1
|
Maisumu G, Willerth S, Nestor M, Waldau B, Schülke S, Nardi FV, Ahmed O, Zhou Y, Durens M, Liang B, Yakoub AM. Brain organoids: building higher-order complexity and neural circuitry models. Trends Biotechnol 2025:S0167-7799(25)00046-0. [PMID: 40221251 DOI: 10.1016/j.tibtech.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 04/14/2025]
Abstract
Brain organoids are 3D tissue models of the human brain that are derived from pluripotent stem cells (PSCs). They have enabled studies that were previously stymied by the inaccessibility of human brain tissue or the limitations of mouse models of some brain diseases. Despite their enormous potential, brain organoids have had significant limitations that prevented them from recapitulating the full complexity of the human brain and reduced their utility in disease studies. We describe recent progress in addressing these limitations, especially building complex organoids that recapitulate the interactions between multiple brain regions, and reconstructing in vitro the neural circuitry present in in vivo. These major advances in the human brain organoid technology will remarkably facilitate brain disease modeling and neuroscience research.
Collapse
Affiliation(s)
- Gulimiheranmu Maisumu
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Stephanie Willerth
- Department of Biomedical Engineering, University of Victoria, Victoria, BC, Canada
| | - Michael Nestor
- National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Ben Waldau
- Department of Neurological Surgery, University of California Davis, Sacramento, CA, USA
| | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany; Research Allergology (ALG 5), Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Francesco V Nardi
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Osama Ahmed
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - You Zhou
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA
| | - Madel Durens
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bo Liang
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Abraam M Yakoub
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Howard CE, Cheenath M, Crouch E. The promise of cerebral organoids for neonatology. Curr Opin Pediatr 2025; 37:182-190. [PMID: 40013913 PMCID: PMC11902893 DOI: 10.1097/mop.0000000000001446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
PURPOSE OF REVIEW Applying discoveries from basic research to patients in the neonatal intensive care unit (NICU) is challenging given the difficulty of modeling this population in animal models, lack of translational relevance from animal models to humans, and scarcity of primary human tissue. Human cell-derived cerebral organoid models are an appealing way to address some of these gaps. In this review, we will touch on previous work to model neonatal conditions in cerebral organoids, some limitations of this approach, and recent strategies that have attempted to address these limitations. RECENT FINDINGS While modeling of neurodevelopmental disorders has been an application of cerebral organoids since their initial description, recent studies have dramatically expanded the types of brain regions and disease models available. Additionally, work to increase the complexity of organoid models by including immune and vascular cells, as well as modeling human heterogeneity with mixed donor organoids will provide new opportunities to model neonatal pathologies. SUMMARY Organoids are an attractive model to study human neurodevelopmental pathologies relevant to patients in the neonatal ICU. New technologies will broaden the applicability of these models to neonatal research and their usefulness as a drug screening platform.
Collapse
Affiliation(s)
- Clare E Howard
- Division of Newborn Medicine, Boston Children’s Hospital
| | - Manju Cheenath
- Department of Obstetrics and Gynecology, University of California, San Francisco
| | - Elizabeth Crouch
- Department of Pediatrics, University of California, San Francisco
| |
Collapse
|
3
|
Vidyawan V, Puspita L, Juwono VB, Deline M, Pieknell K, Chang MY, Lee SH, Shim JW. Autophagy controls neuronal differentiation by regulating the WNT-DVL signaling pathway. Autophagy 2025; 21:719-736. [PMID: 39385328 DOI: 10.1080/15548627.2024.2407707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Macroautophagy/autophagy dysregulation is associated with various neurological diseases, including Vici syndrome. We aimed to determine the role of autophagy in early brain development. We generated neurons from human embryonic stem cells and developed a Vici syndrome model by introducing a loss-of-function mutation in the EPG5 gene. Autophagy-related genes were upregulated at the neuronal progenitor cell stage. Inhibition of autolysosome formation with bafilomycin A1 treatment at the neuronal progenitor cell stage delayed neuronal differentiation. Notably, WNT (Wnt family member) signaling may be part of the underlying mechanism, which is negatively regulated by autophagy-mediated DVL2 (disheveled segment polarity protein 2) degradation. Disruption of autolysosome formation may lead to failure in the downregulation of WNT signaling, delaying neuronal differentiation. EPG5 mutations disturbed autolysosome formation, subsequently inducing defects in progenitor cell differentiation and cortical layer generation in organoids. Disrupted autophagy leads to smaller organoids, recapitulating Vici syndrome-associated microcephaly, and validating the disease relevance of our study.Abbreviations: BafA1: bafilomycin A1; co-IP: co-immunoprecipitation; DVL2: dishevelled segment polarity protein 2; EPG5: ectopic P-granules 5 autophagy tethering factor; gRNA, guide RNA; hESC: human embryonic stem cells; KO: knockout; mDA, midbrain dopamine; NIM: neural induction media; NPC: neuronal progenitor cell; qPCR: quantitative polymerase chain reaction; UPS: ubiquitin-proteasome system; WNT: Wnt family member; WT: wild type.
Collapse
Affiliation(s)
- Vincencius Vidyawan
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Lesly Puspita
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Magdalena Deline
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Kelvin Pieknell
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
- Department of Premedicine, College of Medicine, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| |
Collapse
|
4
|
Kaiser VM, Gonzalez-Cordero A. Organoids - the future of pre-clinical development of AAV gene therapy for CNS disorders. Gene Ther 2025:10.1038/s41434-025-00527-8. [PMID: 40148593 DOI: 10.1038/s41434-025-00527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Advancements in our understanding of genetic disease and adeno-associated virus has prompted great excitement into the field of AAV-mediated gene therapy, particularly for genetic diseases of the central nervous system, including retinal disorders. Despite significant progress, exemplified by the approval of therapies such as Luxturna® and Zolgensma®, a substantial number of therapies remain in pre-clinical or early clinical stages, with many failing to advance to later phases. Whilst the use of animal models to test safety and delivery route efficacy of AAV treatments is imperative, differences in tissue structure and physiology between humans and animal models has restricted precise disease modelling and gene therapy development for many CNS disorders. Alongside the FDA push for non-animal alternative models, researchers are increasingly turning to human-based models, including stem cell-derived organoids, which can offer a more accurate representation of human cellular microenvironments and niches. As such, this review explores the advantages and limitations of brain and retinal organoids as pre-clinical models of disease, with a primary focus on their utility in identifying novel AAV capsids, cell-specific promoters, and their role in recent pre-clinical AAV gene therapy studies.
Collapse
Affiliation(s)
- Vivienne M Kaiser
- Stem Cell Medicine Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Unit, Children's Medical Research Institute, Westmead, NSW, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Liu C, Chen X, Ene J, Esmonde C, Kanekiyo T, Zeng C, Sun L, Li Y. Engineering Extracellular Vesicles Secreted by Human Brain Organoids with Different Regional Identity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15145-15162. [PMID: 40030083 DOI: 10.1021/acsami.4c22692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanovesicles that show significance in intercellular communications and high therapeutic potential. In this study, a novel type of EV subpopulation, matrix-bound nanovesicles (MBVs), was identified from a decellularized extracellular matrix of brain organoids that were derived from human pluripotent stem cells to compare with supernatant EVs (SuEVs) isolated from spent media. The organoids generated 10-fold more MBVs than did SuEVs. SuEVs contained more enriched microRNA cargo than MBVs, and the microRNA relative abundance changed during organoid maturation. The forebrain and hindbrain organoid SuEVs had a highly overlapped protein cargo based on proteomics analysis. More membrane proteins, including integrins, were identified in MBVs than SuEVs, which could contribute to MBV retention in matrices. Lipidomics data showed that MBVs were enriched in glycerophospholipids and sphingolipids, which affect the lipid membrane rigidity and recruitment of integral membrane proteins. To mimic ischemic stroke, in vitro oxygen and glucose deprivation model results revealed stronger recovery effects of MBVs than SuEVs at the same dose. The effects were exerted by regulating autophagy, reactive oxygen species scavenging, and anti-inflammatory ability. This study laid the foundation for advancing our knowledge of intercellular communication and for developing cell-free based therapies for treating neurological disorders such as ischemic stroke.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | | | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
6
|
Lei T, Zhang X, Fu G, Luo S, Zhao Z, Deng S, Li C, Cui Z, Cao J, Chen P, Yang H. Advances in human cellular mechanistic understanding and drug discovery of brain organoids for neurodegenerative diseases. Ageing Res Rev 2024; 102:102517. [PMID: 39321879 DOI: 10.1016/j.arr.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing rapidly as the aging population accelerates, and there are still no treatments to halt or reverse the progression of these diseases. While traditional 2D cultures and animal models fail to translate into effective therapies benefit patients, 3D cultured human brain organoids (hBOs) facilitate the use of non-invasive methods to capture patient data. The purpose of this study was to review the research and application of hBO in disease models and drug screening in NDs. The pluripotent stem cells are induced in multiple stages to form cerebral organoids, brain region-specific organoids and their derived brain cells, which exhibit complex brain-like structures and perform electrophysiological activities. The brain region-specific organoids and their derived neurons or glial cells contribute to the understanding of the pathogenesis of NDs and the efficient development of drugs, including Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Glial-rich brain organoids facilitate the study of glial function and neuroinflammation, including astrocytes, microglia, and oligodendrocytes. Further research on the maturation enhancement, vascularization and multi-organoid assembly of hBO will help to enhance the research and application of NDs cellular models.
Collapse
Affiliation(s)
- Tong Lei
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaoshuang Zhang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Gaoshuang Fu
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shaohan Luo
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ziwei Zhao
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
7
|
Zivko C, Sagar R, Xydia A, Lopez-Montes A, Mintzer J, Rosenberg PB, Shade DM, Porsteinsson AP, Lyketsos CG, Mahairaki V. iPSC-derived hindbrain organoids to evaluate escitalopram oxalate treatment responses targeting neuropsychiatric symptoms in Alzheimer's disease. Mol Psychiatry 2024; 29:3644-3652. [PMID: 38840027 PMCID: PMC11541203 DOI: 10.1038/s41380-024-02629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and the gradual deterioration of brain function eventually leads to death. Almost all AD patients suffer from neuropsychiatric symptoms (NPS), the emergence of which correlates with dysfunctional serotonergic systems. Our aim is to generate hindbrain organoids containing serotonergic neurons using human induced Pluripotent Stem Cells (iPSCs). Work presented here is laying the groundwork for the application of hindbrain organoids to evaluate individual differences in disease progression, NPS development, and pharmacological treatment response. Human peripheral blood mononuclear cells (PBMCs) from healthy volunteers (n = 3), an AD patient without NPS (n = 1), and AD patients with NPS (n = 2) were reprogrammed into iPSCs and subsequently differentiated into hindbrain organoids. The presence of serotonergic neurons was confirmed by quantitative reverse transcription PCR, flow cytometry, immunocytochemistry, and detection of released serotonin (5-HT). We successfully reprogrammed PBMCs into 6 iPSC lines, and subsequently generated hindbrain organoids from 6 individuals to study inter-patient variability using a precision medicine approach. To assess patient-specific treatment effects, organoids were treated with different concentrations of escitalopram oxalate, commonly prescribed for NPS. Changes in 5-HT levels before and after treatment with escitalopram were dose-dependent and variable across patients. Organoids from different people responded differently to the application of escitalopram in vitro. We propose that this 3D platform might be effectively used for drug screening purposes to predict patients with NPS most likely to respond to treatment in vivo and to understand the heterogeneity of treatment responses.
Collapse
Affiliation(s)
- Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - Ram Sagar
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - Ariadni Xydia
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - Alejandro Lopez-Montes
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
| | - Jacobo Mintzer
- Department of Health Sciences, Medical University of South Carolina, 29425, Charleston, SC, USA
- Ralph H. Johnson VA Healthcare System, 29401, Charleston, SC, USA
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - David M Shade
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 21205, Baltimore, MD, USA
| | - Anton P Porsteinsson
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, 14642, Rochester, NY, USA
| | - Constantine G Lyketsos
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
- Johns Hopkins Alzheimer's Disease Research Center, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA.
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA.
| |
Collapse
|
8
|
Puspita L, Juwono VB, Shim JW. Advances in human pluripotent stem cell reporter systems. iScience 2024; 27:110856. [PMID: 39290832 PMCID: PMC11407076 DOI: 10.1016/j.isci.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The capability of human pluripotent stem cells (hPSCs) to self-renew and differentiate into any cell type has greatly contributed to the advancement of biomedicine. Reporter lines derived from hPSCs have played a crucial role in elucidating the mechanisms underlying human development and diseases by acting as an alternative reporter system that cannot be used in living humans. To bring hPSCs closer to clinical application in transplantation, scientists have generated reporter lines for isolating the desired cell populations, as well as improving graft quality and treatment outcomes. This review presents an overview of the applications of hPSC reporter lines and the important variables in designing a reporter system, including options for gene delivery and editing tools, design of reporter constructs, and selection of reporter genes. It also provides insights into the prospects of hPSC reporter lines and the challenges that must be overcome to maximize the potential of hPSC reporter lines.
Collapse
Affiliation(s)
- Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| |
Collapse
|
9
|
Galgani A, Scotto M, Giorgi FS. The Neuroanatomy of Induced Pluripotent Stem Cells: In Vitro Models of Subcortical Nuclei in Neurodegenerative Disorders. Curr Issues Mol Biol 2024; 46:10180-10199. [PMID: 39329959 PMCID: PMC11430477 DOI: 10.3390/cimb46090607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Neuromodulatory subcortical systems (NSSs) are monoaminergic and cholinergic neuronal groups that are markedly and precociously involved in the pathogenesis of many neurodegenerative disorders (NDDs), including Parkinson's and Alzheimer's diseases. In humans, although many tools have been developed to infer information on these nuclei, encompassing neuroimaging and neurophysiological methods, a detailed and specific direct evaluation of their cellular features in vivo has been difficult to obtain until recent years. The development of induced pluripotent stem cell (iPSC) models has allowed research to deeply delve into the cellular and molecular biology of NSS neurons. In fact, iPSCs can be produced easily and non-invasively from patients' fibroblasts or circulating blood monocytes, by de-differentiating those cells using specific protocols, and then be re-differentiated towards neural phenotypes, which may reproduce the specific features of the correspondent brain neurons (including NSS ones) from the same patient. In this review, we summarized findings obtained in the field of NDDs using iPSCs, with the aim to understand how reliably these might represent in vitro models of NSS. We found that most of the current literature in the field of iPSCs and NSSs in NDDs has focused on midbrain dopaminergic neurons in Parkinson's disease, providing interesting results on cellular pathophysiology and even leading to the first human autologous transplantation. Differentiation protocols for noradrenergic, cholinergic, and serotoninergic neurons have also been recently defined and published. Thus, it might be expected that in the near future, this approach could extend to other NSSs and other NDDs.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
10
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Organoid and Organ-on-Chip Research. Adv Healthc Mater 2024; 13:e2301067. [PMID: 37479227 DOI: 10.1002/adhm.202301067] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Organoids and cells in organ-on-chip platforms replicate higher-level anatomical, physiological, or pathological states of tissues and organs. These technologies are widely regarded by academia, the pharmacological industry and regulators as key biomedical developments. To map advances in this emerging field, a literature analysis of 16,000 article metadata based on a quality-controlled text-mining algorithm is performed. The analysis covers titles, keywords, and abstracts of categorized academic publications in the literature and preprint databases published after 2010. The algorithm identifies and tracks 149 and 107 organs or organ substructures modeled as organoids and organ-on-chip, respectively, stem cell sources, as well as 130 diseases, and 16 groups of organisms other than human and mouse in which organoid/organ-on-chip technology is applied. The analysis illustrates changing diversity and focus in organoid/organ-on-chip research and captures its geographical distribution. The downloadable dataset provided is a robust framework for researchers to interrogate with their own questions.
Collapse
Affiliation(s)
- Jun-Ya Shoji
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Richard P Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
| | - Christine L Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, 7522NB, the Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| |
Collapse
|
11
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
12
|
Xu C, Alameri A, Leong W, Johnson E, Chen Z, Xu B, Leong KW. Multiscale engineering of brain organoids for disease modeling. Adv Drug Deliv Rev 2024; 210:115344. [PMID: 38810702 PMCID: PMC11265575 DOI: 10.1016/j.addr.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Brain organoids hold great potential for modeling human brain development and pathogenesis. They recapitulate certain aspects of the transcriptional trajectory, cellular diversity, tissue architecture and functions of the developing brain. In this review, we explore the engineering strategies to control the molecular-, cellular- and tissue-level inputs to achieve high-fidelity brain organoids. We review the application of brain organoids in neural disorder modeling and emerging bioengineering methods to improve data collection and feature extraction at multiscale. The integration of multiscale engineering strategies and analytical methods has significant potential to advance insight into neurological disorders and accelerate drug development.
Collapse
Affiliation(s)
- Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Alia Alameri
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Wei Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Emily Johnson
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
13
|
Lee DH, Lee EC, Lee JY, Lee MR, Shim JW, Oh JS. Neuronal Cell Differentiation of iPSCs for the Clinical Treatment of Neurological Diseases. Biomedicines 2024; 12:1350. [PMID: 38927557 PMCID: PMC11201423 DOI: 10.3390/biomedicines12061350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Current chemical treatments for cerebrovascular disease and neurological disorders have limited efficacy in tissue repair and functional restoration. Induced pluripotent stem cells (iPSCs) present a promising avenue in regenerative medicine for addressing neurological conditions. iPSCs, which are capable of reprogramming adult cells to regain pluripotency, offer the potential for patient-specific, personalized therapies. The modulation of molecular mechanisms through specific growth factor inhibition and signaling pathways can direct iPSCs' differentiation into neural stem cells (NSCs). These include employing bone morphogenetic protein-4 (BMP-4), transforming growth factor-beta (TGFβ), and Sma-and Mad-related protein (SMAD) signaling. iPSC-derived NSCs can subsequently differentiate into various neuron types, each performing distinct functions. Cell transplantation underscores the potential of iPSC-derived NSCs to treat neurodegenerative diseases such as Parkinson's disease and points to future research directions for optimizing differentiation protocols and enhancing clinical applications.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Industry-Academic Cooperation Foundation, The Catholic University of Korea, 222, Banpo-daro, Seocho-gu, Seoul 06591, Republic of Korea
| | - Eun Chae Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji young Lee
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Jae-won Shim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
14
|
Dwivedi I, Haddad GG. Investigating the neurobiology of maternal opioid use disorder and prenatal opioid exposure using brain organoid technology. Front Cell Neurosci 2024; 18:1403326. [PMID: 38812788 PMCID: PMC11133580 DOI: 10.3389/fncel.2024.1403326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Over the past two decades, Opioid Use Disorder (OUD) among pregnant women has become a major global public health concern. OUD has been characterized as a problematic pattern of opioid use despite adverse physical, psychological, behavioral, and or social consequences. Due to the relapsing-remitting nature of this disorder, pregnant mothers are chronically exposed to exogenous opioids, resulting in adverse neurological and neuropsychiatric outcomes. Collateral fetal exposure to opioids also precipitates severe neurodevelopmental and neurocognitive sequelae. At present, much of what is known regarding the neurobiological consequences of OUD and prenatal opioid exposure (POE) has been derived from preclinical studies in animal models and postnatal or postmortem investigations in humans. However, species-specific differences in brain development, variations in subject age/health/background, and disparities in sample collection or storage have complicated the interpretation of findings produced by these explorations. The ethical or logistical inaccessibility of human fetal brain tissue has also limited direct examinations of prenatal drug effects. To circumvent these confounding factors, recent groups have begun employing induced pluripotent stem cell (iPSC)-derived brain organoid technology, which provides access to key aspects of cellular and molecular brain development, structure, and function in vitro. In this review, we endeavor to encapsulate the advancements in brain organoid culture that have enabled scientists to model and dissect the neural underpinnings and effects of OUD and POE. We hope not only to emphasize the utility of brain organoids for investigating these conditions, but also to highlight opportunities for further technical and conceptual progress. Although the application of brain organoids to this critical field of research is still in its nascent stages, understanding the neurobiology of OUD and POE via this modality will provide critical insights for improving maternal and fetal outcomes.
Collapse
Affiliation(s)
- Ila Dwivedi
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel G. Haddad
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
15
|
Li Y, Duan J, Li Y, Zhang M, Wu J, Wang G, Li S, Hu Z, Qu Y, Li Y, Hu X, Guo F, Cao L, Lu J. Transcriptomic profiling across human serotonin neuron differentiation via the FEV reporter system. Stem Cell Res Ther 2024; 15:107. [PMID: 38637896 PMCID: PMC11027224 DOI: 10.1186/s13287-024-03728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.
Collapse
Affiliation(s)
- Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaan Wu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Qu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunhe Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiran Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Suzhou Institute of Tongji University, Suzhou, China.
| |
Collapse
|
16
|
Zhao HH, Haddad G. Brain organoid protocols and limitations. Front Cell Neurosci 2024; 18:1351734. [PMID: 38572070 PMCID: PMC10987830 DOI: 10.3389/fncel.2024.1351734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Stem cell-derived organoid technology is a powerful tool that revolutionizes the field of biomedical research and extends the scope of our understanding of human biology and diseases. Brain organoids especially open an opportunity for human brain research and modeling many human neurological diseases, which have lagged due to the inaccessibility of human brain samples and lack of similarity with other animal models. Brain organoids can be generated through various protocols and mimic whole brain or region-specific. To provide an overview of brain organoid technology, we summarize currently available protocols and list several factors to consider before choosing protocols. We also outline the limitations of current protocols and challenges that need to be solved in future investigation of brain development and pathobiology.
Collapse
Affiliation(s)
- Helen H. Zhao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel Haddad
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- The Rady Children's Hospital, San Diego, CA, United States
| |
Collapse
|
17
|
Sojka C, Sloan SA. Gliomas: a reflection of temporal gliogenic principles. Commun Biol 2024; 7:156. [PMID: 38321118 PMCID: PMC10847444 DOI: 10.1038/s42003-024-05833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The hijacking of early developmental programs is a canonical feature of gliomas where neoplastic cells resemble neurodevelopmental lineages and possess mechanisms of stem cell resilience. Given these parallels, uncovering how and when in developmental time gliomagenesis intersects with normal trajectories can greatly inform our understanding of tumor biology. Here, we review how elapsing time impacts the developmental principles of astrocyte (AS) and oligodendrocyte (OL) lineages, and how these same temporal programs are replicated, distorted, or circumvented in pathological settings such as gliomas. Additionally, we discuss how normal gliogenic processes can inform our understanding of the temporal progression of gliomagenesis, including when in developmental time gliomas originate, thrive, and can be pushed towards upon therapeutic coercion.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
18
|
Acharya P, Joshi P, Shrestha S, Choi NY, Jeong S, Lee MY. Uniform cerebral organoid culture on a pillar plate by simple and reproducible spheroid transfer from an ultralow attachment well plate. Biofabrication 2024; 16:10.1088/1758-5090/ad1b1e. [PMID: 38176079 PMCID: PMC10822717 DOI: 10.1088/1758-5090/ad1b1e] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Human induced pluripotent stem cell (iPSC)-derived brain organoids have potential to recapitulate the earliest stages of brain development, serving as an effectivein vitromodel for studying both normal brain development and disorders. However, current brain organoid culture methods face several challenges, including low throughput, high variability in organoid generation, and time-consuming, multiple transfer and encapsulation of cells in hydrogels throughout the culture. These limitations hinder the widespread application of brain organoids including high-throughput assessment of compounds in clinical and industrial lab settings. In this study, we demonstrate a straightforward approach of generating multiple cerebral organoids from iPSCs on a pillar plate platform, eliminating the need for labor-intensive, multiple transfer and encapsulation steps to ensure the reproducible generation of cerebral organoids. We formed embryoid bodies in an ultra-low attachment 384-well plate and subsequently transferred them to the pillar plate containing Matrigel, using a straightforward sandwiching and inverting method. Each pillar on the pillar plate contains a single spheroid, and the success rate of spheroid transfer was in a range of 95%-100%. Using this approach, we robustly generated cerebral organoids on the pillar plate and demonstrated an intra-batch coefficient of variation below 9%-19% based on ATP-based cell viability and compound treatment. Notably, our spheroid transfer method in combination with the pillar plate allows miniaturized culture of cerebral organoids, alleviates the issue of organoid variability, and has potential to significantly enhance assay throughput by allowingin situorganoid assessment as compared to conventional organoid culture in 6-/24-well plates, petri dishes, and spinner flasks.
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Sehoon Jeong
- Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
- Bioprinting Laboratories Inc., Dallas, Texas
| |
Collapse
|
19
|
Sagar R, Zivko C, Xydia A, Weisman DC, Lyketsos CG, Mahairaki V. Generation and Characterization of a Human-Derived and Induced Pluripotent Stem Cell (iPSC) Line from an Alzheimer's Disease Patient with Neuropsychiatric Symptoms. Biomedicines 2023; 11:3313. [PMID: 38137534 PMCID: PMC10741135 DOI: 10.3390/biomedicines11123313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Agitation is one of the most eminent characteristics of neuropsychiatric symptoms (NPS) affecting people living with Alzheimer's and Dementia and has serious consequences for patients and caregivers. The current consensus is that agitation results, in part, from the disruption of ascending monoamine regulators of cortical circuits, especially the loss of serotonergic activity. It is believed that the first line of treatment for these conditions is selective serotonin reuptake inhibitors (SSRIs), but these are effective in only about 40% of patients. Person-specific biomarkers, for example, ones based on in vitro iPSC-derived models of serotonin activity, which predict who with Agitation responds to an SSRI, are a major clinical priority. Here, we report the generation of human-induced pluripotent stem cells (iPSCs) from a 74-year-old AD patient, the homozygous APOE ε4/ε4 carrier, who developed Agitation. His iPSCs were reprogrammed from peripheral blood mononuclear cells (PBMCs) using the transient expression of pluripotency genes. These display typical iPSC characteristics that are karyotypically normal and attain the capacity to differentiate into three germ layers. The newly patient-derived iPSC line offers a unique resource to investigate the underlying mechanisms associated with neuropsychiatric symptom progression in AD.
Collapse
Affiliation(s)
- Ram Sagar
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.S.); (C.Z.); (A.X.)
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD 21287, USA
| | - Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.S.); (C.Z.); (A.X.)
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD 21287, USA
| | - Ariadni Xydia
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.S.); (C.Z.); (A.X.)
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD 21287, USA
| | - David C. Weisman
- Abington Neurologic Associates, Clinical Research Center, Abington, PA 19001, USA
| | - Constantine G. Lyketsos
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD 21287, USA
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.S.); (C.Z.); (A.X.)
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Estridge RC, O’Neill JE, Keung AJ. Matrigel Tunes H9 Stem Cell-Derived Human Cerebral Organoid Development. ORGANOIDS 2023; 2:165-176. [PMID: 38196836 PMCID: PMC10776236 DOI: 10.3390/organoids2040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Human cerebral organoids are readily generated from human embryonic stem cells and human induced pluripotent stem cells and are useful in studying human neurodevelopment. Recent work with human cerebral organoids have explored the creation of different brain regions and the impacts of soluble and mechanical cues. Matrigel is a gelatinous, heterogenous mixture of extracellular matrix proteins, morphogens, and growth factors secreted by Engelbreth-Holm-Swarm mouse sarcoma cells. It is a core component of almost all cerebral organoid protocols, generally supporting neuroepithelial budding and tissue polarization; yet, its roles and effects beyond its general requirement in organoid protocols are not well understood, and its mode of delivery is variable, including the embedding of organoids within it or its delivery in soluble form. Given its widespread usage, we asked how H9 stem cell-derived hCO development and composition are affected by Matrigel dosage and delivery method. We found Matrigel exposure influences organoid size, morphology, and cell type composition. We also showed that greater amounts of Matrigel promote an increase in the number of choroid plexus (ChP) cells, and this increase is regulated by the BMP4 pathway. These results illuminate the effects of Matrigel on human cerebral organoid development and the importance of delivery mode and amount on organoid phenotype and composition.
Collapse
Affiliation(s)
- R. Chris Estridge
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Jennifer E. O’Neill
- Genetics Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA;
| | - Albert J. Keung
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
21
|
Xu T, Cao L, Duan J, Li Y, Li Y, Hu Z, Li S, Zhang M, Wang G, Guo F, Lu J. Uncovering the role of FOXA2 in the Development of Human Serotonin Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303884. [PMID: 37679064 PMCID: PMC10646255 DOI: 10.1002/advs.202303884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Directed differentiation of serotonin neurons (SNs) from human pluripotent stem cells (hPSCs) provides a valuable tool for uncovering the mechanism of human SN development and the associated neuropsychiatric disorders. Previous studies report that FOXA2 is expressed by serotonergic progenitors (SNPs) and functioned as a serotonergic fate determinant in mouse. However, in the routine differentiation experiments, it is accidentally found that less SNs and more non-neuronal cells are obtained from SNP stage with higher percentage of FOXA2-positive cells. This phenomenon prompted them to question the role of FOXA2 as an intrinsic fate determinant for human SN differentiation. Herein, by direct differentiation of engineered hPSCs into SNs, it is found that the SNs are not derived from FOXA2-lineage cells; FOXA2-knockout hPSCs can still differentiate into mature and functional SNs with typical serotonergic identity; FOXA2 overexpression suppresses the SN differentiation, indicating that FOXA2 is not intrinsically required for human SN differentiation. Furthermore, repressing FOXA2 expression by retinoic acid (RA) and dynamically modulating Sonic Hedgehog (SHH) signaling pathway promotes human SN differentiation. This study uncovers the role of FOXA2 in human SN development and improves the differentiation efficiency of hPSCs into SNs by repressing FOXA2 expression.
Collapse
Affiliation(s)
- Ting Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Fei Guo
- Key Laboratory of Receptor ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
- Suzhou Institute of Tongji UniversitySuzhou215101China
| |
Collapse
|
22
|
Acharya P, Joshi P, Shrestha S, Choi NY, Jeong S, Lee MY. Uniform cerebral organoid culture on a pillar plate by simple and reproducible spheroid transfer from an ultralow attachment well plate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537886. [PMID: 37905145 PMCID: PMC10614749 DOI: 10.1101/2023.04.21.537886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Human induced pluripotent stem cell (iPSCs)-derived brain organoids have potential to recapitulate the earliest stages of brain development, serving as an effective in vitro model for studying both normal brain development and disorders. However, current brain organoid culture methods face several challenges, including low throughput, high variability in organoid generation, and time-consuming, multiple transfer and encapsulation of cells in hydrogels throughout the culture. These limitations hinder the widespread application of brain organoids including high-throughput assessment of compounds in clinical and industrial lab settings. In this study, we demonstrate a straightforward approach of generating multiple cerebral organoids from iPSCs on a pillar plate platform, eliminating the need for labor-intensive, multiple transfer and encapsulation steps to ensure the reproducible generation of cerebral organoids. We formed embryoid bodies (EBs) in an ultra-low attachment (ULA) 384-well plate and subsequently transferred them to the pillar plate containing Matrigel, using a straightforward sandwiching and inverting method. Each pillar on the pillar plate contains a single spheroid, and the success rate of spheroid transfer was in a range of 95 - 100%. By differentiating the EBs on the pillar plate, we achieved robust generation of cerebral organoids with a coefficient of variation (CV) below 19%. Notably, our spheroid transfer method in combination with the pillar plate allows miniaturized culture of cerebral organoids, alleviates the issue of organoid variability, and has potential to significantly enhance assay throughput by allowing in situ organoid assessment as compared to conventional organoid culture in 6-/24-well plates, petri dishes, and spinner flasks.
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Sehoon Jeong
- Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
- Bioprinting Laboratories Inc., Dallas, Texas
| |
Collapse
|
23
|
Wen J, Liu F, Cheng Q, Weygant N, Liang X, Fan F, Li C, Zhang L, Liu Z. Applications of organoid technology to brain tumors. CNS Neurosci Ther 2023; 29:2725-2743. [PMID: 37248629 PMCID: PMC10493676 DOI: 10.1111/cns.14272] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Lacking appropriate model impedes basic and preclinical researches of brain tumors. Organoids technology applying on brain tumors enables great recapitulation of the original tumors. Here, we compared brain tumor organoids (BTOs) with common models including cell lines, tumor spheroids, and patient-derived xenografts. Different BTOs can be customized to research objectives and particular brain tumor features. We systematically introduce the establishments and strengths of four different BTOs. BTOs derived from patient somatic cells are suitable for mimicking brain tumors caused by germline mutations and abnormal neurodevelopment, such as the tuberous sclerosis complex. BTOs derived from human pluripotent stem cells with genetic manipulations endow for identifying and understanding the roles of oncogenes and processes of oncogenesis. Brain tumoroids are the most clinically applicable BTOs, which could be generated within clinically relevant timescale and applied for drug screening, immunotherapy testing, biobanking, and investigating brain tumor mechanisms, such as cancer stem cells and therapy resistance. Brain organoids co-cultured with brain tumors (BO-BTs) own the greatest recapitulation of brain tumors. Tumor invasion and interactions between tumor cells and brain components could be greatly explored in this model. BO-BTs also offer a humanized platform for testing the therapeutic efficacy and side effects on neurons in preclinical trials. We also introduce the BTOs establishment fused with other advanced techniques, such as 3D bioprinting. So far, over 11 brain tumor types of BTOs have been established, especially for glioblastoma. We conclude BTOs could be a reliable model to understand brain tumors and develop targeted therapies.
Collapse
Affiliation(s)
- Jie Wen
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Fangkun Liu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Nathaniel Weygant
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine in GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Xisong Liang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Fan Fan
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Chuntao Li
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Liyang Zhang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Zhixiong Liu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
24
|
Marinho LSR, Chiarantin GMD, Ikebara JM, Cardoso DS, de Lima-Vasconcellos TH, Higa GSV, Ferraz MSA, De Pasquale R, Takada SH, Papes F, Muotri AR, Kihara AH. The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools. Semin Cell Dev Biol 2023; 144:67-76. [PMID: 36115764 DOI: 10.1016/j.semcdb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
The use of antidepressants during pregnancy benefits the mother's well-being, but the effects of such substances on neurodevelopment remain poorly understood. Moreover, the consequences of early exposure to antidepressants may not be immediately apparent at birth. In utero exposure to selective serotonin reuptake inhibitors (SSRIs) has been related to developmental abnormalities, including a reduced white matter volume. Several reports have observed an increased incidence of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) after prenatal exposure to SSRIs such as sertraline, the most widely prescribed SSRI. The advent of human-induced pluripotent stem cell (hiPSC) methods and assays now offers appropriate tools to test the consequences of such compounds for neurodevelopment in vitro. In particular, hiPSCs can be used to generate cerebral organoids - self-organized structures that recapitulate the morphology and complex physiology of the developing human brain, overcoming the limitations found in 2D cell culture and experimental animal models for testing drug efficacy and side effects. For example, single-cell RNA sequencing (scRNA-seq) and electrophysiological measurements on organoids can be used to evaluate the impact of antidepressants on the transcriptome and neuronal activity signatures in developing neurons. While the analysis of large-scale transcriptomic data depends on dimensionality reduction methods, electrophysiological recordings rely on temporal data series to discriminate statistical characteristics of neuronal activity, allowing for the rigorous analysis of the effects of antidepressants and other molecules that affect the developing nervous system, especially when applied in combination with relevant human cellular models such as brain organoids.
Collapse
Affiliation(s)
| | | | - Juliane Midori Ikebara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | | | - Guilherme Shigueto Vilar Higa
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil; Department of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, São Paulo, SP 05508-000, Brazil
| | | | - Roberto De Pasquale
- Department of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, São Paulo, SP 05508-000, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Fabio Papes
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil; Center for Medicinal Chemistry, University of Campinas, Campinas, SP 13083-875, Brazil; Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny, Kavli Institute for Brain and Mind, Archealization Center (ArchC), La Jolla, CA 92037, USA.
| | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil.
| |
Collapse
|
25
|
Yan YW, Qian ES, Woodard LE, Bejoy J. Neural lineage differentiation of human pluripotent stem cells: Advances in disease modeling. World J Stem Cells 2023; 15:530-547. [PMID: 37424945 PMCID: PMC10324500 DOI: 10.4252/wjsc.v15.i6.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.
Collapse
Affiliation(s)
- Yuan-Wei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Eddie S Qian
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Lauren E Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
26
|
Zhang Z, Wang X, Park S, Song H, Ming GL. Development and Application of Brain Region-Specific Organoids for Investigating Psychiatric Disorders. Biol Psychiatry 2023; 93:594-605. [PMID: 36759261 PMCID: PMC9998354 DOI: 10.1016/j.biopsych.2022.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Human society has been burdened by psychiatric disorders throughout the course of its history. The emergence and rapid advances of human brain organoid technology provide unprecedented opportunities for investigation of potential disease mechanisms and development of targeted or even personalized treatments for various psychiatric disorders. In this review, we summarize recent advances for generating organoids from human pluripotent stem cells to model distinct brain regions and diverse cell types. We also highlight recent progress, discuss limitations, and propose potential improvements in using patient-derived or genetically engineered brain region-specific organoids for investigating various psychiatric disorders.
Collapse
Affiliation(s)
- Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sean Park
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
27
|
Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells 2023; 12:930. [PMID: 36980271 PMCID: PMC10047824 DOI: 10.3390/cells12060930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. The capability of cell reprogramming, such as induced pluripotent stem cells (iPSCs) technology, solved the complications associated with human embryonic stem cells (hESC) usage. Moreover, iPSCs made significant contributions for human medicine, such as in diagnosis, therapeutic and regenerative medicine. The two-dimensional (2D) models allowed for monolayer cellular culture in vitro; however, they were surpassed by the three-dimensional (3D) cell culture system. The 3D cell culture provides higher cell-cell contact and a multi-layered cell culture, which more closely respects cellular morphology and polarity. It is more tightly able to resemble conditions in vivo and a closer approach to the architecture of human tissues, such as human organoids. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. Although organoid technology is up-and-coming, it also has some limitations that require improvements.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
28
|
Becerra-Calixto A, Mukherjee A, Ramirez S, Sepulveda S, Sinha T, Al-Lahham R, De Gregorio N, Gherardelli C, Soto C. Lewy Body-like Pathology and Loss of Dopaminergic Neurons in Midbrain Organoids Derived from Familial Parkinson's Disease Patient. Cells 2023; 12:cells12040625. [PMID: 36831291 PMCID: PMC9954141 DOI: 10.3390/cells12040625] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Progressive accumulation of α-Synuclein (αSyn) in Lewy bodies (LBs) and loss of dopaminergic (DA) neurons are the hallmark pathological features of Parkinson's disease (PD). Although currently available in vitro and in vivo models have provided crucial information about PD pathogenesis, the mechanistic link between the progressive accumulation of αSyn into LBs and the loss of DA neurons is still unclear. To address this, it is critical to model LB formation and DA neuron loss, the two key neuropathological aspects of PD, in a relevant in vitro system. In this study, we developed a human midbrain-like organoid (hMBO) model of PD. We demonstrated that hMBOs generated from induced pluripotent stem cells (hiPSCs), derived from a familial PD (fPD) patient carrying αSyn gene (SNCA) triplication accumulate pathological αSyn over time. These cytoplasmic inclusions spatially and morphologically resembled diverse stages of LB formation and were composed of key markers of LBs. Importantly, the progressive accumulation of pathological αSyn was paralleled by the loss of DA neurons and elevated apoptosis. The model developed in this study will complement the existing in vitro models of PD and will provide a unique platform to study the spatiotemporal events governing LB formation and their relation with neurodegeneration. Furthermore, this model will also be beneficial for in vitro screening and the development of therapeutic compounds.
Collapse
|
29
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
30
|
Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids. Biomolecules 2022; 13:biom13010025. [PMID: 36671410 PMCID: PMC9855696 DOI: 10.3390/biom13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Brain organoids are invaluable tools for pathophysiological studies or drug screening, but there are still challenges to overcome in making them more reproducible and relevant. Recent advances in three-dimensional (3D) bioprinting of human neural organoids is an emerging approach that may overcome the limitations of self-organized organoids. It requires the development of optimal hydrogels, and a wealth of research has improved our knowledge about biomaterials both in terms of their intrinsic properties and their relevance on 3D culture of brain cells and tissue. Although biomaterials are rarely biologically neutral, few articles have reviewed their roles on neural cells. We here review the current knowledge on unmodified biomaterials amenable to support 3D bioprinting of neural organoids with a particular interest in their impact on cell homeostasis. Alginate is a particularly suitable bioink base for cell encapsulation. Gelatine is a valuable helper agent for 3D bioprinting due to its viscosity. Collagen, fibrin, hyaluronic acid and laminin provide biological support to adhesion, motility, differentiation or synaptogenesis and optimize the 3D culture of neural cells. Optimization of specialized hydrogels to direct differentiation of stem cells together with an increased resolution in phenotype analysis will further extend the spectrum of possible bioprinted brain disease models.
Collapse
|
31
|
Akter M, Ding B. Modeling Movement Disorders via Generation of hiPSC-Derived Motor Neurons. Cells 2022; 11:3796. [PMID: 36497056 PMCID: PMC9737271 DOI: 10.3390/cells11233796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Generation of motor neurons (MNs) from human-induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain tissues and provides an unprecedent approach for modeling MN-related diseases. In this review, we discuss the recent progression in understanding the regulatory mechanisms of MN differentiation and their applications in the generation of MNs from hiPSCs, with a particular focus on two approaches: induction by small molecules and induction by lentiviral delivery of transcription factors. At each induction stage, different culture media and supplements, typical growth conditions and cellular morphology, and specific markers for validation of cell identity and quality control are specifically discussed. Both approaches can generate functional MNs. Currently, the major challenges in modeling neurological diseases using iPSC-derived neurons are: obtaining neurons with high purity and yield; long-term neuron culture to reach full maturation; and how to culture neurons more physiologically to maximize relevance to in vivo conditions.
Collapse
Affiliation(s)
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
32
|
Elder N, Fattahi F, McDevitt TC, Zholudeva LV. Diseased, differentiated and difficult: Strategies for improved engineering of in vitro neurological systems. Front Cell Neurosci 2022; 16:962103. [PMID: 36238834 PMCID: PMC9550918 DOI: 10.3389/fncel.2022.962103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
The rapidly growing field of cellular engineering is enabling scientists to more effectively create in vitro models of disease and develop specific cell types that can be used to repair damaged tissue. In particular, the engineering of neurons and other components of the nervous system is at the forefront of this field. The methods used to engineer neural cells can be largely divided into systems that undergo directed differentiation through exogenous stimulation (i.e., via small molecules, arguably following developmental pathways) and those that undergo induced differentiation via protein overexpression (i.e., genetically induced and activated; arguably bypassing developmental pathways). Here, we highlight the differences between directed differentiation and induced differentiation strategies, how they can complement one another to generate specific cell phenotypes, and impacts of each strategy on downstream applications. Continued research in this nascent field will lead to the development of improved models of neurological circuits and novel treatments for those living with neurological injury and disease.
Collapse
Affiliation(s)
- Nicholas Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Gladstone Institutes, San Francisco, CA, United States
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
- Sana Biotechnology, Inc., South San Francisco, CA, United States
| | - Lyandysha V. Zholudeva
- Gladstone Institutes, San Francisco, CA, United States
- *Correspondence: Lyandysha V. Zholudeva,
| |
Collapse
|
33
|
Xu T, Duan J, Li Y, Wang G, Li S, Li Y, Lu W, Yan X, Ren Y, Guo F, Cao L, Lu J. Generation of a TPH2-EGFP reporter cell line for purification and monitoring of human serotonin neurons in vitro and in vivo. Stem Cell Reports 2022; 17:2365-2379. [PMID: 36150384 PMCID: PMC9561537 DOI: 10.1016/j.stemcr.2022.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 10/25/2022] Open
Abstract
Generation of serotonin neurons (SNs) from human pluripotent stem cells (hPSCs) provides a promising platform to explore the mechanisms of serotonin-associated neuropsychiatric disorders. However, neural differentiation always yields heterogeneous cell populations, making it difficult to identify and purify SNs in vitro or track them in vivo following transplantation. Herein, we generated a TPH2-EGFP reporter hPSC line with insertion of EGFP into the endogenous tryptophan hydroxylase 2 (TPH2) locus using CRISPR-Cas9-mediated gene editing technology. This TPH2-reporter, which faithfully indicated TPH2 expression during differentiation, enabled us to obtain purified SNs for subsequent transcriptional analysis and study of pharmacological responses to antidepressants. In addition, the reporter system showed strong EGFP expression to indicate SNs, which enabled us to explore in vitro and ex vivo electrophysiological properties of SNs. In conclusion, this TPH2-EGFP reporter cell line might be of great significance for studies on human SN-related development and differentiation, drug screening, disease modeling, and cell replacement therapies.
Collapse
Affiliation(s)
- Ting Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenting Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xinyi Yan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yixuan Ren
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Suzhou Institute of Tongji University, Suzhou 215101, China.
| |
Collapse
|
34
|
Iyer NR, Ashton RS. Bioengineering the human spinal cord. Front Cell Dev Biol 2022; 10:942742. [PMID: 36092702 PMCID: PMC9458954 DOI: 10.3389/fcell.2022.942742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Three dimensional, self-assembled organoids that recapitulate key developmental and organizational events during embryogenesis have proven transformative for the study of human central nervous system (CNS) development, evolution, and disease pathology. Brain organoids have predominated the field, but human pluripotent stem cell (hPSC)-derived models of the spinal cord are on the rise. This has required piecing together the complex interactions between rostrocaudal patterning, which specifies axial diversity, and dorsoventral patterning, which establishes locomotor and somatosensory phenotypes. Here, we review how recent insights into neurodevelopmental biology have driven advancements in spinal organoid research, generating experimental models that have the potential to deepen our understanding of neural circuit development, central pattern generation (CPG), and neurodegenerative disease along the body axis. In addition, we discuss the application of bioengineering strategies to drive spinal tissue morphogenesis in vitro, current limitations, and future perspectives on these emerging model systems.
Collapse
Affiliation(s)
- Nisha R. Iyer
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
| | - Randolph S. Ashton
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
35
|
Phenotypic, metabolic, and biogenesis properties of human stem cell-derived cerebellar spheroids. Sci Rep 2022; 12:12880. [PMID: 35896708 PMCID: PMC9329474 DOI: 10.1038/s41598-022-16970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Human cerebellum consists of high density and complexity of neurons. Thus, it is challenging to differentiate cerebellar-like organoids with similar cellular markers and function to the human brain. Our previous study showed that the combination of retinoic acid (RA), Wingless/integrated (Wnt) activator, and Sonic Hedgehog (SHH) activator promotes cerebellar differentiation from human induced pluripotent stem cells (hiPSCs). This study examined phenotypic, metabolic, and biogenesis in early cerebellar development. Cerebellum spheroids were differentiated from human iPSK3 cells. During day 7–14, RA and Wnt activator CHIR99021 were used and SHH activator purmorphamine (PMR) was added later to promote ventralization. Gene expression for early cerebellar layer markers, metabolism, and extracellular vesicle (EV) biogenesis were characterized. Zinc-induced neurotoxicity was investigated as a proof-of-concept of neurotoxicity study. Flow cytometry results showed that there was no significant difference in NEPH3, PTF1A, OLIG2, and MATH1 protein expression between RCP (RA-CHIR-PMR) versus the control condition. However, the expression of cerebellar genes for the molecular layer (BHLE22), the granule cell layer (GABRB2, PAX6, TMEM266, KCNIP4), the Bergmann glial cells (QK1, DAO), and the Purkinje cell layer (ARHGEF33, KIT, MX1, MYH10, PPP1R17, SCGN) was significantly higher in the RCP condition than the control. The shift in metabolic pathways toward glycolysis was observed for RCP condition. The EV biogenesis marker expression was retained. Mild zinc-induced neurotoxicity may exist when zinc exposure exceeds 1.0 µM. RCP treatment can promote specific cerebellar-like differentiation from hiPSCs indicated by gene expression of early cerebellar markers and regionally enriched genes. The higher cerebellar marker expression is accompanied by the elevated glycolysis with the retained EV biogenesis. This study should advance the understanding of biomarkers during early cerebellar development for cerebellum organoid engineering and neurotoxicity study.
Collapse
|
36
|
Zhang Z, O'Laughlin R, Song H, Ming GL. Patterning of brain organoids derived from human pluripotent stem cells. Curr Opin Neurobiol 2022; 74:102536. [PMID: 35405627 PMCID: PMC9167774 DOI: 10.1016/j.conb.2022.102536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
Abstract
The emerging technology of brain organoids deriving from human pluripotent stem cells provides unprecedented opportunities to study human brain development and associated disorders. Various brain organoid protocols have been developed that can recapitulate some key features of cell type diversity, cytoarchitectural organization, developmental processes, functions, and pathologies of the developing human brain. In this review, we focus on patterning of human stem cell-derived brain organoids. We start with an overview of general procedures to generate brain organoids. We then highlight some recently developed brain organoid protocols and chemical cues involved in modeling development of specific human brain regions, subregions, and multiple regions together. We also discuss limitations and potential future improvements of human brain organoid technology.
Collapse
Affiliation(s)
- Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA
| | - Richard O'Laughlin
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Philadelphia, PA 19104, USA; The Epigenetics Institute, Philadelphia, PA 19104, USA. https://twitter.com/UPenn_SongMing
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Anastasaki C, Wilson AF, Chen AS, Wegscheid ML, Gutmann DH. Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization. STAR Protoc 2022; 3:101173. [PMID: 35199037 PMCID: PMC8844852 DOI: 10.1016/j.xpro.2022.101173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cerebral organoids (COs) can serve as an in vitro model for studying normal and pathologic human brain development. Here, we optimized existing protocols to streamline the generation of forebrain COs from hiPSCs. We employ these COs to define the impact of disease-causing mutations on cell fate, differentiation, maturation, and morphology relevant to neurodevelopmental disorders. Although limited to forebrain CO identity, this schema requires minimal external interference and is amenable to low-throughput biochemical assays. For complete details on the use and execution of this profile, please refer to Anastasaki et al. (2020) and Wegscheid et al. (2021).
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anna F. Wilson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander S. Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle L. Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
39
|
Jang H, Kim SH, Koh Y, Yoon KJ. Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. Int J Stem Cells 2022; 15:41-59. [PMID: 35220291 PMCID: PMC8889333 DOI: 10.15283/ijsc22004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seo Hyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Youmin Koh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KAIST-Wonjin Cell Therapy Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
40
|
Kofman S, Mohan N, Sun X, Ibric L, Piermarini E, Qiang L. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J Tissue Eng 2022; 13:20417314221113391. [PMID: 35898331 PMCID: PMC9310295 DOI: 10.1177/20417314221113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Engineered three-dimensional (3D) in vitro and ex vivo neural tissues, also known as "mini brains and spinal cords in a dish," can be derived from different types of human stem cells via several differentiation protocols. In general, human mini brains are micro-scale physiological systems consisting of mixed populations of neural progenitor cells, glial cells, and neurons that may represent key features of human brain anatomy and function. To date, these specialized 3D tissue structures can be characterized into spheroids, organoids, assembloids, organ-on-a-chip and their various combinations based on generation procedures and cellular components. These 3D CNS models incorporate complex cell-cell interactions and play an essential role in bridging the gap between two-dimensional human neuroglial cultures and animal models. Indeed, they provide an innovative platform for disease modeling and therapeutic cell replacement, especially shedding light on the potential to realize personalized medicine for neurological disorders when combined with the revolutionary human induced pluripotent stem cell technology. In this review, we highlight human 3D CNS models developed from a variety of experimental strategies, emphasize their advances and remaining challenges, evaluate their state-of-the-art applications in recapitulating crucial phenotypic aspects of many CNS diseases, and discuss the role of contemporary technologies in the prospective improvement of their composition, consistency, complexity, and maturation.
Collapse
Affiliation(s)
- Simeon Kofman
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Larisa Ibric
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|