading to increased healthspan, lifespan and tissue regeneration. Recent reports suggest that the mechanisms of partial reprogramming may share some similarities with natural dedifferentiation and regeneration. Both processes appear to involve the transient repression of somatic identity through the sequestration of somatic identity TFs to noncanonical sites, which are opened by the high expression of pioneer TFs, leading to transient dedifferentiation into a fetal-like state. Here, we review the reported benefits of partial reprogramming on tissue regeneration and propose a common mechanism of epigenetic remodeling with natural regeneration after tissue injury.
Collapse
Affiliation(s)
- Melissa T Adams
- Department of Regenerative Medicine, Genentech, South San Francisco, USA
| | - Heinrich Jasper
- Department of Regenerative Medicine, Genentech, South San Francisco, USA
| | - Lluc Mosteiro
- Department of Regenerative Medicine, Genentech, South San Francisco, USA.
| |
Collapse
|
3
|
Anton-Fernandez A, Domene-Serrano I, Cuadros R, Peinado-Cahuchola R, Sanchez-Pece M, Hernandez F, Avila J. Peptide Family Promotes Brain Cell Rejuvenation and Improved Cognition through Peripheral Delivery. ACS OMEGA 2025; 10:13236-13250. [PMID: 40224410 PMCID: PMC11983169 DOI: 10.1021/acsomega.4c10849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 04/15/2025]
Abstract
Ligands targeting folate receptor α (FRα), a protein predominantly expressed in neural cells, have the potential to reprogram (rejuvenate) brain cells and enhance cognitive function in aged mice. In this study, we present a family of FRα-binding peptides identified through AlphaFold modeling. These peptides induce a structural change in the receptor upon binding, which facilitates its internalization and transport to the cell nucleus. Once in the nucleus, FRα functions as a transcription factor, promoting the expression of genes associated with a youthful phenotype and improved cognition. Notably, these peptides demonstrate permeability across the blood-brain barrier, enabling their administration not only through intracranial injection but also via peripheral delivery methods such as intraperitoneal injection or gastric gavage. This property enhances their potential for use in future therapeutic applications.
Collapse
Affiliation(s)
| | | | - Raquel Cuadros
- Centro
de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | | | - Felix Hernandez
- Centro
de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Jesus Avila
- Centro
de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Deng S, Xie H, Xie B. Cell-based regenerative and rejuvenation strategies for treating neurodegenerative diseases. Stem Cell Res Ther 2025; 16:167. [PMID: 40189500 PMCID: PMC11974143 DOI: 10.1186/s13287-025-04285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Neurodegenerative diseases including Alzheimer's and Parkinson's disease are age-related disorders which severely impact quality of life and impose significant societal burdens. Cellular senescence is a critical factor in these disorders, contributing to their onset and progression by promoting permanent cell cycle arrest and reducing cellular function, affecting various types of cells in brain. Recent advancements in regenerative medicine have highlighted "R3" strategies-rejuvenation, regeneration, and replacement-as promising therapeutic approaches for neurodegeneration. This review aims to critically analyze the role of cellular senescence in neurodegenerative diseases and organizes therapeutic approaches within the R3 regenerative medicine paradigm. Specifically, we examine stem cell therapy, direct lineage reprogramming, and partial reprogramming in the context of R3, emphasizing how these interventions mitigate cellular senescence and counteracting aging-related neurodegeneration. Ultimately, this review seeks to provide insights into the complex interplay between cellular senescence and neurodegeneration while highlighting the promise of cell-based regenerative strategies to address these debilitating conditions.
Collapse
Affiliation(s)
- Sixiu Deng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China
- Department of Gastroenterology, The Shapingba Hospital, Chongqing University( People's Hospital of Shapingba District), Chongqing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Antón-Fernández A, Ruiz de Alegría Á, Mariscal-Casero A, Roldán-Lázaro M, Peinado-Cauchola R, Ávila J, Hernández F. Partial reprogramming by cyclical overexpression of Yamanaka factors improves pathological phenotypes of tauopathy mouse model of human Alzheimer's disease. Prog Neurobiol 2025; 247:102743. [PMID: 40021076 DOI: 10.1016/j.pneurobio.2025.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Partial reprogramming induced by the controlled and cyclical overexpression of Yamanaka factors in the nervous system has so far succeeded in reversing some aging-associated phenotypes, such as improving memory function. These promising results suggest that partial reprogramming could be a potential strategy to prevent or mitigate aging-related pathologies like tauopathies, including Alzheimer's disease. Here, we explore the potential of this strategy in addressing tauopathy development in the P301S mouse model. To achieve this, a new transgenic animal was created that can inducibly overexpress Yamanaka factors upon doxycycline administration and carries the Tau-P301S mutation, which leads to tauopathy development. The results of this study show a significant improvement in key pathological features of tauopathies in the hippocampus, including reversed tauopathy, alleviated reactive astrogliosis, age-related reduction of the H3K9me3 epigenetic marker, along with improved spatial memory, which has been described as deteriorated in this model. These findings reinforce the potential of partial reprogramming as a therapeutic strategy to combat brain pathologies associated with aging.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain.
| | - Álvaro Ruiz de Alegría
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain
| | - Ana Mariscal-Casero
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain
| | - Marta Roldán-Lázaro
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain
| | - Rocío Peinado-Cauchola
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain; Consejo Superior de Investigaciones Científicas (CSIC), Serrano 117, Madrid 28006, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
6
|
Nakatsukasa Y, Yamada Y, Yamada Y. Research of in vivo reprogramming toward clinical applications in regenerative medicine: A concise review. Regen Ther 2025; 28:12-19. [PMID: 39678397 PMCID: PMC11638634 DOI: 10.1016/j.reth.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024] Open
Abstract
The successful generation of induced pluripotent stem cells (iPSCs) has significantly impacted many scientific fields. In the field of regenerative medicine, iPSC-derived somatic cells are expected to recover impaired organ functions through cell transplantation therapy. Subsequent studies using genetically engineered mouse models showed that somatic cells are also reprogrammable in vivo. Notably, cyclic expression of reprogramming factors, so-called partial reprogramming in vivo ameliorates cellular and physiological hallmarks of aging without inducing teratoma formation or premature death of animals. Subsequent studies provided evidence supporting the beneficial effects of partial reprogramming in various organs. Although in vivo reprogramming appears to be a promising strategy for tissue regeneration and rejuvenation, there remain unsolved issues that hinder its clinical application, including concerns regarding its safety, controllability, and unexpected detrimental effects. Here, we review the pathway that research of in vivo reprogramming has followed and discuss the future perspective as we look toward its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yoshihiko Nakatsukasa
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Yamada
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Yamada
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Li J, Huang L, Xiao W, Kong J, Hu M, Pan A, Yan X, Huang F, Wan L. Multimodal insights into adult neurogenesis: An integrative review of multi-omics approaches. Heliyon 2025; 11:e42668. [PMID: 40051854 PMCID: PMC11883395 DOI: 10.1016/j.heliyon.2025.e42668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Adult neural stem cells divide to produce neurons that migrate to preexisting neuronal circuits in a process named adult neurogenesis. Adult neurogenesis is one of the most exciting areas of current neuroscience, and it may be involved in a range of brain functions, including cognition, learning, memory, and social and behavior changes. While there is a growing number of multi-omics studies on adult neurogenesis, generalized analyses from a multi-omics perspective are lacking. In this review, we summarize studies related to genomics, metabolomics, proteomics, epigenomics, transcriptomics, and microbiomics of adult neurogenesis, and then discuss their future research priorities and potential neighborhoods. This will provide theoretical guidance and new directions for future research on adult neurogenesis.
Collapse
Affiliation(s)
- Jin Li
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
- Yiyang Medical College, Yiyang, Hunan Province, China
| | - Leyi Huang
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Minghua Hu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Fulian Huang
- Yiyang Medical College, Yiyang, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Namihira M, Inoue N, Watanabe Y, Hayashi T, Murotomi K, Hirayama K, Sato N. Combination of 3 probiotics restores attenuated adult neurogenesis in germ-free mice. Stem Cells 2025; 43:sxae077. [PMID: 39676242 PMCID: PMC11879180 DOI: 10.1093/stmcls/sxae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
Gut microbiota plays an important role in regulating brain function and adult neurogenesis. Although probiotics have recently been reported as effective against certain psychiatric disorders, the underlying mechanisms remain unclear. In particular, the combination of 3 probiotic strains, Bacillus subtilis TO-A, Enterococcus faecium T-110, and Clostridium butyricum TO-A, hereafter referred to as ProB3, has been reported to potentially alleviate psychiatric symptoms in patients with schizophrenia. Herein, we show that ProB3 promotes adult neurogenesis in mice and restores its dysregulation in germ-free (GF) mice. ProB3 colonization in GF mice enhanced the proliferation of adult neural stem cells compared to specific-pathogen-free and GF mice. Furthermore, ProB3 colonization was sufficient to ameliorate the arrest of newborn neuron maturation and the diminution of quiescent neural stem cells in GF mice. ProB3 colonization in mice increased the levels of several metabolites in the blood, including theanine and 3-hydroxybutyrate, and imidazole peptides, including anserine, which promoted proliferation, neurogenesis, and maturation of newborn neurons in cultured human fetus neural stem cells, as well as mouse adult hippocampal neural stem cells. Collectively, these results indicate that the essential role of the gut microbiota in adult hippocampal neurogenesis can be effectively complemented by the intake of a specific 3-strain probiotic, ProB3, providing novel insights into the brain-gut axis.
Collapse
Affiliation(s)
- Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Nana Inoue
- TOA Biopharma Co. Ltd., Tokyo 151-0073, Japan
| | | | | | - Kazutoshi Murotomi
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Sato
- TOA Biopharma Co. Ltd., Tokyo 151-0073, Japan
| |
Collapse
|
9
|
Horvath S, Lacunza E, Mallat MC, Portiansky EL, Gallardo MD, Brooke RT, Chiavellini P, Pasquini DC, Girard M, Lehmann M, Yan Q, Lu AT, Haghani A, Gordevicius J, Abba M, Goya RG. Cognitive rejuvenation in old rats by hippocampal OSKM gene therapy. GeroScience 2025; 47:809-823. [PMID: 39037528 PMCID: PMC11872836 DOI: 10.1007/s11357-024-01269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Several studies have indicated that interrupted epigenetic reprogramming using Yamanaka transcription factors (OSKM) can rejuvenate cells from old laboratory animals and humans. However, the potential of OSKM-induced rejuvenation in brain tissue has been less explored. Here, we aimed to restore cognitive performance in 25.3-month-old female Sprague-Dawley rats using OSKM gene therapy for 39 days. Their progress was then compared with the cognitive performance of untreated 3.5-month-old rats as well as old control rats treated with a placebo adenovector. The Barnes maze test, used to assess cognitive performance, demonstrated enhanced cognitive abilities in old rats treated with OSKM compared to old control animals. In the treated old rats, there was a noticeable trend towards improved spatial memory relative to the old controls. Further, OSKM gene expression did not lead to any pathological alterations within the 39 days. Analysis of DNA methylation following OSKM treatment yielded three insights. First, epigenetic clocks for rats suggested a marginally significant epigenetic rejuvenation. Second, chromatin state analysis revealed that OSKM treatment rejuvenated the methylome of the hippocampus. Third, an epigenome-wide association analysis indicated that OSKM expression in the hippocampus of old rats partially reversed the age-related increase in methylation. In summary, the administration of Yamanaka genes via viral vectors rejuvenates the functional capabilities and the epigenetic landscape of the rat hippocampus.
Collapse
Affiliation(s)
- Steve Horvath
- Altos Labs, San Diego, USA.
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Epigenetic Clock Development Foundation, Torrance, CA, USA.
| | | | - Martina Canatelli Mallat
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Enrique L Portiansky
- Image Analysis Lab (LAI), School of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - Maria D Gallardo
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | | | - Priscila Chiavellini
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Diana C Pasquini
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Mauricio Girard
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Marianne Lehmann
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Qi Yan
- Altos Labs, San Diego, USA
| | | | | | | | - Martin Abba
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Rodolfo G Goya
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
- Vitality in Aging Research Group (VIA), Fort Lauderdale, FL, USA
| |
Collapse
|
10
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 2025; 638:160-171. [PMID: 39695234 PMCID: PMC11798877 DOI: 10.1038/s41586-024-08334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions-exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell-cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease.
Collapse
Affiliation(s)
- Eric D Sun
- Biomedical Data Science Graduate Program, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biophysics Graduate Program, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Cañeque-Rufo H, Fontán-Baselga T, Galán-Llario M, Zuccaro A, Sánchez-Alonso MG, Gramage E, Ramos-Álvarez MDP, Herradón G. Pleiotrophin deletion prevents high-fat diet-induced cognitive impairment, glial responses, and alterations of the perineuronal nets in the hippocampus. Neurobiol Dis 2025; 205:106776. [PMID: 39722335 DOI: 10.1016/j.nbd.2024.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Obesity and metabolic disorders, such as metabolic syndrome (MetS) facilitate the development of neurodegenerative diseases and cognitive decline. Persistent neuroinflammation plays an important role in this process. Pleiotrophin (PTN) is a cytokine that regulates energy metabolism and high-fat diet (HFD)-induced neuroinflammation, suggesting that PTN could play an important role in the connection between obesity and brain alterations, including cognitive decline. To test this hypothesis, we used an HFD-induced obesity model in Ptn genetically deficient mice (Ptn-/-). First, we confirmed that Ptn deletion prevents HFD-induced obesity. Our findings demonstrate that feeding wild-type (Ptn+/+) mice with HFD for 6 months results in short- and long-term memory loss in the novel object recognition task. Surprisingly, we did not observe any sign of cognitive impairment in Ptn-/- mice fed with HFD. In addition, we observed that HFD induced microglial responses, astrocyte depletion, and perineuronal nets (PNNs) alterations in Ptn+/+ mice, while these effects of HFD were mostly prevented in Ptn-/- mice. These results show a crucial role of PTN in metabolic responses and brain alterations induced by HFD and suggest the PTN signalling pathway as a promising therapeutic target for brain disorders associated with MetS.
Collapse
Affiliation(s)
- Héctor Cañeque-Rufo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Teresa Fontán-Baselga
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Milagros Galán-Llario
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Agata Zuccaro
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - María Gracia Sánchez-Alonso
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Esther Gramage
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - María Del Pilar Ramos-Álvarez
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Gonzalo Herradón
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain.
| |
Collapse
|
12
|
Sun ED, Nagvekar R, Pogson AN, Brunet A. Brain aging and rejuvenation at single-cell resolution. Neuron 2025; 113:82-108. [PMID: 39788089 PMCID: PMC11842159 DOI: 10.1016/j.neuron.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells. These technologies have led to new and comprehensive characterizations of brain aging at single-cell resolution. Here, we review insights gleaned from single-cell omics studies of brain aging, starting with a cell-type-centric overview of age-associated changes and followed by a discussion of cell-cell interactions during aging. We highlight how single-cell omics studies provide an unbiased view of different rejuvenation interventions and comment on the promise of combinatorial rejuvenation approaches for the brain. Finally, we propose new directions, including models of brain aging and neural stem cells as a focal point for rejuvenation.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Rahul Nagvekar
- Department of Genetics, Stanford University, Stanford, CA, USA; Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA; Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Antón‐Fernández A, Cauchola RP, Hernández F, Ávila J. Hippocampal rejuvenation by a single intracerebral injection of one-carbon metabolites in C57BL6 old wild-type mice. Aging Cell 2025; 24:e14365. [PMID: 39380362 PMCID: PMC11709095 DOI: 10.1111/acel.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
The Izpisua-Belmonte group identified a cocktail of metabolites that promote partial reprogramming in cultured muscle cells. We tested the effect of brain injection of these metabolites in the dentate gyrus of aged wild-type mice. The dentate gyrus is a brain region essential for memory function and is extremely vulnerable to aging. A single injection of the cocktail containing four compounds (putrescine, glycine, methionine and threonine) partially reversed brain aging phenotypes and epigenetic alterations in age-associated genes. Our analysis revealed three levels: chromatin methylation, RNA sequencing, and protein expression. Functional studies complemented the previous ones, showing cognitive improvement. In summary, we report the reversal of various age-associated epigenetic changes, such as the transcription factor Zic4, and several changes related to cellular rejuvenation in the dentate gyrus (DG). These changes include increased expression of the Sox2 protein. Finally, the increases in the survival of newly generated neurons and the levels of the NMDA receptor subunit GluN2B were accompanied by improvements in both short-term and long-term memory performance. Based on these results, we propose the use of these metabolites to explore new strategies for the development of potential treatments for age-related brain diseases.
Collapse
Affiliation(s)
- Alejandro Antón‐Fernández
- Centro de Biología Molecular Severo Ochoa, CSIC‐UAMMadridSpain
- Present address:
Department of Neuroscience and Biomedical SciencesCarlos III University (UC3M)MadridSpain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC‐UAMMadridSpain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa, CSIC‐UAMMadridSpain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
14
|
Shen YR, Zaballa S, Bech X, Sancho-Balsells A, Rodríguez-Navarro I, Cifuentes-Díaz C, Seyit-Bremer G, Chun SH, Straub T, Abante J, Merino-Valverde I, Richart L, Gupta V, Li HY, Ballasch I, Alcázar N, Alberch J, Canals JM, Abad M, Serrano M, Klein R, Giralt A, Del Toro D. Expansion of the neocortex and protection from neurodegeneration by in vivo transient reprogramming. Cell Stem Cell 2024; 31:1741-1759.e8. [PMID: 39426381 DOI: 10.1016/j.stem.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/08/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Yamanaka factors (YFs) can reverse some aging features in mammalian tissues, but their effects on the brain remain largely unexplored. Here, we induced YFs in the mouse brain in a controlled spatiotemporal manner in two different scenarios: brain development and adult stages in the context of neurodegeneration. Embryonic induction of YFs perturbed cell identity of both progenitors and neurons, but transient and low-level expression is tolerated by these cells. Under these conditions, YF induction led to progenitor expansion, an increased number of upper cortical neurons and glia, and enhanced motor and social behavior in adult mice. Additionally, controlled YF induction is tolerated by principal neurons in the adult dorsal hippocampus and prevented the development of several hallmarks of Alzheimer's disease, including cognitive decline and altered molecular signatures, in the 5xFAD mouse model. These results highlight the powerful impact of YFs on neural proliferation and their potential use in brain disorders.
Collapse
Affiliation(s)
- Yi-Ru Shen
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Sofia Zaballa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Xavier Bech
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Anna Sancho-Balsells
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Irene Rodríguez-Navarro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Carmen Cifuentes-Díaz
- Inserm UMR-S 1270, Sorbonne Université, Science and Engineering Faculty, and Institut du Fer a Moulin, 75005 Paris, France
| | - Gönül Seyit-Bremer
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Seung Hee Chun
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Tobias Straub
- Bioinformatics Core, Biomedical Center, Faculty of Medicine, Lugwig-Maximilians University (LMU), 82152 Martinsried, Germany
| | - Jordi Abante
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; Laboratory of Stem Cells and Regenerative Medicine, University of Barcelona, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; Department of Mathematics & Computer Science, University of Barcelona, Barcelona, Spain
| | | | - Laia Richart
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK
| | - Vipul Gupta
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK
| | - Hao-Yi Li
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany; Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ivan Ballasch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Noelia Alcázar
- Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Jordi Alberch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Josep M Canals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; Laboratory of Stem Cells and Regenerative Medicine, University of Barcelona, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Maria Abad
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK; Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Manuel Serrano
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany.
| | - Albert Giralt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.
| | - Daniel Del Toro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.
| |
Collapse
|
15
|
Matteini F, Montserrat‐Vazquez S, Florian MC. Rejuvenating aged stem cells: therapeutic strategies to extend health and lifespan. FEBS Lett 2024; 598:2776-2787. [PMID: 38604982 PMCID: PMC11586596 DOI: 10.1002/1873-3468.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Aging is associated with a global decline in stem cell function. To date, several strategies have been proposed to rejuvenate aged stem cells: most of these result in functional improvement of the tissue where the stem cells reside, but the impact on the lifespan of the whole organism has been less clearly established. Here, we review some of the most recent work dealing with interventions that improve the regenerative capacity of aged somatic stem cells in mammals and that might have important translational possibilities. Overall, we underscore that somatic stem cell rejuvenation represents a strategy to improve tissue homeostasis upon aging and present some recent approaches with the potential to affect health span and lifespan of the whole organism.
Collapse
Affiliation(s)
- Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - Sara Montserrat‐Vazquez
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - M. Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- The Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
16
|
Yagi M, Horng JE, Hochedlinger K. Manipulating cell fate through reprogramming: approaches and applications. Development 2024; 151:dev203090. [PMID: 39348466 PMCID: PMC11463964 DOI: 10.1242/dev.203090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Cellular plasticity progressively declines with development and differentiation, yet these processes can be experimentally reversed by reprogramming somatic cells to induced pluripotent stem cells (iPSCs) using defined transcription factors. Advances in reprogramming technology over the past 15 years have enabled researchers to study diseases with patient-specific iPSCs, gain fundamental insights into how cell identity is maintained, recapitulate early stages of embryogenesis using various embryo models, and reverse aspects of aging in cultured cells and animals. Here, we review and compare currently available reprogramming approaches, including transcription factor-based methods and small molecule-based approaches, to derive pluripotent cells characteristic of early embryos. Additionally, we discuss our current understanding of mechanisms that resist reprogramming and their role in cell identity maintenance. Finally, we review recent efforts to rejuvenate cells and tissues with reprogramming factors, as well as the application of iPSCs in deriving novel embryo models to study pre-implantation development.
Collapse
Affiliation(s)
- Masaki Yagi
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joy E. Horng
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Zocher S. Targeting neuronal epigenomes for brain rejuvenation. EMBO J 2024; 43:3312-3326. [PMID: 39009672 PMCID: PMC11329789 DOI: 10.1038/s44318-024-00148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is associated with a progressive decline of brain function, and the underlying causes and possible interventions to prevent this cognitive decline have been the focus of intense investigation. The maintenance of neuronal function over the lifespan requires proper epigenetic regulation, and accumulating evidence suggests that the deterioration of the neuronal epigenetic landscape contributes to brain dysfunction during aging. Epigenetic aging of neurons may, however, be malleable. Recent reports have shown age-related epigenetic changes in neurons to be reversible and targetable by rejuvenation strategies that can restore brain function during aging. This review discusses the current evidence that identifies neuronal epigenetic aging as a driver of cognitive decline and a promising target of brain rejuvenation strategies, and it highlights potential approaches for the specific manipulation of the aging neuronal epigenome to restore a youthful epigenetic state in the brain.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases, Tatzberg 41, 01307, Dresden, Germany.
| |
Collapse
|
18
|
Mrabti C, Yang N, Desdín-Micó G, Alonso-Calleja A, Vílchez-Acosta A, Pico S, Parras A, Piao Y, Schoenfeldt L, Luo S, Haghani A, Brooke R, del Carmen Maza M, Branchina C, Maroun CY, von Meyenn F, Naveiras O, Horvath S, Sen P, Ocampo A. Loss of H3K9 trimethylation leads to premature aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604929. [PMID: 39091811 PMCID: PMC11291141 DOI: 10.1101/2024.07.24.604929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process. Modifications in transcriptional networks and chromatin structure might be central to age-related functional decline. A prevalent feature described during aging is the overall reduction in heterochromatin, specifically marked by the loss of repressive histone modification, Histone 3 lysine 9 trimethylation (H3K9me3). However, the role of H3K9me3 in aging, especially in mammals, remains unclear. Here we show using a novel mouse strain, (TKOc), carrying a triple knockout of three methyltransferases responsible for H3K9me3 deposition, that the inducible loss of H3K9me3 in adulthood results in premature aging. TKOc mice exhibit reduced lifespan, lower body weight, increased frailty index, multi-organ degeneration, transcriptional changes with significant upregulation of transposable elements, and accelerated epigenetic age. Our data strongly supports the concept that the loss of epigenetic information directly drives the aging process. These findings reveal the importance of epigenetic regulation in aging and suggest that interventions targeting epigenetic modifications could potentially slow down or reverse age-related decline. Understanding the molecular mechanisms underlying the process of aging will be crucial for developing novel therapeutic strategies that can delay the onset of age-associated diseases and preserve human health at old age specially in rapidly aging societies.
Collapse
Affiliation(s)
- Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gabriela Desdín-Micó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Alejandro Alonso-Calleja
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alba Vílchez-Acosta
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Sara Pico
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lucas Schoenfeldt
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| | - Siyuan Luo
- Departement of Health Sciences and Technology, ETH Zurich, Zurich
| | | | - Robert Brooke
- Epigenetic Clock Development, Foundation, Torrance, California, USA
| | - María del Carmen Maza
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Clémence Branchina
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Céline Yacoub Maroun
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Olaia Naveiras
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Steve Horvath
- Altos Labs, San Diego, CA, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| |
Collapse
|
19
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
20
|
Antón-Fernández A, Roldán-Lázaro M, Vallés-Saiz L, Ávila J, Hernández F. In vivo cyclic overexpression of Yamanaka factors restricted to neurons reverses age-associated phenotypes and enhances memory performance. Commun Biol 2024; 7:631. [PMID: 38789561 PMCID: PMC11126596 DOI: 10.1038/s42003-024-06328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been success in partially reprogramming peripheral organ cells using cyclic Yamanaka transcription factor (YF) expression, resulting in the reversal of age-related pathologies. In the case of the brain, the effects of partial reprogramming are scarcely known, and only some of its effects have been observed through the widespread expression of YF. This study is the first to exclusively partially reprogram a specific subpopulation of neurons in the cerebral cortex of aged mice. The in vivo model demonstrate that YF expression in postmitotic neurons does not dedifferentiate them, and it avoids deleterious effects observed with YF expression in other cell types. Additionally, our study demonstrates that only cyclic, not continuous, expression of YF result in a noteworthy enhancement of cognitive function in adult mice. This enhancement is closely tied to increased neuronal activation in regions related to memory processes, reversed aging-related epigenetic markers and to increased plasticity, induced by the reorganization of the extracellular matrix. These findings support the therapeutic potential of targeted partial reprogramming of neurons in addressing age-associated phenotypes and neurodegenerative diseases correlated with aging.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Serrano 117, 28006, Madrid, Spain.
| | - Marta Roldán-Lázaro
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Laura Vallés-Saiz
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Serrano 117, 28006, Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
21
|
Asmussen NC, Schafer MJ. Partial reprogramming of the mammalian brain. NATURE AGING 2024; 4:440-442. [PMID: 38553563 PMCID: PMC11697015 DOI: 10.1038/s43587-024-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Xu and colleagues used partial OSKM reprogramming in aged mice to drive cell-type proportions of the subventricular zone to more youthful levels, which equates to qualified rejuvenation of a neurogenic niche that is defined, in part, by restoration of neuroblast levels.
Collapse
Affiliation(s)
- Niels C Asmussen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Xu L, Ramirez-Matias J, Hauptschein M, Sun ED, Lunger JC, Buckley MT, Brunet A. Restoration of neuronal progenitors by partial reprogramming in the aged neurogenic niche. NATURE AGING 2024; 4:546-567. [PMID: 38553564 PMCID: PMC12036604 DOI: 10.1038/s43587-024-00594-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 02/13/2024] [Indexed: 04/21/2024]
Abstract
Partial reprogramming (pulsed expression of reprogramming transcription factors) improves the function of several tissues in old mice. However, it remains largely unknown how partial reprogramming impacts the old brain. Here we use single-cell transcriptomics to systematically examine how partial reprogramming influences the subventricular zone neurogenic niche in aged mouse brains. Whole-body partial reprogramming mainly improves neuroblasts (cells committed to give rise to new neurons) in the old neurogenic niche, restoring neuroblast proportion to more youthful levels. Interestingly, targeting partial reprogramming specifically to the neurogenic niche also boosts the proportion of neuroblasts and their precursors (neural stem cells) in old mice and improves several molecular signatures of aging, suggesting that the beneficial effects of reprogramming are niche intrinsic. In old neural stem cell cultures, partial reprogramming cell autonomously restores the proportion of neuroblasts during differentiation and blunts some age-related transcriptomic changes. Importantly, partial reprogramming improves the production of new neurons in vitro and in old brains. Our work suggests that partial reprogramming could be used to rejuvenate the neurogenic niche and counter brain decline in old individuals.
Collapse
Affiliation(s)
- Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Judith C Lunger
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Abstract
The recent emergence of reprogramming technologies to convert brain cell types or epigenetically alter neurons and neural progenitors in vivo and in situ hold significant promises in brain repair and neuronal aging reversal. However, given the significant epigenetic and transcriptomic changes to components of the existing neuronal cells and network, we question if these reprogramming technology might inadvertently alter or erase memory engrams, conceivably resulting in changes in narrative identity or personality. We suggest that the nature of these alterations might be less predictable compared to memory and personality changes known to be associated with diseases, drugs or brain stimulation therapies. While research in applying reprogramming technologies to neurological ailments and aging should continue, more targeted analyses should be put in place in animal experiments to gauge the severity and degree of memory alterations, and appropriate risk and benefit analyses should be conducted before these technologies move into human trials.
Collapse
|
24
|
Antón-Fernández A, Cuadros R, Peinado-Cahuchola R, Hernández F, Avila J. Role of folate receptor α in the partial rejuvenation of dentate gyrus cells: Improvement of cognitive function in 21-month-old aged mice. Sci Rep 2024; 14:6915. [PMID: 38519576 PMCID: PMC10960019 DOI: 10.1038/s41598-024-57095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Neuronal aging may be, in part, related to a change in DNA methylation. Thus, methyl donors, like folate and methionine, may play a role in cognitive changes associated to neuronal aging. To test the role of these metabolites, we performed stereotaxic microinjection of these molecules into the dentate gyrus (DG) of aged mice (an average age of 21 month). Folate, but not S-Adenosyl-Methionine (SAM), enhances cognition in aged mice. In the presence of folate, we observed partial rejuvenation of DG cells, characterized by the expression of juvenile genes or reorganization of extracellular matrix. Here, we have also tried to identify the mechanism independent of DNA methylation, that involve folate effects on cognition. Our analyses indicated that folate binds to folate receptor α (FRα) and, upon folate binding, FRα is transported to cell nucleus, where it is acting as transcription factor for expressing genes like SOX2 or GluN2B. In this work, we report that a FRα binding peptide also replicates the folate effect on cognition, in aged mice. Our data suggest that such effect is not sex-dependent. Thus, we propose the use of this peptide to improve cognition since it lacks of folate-mediated side effects. The use of synthetic FRα binding peptides emerge as a future strategy for the study of brain rejuvenation.
Collapse
Affiliation(s)
- A Antón-Fernández
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - R Cuadros
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - R Peinado-Cahuchola
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - F Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
25
|
Huyghe A, Trajkova A, Lavial F. Cellular plasticity in reprogramming, rejuvenation and tumorigenesis: a pioneer TF perspective. Trends Cell Biol 2024; 34:255-267. [PMID: 37648593 DOI: 10.1016/j.tcb.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The multistep process of in vivo reprogramming, mediated by the transcription factors (TFs) Oct4, Sox2, Klf4, and c-Myc (OSKM), holds great promise for the development of rejuvenating and regenerative strategies. However, most of the approaches developed so far are accompanied by a persistent risk of tumorigenicity. Here, we review the groundbreaking effects of in vivo reprogramming with a particular focus on rejuvenation and regeneration. We discuss how the activity of pioneer TFs generates cellular plasticity that may be critical for inducing not only reprogramming and regeneration, but also cancer initiation. Finally, we highlight how a better understanding of the uncoupled control of cellular identity, plasticity, and aging during reprogramming might pave the way to the development of rejuvenating/regenerating strategies in a nontumorigenic manner.
Collapse
Affiliation(s)
- Aurélia Huyghe
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Aneta Trajkova
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Fabrice Lavial
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| |
Collapse
|
26
|
Dai M, Yang N, Xu K, Zhang J, Li X, Zhang Y, Li W. Discovering human cell-compatible gene therapy virus variants via optimized screening in mouse models. Cell Prolif 2024; 57:e13565. [PMID: 37864397 PMCID: PMC10905335 DOI: 10.1111/cpr.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
In gene therapy, intravenous injection of viral vectors reigns as the primary administration route. These vectors include adeno-associated viruses, adenoviruses, herpes viruses, rhabdoviruses and others. However, these naturally occurring viruses lack inherent tissue or organ tropism for tailored disease treatment. To address this, we devised an optimized process involving directed viral capsid evolution, organ-specific humanized mouse models and in vitro-in vivo virus screening. Our approach allows for the rapid generation specifically modified adeno-associated virus variants, surpassing the time required for natural evolution, which spans millions of years. Notably, these variants exhibit robust targeting of the liver, favouring chimeric human liver cells over murine hepatocytes. Furthermore, certain variants achieve augmented targeting with reduced off-target organ infection, thereby mitigating dosage requirements and enhancing safety in gene therapy.
Collapse
Affiliation(s)
- Moyu Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ning Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
| | - Jingwen Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceNankai UniversityTianjinChina
| | - Xueke Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
| |
Collapse
|
27
|
Yang JH, Hayano M, Rajman LA, Sinclair DA. Response to: The information theory of aging has not been tested. Cell 2024; 187:1103-1105. [PMID: 38428391 DOI: 10.1016/j.cell.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 03/03/2024]
Affiliation(s)
- Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Motoshi Hayano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Luis A Rajman
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA.
| |
Collapse
|
28
|
Cho HE, Lee S, Seo JH, Kang SW, Choi WA, Cho SR. In Vivo Reprogramming Using Yamanaka Factors in the CNS: A Scoping Review. Cells 2024; 13:343. [PMID: 38391956 PMCID: PMC10886652 DOI: 10.3390/cells13040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Central nervous system diseases, particularly neurodegenerative disorders, pose significant challenges in medicine. These conditions, characterized by progressive neuronal loss, have remained largely incurable, exacting a heavy toll on individuals and society. In recent years, in vivo reprogramming using Yamanaka factors has emerged as a promising approach for central nervous system regeneration. This technique involves introducing transcription factors, such as Oct4, Sox2, Klf4, and c-Myc, into adult cells to induce their conversion into neurons. This review summarizes the current state of in vivo reprogramming research in the central nervous system, focusing on the use of Yamanaka factors. In vivo reprogramming using Yamanaka factors has shown promising results in several animal models of central nervous system diseases. Studies have demonstrated that this approach can promote the generation of new neurons, improve functional outcomes, and reduce scar formation. However, there are still several challenges that need to be addressed before this approach can be translated into clinical practice. These challenges include optimizing the efficiency of reprogramming, understanding the cell of origin for each transcription factor, and developing methods for reprogramming in non-subventricular zone areas. Further research is needed to overcome the remaining challenges, but this approach has the potential to revolutionize the way we treat central nervous system disorders.
Collapse
Affiliation(s)
- Han Eol Cho
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Siwoo Lee
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jung Hwa Seo
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong-Woong Kang
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Won Ah Choi
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Sung-Rae Cho
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
29
|
Paine PT, Nguyen A, Ocampo A. Partial cellular reprogramming: A deep dive into an emerging rejuvenation technology. Aging Cell 2024; 23:e14039. [PMID: 38040663 PMCID: PMC10861195 DOI: 10.1111/acel.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023] Open
Abstract
Aging and age-associated disease are a major medical and societal burden in need of effective treatments. Cellular reprogramming is a biological process capable of modulating cell fate and cellular age. Harnessing the rejuvenating benefits without altering cell identity via partial cellular reprogramming has emerged as a novel translational strategy with therapeutic potential and strong commercial interests. Here, we explore the aging-related benefits of partial cellular reprogramming while examining limitations and future directions for the field.
Collapse
Affiliation(s)
- Patrick T. Paine
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneVaudSwitzerland
- Center for Virology and Vaccine ResearchHarvard Medical SchoolBostonMassachusettsUSA
- Present address:
McGovern Institute for Brain Research at MIT, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneVaudSwitzerland
- EPITERNA SAEpalingesSwitzerland
| |
Collapse
|
30
|
Cipriano A, Moqri M, Maybury-Lewis SY, Rogers-Hammond R, de Jong TA, Parker A, Rasouli S, Schöler HR, Sinclair DA, Sebastiano V. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. NATURE AGING 2024; 4:14-26. [PMID: 38102454 PMCID: PMC11058000 DOI: 10.1038/s43587-023-00539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Mahdi Moqri
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Tineke Anna de Jong
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Alexander Parker
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Sajede Rasouli
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA.
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Avila J. Delaying Brain Aging or Decreasing Tau Levels as Strategies to Prevent Alzheimer's Disease: In Memoriam of Mark A. Smith. J Alzheimers Dis 2024; 100:S265-S270. [PMID: 39058443 DOI: 10.3233/jad-240500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aging is the main risk for neurodegenerative disorders like Alzheimer's disease. In this short review, I will comment on how delaying brain aging through the addition of Yamanaka Factors or small compounds that bind to the folate receptor alpha, which promote the expression of the Yamanaka Factors or by the decrease tau levels in brain cells from older subjects could serve as strategies to prevent Alzheimer's disease.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
32
|
Lu YR, Tian X, Sinclair DA. The Information Theory of Aging. NATURE AGING 2023; 3:1486-1499. [PMID: 38102202 DOI: 10.1038/s43587-023-00527-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
Information storage and retrieval is essential for all life. In biology, information is primarily stored in two distinct ways: the genome, comprising nucleic acids, acts as a foundational blueprint and the epigenome, consisting of chemical modifications to DNA and histone proteins, regulates gene expression patterns and endows cells with specific identities and functions. Unlike the stable, digital nature of genetic information, epigenetic information is stored in a digital-analog format, susceptible to alterations induced by diverse environmental signals and cellular damage. The Information Theory of Aging (ITOA) states that the aging process is driven by the progressive loss of youthful epigenetic information, the retrieval of which via epigenetic reprogramming can improve the function of damaged and aged tissues by catalyzing age reversal.
Collapse
Affiliation(s)
- Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Parras A, Vílchez-Acosta A, Desdín-Micó G, Picó S, Mrabti C, Montenegro-Borbolla E, Maroun CY, Haghani A, Brooke R, Del Carmen Maza M, Rechsteiner C, Battiston F, Branchina C, Perez K, Horvath S, Bertelli C, Sempoux C, Ocampo A. In vivo reprogramming leads to premature death linked to hepatic and intestinal failure. NATURE AGING 2023; 3:1509-1520. [PMID: 38012287 DOI: 10.1038/s43587-023-00528-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
The induction of cellular reprogramming via expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM) can drive dedifferentiation of somatic cells and ameliorate age-associated phenotypes in multiple tissues and organs. However, the benefits of long-term in vivo reprogramming are limited by detrimental side-effects. Here, using complementary genetic approaches, we demonstrated that continuous induction of the reprogramming factors in vivo leads to hepatic and intestinal dysfunction resulting in decreased body weight and contributing to premature death (within 1 week). By generating a transgenic reprogrammable mouse strain, avoiding OSKM expression in both liver and intestine, we reduced the early lethality and adverse effects associated with in vivo reprogramming and induced a decrease in organismal biological age. This reprogramming mouse strain, which allows longer-term continuous induction of OSKM with attenuated toxicity, can help better understand rejuvenation, regeneration and toxicity during in vivo reprogramming.
Collapse
Affiliation(s)
- Alberto Parras
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| | - Alba Vílchez-Acosta
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gabriela Desdín-Micó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sara Picó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Elena Montenegro-Borbolla
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Yacoub Maroun
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Amin Haghani
- Altos Labs, San Diego, CA, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Robert Brooke
- Epigenetic Clock Development Foundation, Torrance, CA, USA
| | - María Del Carmen Maza
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Cheyenne Rechsteiner
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fabrice Battiston
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Clémence Branchina
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kevin Perez
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| | - Steve Horvath
- Altos Labs, San Diego, CA, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- EPITERNA SA, Epalinges, Switzerland.
| |
Collapse
|
34
|
Kasbekar M, Mitchell CA, Proven MA, Passegué E. Hematopoietic stem cells through the ages: A lifetime of adaptation to organismal demands. Cell Stem Cell 2023; 30:1403-1420. [PMID: 37865087 PMCID: PMC10842631 DOI: 10.1016/j.stem.2023.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Hematopoietic stem cells (HSCs), which govern the production of all blood lineages, transition through a series of functional states characterized by expansion during fetal development, functional quiescence in adulthood, and decline upon aging. We describe central features of HSC regulation during ontogeny to contextualize how adaptive responses over the life of the organism ultimately form the basis for HSC functional degradation with age. We particularly focus on the role of cell cycle regulation, inflammatory response pathways, epigenetic changes, and metabolic regulation. We then explore how the knowledge of age-related changes in HSC regulation can inform strategies for the rejuvenation of old HSCs.
Collapse
Affiliation(s)
- Monica Kasbekar
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA; Division of Hematology and Medical Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Melissa A Proven
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
35
|
Lu AT, Fei Z, Haghani A, Robeck TR, Zoller JA, Li CZ, Lowe R, Yan Q, Zhang J, Vu H, Ablaeva J, Acosta-Rodriguez VA, Adams DM, Almunia J, Aloysius A, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter GG, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke SM, Cooper LN, Cossette ML, Day J, DeYoung J, DiRocco S, Dold C, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Gorbunova V, Goya RG, Grant MJ, Green CB, Hales EN, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Izpisua Belmonte JC, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaitre JF, Levine AJ, Li C, Li X, Lim AR, Lin DTS, Lindemann DM, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, et alLu AT, Fei Z, Haghani A, Robeck TR, Zoller JA, Li CZ, Lowe R, Yan Q, Zhang J, Vu H, Ablaeva J, Acosta-Rodriguez VA, Adams DM, Almunia J, Aloysius A, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter GG, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke SM, Cooper LN, Cossette ML, Day J, DeYoung J, DiRocco S, Dold C, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Gorbunova V, Goya RG, Grant MJ, Green CB, Hales EN, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Izpisua Belmonte JC, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaitre JF, Levine AJ, Li C, Li X, Lim AR, Lin DTS, Lindemann DM, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, Meudt JJ, Montano GA, Mozhui K, Munshi-South J, Naderi A, Nagy M, Narayan P, Nathanielsz PW, Nguyen NB, Niehrs C, O'Brien JK, O'Tierney Ginn P, Odom DT, Ophir AG, Osborn S, Ostrander EA, Parsons KM, Paul KC, Pellegrini M, Peters KJ, Pedersen AB, Petersen JL, Pietersen DW, Pinho GM, Plassais J, Poganik JR, Prado NA, Reddy P, Rey B, Ritz BR, Robbins J, Rodriguez M, Russell J, Rydkina E, Sailer LL, Salmon AB, Sanghavi A, Schachtschneider KM, Schmitt D, Schmitt T, Schomacher L, Schook LB, Sears KE, Seifert AW, Seluanov A, Shafer ABA, Shanmuganayagam D, Shindyapina AV, Simmons M, Singh K, Sinha I, Slone J, Snell RG, Soltanmaohammadi E, Spangler ML, Spriggs MC, Staggs L, Stedman N, Steinman KJ, Stewart DT, Sugrue VJ, Szladovits B, Takahashi JS, Takasugi M, Teeling EC, Thompson MJ, Van Bonn B, Vernes SC, Villar D, Vinters HV, Wallingford MC, Wang N, Wayne RK, Wilkinson GS, Williams CK, Williams RW, Yang XW, Yao M, Young BG, Zhang B, Zhang Z, Zhao P, Zhao Y, Zhou W, Zimmermann J, Ernst J, Raj K, Horvath S. Universal DNA methylation age across mammalian tissues. NATURE AGING 2023; 3:1144-1166. [PMID: 37563227 PMCID: PMC10501909 DOI: 10.1038/s43587-023-00462-6] [Show More Authors] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/21/2023] [Indexed: 08/12/2023]
Abstract
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.
Collapse
Affiliation(s)
- A T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Z Fei
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Statistics, University of California, Riverside, Riverside, CA, USA
| | - A Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - T R Robeck
- Zoological SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - J A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Z Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Lowe
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Q Yan
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - J Zhang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - H Vu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - V A Acosta-Rodriguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D M Adams
- Department of Biology, University of Maryland, College Park, MD, USA
| | - J Almunia
- Loro Parque Fundacion, Puerto de la Cruz, Spain
| | - A Aloysius
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - R Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - A Arneson
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - C S Baker
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - G Banks
- School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham, UK
| | - K Belov
- School of Life and Environmental Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - N C Bennett
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - P Black
- Busch Gardens Tampa, Tampa, FL, USA
| | - D T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - E K Bors
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - C E Breeze
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - R T Brooke
- Epigenetic Clock Development Foundation, Los Angeles, CA, USA
| | - J L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - G G Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - A Caulton
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - J M Cavin
- Gulf World, Dolphin Company, Panama City Beach, FL, USA
| | - L Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - I Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - H Chen
- Department of Pharmacology, Addiction Science and Toxicology, the University of Tennessee Health Science Center, Memphis, TN, USA
| | - K Cheng
- Medical Informatics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - P Chiavellini
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - O W Choi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S M Clarke
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - L N Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - M L Cossette
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - J Day
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - J DeYoung
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S DiRocco
- SeaWorld of Florida, Orlando, FL, USA
| | - C Dold
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | | | - C K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - S Emmrich
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - E Erbay
- Altos Labs, San Francisco, CA, USA
| | - C Erlacher-Reid
- SeaWorld of Florida, Orlando, FL, USA
- SeaWorld Orlando, Orlando, FL, USA
| | - C G Faulkes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - S H Ferguson
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - C J Finno
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | | | - J M Gaillard
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - E Garde
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - L Gerber
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - V N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - R G Goya
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - M J Grant
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - C B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E N Hales
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - M B Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - D W Hart
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - M Haulena
- Vancouver Aquarium, Vancouver, British Columbia, Canada
| | - K Herrick
- SeaWorld of California, San Diego, CA, USA
| | - A N Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - C J Hogg
- School of Life and Environmental Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - T A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - T Huang
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
- Division of Genetics and Metabolism, Oishei Children's Hospital, Buffalo, NY, USA
| | | | - A J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - G Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - O Kashpur
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - H Katcher
- Yuvan Research, Mountain View, CA, USA
| | | | - V Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
| | - H Kiaris
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M S Kobor
- Edwin S.H. Leong Healthy Aging Program, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Kordowitzki
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
- Institute for Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| | - W R Koski
- LGL Limited, King City, Ontario, Canada
| | - M Krützen
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - S B Kwon
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - B Larison
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Center for Tropical Research, Institute for the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - S G Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Lehmann
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - J F Lemaitre
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - A J Levine
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Li
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - X Li
- Technology Center for Genomics and Bioinformatics, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - A R Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - D T S Lin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - T J Little
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - N Macoretta
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - D Maddox
- White Oak Conservation, Yulee, FL, USA
| | - C O Matkin
- North Gulf Oceanic Society, Homer, AK, USA
| | - J A Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - J Mergl
- Marineland of Canada, Niagara Falls, Ontario, Canada
| | - J J Meudt
- Biomedical and Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - G A Montano
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - K Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - J Munshi-South
- Louis Calder Center-Biological Field Station, Department of Biological Sciences, Fordham University, Armonk, NY, USA
| | - A Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M Nagy
- Museum fur Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - P Narayan
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - P W Nathanielsz
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - N B Nguyen
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Niehrs
- Institute of Molecular Biology, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - J K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - P O'Tierney Ginn
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - D T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Division of Regulatory Genomics and Cancer Evolution, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - A G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - S Osborn
- SeaWorld of Texas, San Antonio, TX, USA
| | - E A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - K M Parsons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - K C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - M Pellegrini
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - K J Peters
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - A B Pedersen
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - D W Pietersen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - G M Pinho
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - J Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - J R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N A Prado
- Department of Biology, College of Arts and Science, Adelphi University, Garden City, NY, USA
| | - P Reddy
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - B Rey
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - B R Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - J Robbins
- Center for Coastal Studies, Provincetown, MA, USA
| | | | - J Russell
- SeaWorld of California, San Diego, CA, USA
| | - E Rydkina
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - L L Sailer
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - A B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, UT Health San Antonio and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | | | - K M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - D Schmitt
- College of Agriculture, Missouri State University, Springfield, MO, USA
| | - T Schmitt
- SeaWorld of California, San Diego, CA, USA
| | | | - L B Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - K E Sears
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - A W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - A Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - A B A Shafer
- Department of Forensic Science, Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - D Shanmuganayagam
- Biomedical and Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - K Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS University, Mumbai, India
| | - I Sinha
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - J Slone
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - R G Snell
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - E Soltanmaohammadi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M L Spangler
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | | | - L Staggs
- SeaWorld of Florida, Orlando, FL, USA
| | | | - K J Steinman
- Species Preservation Laboratory, SeaWorld San Diego, San Diego, CA, USA
| | - D T Stewart
- Biology Department, Acadia University, Wolfville, Nova Scotia, Canada
| | - V J Sugrue
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - B Szladovits
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - J S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Takasugi
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - E C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - M J Thompson
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - B Van Bonn
- John G. Shedd Aquarium, Chicago, IL, USA
| | - S C Vernes
- School of Biology, the University of St Andrews, Fife, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - D Villar
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - H V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - M C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
- Division of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - N Wang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - R K Wayne
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - G S Wilkinson
- Department of Biology, University of Maryland, College Park, MD, USA
| | - C K Williams
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - R W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - X W Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - M Yao
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - B G Young
- Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - B Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Z Zhang
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - P Zhao
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Y Zhao
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - W Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Zimmermann
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Koblenz, Germany
| | - J Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - K Raj
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - S Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Ohta S, Yamada Y. Exploring the potential of in vivo reprogramming for studying embryonic development, tissue regeneration, and organismal aging. Curr Opin Genet Dev 2023; 81:102067. [PMID: 37356342 DOI: 10.1016/j.gde.2023.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/29/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023]
Abstract
Forced expression of a specific set of transcription factors can reprogram terminally differentiated cells and convert them into induced pluripotent stem cells that correspond to cells in the inner cell mass of the developing embryo. It is now recognized that the scope of the reprogramming factors extends far beyond the stem cell biology. Studies using mouse models demonstrated that the induction of the reprogramming factors promotes cellular reprogramming in vivo. Closer inspection of these mice has revealed that expression of the reprogramming factors results in unique consequences that are not seen when cells are reprogrammed ex vivo, and can provide insights into development, tissue regeneration, cancer, and aging.
Collapse
Affiliation(s)
- Sho Ohta
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Yasuhiro Yamada
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
37
|
Plesa AM, Shadpour M, Boyden E, Church GM. Transcriptomic reprogramming for neuronal age reversal. Hum Genet 2023; 142:1293-1302. [PMID: 37004545 PMCID: PMC10066999 DOI: 10.1007/s00439-023-02529-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 04/04/2023]
Abstract
Aging is a progressive multifaceted functional decline of a biological system. Chronic age-related conditions such as neurodegenerative diseases are leading causes of death worldwide, and they are becoming a pressing problem for our society. To address this global challenge, there is a need for novel, safe, and effective rejuvenation therapies aimed at reversing age-related phenotypes and improving human health. With gene expression being a key determinant of cell identity and function, and in light of recent studies reporting rejuvenation effects through genetic perturbations, we propose an age reversal strategy focused on reprogramming the cell transcriptome to a youthful state. To this end, we suggest using transcriptomic data from primary human cells to predict rejuvenation targets and develop high-throughput aging assays, which can be used in large perturbation screens. We propose neural cells as particularly relevant targets for rejuvenation due to substantial impact of neurodegeneration on human frailty. Of all cell types in the brain, we argue that glutamatergic neurons, neuronal stem cells, and oligodendrocytes represent the most impactful and tractable targets. Lastly, we provide experimental designs for anti-aging reprogramming screens that will likely enable the development of neuronal age reversal therapies, which hold promise for dramatically improving human health.
Collapse
Affiliation(s)
- Alexandru M. Plesa
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Michael Shadpour
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- Department of Biological Engineering, MIT, Cambridge, MA USA
| | - Ed Boyden
- Department of Biological Engineering, MIT, Cambridge, MA USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| |
Collapse
|
38
|
Yang JH, Petty CA, Dixon-McDougall T, Lopez MV, Tyshkovskiy A, Maybury-Lewis S, Tian X, Ibrahim N, Chen Z, Griffin PT, Arnold M, Li J, Martinez OA, Behn A, Rogers-Hammond R, Angeli S, Gladyshev VN, Sinclair DA. Chemically induced reprogramming to reverse cellular aging. Aging (Albany NY) 2023; 15:5966-5989. [PMID: 37437248 PMCID: PMC10373966 DOI: 10.18632/aging.204896] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
A hallmark of eukaryotic aging is a loss of epigenetic information, a process that can be reversed. We have previously shown that the ectopic induction of the Yamanaka factors OCT4, SOX2, and KLF4 (OSK) in mammals can restore youthful DNA methylation patterns, transcript profiles, and tissue function, without erasing cellular identity, a process that requires active DNA demethylation. To screen for molecules that reverse cellular aging and rejuvenate human cells without altering the genome, we developed high-throughput cell-based assays that distinguish young from old and senescent cells, including transcription-based aging clocks and a real-time nucleocytoplasmic compartmentalization (NCC) assay. We identify six chemical cocktails, which, in less than a week and without compromising cellular identity, restore a youthful genome-wide transcript profile and reverse transcriptomic age. Thus, rejuvenation by age reversal can be achieved, not only by genetic, but also chemical means.
Collapse
Affiliation(s)
- Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Christopher A. Petty
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Thomas Dixon-McDougall
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Maria Vina Lopez
- Molecular and Biomedical Sciences, University of Maine, Orono, ME 04467, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Sun Maybury-Lewis
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Nabilah Ibrahim
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Zhili Chen
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Patrick T. Griffin
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Matthew Arnold
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Jien Li
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Oswaldo A. Martinez
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
- Department of Biology and Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alexander Behn
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Ryan Rogers-Hammond
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Suzanne Angeli
- Molecular and Biomedical Sciences, University of Maine, Orono, ME 04467, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David A. Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| |
Collapse
|
39
|
Vallés-Saiz L, Ávila J, Hernández F. Lamivudine (3TC), a Nucleoside Reverse Transcriptase Inhibitor, Prevents the Neuropathological Alterations Present in Mutant Tau Transgenic Mice. Int J Mol Sci 2023; 24:11144. [PMID: 37446327 DOI: 10.3390/ijms241311144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The dysregulation of transposable elements contributes to neurodegenerative disorders. Previous studies have reported an increase in retrotransposon transcription in Drosophila models as well as in human tauopathies. In this context, we tested the possible protective effects of a reverse transcriptase inhibitor, namely lamivudine (also known as 3TC), in P301S mice, an animal model of Alzheimer's disease based on FTDP-17-tau overexpression. Transgenic P301S mice administered lamivudine through drinking water showed a decrease in the following histopathological marks typical of tauopathies: tau phosphorylation; inflammation; neuronal death; and hippocampal atrophy. Lamivudine treatment attenuated motor deficits (Rotarod test) and improved short-term memory (Y-maze test). To evaluate the role of tau in retrotransposition, we cotransfected HeLa cells with a plasmid containing a complete LINE-1 sequence and a neomycin reporter cassette designed for retrotransposition assays, and a plasmid with the tau sequence. LINE-1 insertion increased considerably in the cotransfection compared to the transfection without tau. In addition, lamivudine inhibited the insertion of LINE-1. Our data suggest that the progression of the tauopathy can be attenuated by the administration of lamivudine upon the first symptoms of neuropathology.
Collapse
Affiliation(s)
- Laura Vallés-Saiz
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
40
|
Gaspar-Silva F, Trigo D, Magalhaes J. Ageing in the brain: mechanisms and rejuvenating strategies. Cell Mol Life Sci 2023; 80:190. [PMID: 37354261 DOI: 10.1007/s00018-023-04832-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Ageing is characterized by the progressive loss of cellular homeostasis, leading to an overall decline of the organism's fitness. In the brain, ageing is highly associated with cognitive decline and neurodegenerative diseases. With the rise in life expectancy, characterizing the brain ageing process becomes fundamental for developing therapeutic interventions against the increased incidence of age-related neurodegenerative diseases and to aim for an increase in human life span and, more importantly, health span. In this review, we start by introducing the molecular/cellular hallmarks associated with brain ageing and their impact on brain cell populations. Subsequently, we assess emerging evidence on how systemic ageing translates into brain ageing. Finally, we revisit the mainstream and the novel rejuvenating strategies, discussing the most successful ones in delaying brain ageing and related diseases.
Collapse
Affiliation(s)
- Filipa Gaspar-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Diogo Trigo
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Magalhaes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
41
|
Abstract
The process of aging manifests from a highly interconnected network of biological cascades resulting in the degradation and breakdown of every living organism over time. This natural development increases risk for numerous diseases and can be debilitating. Academic and industrial investigators have long sought to impede, or potentially reverse, aging in the hopes of alleviating clinical burden, restoring functionality, and promoting longevity. Despite widespread investigation, identifying impactful therapeutics has been hindered by narrow experimental validation and the lack of rigorous study design. In this review, we explore the current understanding of the biological mechanisms of aging and how this understanding both informs and limits interpreting data from experimental models based on these mechanisms. We also discuss select therapeutic strategies that have yielded promising data in these model systems with potential clinical translation. Lastly, we propose a unifying approach needed to rigorously vet current and future therapeutics and guide evaluation toward efficacious therapies.
Collapse
Affiliation(s)
- Robert S Rosen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| |
Collapse
|
42
|
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186:243-278. [PMID: 36599349 DOI: 10.1016/j.cell.2022.11.001] [Citation(s) in RCA: 2238] [Impact Index Per Article: 1119.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
Aging is driven by hallmarks fulfilling the following three premises: (1) their age-associated manifestation, (2) the acceleration of aging by experimentally accentuating them, and (3) the opportunity to decelerate, stop, or reverse aging by therapeutic interventions on them. We propose the following twelve hallmarks of aging: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. These hallmarks are interconnected among each other, as well as to the recently proposed hallmarks of health, which include organizational features of spatial compartmentalization, maintenance of homeostasis, and adequate responses to stress.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Cambridge, UK
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
43
|
Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol 2023; 24:45-62. [PMID: 35859206 PMCID: PMC9879573 DOI: 10.1038/s41580-022-00510-w] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Most adult organs contain regenerative stem cells, often organized in specific niches. Stem cell function is critical for tissue homeostasis and repair upon injury, and it is dependent on interactions with the niche. During ageing, stem cells decline in their regenerative potential and ability to give rise to differentiated cells in the tissue, which is associated with a deterioration of tissue integrity and health. Ageing-associated changes in regenerative tissue regions include defects in maintenance of stem cell quiescence, differentiation ability and bias, clonal expansion and infiltration of immune cells in the niche. In this Review, we discuss cellular and molecular mechanisms underlying ageing in the regenerative regions of different tissues as well as potential rejuvenation strategies. We focus primarily on brain, muscle and blood tissues, but also provide examples from other tissues, such as skin and intestine. We describe the complex interactions between different cell types, non-cell-autonomous mechanisms between ageing niches and stem cells, and the influence of systemic factors. We also compare different interventions for the rejuvenation of old regenerative regions. Future outlooks in the field of stem cell ageing are discussed, including strategies to counter ageing and age-dependent disease.
Collapse
Affiliation(s)
- Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
| | - Margaret A Goodell
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
| | - Thomas A Rando
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Neurology Service, VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Abstract
Ageing is known to be the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. They are currently incurable and worsen over time, which has broad implications in the context of lifespan and healthspan extension. Adding years to life and even to physical health is suboptimal or even insufficient, if cognitive ageing is not adequately improved. In this review, we will examine how interventions that have the potential to extend lifespan in animals affect the brain, and if they would be able to thwart or delay the development of cognitive dysfunction and/or neurodegeneration. These interventions range from lifestyle (caloric restriction, physical exercise and environmental enrichment) through pharmacological (nicotinamide adenine dinucleotide precursors, resveratrol, rapamycin, metformin, spermidine and senolytics) to epigenetic reprogramming. We argue that while many of these interventions have clear potential to improve cognitive health and resilience, large-scale and long-term randomised controlled trials are needed, along with studies utilising washout periods to determine the effects of supplementation cessation, particularly in aged individuals.
Collapse
|
45
|
Abstract
'Age reprogramming' refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future.
Collapse
Affiliation(s)
- Prim B. Singh
- Department of Medicine, Nazarbayev University School of Medicine, 5/1 Kerei Zhanibek Khandar Street, Astana 010000, Republic of Kazakhstan
| | - Assem Zhakupova
- Department of Medicine, Nazarbayev University School of Medicine, 5/1 Kerei Zhanibek Khandar Street, Astana 010000, Republic of Kazakhstan
| |
Collapse
|
46
|
Alle Q, Le Borgne E, Bensadoun P, Lemey C, Béchir N, Gabanou M, Estermann F, Bertrand‐Gaday C, Pessemesse L, Toupet K, Desprat R, Vialaret J, Hirtz C, Noël D, Jorgensen C, Casas F, Milhavet O, Lemaitre J. A single short reprogramming early in life initiates and propagates an epigenetically related mechanism improving fitness and promoting an increased healthy lifespan. Aging Cell 2022; 21:e13714. [PMID: 36251933 PMCID: PMC9649606 DOI: 10.1111/acel.13714] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Recent advances in cell reprogramming showed that OSKM induction is able to improve cell physiology in vitro and in vivo. Here, we show that a single short reprogramming induction is sufficient to prevent musculoskeletal functions deterioration of mice, when applied in early life. In addition, in old age, treated mice have improved tissue structures in kidney, spleen, skin, and lung, with an increased lifespan of 15% associated with organ-specific differential age-related DNA methylation signatures rejuvenated by the treatment. Altogether, our results indicate that a single short reprogramming early in life might initiate and propagate an epigenetically related mechanism to promote a healthy lifespan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Karine Toupet
- IRMB, Univ Montpellier, INSERMMontpellierFrance
- ECELLFrance Montpellier Facility, Univ MontpellierMontpellierFrance
| | | | - Jérôme Vialaret
- IRMB, Univ Montpellier, INSERMMontpellierFrance
- PPC Facility, CHU MontpellierMontpellierFrance
| | - Christophe Hirtz
- IRMB, Univ Montpellier, INSERMMontpellierFrance
- PPC Facility, CHU MontpellierMontpellierFrance
| | - Danièle Noël
- IRMB, Univ Montpellier, INSERMMontpellierFrance
- ECELLFrance Montpellier Facility, Univ MontpellierMontpellierFrance
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERMMontpellierFrance
- ECELLFrance Montpellier Facility, Univ MontpellierMontpellierFrance
| | - François Casas
- DMEM, Univ Montpellier, INRAEMontpellierFrance
- RAM‐METAMUS, Univ Montpellier, INRAEMontpellierFrance
| | - Ollivier Milhavet
- SAFE‐iPSC Facility, CHU MontpellierMontpellierFrance
- IRMB, Univ Montpellier, INSERM, CNRSMontpellierFrance
| | - Jean‐Marc Lemaitre
- IRMB, Univ Montpellier, INSERMMontpellierFrance
- SAFE‐iPSC Facility, CHU MontpellierMontpellierFrance
| |
Collapse
|
47
|
Pathological Nuclear Hallmarks in Dentate Granule Cells of Alzheimer’s Patients: A Biphasic Regulation of Neurogenesis. Int J Mol Sci 2022; 23:ijms232112873. [PMID: 36361662 PMCID: PMC9654738 DOI: 10.3390/ijms232112873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The dentate gyrus (DG) of the human hippocampus is a complex and dynamic structure harboring mature and immature granular neurons in diverse proliferative states. While most mammals show persistent neurogenesis through adulthood, human neurogenesis is still under debate. We found nuclear alterations in granular cells in autopsied human brains, detected by immunohistochemistry. These alterations differ from those reported in pyramidal neurons of the hippocampal circuit. Aging and early AD chromatin were clearly differentiated by the increased epigenetic markers H3K9me3 (heterochromatin suppressive mark) and H3K4me3 (transcriptional euchromatin mark). At early AD stages, lamin B2 was redistributed to the nucleoplasm, indicating cell-cycle reactivation, probably induced by hippocampal nuclear pathology. At intermediate and late AD stages, higher lamin B2 immunopositivity in the perinucleus suggests fewer immature neurons, less neurogenesis, and fewer adaptation resources to environmental factors. In addition, senile samples showed increased nuclear Tau interacting with aged chromatin, likely favoring DNA repair and maintaining genomic stability. However, at late AD stages, the progressive disappearance of phosphorylated Tau forms in the nucleus, increased chromatin disorganization, and increased nuclear autophagy support a model of biphasic neurogenesis in AD. Therefore, designing therapies to alleviate the neuronal nuclear pathology might be the only pathway to a true rejuvenation of brain circuits.
Collapse
|
48
|
Roux AE, Zhang C, Paw J, Zavala-Solorio J, Malahias E, Vijay T, Kolumam G, Kenyon C, Kimmel JC. Diverse partial reprogramming strategies restore youthful gene expression and transiently suppress cell identity. Cell Syst 2022; 13:574-587.e11. [PMID: 35690067 DOI: 10.1016/j.cels.2022.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 02/15/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023]
Abstract
Partial pluripotent reprogramming can reverse features of aging in mammalian cells, but the impact on somatic identity and the necessity of individual reprogramming factors remain unknown. Here, we used single-cell genomics to map the identity trajectory induced by partial reprogramming in multiple murine cell types and dissected the influence of each factor by screening all Yamanaka Factor subsets with pooled single-cell screens. We found that partial reprogramming restored youthful expression in adipogenic and mesenchymal stem cells but also temporarily suppressed somatic identity programs. Our pooled screens revealed that many subsets of the Yamanaka Factors both restore youthful expression and suppress somatic identity, but these effects were not tightly entangled. We also found that a multipotent reprogramming strategy inspired by amphibian regeneration restored youthful expression in myogenic cells. Our results suggest that various sets of reprogramming factors can restore youthful expression with varying degrees of somatic identity suppression. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Antoine E Roux
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Chunlian Zhang
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Jonathan Paw
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - José Zavala-Solorio
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Evangelia Malahias
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Twaritha Vijay
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Ganesh Kolumam
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Cynthia Kenyon
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Jacob C Kimmel
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA.
| |
Collapse
|
49
|
Yang L, Hung LY, Zhu Y, Ding S, Margolis KG, Leong KW. Material Engineering in Gut Microbiome and Human Health. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9804014. [PMID: 35958108 PMCID: PMC9343081 DOI: 10.34133/2022/9804014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the past decade regarding our understanding of the gut microbiome's role in human health. Currently, however, a comprehensive and focused review marrying the two distinct fields of gut microbiome and material research is lacking. To bridge the gap, the current paper discusses critical aspects of the rapidly emerging research topic of "material engineering in the gut microbiome and human health." By engaging scientists with diverse backgrounds in biomaterials, gut-microbiome axis, neuroscience, synthetic biology, tissue engineering, and biosensing in a dialogue, our goal is to accelerate the development of research tools for gut microbiome research and the development of therapeutics that target the gut microbiome. For this purpose, state-of-the-art knowledge is presented here on biomaterial technologies that facilitate the study, analysis, and manipulation of the gut microbiome, including intestinal organoids, gut-on-chip models, hydrogels for spatial mapping of gut microbiome compositions, microbiome biosensors, and oral bacteria delivery systems. In addition, a discussion is provided regarding the microbiome-gut-brain axis and the critical roles that biomaterials can play to investigate and regulate the axis. Lastly, perspectives are provided regarding future directions on how to develop and use novel biomaterials in gut microbiome research, as well as essential regulatory rules in clinical translation. In this way, we hope to inspire research into future biomaterial technologies to advance gut microbiome research and gut microbiome-based theragnostics.
Collapse
Affiliation(s)
- Letao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
50
|
Zhou C, Ni W, Zhu T, Dong S, Sun P, Hua F. Cellular Reprogramming and Its Potential Application in Alzheimer's Disease. Front Neurosci 2022; 16:884667. [PMID: 35464309 PMCID: PMC9023048 DOI: 10.3389/fnins.2022.884667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) has become the most common age-related dementia in the world and is currently incurable. Although many efforts have been made, the underlying mechanisms of AD remain unclear. Extracellular amyloid-beta deposition, intracellular tau hyperphosphorylation, neuronal death, glial cell activation, white matter damage, blood-brain barrier disruption, and other mechanisms all take part in this complicated disease, making it difficult to find an effective therapy. In the study of therapeutic methods, how to restore functional neurons and integrate myelin becomes the main point. In recent years, with the improvement and maturity of induced pluripotent stem cell technology and direct cell reprogramming technology, it has become possible to induce non-neuronal cells, such as fibroblasts or glial cells, directly into neuronal cells in vitro and in vivo. Remarkably, the induced neurons are functional and capable of entering the local neural net. These encouraging results provide a potential new approach for AD therapy. In this review, we summarized the characteristics of AD, the reprogramming technique, and the current research on the application of cellular reprogramming in AD. The existing problems regarding cellular reprogramming and its therapeutic potential for AD were also reviewed.
Collapse
Affiliation(s)
- Chao Zhou
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanyan Ni
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Taiyang Zhu
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuyu Dong
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| | - Ping Sun
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fang Hua
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|