1
|
Montague EC, Ozcan B, Sefton E, Wulkan F, Alibhai FJ, Laflamme MA. Human pluripotent stem cell-based cardiac repair: Lessons learned and challenges ahead. Adv Drug Deliv Rev 2025; 222:115594. [PMID: 40334814 DOI: 10.1016/j.addr.2025.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and hPSC-derived cardiac progenitors (hPSC-CPs) represents a promising strategy for regenerating hearts damaged by myocardial infarction (MI). After nearly two decades of experience testing these cell populations in various small- and large-animal MI models, multiple clinical trials have recently been initiated. In this review, we consider the principal lessons learned from preclinical experience with hPSC-CMs and -CPs, focusing on three conclusions that have been supported by the majority of reported transplantation studies. First, hPSC-CMs and -CPs stably engraft in injured hearts and partially remuscularize the infarct scar, but more progress is needed to improve graft cell retention and survival. Second, the transplantation of hPSC-CMs and -CPs has been found to improve contractile function in infarcted hearts, but the mechanistic basis for these effects remains incompletely elucidated. Third, the graft tissue formed by these cells can integrate and activate synchronously with host myocardium, but this capacity for electromechanical integration has been associated with an elevated risk of graft-related arrhythmias. Here, we summarize the preclinical evidence supporting these three observations, identify the relevant gaps and barriers to translation, and summarize ongoing efforts to improve the safety and efficacy of hPSC-CM- and -CP-based regenerative therapies.
Collapse
Affiliation(s)
- E Coulter Montague
- Department of Biomedical Engineering, University of Toronto, ON, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Bilgehan Ozcan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Elana Sefton
- Department of Biomedical Engineering, University of Toronto, ON, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Fanny Wulkan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Hong Y, Liu J, Wang W, Li H, Kong W, Li X, Zhang W, Pahlavan S, Tang YD, Wang X, Wang K. Pluripotent stem cell-derived cardiomyocyte transplantation: marching from bench to bedside. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2801-x. [PMID: 40418524 DOI: 10.1007/s11427-024-2801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/12/2024] [Indexed: 05/27/2025]
Abstract
Cardiovascular diseases such as myocardial infarction, heart failure, and cardiomyopathy, persist as a leading global cause of death. Current treatment options have inherent limitations, particularly in terms of cardiac regeneration due to the limited regenerative capacity of adult human hearts. The transplantation of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) has emerged as a promising and potential solution to address this challenge. This review aims to summarize the latest advancements and prospects of PSC-CM transplantation (PCT), along with the existing constraints, such as immune rejection and engraftment arrhythmias, and corresponding solutions. Encompassing a comprehensive range from fundamental research findings and preclinical experiments to ongoing clinical trials, we hope to offer insights into PCT from bench to bedside.
Collapse
Affiliation(s)
- Yi Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Department of Education, Peking University First Hospital, Peking University, Beijing, 100035, China
| | - Jiarui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Weixuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Weijing Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Xiaoxia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing, 102200, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, The Academic Center for Education, Culture and Research, Tehran, 14155-4364, Iran
| | - Yi-da Tang
- Department of Cardiology and Institute of Vascular Medicine, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China.
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
3
|
Gibbs CE, Boyle PM. Population-based computational simulations elucidate mechanisms of focal arrhythmia following stem cell injection. J Mol Cell Cardiol 2025; 204:5-16. [PMID: 40280466 DOI: 10.1016/j.yjmcc.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/02/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Following a myocardial infarction (MI), a large portion of ventricular cells are replaced by scar, leading to adverse structural remodeling and heart failure. The use of stem cell-derived cardiomyocytes has shown promise in restoring cardiac function in animal models following an MI but leads to rapid focal ventricular tachycardia (VT). The VT in these animals can be variable, and its underlying mechanisms remain unknown. In this study, we used three distinct computational models derived from histological images of post-MI non-human primate ventricles to understand how human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) grafts can affect focal VT individually and synergistically. Specifically, we explored whether grafts could work cooperatively to create new arrhythmia and if geometric features such as graft tortuosity, area, host isolation, and amount of surrounding scar inhibited or enhanced the effect. We observed at least one instance of graft-host excitation (GHE) for eleven of the twenty-five individual grafts examined. Since we used a stochastic population-of-models-based approach to generate graft boundaries, we found that the number of configurations with GHE varied from graft to graft. We also examined grafts in aggregate and found that the high prevalence of GHE when all grafts were included arose from combinations of individually arrhythmogenic grafts (i.e., the overall increase in arrhythmogenicity resulted from graft complementarity rather than graft cooperativity). Further analysis of graft spatial features showed that arrhythmogenic grafts tend to be in areas with high host isolation (i.e., spatially confined regions of surviving myocardium interdigitated with engrafted cells) and when graft area and tortuosity were also high. These insights can aid in the design of novel injection schemes that could result in safer therapy for patients.
Collapse
Affiliation(s)
- Chelsea E Gibbs
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA; eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Demkes E, Cervera-Barea A, Ebner-Peking P, Wolf M, Hochmann S, Scheren AS, Bijsterveld M, van Oostveen CM, Jansen M, Visser J, Triebert W, Halloin C, Dobbe JGG, de Vos J, Schürz M, Danmayr J, Aalders MCG, Boink GJJ, Neef K, Strunk D, Zweigerdt R, de Jager SCA, Sluijter JPG. Human Cardiac Microtissues Display Improved Engraftment and Survival in a Porcine Model of Myocardial Infarction. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10596-0. [PMID: 40082315 DOI: 10.1007/s12265-025-10596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/20/2025] [Indexed: 03/16/2025]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) constitute a promising therapy for myocardial infarction (MI). The lack of an effective immunosuppressive regimen, combined with single-cell transplantations, results in suboptimal outcomes, such as poor engraftment and compromised therapeutic efficacy. This study aimed to confirm the increased retention of hiPSC-CMs microtissues (CMTs) over single-cell grafts. To ensure the long-term survival of CMTs for potential cardiac applications, CMTs were transplanted in a porcine model of MI using a triple immunosuppression protocol designed to limit immune cell infiltration. Acute evaluation of spherical hiPSC-CMs aggregates and dissociated aggregates followed by the development of a triple immunosuppression protocol were performed in healthy animals. Long-term survival of CMTs was later examined in pigs that underwent a transient coronary occlusion. Two weeks post-MI, the immunosuppression treatment was initiated and on day 28 the animals were transplanted with CMTs and followed for four more weeks. Acutely, CMTs showed superior retention compared to their dissociated counterparts. The immunosuppression regimen led to no organ damage and stable levels of circulating drugs once optimal dose was achieved. Two weeks post-xenotransplantation in healthy pigs, histology revealed that immunosuppressed animals displayed a significant decrease in total cellular infiltrates, particularly in CD3+ T cells. Pigs that underwent coronary occlusion, which later were immunosuppressed and treated with CMTs (5 × 107 cells), showed cell engraftment onto the native myocardium four weeks post-transplantation. This study supports the use of a triple immunosuppression cocktail to ensure long-term survival of CMTs for the treatment of MI.
Collapse
Affiliation(s)
- Evelyne Demkes
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aina Cervera-Barea
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | | | - Martin Wolf
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Hochmann
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Amy S Scheren
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mayke Bijsterveld
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - C Marlies van Oostveen
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marlijn Jansen
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joyce Visser
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany
| | - Caroline Halloin
- Cell Therapy Process Development, Novo Nordisk A/S, Maaloev, Denmark
| | - Johannes G G Dobbe
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith de Vos
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Melanie Schürz
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Joachim Danmayr
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Maurice C G Aalders
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaus Neef
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dirk Strunk
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany
| | - Saskia C A de Jager
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Kirkeby A, Main H, Carpenter M. Pluripotent stem-cell-derived therapies in clinical trial: A 2025 update. Cell Stem Cell 2025; 32:10-37. [PMID: 39753110 DOI: 10.1016/j.stem.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
Since the first derivation of human pluripotent stem cells (hPSCs) 27 years ago, technologies to control their differentiation and manufacturing have advanced immensely, enabling increasing numbers of clinical trials with hPSC-derived products. Here, we revew the landscape of interventional hPSC trials worldwide, highlighting available data on clinical safety and efficacy. As of December 2024, we identify 116 clinical trials with regulatory approval, testing 83 hPSC products. The majority of trials are targeting eye, central nervous system, and cancer. To date, more than 1,200 patients have been dosed with hPSC products, accumulating to >1011 clinically administered cells, so far showing no generalizable safety concerns.
Collapse
Affiliation(s)
- Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Heather Main
- HOYA Consulting (ReGenMed Solutions), Stockholm, Sweden
| | | |
Collapse
|
6
|
Guichardaz M, Bottini S, Balmas E, Bertero A. Overcoming the Silencing of Doxycycline-Inducible Promoters in hiPSC-derived Cardiomyocytes. OPEN RESEARCH EUROPE 2024; 4:266. [PMID: 39926351 PMCID: PMC11803382 DOI: 10.12688/openreseurope.19024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/11/2025]
Abstract
Background Human induced pluripotent stem cells (hiPSCs) are pivotal for studying human development, modeling diseases, and advancing regenerative medicine. Effective control of transgene expression is crucial to achieve temporal and quantitative precision in all of these contexts. The doxycycline (dox)-inducible OPTi-OX system, which integrates the Tet-On 3G transactivator and dox-responsive transgene at the hROSA26 and AAVS1 genomic safe harbors (GSHs), respectively, offers a promising solution. Yet, transgene silencing, particularly in hiPSC-derived cardiomyocytes (hiPSC-CMs), limits its utility. Methods To address this, we evaluated strategies to enhance dox-inducible transgene expression. We compared two promoters, TRE3VG and T11, for activity and stability, and investigated the addition of a Ubiquitous Chromatin Opening Element (UCOE) to reduce silencing. We also tested relocating the transgene cassette to the CLYBL GSH, and employed sodium butyrate (SB), a histone deacetylase inhibitor, to restore promoter activity. Transgene expression was assessed via flow cytometry and real-time quantitative PCR. Results TRE3VG exhibited higher activity than T11, but both were prone to silencing. UCOE did not enhance promoter activity in hiPSCs, but modestly reduced silencing in hiPSC-CMs. Targeting the CLYBL locus improved promoter activity compared to AAVS1 in both hiPSCs and hiPSC-CMs. SB restored activity in silenced inducible promoters within hiPSC-CMs, but compromised hiPSC viability. Unexpectedly, Tet-On 3G was silenced in some clones and could not be reactivated by SB. Conclusions These findings underscore the need for integrating multiple strategies, including careful GSH selection, improved cassette design, epigenetic modulation, and clone screening, to develop robust dox-inducible systems that retain functionality during hiPSC differentiation.
Collapse
Affiliation(s)
- Michelle Guichardaz
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| |
Collapse
|
7
|
Chen SY, Fang YH, Huang CY, Wu JH, Shan YS, Liu YW, Huang PH. Transcriptome-wide RNA 5-methylcytosine profiles of human iPSCs and iPSC-derived cardiomyocytes. Sci Data 2024; 11:1378. [PMID: 39695135 PMCID: PMC11655970 DOI: 10.1038/s41597-024-04209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Cardiac regenerative therapy has recently progressed by reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and advanced by large-scale differentiation-derived cardiomyocytes (hiPSC-CMs). However, repairing damaged cardiac tissues with hiPSC-CMs remains limited due to immune rejection, cardiac arrhythmias, and concerns over tumor formation after hiPSC-CM transplantation. Despite efforts in profiling epigenomic changes during cardiac differentiation, regulatory mechanisms underlying 5-methylcytosine (m5C) deposition in RNA m5C epitranscriptomic landscape during hiPSC-to-cardiomyocyte differentiation remain unclear. Herein, bisulfite RNA-sequencing analysis was conducted in human pluripotent stem cells (hPSCs) from three independent cellular origins, and their derived cardiomyocytes (hPSC-CM), metabolic-maturation of derived cardiomyocytes (hPSC-CM-lac) and biochemical-enhanced derived cardiomyocytes (hPSC-CM-TDI). Integrated analysis of differentially methylated RNA m5C profiles and transcriptome-wide expression facilitated the identification of m5C sites coupled to the cardiomyocyte differentiation and RNA-dependent regulatory mechanisms of stem cell pluripotency. The RNA m5C profiles in this dataset allow the evaluations of the m5C level and distribution of specific m5C loci and facilitate understanding of the m5C epitranscriptomic landscape in biological functions of hPSC-CM beyond in vivo transplantation barriers.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsien Fang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Yu Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jou-Hsien Wu
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Wen Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Po-Hsien Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Farboud SP, Fathi E, Valipour B, Farahzadi R. Toward the latest advancements in cardiac regeneration using induced pluripotent stem cells (iPSCs) technology: approaches and challenges. J Transl Med 2024; 22:783. [PMID: 39175068 PMCID: PMC11342568 DOI: 10.1186/s12967-024-05499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
A novel approach to treating heart failures was developed with the introduction of iPSC technology. Knowledge in regenerative medicine, developmental biology, and the identification of illnesses at the cellular level has exploded since the discovery of iPSCs. One of the most frequent causes of mortality associated with cardiovascular disease is the loss of cardiomyocytes (CMs), followed by heart failure. A possible treatment for heart failure involves restoring cardiac function and replacing damaged tissue with healthy, regenerated CMs. Significant strides in stem cell biology during the last ten years have transformed the in vitro study of human illness and enhanced our knowledge of the molecular pathways underlying human disease, regenerative medicine, and drug development. We seek to examine iPSC advancements in disease modeling, drug discovery, iPSC-Based cell treatments, and purification methods in this article.
Collapse
Affiliation(s)
- Seyedeh Parya Farboud
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Kobayashi H, Tohyama S, Ichimura H, Ohashi N, Chino S, Soma Y, Tani H, Tanaka Y, Yang X, Shiba N, Kadota S, Haga K, Moriwaki T, Morita-Umei Y, Umei TC, Sekine O, Kishino Y, Kanazawa H, Kawagishi H, Yamada M, Narita K, Naito T, Seto T, Kuwahara K, Shiba Y, Fukuda K. Regeneration of Nonhuman Primate Hearts With Human Induced Pluripotent Stem Cell-Derived Cardiac Spheroids. Circulation 2024; 150:611-621. [PMID: 38666382 DOI: 10.1161/circulationaha.123.064876] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/21/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean ± SD]: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.
Collapse
Affiliation(s)
- Hideki Kobayashi
- Department of Cardiovascular Medicine (H. Kobayashi, K.K.), Shinshu University, Matsumoto, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hajime Ichimura
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Noburo Ohashi
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
| | - Shuji Chino
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Xiao Yang
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Naoko Shiba
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Shin Kadota
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Kotaro Haga
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Taijun Moriwaki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
- Kanagawa Institute of Industrial Science and Technology, Japan (Y.M.-U.)
| | - Tomohiko C Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Otoya Sekine
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hiroyuki Kawagishi
- Department of Molecular Pharmacology (H. Kawagishi, M.Y.), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology (H. Kawagishi, M.Y.), Shinshu University, Matsumoto, Japan
| | - Kazumasa Narita
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine (K.N., T.N.), Shinshu University, Matsumoto, Japan
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (K.N., T.N.)
| | - Takafumi Naito
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine (K.N., T.N.), Shinshu University, Matsumoto, Japan
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (K.N., T.N.)
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine (H. Kobayashi, K.K.), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Yuji Shiba
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| |
Collapse
|
10
|
Wulkan F, Romagnuolo R, Qiang B, Valdman Sadikov T, Kim KP, Quesnel E, Jiang W, Andharia N, Weyers JJ, Ghugre NR, Ozcan B, Alibhai FJ, Laflamme MA. Stem cell-derived cardiomyocytes expressing a dominant negative pacemaker HCN4 channel do not reduce the risk of graft-related arrhythmias. Front Cardiovasc Med 2024; 11:1374881. [PMID: 39045008 PMCID: PMC11263024 DOI: 10.3389/fcvm.2024.1374881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Background Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show tremendous promise for cardiac regeneration following myocardial infarction (MI), but their transplantation gives rise to transient ventricular tachycardia (VT) in large-animal MI models, representing a major hurdle to translation. Our group previously reported that these arrhythmias arise from a focal mechanism whereby graft tissue functions as an ectopic pacemaker; therefore, we hypothesized that hPSC-CMs engineered with a dominant negative form of the pacemaker ion channel HCN4 (dnHCN4) would exhibit reduced automaticity and arrhythmogenic risk following transplantation. Methods We used CRISPR/Cas9-mediated gene-editing to create transgenic dnHCN4 hPSC-CMs, and their electrophysiological behavior was evaluated in vitro by patch-clamp recordings and optical mapping. Next, we transplanted WT and homozygous dnHCN4 hPSC-CMs in a pig MI model and compared post-transplantation outcomes including the incidence of spontaneous arrhythmias and graft structure by immunohistochemistry. Results In vitro dnHCN4 hPSC-CMs exhibited significantly reduced automaticity and pacemaker funny current (I f ) density relative to wildtype (WT) cardiomyocytes. Following transplantation with either dnHCN4 or WT hPSC-CMs, all recipient hearts showed transmural infarct scar that was partially remuscularized by scattered islands of human myocardium. However, in contrast to our hypothesis, both dnHCN4 and WT hPSC-CM recipients exhibited frequent episodes of ventricular tachycardia (VT). Conclusions While genetic silencing of the pacemaker ion channel HCN4 suppresses the automaticity of hPSC-CMs in vitro, this intervention is insufficient to reduce VT risk post-transplantation in the pig MI model, implying more complex mechanism(s) are operational in vivo.
Collapse
Affiliation(s)
- Fanny Wulkan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | | | | | - Elya Quesnel
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Wenlei Jiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Naaz Andharia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Jill J. Weyers
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nilesh R. Ghugre
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bilgehan Ozcan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Lin Y, Sato N, Hong S, Nakamura K, Ferrante EA, Yu ZX, Chen MY, Nakamura DS, Yang X, Clevenger RR, Hunt TJ, Taylor JL, Jeffries KR, Keeran KJ, Neidig LE, Mehta A, Schwartzbeck R, Yu SJ, Kelly C, Navarengom K, Takeda K, Adler SS, Choyke PL, Zou J, Murry CE, Boehm M, Dunbar CE. Long-term engraftment and maturation of autologous iPSC-derived cardiomyocytes in two rhesus macaques. Cell Stem Cell 2024; 31:974-988.e5. [PMID: 38843830 PMCID: PMC11227404 DOI: 10.1016/j.stem.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 07/08/2024]
Abstract
Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.
Collapse
Affiliation(s)
- Yongshun Lin
- iPSC Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Noriko Sato
- Laboratory of Cellular Therapeutics, Molecular Imaging Branch, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Sogun Hong
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Elisa A Ferrante
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zu Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Marcus Y Chen
- Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Daisy S Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Timothy J Hunt
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Joni L Taylor
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Karen J Keeran
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Lauren E Neidig
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Atul Mehta
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Robin Schwartzbeck
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Shiqin Judy Yu
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Conor Kelly
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Keron Navarengom
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core, CBER, FDA, Silver Spring, MD, USA
| | - Stephen S Adler
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Peter L Choyke
- Laboratory of Cellular Therapeutics, Molecular Imaging Branch, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | - Manfred Boehm
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA.
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
von Bibra C, Hinkel R. Non-human primate studies for cardiomyocyte transplantation-ready for translation? Front Pharmacol 2024; 15:1408679. [PMID: 38962314 PMCID: PMC11221829 DOI: 10.3389/fphar.2024.1408679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Non-human primates (NHP) are valuable models for late translational pre-clinical studies, often seen as a last step before clinical application. The unique similarity between NHPs and humans is often the subject of ethical concerns. However, it is precisely this analogy in anatomy, physiology, and the immune system that narrows the translational gap to other animal models in the cardiovascular field. Cell and gene therapy approaches are two dominant strategies investigated in the research field of cardiac regeneration. Focusing on the cell therapy approach, several xeno- and allogeneic cell transplantation studies with a translational motivation have been realized in macaque species. This is based on the pressing need for novel therapeutic options for heart failure patients. Stem cell-based remuscularization of the injured heart can be achieved via direct injection of cardiomyocytes (CMs) or patch application. Both CM delivery approaches are in the late preclinical stage, and the first clinical trials have started. However, are we already ready for the clinical area? The present review concentrates on CM transplantation studies conducted in NHPs, discusses the main sources and discoveries, and provides a perspective about human translation.
Collapse
Affiliation(s)
- Constantin von Bibra
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| | - Rabea Hinkel
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| |
Collapse
|
13
|
Que Y, Shi J, Zhang Z, Sun L, Li H, Qin X, Zeng Z, Yang X, Chen Y, Liu C, Liu C, Sun S, Jin Q, Zhang Y, Li X, Lei M, Yang C, Tian H, Tian J, Chang J. Ion cocktail therapy for myocardial infarction by synergistic regulation of both structural and electrical remodeling. EXPLORATION (BEIJING, CHINA) 2024; 4:20230067. [PMID: 38939858 PMCID: PMC11189571 DOI: 10.1002/exp.20230067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 06/29/2024]
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide. Few drugs hold the ability to depress cardiac electrical and structural remodeling simultaneously after MI, which is crucial for the treatment of MI. The aim of this study is to investigate an effective therapy to improve both electrical and structural remodeling of the heart caused by MI. Here, an "ion cocktail therapy" is proposed to simultaneously reverse cardiac structural and electrical remodeling post-MI in rats and minipigs by applying a unique combination of silicate, strontium (Sr) and copper (Cu) ions due to their specific regulatory effects on the behavior of the key cells involved in MI including angiogenesis of endothelial cells, M2 polarization of macrophages and apoptosis of cardiomyocyte. The results demonstrate that ion cocktail treatment attenuates structural remodeling post-MI by ameliorating infarct size, promoting angiogenesis in both peri-infarct and infarct areas. Meantime, to some extent, ion cocktail treatment reverses the deteriorative electrical remodeling by reducing the incidence rate of early/delayed afterdepolarizations and minimizing the heterogeneity of cardiac electrophysiology. This ion cocktail therapy reveals a new strategy to effectively treat MI with great clinical translation potential due to the high effectiveness and safety of the ion cocktail combination.
Collapse
Affiliation(s)
- Yumei Que
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Jiaxin Shi
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhaowenbin Zhang
- Shanghai Institute of CeramicsChinese Academy of Sciences (CAS)ShanghaiChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of CASBeijingChina
| | - Lu Sun
- Department of Cardiovascular SurgeryPeking University Shenzhen HospitalShenzhenChina
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hairu Li
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xionghai Qin
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhen Zeng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Xiao Yang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Yanxin Chen
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Chong Liu
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chang Liu
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shijie Sun
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qishu Jin
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Yanxin Zhang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Xin Li
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Ming Lei
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Chen Yang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Hai Tian
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiawei Tian
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiang Chang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
- Shanghai Institute of CeramicsChinese Academy of Sciences (CAS)ShanghaiChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of CASBeijingChina
| |
Collapse
|
14
|
Eschenhagen T, Weinberger F. Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:515-524. [PMID: 39195938 DOI: 10.1038/s44161-024-00472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/04/2024] [Indexed: 08/29/2024]
Abstract
Here we aim at providing a concise but comprehensive overview of the perspectives and challenges of heart repair with pluripotent stem cell-derived cardiomyocytes. This Review comes at a time when consensus has been reached about the lack of relevant proliferative capacity of adult mammalian cardiomyocytes and the lack of new heart muscle formation with autologous cell sources. While alternatives to cell-based approaches will be shortly summarized, the focus lies on pluripotent stem cell-derived cardiomyocyte repair, which entered first clinical trials just 2 years ago. In the view of the authors, these early trials are important but have to be viewed as early proof-of-concept trials in humans that will hopefully provide first answers on feasibility, safety and the survival of allogeneic pluripotent stem cell-derived cardiomyocyte in the human heart. Better approaches have to be developed to make this approach clinically applicable.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
15
|
Yan W, Xia Y, Zhao H, Xu X, Ma X, Tao L. Stem cell-based therapy in cardiac repair after myocardial infarction: Promise, challenges, and future directions. J Mol Cell Cardiol 2024; 188:1-14. [PMID: 38246086 DOI: 10.1016/j.yjmcc.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
16
|
Soma Y, Tani H, Morita-Umei Y, Kishino Y, Fukuda K, Tohyama S. Pluripotent stem cell-based cardiac regenerative therapy for heart failure. J Mol Cell Cardiol 2024; 187:90-100. [PMID: 38331557 DOI: 10.1016/j.yjmcc.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
17
|
Selvakumar D, Clayton ZE, Prowse A, Dingwall S, Kim SK, Reyes L, George J, Shah H, Chen S, Leung HHL, Hume RD, Tjahjadi L, Igoor S, Skelton RJP, Hing A, Paterson H, Foster SL, Pearson L, Wilkie E, Marcus AD, Jeyaprakash P, Wu Z, Chiu HS, Ongtengco CFJ, Mulay O, McArthur JR, Barry T, Lu J, Tran V, Bennett R, Kotake Y, Campbell T, Turnbull S, Gupta A, Nguyen Q, Ni G, Grieve SM, Palpant NJ, Pathan F, Kizana E, Kumar S, Gray PP, Chong JJH. Cellular heterogeneity of pluripotent stem cell-derived cardiomyocyte grafts is mechanistically linked to treatable arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:145-165. [PMID: 39196193 PMCID: PMC11358004 DOI: 10.1038/s44161-023-00419-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/26/2023] [Indexed: 08/29/2024]
Abstract
Preclinical data have confirmed that human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) can remuscularize the injured or diseased heart, with several clinical trials now in planning or recruitment stages. However, because ventricular arrhythmias represent a complication following engraftment of intramyocardially injected PSC-CMs, it is necessary to provide treatment strategies to control or prevent engraftment arrhythmias (EAs). Here, we show in a porcine model of myocardial infarction and PSC-CM transplantation that EAs are mechanistically linked to cellular heterogeneity in the input PSC-CM and resultant graft. Specifically, we identify atrial and pacemaker-like cardiomyocytes as culprit arrhythmogenic subpopulations. Two unique surface marker signatures, signal regulatory protein α (SIRPA)+CD90-CD200+ and SIRPA+CD90-CD200-, identify arrhythmogenic and non-arrhythmogenic cardiomyocytes, respectively. Our data suggest that modifications to current PSC-CM-production and/or PSC-CM-selection protocols could potentially prevent EAs. We further show that pharmacologic and interventional anti-arrhythmic strategies can control and potentially abolish these arrhythmias.
Collapse
Affiliation(s)
- Dinesh Selvakumar
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Zoe E Clayton
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Andrew Prowse
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - Steve Dingwall
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - Sul Ki Kim
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Leila Reyes
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Jacob George
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Haisam Shah
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Siqi Chen
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Halina H L Leung
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Robert D Hume
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Laurentius Tjahjadi
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Sindhu Igoor
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Rhys J P Skelton
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Alfred Hing
- Department of Cardiothoracic Surgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Hugh Paterson
- Sydney Imaging, Core Research Facility, the University of Sydney, Sydney, New South Wales, Australia
| | - Sheryl L Foster
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia
- Sydney School of Health Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia
| | - Lachlan Pearson
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Emma Wilkie
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Alan D Marcus
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Prajith Jeyaprakash
- Department of Cardiology, Nepean Hospital, Kingswood, New South Wales, Australia
| | - Zhixuan Wu
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Han Shen Chiu
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Cherica Felize J Ongtengco
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - Onkar Mulay
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Jeffrey R McArthur
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| | - Tony Barry
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Juntang Lu
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Vu Tran
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Richard Bennett
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Yasuhito Kotake
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Timothy Campbell
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Samual Turnbull
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Anunay Gupta
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Quan Nguyen
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Guiyan Ni
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory, Faculty of Medicine and Health, Charles Perkins Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Faraz Pathan
- Department of Cardiology, Nepean Hospital, Kingswood, New South Wales, Australia
- Sydney Medical School, Charles Perkins Centre Nepean, Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia
| | - Eddy Kizana
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Peter P Gray
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - James J H Chong
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia.
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
18
|
Fukuda K. Establishment and Industrialization of a New Treatment Method Using Regenerative Cardiomyocyte Transplantation for Refractory Severe Heart Failure - Secondary Publication. JMA J 2023; 6:388-392. [PMID: 37941693 PMCID: PMC10628313 DOI: 10.31662/jmaj.2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 11/10/2023] Open
Abstract
Cardiomyocytes undergo cell division during the fetal period but do not divide after birth; thus, they grow into adult heart cells by enlarging their size. Therefore, heart failure occurs when a certain number of cardiomyocytes are lost owing to myocardial infarction, myocarditis, sarcoidosis, etc. Through scientific efforts, we have developed methods to safely and efficiently generate induced pluripotent stem (iPS) cells from peripheral blood T cells, generate ventricle-specific cardiomyocytes from iPS cells, and remove residual iPS cells and non-cardiomyocytes using the "metabolic selection method" and purify the cardiomyocytes from iPS cell derivatives. We have also developed the technology to mass-produce and efficiently engraft cardiomyocytes by generating cardiomyocyte spheroids and have developed devices suitable for cell transplantation. We have confirmed the safety and efficacy of these techniques by performing preclinical studies (oncogenesis, arrhythmogenicity, etc.) using immunodeficient mice, rats, pigs, and monkeys. Based on these technologies, we have successfully regenerated human ventricular muscle-specific cardiomyocytes with purity greater than 99%. We have also confirmed that the regenerated myocardium transplanted into immunodeficient mice maintained autonomic beating for more than a year without tumor formation. We are planning to conduct clinical trials to transplant iPS cell-derived cardiomyocytes into patients with heart failure associated with ischemic heart disease, which will, in the near future, enable clinical applications using HLA-deficient iPS cells and iPS cells generated from the patient's own lymphocytes to generate regenerative cardiomyocytes without rejection. It would also help establish personalized medicine for heart failure and usher in the long-awaited treatment for intractable severe heart failure using ventricular muscle supplementation.
Collapse
Affiliation(s)
- Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Menasché P. Human PSC-derived cardiac cells and their products: therapies for cardiac repair. J Mol Cell Cardiol 2023; 183:14-21. [PMID: 37595498 DOI: 10.1016/j.yjmcc.2023.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Despite the dramatic improvements in the management of patients with chronic heart failure which have occurred over the last decades, some of them still exhaust conventional drug-based therapies without being eligible for more aggressive options like heart transplantation or implantation of a left ventricular assist device. Cell therapy has thus emerged as a possible means of filling this niche. Multiple cell types have now been tested both in the laboratory but also in the clinics and it is fair to acknowledge that none of the clinical trials have yet conclusively proven the efficacy of cell-based approaches. These clinical studies, however, have entailed the use of cells from various sources but of non-cardiac lineage origins. Although this might not be the main reason for their failures, the discovery of pluripotent stem cells capable of generating cardiomyocytes now raises the hope that such cardiac-committed cells could be therapeutically more effective. In this review, we will first describe where we currently are with regard to the clinical trials using PSC-differentiated cells and discuss the main issues which remain to be addressed. In parallel, because the capacity of cells to stably engraft in the recipient heart has increasingly been questioned, it has been hypothesized that a major mechanism of action could be the cell-triggered release of biomolecules that foster host-associated reparative pathways. Thus, in the second part of this review, we will discuss the rationale, clinically relevant advantages and pitfalls associated with the use of these PSC "products".
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université Paris Cité, Inserm, PARCC, F-75015 Paris, France.
| |
Collapse
|
20
|
Johnson RD, Lei M, McVey JH, Camelliti P. Human myofibroblasts increase the arrhythmogenic potential of human induced pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2023; 80:276. [PMID: 37668685 PMCID: PMC10480244 DOI: 10.1007/s00018-023-04924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to remuscularize infarcted hearts but their arrhythmogenicity remains an obstacle to safe transplantation. Myofibroblasts are the predominant cell-type in the infarcted myocardium but their impact on transplanted hiPSC-CMs remains poorly defined. Here, we investigate the effect of myofibroblasts on hiPSC-CMs electrophysiology and Ca2+ handling using optical mapping of advanced human cell coculture systems mimicking cell-cell interaction modalities. Human myofibroblasts altered the electrophysiology and Ca2+ handling of hiPSC-CMs and downregulated mRNAs encoding voltage channels (KV4.3, KV11.1 and Kir6.2) and SERCA2a calcium pump. Interleukin-6 was elevated in the presence of myofibroblasts and direct stimulation of hiPSC-CMs with exogenous interleukin-6 recapitulated the paracrine effects of myofibroblasts. Blocking interleukin-6 reduced the effects of myofibroblasts only in the absence of physical contact between cell-types. Myofibroblast-specific connexin43 knockdown reduced functional changes in contact cocultures only when combined with interleukin-6 blockade. This provides the first in-depth investigation into how human myofibroblasts modulate hiPSC-CMs function, identifying interleukin-6 and connexin43 as paracrine- and contact-mediators respectively, and highlighting their potential as targets for reducing arrhythmic risk in cardiac cell therapy.
Collapse
Affiliation(s)
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - John H McVey
- School of Biosciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
21
|
Romero-Tejeda M, Fonoudi H, Weddle CJ, DeKeyser JM, Lenny B, Fetterman KA, Magdy T, Sapkota Y, Epting CL, Burridge PW. A novel transcription factor combination for direct reprogramming to a spontaneously contracting human cardiomyocyte-like state. J Mol Cell Cardiol 2023; 182:30-43. [PMID: 37421991 PMCID: PMC10495191 DOI: 10.1016/j.yjmcc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
The reprogramming of somatic cells to a spontaneously contracting cardiomyocyte-like state using defined transcription factors has proven successful in mouse fibroblasts. However, this process has been less successful in human cells, thus limiting the potential clinical applicability of this technology in regenerative medicine. We hypothesized that this issue is due to a lack of cross-species concordance between the required transcription factor combinations for mouse and human cells. To address this issue, we identified novel transcription factor candidates to induce cell conversion between human fibroblasts and cardiomyocytes, using the network-based algorithm Mogrify. We developed an automated, high-throughput method for screening transcription factor, small molecule, and growth factor combinations, utilizing acoustic liquid handling and high-content kinetic imaging cytometry. Using this high-throughput platform, we screened the effect of 4960 unique transcription factor combinations on direct conversion of 24 patient-specific primary human cardiac fibroblast samples to cardiomyocytes. Our screen revealed the combination of MYOCD, SMAD6, and TBX20 (MST) as the most successful direct reprogramming combination, which consistently produced up to 40% TNNT2+ cells in just 25 days. Addition of FGF2 and XAV939 to the MST cocktail resulted in reprogrammed cells with spontaneous contraction and cardiomyocyte-like calcium transients. Gene expression profiling of the reprogrammed cells also revealed the expression of cardiomyocyte associated genes. Together, these findings indicate that cardiac direct reprogramming in human cells can be achieved at similar levels to those attained in mouse fibroblasts. This progress represents a step forward towards the clinical application of the cardiac direct reprogramming approach.
Collapse
Affiliation(s)
- Marisol Romero-Tejeda
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Carly J Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Lenny
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - Conrad L Epting
- Departments of Pediatrics and Pathology, Northwestern University and Ann & Robert H.Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Zhang Y, Li X, Zhang Z, Li H, Chen D, Jiao Y, Fan C, Zeng Z, Chang J, Xu Y, Peng B, Yang C, Que Y. Zn 2 SiO 4 Bioceramic Attenuates Cardiac Remodeling after Myocardial Infarction. Adv Healthc Mater 2023; 12:e2203365. [PMID: 37162169 DOI: 10.1002/adhm.202203365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/06/2023] [Indexed: 05/11/2023]
Abstract
In the pursuit of therapeutic strategies for myocardial infarction (MI), a pivotal objective lies in the concurrent restoration of blood perfusion and reduction of cardiomyocyte apoptosis. However, achieving these dual goals simultaneously presents a considerable challenge. In this study, a Zn2 SiO4 bioceramic capable of concurrently sustaining the release of bioactive SiO3 2- and Zn2+ ions, which exhibit a synergistic impact on endothelial cell angiogenesis promotion, cardiomyocyte apoptosis inhibition, and myocardial mitochondrial protection against oxygen-free radical (reactive oxygen species) induced injury is developed. Furthermore, in vivo outcomes from a murine MI model demonstrate that either systemic administration via tail vein injection of Zn2 SiO4 extract or local application through intramyocardial injection of a Zn2 SiO4 composite hydrogel promotes cardiac function and reduces cardiac fibrosis, thus aiding myocardial repair. This research is the first to elucidate the advantageous effects of dual bioactive ions in myocardial protection and may offer a novel therapeutic avenue for ischemic heart disease based on meticulously engineered bioceramics.
Collapse
Affiliation(s)
- Yanxin Zhang
- College of Pharmacy, Dali University, 671000, Dali, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Xin Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Huili Li
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Dongmin Chen
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Chen Fan
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Yuhong Xu
- College of Pharmacy, Dali University, 671000, Dali, China
| | - Baowei Peng
- College of Pharmacy, Dali University, 671000, Dali, China
| | - Chen Yang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Yumei Que
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| |
Collapse
|
23
|
Gibbs CE, Marchianó S, Zhang K, Yang X, Murry CE, Boyle PM. Graft-host coupling changes can lead to engraftment arrhythmia: a computational study. J Physiol 2023; 601:2733-2749. [PMID: 37014103 PMCID: PMC10901678 DOI: 10.1113/jp284244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
After myocardial infarction (MI), a significant portion of heart muscle is replaced with scar tissue, progressively leading to heart failure. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) offer a promising option for improving cardiac function after MI. However, hPSC-CM transplantation can lead to engraftment arrhythmia (EA). EA is a transient phenomenon arising shortly after transplantation then spontaneously resolving after a few weeks. The underlying mechanism of EA is unknown. We hypothesize that EA may be explained partially by time-varying, spatially heterogeneous, graft-host electrical coupling. Here, we created computational slice models derived from histological images that reflect different configuration of grafts in the infarcted ventricle. We ran simulations with varying degrees of connection imposed upon the graft-host perimeter to assess how heterogeneous electrical coupling affected EA with non-conductive scar, slow-conducting scar and scar replaced by host myocardium. We also quantified the effect of variation in intrinsic graft conductivity. Susceptibility to EA initially increased and subsequently decreased with increasing graft-host coupling, suggesting the waxing and waning of EA is regulated by progressive increases in graft-host coupling. Different spatial distributions of graft, host and scar yielded markedly different susceptibility curves. Computationally replacing non-conductive scar with host myocardium or slow-conducting scar, and increasing intrinsic graft conductivity both demonstrated potential means to blunt EA vulnerability. These data show how graft location, especially relative to scar, along with its dynamic electrical coupling to host, can influence EA burden; moreover, they offer a rational base for further studies aimed to define the optimal delivery of hPSC-CM injection. KEY POINTS: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) hold great cardiac regenerative potential but can also cause engraftment arrhythmias (EA). Spatiotemporal evolution in the pattern of electrical coupling between injected hPSC-CMs and surrounding host myocardium may explain the dynamics of EA observed in large animal models. We conducted simulations in histology-derived 2D slice computational models to assess the effects of heterogeneous graft-host electrical coupling on EA propensity, with or without scar tissue. Our findings suggest spatiotemporally heterogeneous graft-host coupling can create an electrophysiological milieu that favours graft-initiated host excitation, a surrogate metric of EA susceptibility. Removing scar from our models reduced but did not abolish the propensity for this phenomenon. Conversely, reduced intra-graft electrical connectedness increased the incidence of graft-initiated host excitation. The computational framework created for this study can be used to generate new hypotheses, targeted delivery of hPSC-CMs.
Collapse
Affiliation(s)
- Chelsea E Gibbs
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Silvia Marchianó
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Kelly Zhang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Yap L, Chong LY, Tan C, Adusumalli S, Seow M, Guo J, Cai Z, Loo SJ, Lim E, Tan RS, Grishina E, Soong PL, Lath N, Ye L, Petretto E, Tryggvason K. Pluripotent stem cell-derived committed cardiac progenitors remuscularize damaged ischemic hearts and improve their function in pigs. NPJ Regen Med 2023; 8:26. [PMID: 37236990 DOI: 10.1038/s41536-023-00302-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ischemic heart disease, which is often associated with irreversibly damaged heart muscle, is a major global health burden. Here, we report the potential of stem cell-derived committed cardiac progenitors (CCPs) have in regenerative cardiology. Human pluripotent embryonic stem cells were differentiated to CCPs on a laminin 521 + 221 matrix, characterized with bulk and single-cell RNA sequencing, and transplanted into infarcted pig hearts. CCPs differentiated for eleven days expressed a set of genes showing higher expression than cells differentiated for seven days. Functional heart studies revealed significant improvement in left ventricular ejection fraction at four and twelve weeks following transplantation. We also observed significant improvements in ventricular wall thickness and a reduction in infarction size after CCP transplantation (p-value < 0.05). Immunohistology analyses revealed in vivo maturation of the CCPs into cardiomyocytes (CM). We observed temporary episodes of ventricular tachyarrhythmia (VT) in four pigs and persistent VT in one pig, but the remaining five pigs exhibited normal sinus rhythm. Importantly, all pigs survived without the formation of any tumors or VT-related abnormalities. We conclude that pluripotent stem cell-derived CCPs constitute a promising possibility for myocardial infarction treatment and that they may positively impact regenerative cardiology.
Collapse
Affiliation(s)
- Lynn Yap
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
| | - Li Yen Chong
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Clarissa Tan
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Swarnaseetha Adusumalli
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Millie Seow
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Jing Guo
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Zuhua Cai
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Sze Jie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Eric Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Ru San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | | | - Poh Loong Soong
- Ternion Biosciences, Singapore, 574329, Singapore
- Cardiovascular Disease Translational Research Program, Yong Loo Lin School of Medicine, NUS, Singapore, 169609, Singapore
| | - Narayan Lath
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama, Birmingham, 35233, England
| | - Enrico Petretto
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Karl Tryggvason
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore.
- Department of Medicine Duke University, Durham, NC, 27710, USA.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77, Stockholm, Sweden.
| |
Collapse
|
25
|
Mhatre KN, Mathieu J, Martinson A, Flint G, Blakley LP, Tabesh A, Reinecke H, Yang X, Guan X, Murali E, Klaiman JM, Odom GL, Brown MB, Tian R, Hauschka SD, Raftery D, Moussavi-Harami F, Regnier M, Murry CE. Cell based dATP delivery as a therapy for chronic heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538108. [PMID: 37162854 PMCID: PMC10168250 DOI: 10.1101/2023.04.24.538108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transplanted human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) improve ventricular performance when delivered acutely post-myocardial infarction but are ineffective in chronic myocardial infarction/heart failure. 2'-deoxy-ATP (dATP) activates cardiac myosin and potently increases contractility. Here we engineered hPSC-CMs to overexpress ribonucleotide reductase, the enzyme controlling dATP production. In vivo, dATP-producing CMs formed new myocardium that transferred dATP to host cardiomyocytes via gap junctions, increasing their dATP levels. Strikingly, when transplanted into chronically infarcted hearts, dATP-producing grafts increased left ventricular function, whereas heart failure worsened with wild-type grafts or vehicle injections. dATP-donor cells recipients had greater voluntary exercise, improved cardiac metabolism, reduced pulmonary congestion and pathological cardiac hypertrophy, and improved survival. This combination of remuscularization plus enhanced host contractility offers a novel approach to treating the chronically failing heart.
Collapse
Affiliation(s)
- Ketaki N Mhatre
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington; Seattle, WA 98195, USA
| | - Amy Martinson
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Galina Flint
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
| | - Leslie P Blakley
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Arash Tabesh
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Xuan Guan
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
| | - Eesha Murali
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
| | - Guy L Odom
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Neurology, University of Washington; Seattle, WA 98195, USA
| | - Mary Beth Brown
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Washington; Seattle, WA 98195, USA
| | - Rong Tian
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Anesthesiology and Pain Medicine, University of Washington; Seattle, WA 98195, USA
- The Mitochondria and Metabolism Center (MMC), University of Washington; Seattle, WA 98109, USA
| | - Stephen D Hauschka
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington; Seattle, WA 98195, USA
- The Mitochondria and Metabolism Center (MMC), University of Washington; Seattle, WA 98109, USA
- Northwest Metabolomics Research Center, University of Washington; Seattle, WA 98109, USA
| | - Farid Moussavi-Harami
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Division of Cardiology, University of Washington; Seattle, WA 98195, USA
| | - Michael Regnier
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Department of Physiology and Biophysics, University of Washington; Seattle, WA 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington; Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington; Seattle, WA 98195, USA
- Center for Cardiovascular Biology, University of Washington; Seattle, WA 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA 98195, USA
- Center for Translational Muscle Research, University of Washington; Seattle, WA 98109, USA
- Division of Cardiology, University of Washington; Seattle, WA 98195, USA
| |
Collapse
|
26
|
Marchiano S, Nakamura K, Reinecke H, Neidig L, Lai M, Kadota S, Perbellini F, Yang X, Klaiman JM, Blakely LP, Karbassi E, Fields PA, Fenix AM, Beussman KM, Jayabalu A, Kalucki FA, Potter JC, Futakuchi-Tsuchida A, Weber GJ, Dupras S, Tsuchida H, Pabon L, Wang L, Knollmann BC, Kattman S, Thies RS, Sniadecki N, MacLellan WR, Bertero A, Murry CE. Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy. Cell Stem Cell 2023; 30:396-414.e9. [PMID: 37028405 PMCID: PMC10283080 DOI: 10.1016/j.stem.2023.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer a promising cell-based therapy for myocardial infarction. However, the presence of transitory ventricular arrhythmias, termed engraftment arrhythmias (EAs), hampers clinical applications. We hypothesized that EA results from pacemaker-like activity of hPSC-CMs associated with their developmental immaturity. We characterized ion channel expression patterns during maturation of transplanted hPSC-CMs and used pharmacology and genome editing to identify those responsible for automaticity in vitro. Multiple engineered cell lines were then transplanted in vivo into uninjured porcine hearts. Abolishing depolarization-associated genes HCN4, CACNA1H, and SLC8A1, along with overexpressing hyperpolarization-associated KCNJ2, creates hPSC-CMs that lack automaticity but contract when externally stimulated. When transplanted in vivo, these cells engrafted and coupled electromechanically with host cardiomyocytes without causing sustained EAs. This study supports the hypothesis that the immature electrophysiological prolife of hPSC-CMs mechanistically underlies EA. Thus, targeting automaticity should improve the safety profile of hPSC-CMs for cardiac remuscularization.
Collapse
Affiliation(s)
- Silvia Marchiano
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lauren Neidig
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Shin Kadota
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | | | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Leslie P Blakely
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Paul A Fields
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Adaptive Biotechnologies, Seattle, WA 98102, USA
| | - Aidan M Fenix
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kevin M Beussman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Mechanical Engineering, University of Washington, 3720 15(th) Avenue NE, Seattle, WA 98105, USA
| | - Anu Jayabalu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Faith A Kalucki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Jennifer C Potter
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Akiko Futakuchi-Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Gerhard J Weber
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah Dupras
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Hiroshi Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Lil Pabon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Lili Wang
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Steven Kattman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - R Scott Thies
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Nathan Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Department of Mechanical Engineering, University of Washington, 3720 15(th) Avenue NE, Seattle, WA 98105, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - W Robb MacLellan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
27
|
Menasché P. When gene editing turns a nasty goddess into a friendly MEDUSA. Cell Stem Cell 2023; 30:340-342. [PMID: 37028399 DOI: 10.1016/j.stem.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Marchiano and colleagues interrogate the underlying causes of ventricular arrhythmias occurring after human pluripotent stem cell-cardiomyocyte transplantation. Through stepwise analysis and gene editing of ion channel expression, they mitigate pace-maker-like activity, providing evidence that the automaticity responsible for these rhythmic events can be successfully controlled by appropriate gene edits.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Université Paris Cité, Inserm, PARCC, Hôpital Européen Georges Pompidou, 75015 Paris, France.
| |
Collapse
|
28
|
Kishino Y, Tohyama S, Morita Y, Soma Y, Tani H, Okada M, Kanazawa H, Fukuda K. Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells for Heart Failure: A State-of-the-Art Review. J Card Fail 2023; 29:503-513. [PMID: 37059512 DOI: 10.1016/j.cardfail.2022.10.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 04/16/2023]
Abstract
Heart transplantation (HT) is the only definitive treatment available for patients with end-stage heart failure who are refractory to medical and device therapies. However, HT as a therapeutic option, is limited by a significant shortage of donors. To overcome this shortage, regenerative medicine using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human-induced pluripotent stem cells (hiPSCs), has been considered an alternative to HT. Several issues, including the methods of large-scale culture and production of hPSCs and cardiomyocytes, the prevention of tumorigenesis secondary to contamination of undifferentiated stem cells and non-cardiomyocytes, and the establishment of an effective transplantation strategy in large-animal models, need to be addressed to fulfill this unmet need. Although post-transplantation arrhythmia and immune rejection remain problems, the ongoing rapid technological advances in hPSC research have been directed toward the clinical application of this technology. Cell therapy using hPSC-derived cardiomyocytes is expected to serve as an integral component of realistic medicine in the near future and is being potentially viewed as a treatment that would revolutionize the management of patients with severe heart failure.
Collapse
Affiliation(s)
- Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Yu Y, Tham SK, Roslan FF, Shaharuddin B, Yong YK, Guo Z, Tan JJ. Large animal models for cardiac remuscularization studies: A methodological review. Front Cardiovasc Med 2023; 10:1011880. [PMID: 37008331 PMCID: PMC10050756 DOI: 10.3389/fcvm.2023.1011880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most common cause of heart failure, one of the most fatal non-communicable diseases worldwide. The disease could potentially be treated if the dead, ischemic heart tissues are regenerated and replaced with viable and functional cardiomyocytes. Pluripotent stem cells have proven the ability to derive specific and functional cardiomyocytes in large quantities for therapy. To test the remuscularization hypothesis, the strategy to model the disease in animals must resemble the pathophysiological conditions of myocardial infarction as in humans, to enable thorough testing of the safety and efficacy of the cardiomyocyte therapy before embarking on human trials. Rigorous experiments and in vivo findings using large mammals are increasingly important to simulate clinical reality and increase translatability into clinical practice. Hence, this review focus on large animal models which have been used in cardiac remuscularization studies using cardiomyocytes derived from human pluripotent stem cells. The commonly used methodologies in developing the myocardial infarction model, the choice of animal species, the pre-operative antiarrhythmics prophylaxis, the choice of perioperative sedative, anaesthesia and analgesia, the immunosuppressive strategies in allowing xenotransplantation, the source of cells, number and delivery method are discussed.
Collapse
Affiliation(s)
- Yuexin Yu
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, China
| | | | - Fatin Fazrina Roslan
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Bakiah Shaharuddin
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, China
- Correspondence: Jun Jie Tan Zhikun Guo
| | - Jun Jie Tan
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Correspondence: Jun Jie Tan Zhikun Guo
| |
Collapse
|
30
|
Romero-Tejeda M, Fonoudi H, Weddle CJ, DeKeyser JM, Lenny B, Fetterman KA, Magdy T, Sapkota Y, Epting C, Burridge PW. A Novel Transcription Factor Combination for Direct Reprogramming to a Spontaneously Contracting Human Cardiomyocyte-like State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532629. [PMID: 36993577 PMCID: PMC10055062 DOI: 10.1101/2023.03.14.532629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED The reprogramming of somatic cells to a spontaneously contracting cardiomyocyte-like state using defined transcription factors has proven successful in mouse fibroblasts. However, this process has been less successful in human cells, thus limiting the potential clinical applicability of this technology in regenerative medicine. We hypothesized that this issue is due to a lack of cross-species concordance between the required transcription factor combinations for mouse and human cells. To address this issue, we identified novel transcription factor candidates to induce cell conversion between human fibroblasts and cardiomyocytes, using the network-based algorithm Mogrify. We developed an automated, high-throughput method for screening transcription factor, small molecule, and growth factor combinations, utilizing acoustic liquid handling and high-content kinetic imaging cytometry. Using this high-throughput platform, we screened the effect of 4,960 unique transcription factor combinations on direct conversion of 24 patient-specific primary human cardiac fibroblast samples to cardiomyocytes. Our screen revealed the combination of MYOCD , SMAD6 , and TBX20 (MST) as the most successful direct reprogramming combination, which consistently produced up to 40% TNNT2 + cells in just 25 days. Addition of FGF2 and XAV939 to the MST cocktail resulted in reprogrammed cells with spontaneous contraction and cardiomyocyte-like calcium transients. Gene expression profiling of the reprogrammed cells also revealed the expression of cardiomyocyte associated genes. Together, these findings indicate that cardiac direct reprogramming in human cells can be achieved at similar levels to those attained in mouse fibroblasts. This progress represents a step forward towards the clinical application of the cardiac direct reprogramming approach. HIGHLIGHTS Using network-based algorithm Mogrify, acoustic liquid handling, and high-content kinetic imaging cytometry we screened the effect of 4,960 unique transcription factor combinations. Using 24 patient-specific human fibroblast samples we identified the combination of MYOCD , SMAD6 , and TBX20 (MST) as the most successful direct reprogramming combination. MST cocktail results in reprogrammed cells with spontaneous contraction, cardiomyocyte-like calcium transients, and expression of cardiomyocyte associated genes.
Collapse
|
31
|
Kishino Y, Fukuda K. Unlocking the Pragmatic Potential of Regenerative Therapies in Heart Failure with Next-Generation Treatments. Biomedicines 2023; 11:biomedicines11030915. [PMID: 36979894 PMCID: PMC10046277 DOI: 10.3390/biomedicines11030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Patients with chronic heart failure (HF) have a poor prognosis due to irreversible impairment of left ventricular function, with 5-year survival rates <60%. Despite advances in conventional medicines for HF, prognosis remains poor, and there is a need to improve treatment further. Cell-based therapies to restore the myocardium offer a pragmatic approach that provides hope for the treatment of HF. Although first-generation cell-based therapies using multipotent cells (bone marrow-derived mononuclear cells, mesenchymal stem cells, adipose-derived regenerative cells, and c-kit-positive cardiac cells) demonstrated safety in preclinical models of HF, poor engraftment rates, and a limited ability to form mature cardiomyocytes (CMs) and to couple electrically with existing CMs, meant that improvements in cardiac function in double-blind clinical trials were limited and largely attributable to paracrine effects. The next generation of stem cell therapies uses CMs derived from human embryonic stem cells or, increasingly, from human-induced pluripotent stem cells (hiPSCs). These cell therapies have shown the ability to engraft more successfully and improve electromechanical function of the heart in preclinical studies, including in non-human primates. Advances in cell culture and delivery techniques promise to further improve the engraftment and integration of hiPSC-derived CMs (hiPSC-CMs), while the use of metabolic selection to eliminate undifferentiated cells will help minimize the risk of teratomas. Clinical trials of allogeneic hiPSC-CMs in HF are now ongoing, providing hope for vast numbers of patients with few other options available.
Collapse
Affiliation(s)
| | - Keiichi Fukuda
- Correspondence: ; Tel.: +81-3-5363-3874; Fax: +81-3-5363-3875
| |
Collapse
|
32
|
Yamada Y, Sadahiro T, Ieda M. Development of direct cardiac reprogramming for clinical applications. J Mol Cell Cardiol 2023; 178:1-8. [PMID: 36918145 DOI: 10.1016/j.yjmcc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The incidence of cardiovascular diseases is increasing worldwide, and cardiac regenerative therapy has great potential as a new treatment strategy, especially for ischemic heart disease. Direct cardiac reprogramming is a promising new cardiac regenerative therapy that uses defined factors to induce transdifferentiation of endogenous cardiac fibroblasts (CFs) into induced cardiomyocyte-like cells (iCMs). In vivo reprogramming is expected to restore lost cardiac function without necessitating cardiac transplantation by converting endogenous CFs that exist abundantly in cardiac tissues directly into iCMs. Indeed, we and other groups have demonstrated that in vivo cardiac reprogramming improves cardiac contractile function and reduces scar area after acute myocardial infarction (MI). Recently, we demonstrated that in vivo cardiac reprogramming is an innovative cardiac regenerative therapy that not only regenerates the myocardium, but also reverses fibrosis by inducing the quiescence of pro-fibrotic fibroblasts, thereby improving heart failure in chronic MI. In this review, we summarize the recent progresses in in vivo cardiac reprogramming, and discuss its prospects for future clinical applications and the challenges of direct human reprogramming, which has been a longstanding issue.
Collapse
Affiliation(s)
- Yu Yamada
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan.
| |
Collapse
|
33
|
The Exciting Realities and Possibilities of iPS-Derived Cardiomyocytes. Bioengineering (Basel) 2023; 10:bioengineering10020237. [PMID: 36829731 PMCID: PMC9952364 DOI: 10.3390/bioengineering10020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have become a prevalent topic after their discovery, advertised as an ethical alternative to embryonic stem cells (ESCs). Due to their ability to differentiate into several kinds of cells, including cardiomyocytes, researchers quickly realized the potential for differentiated cardiomyocytes to be used in the treatment of heart failure, a research area with few alternatives. This paper discusses the differentiation process for human iPSC-derived cardiomyocytes and the possible applications of said cells while answering some questions regarding ethical issues.
Collapse
|
34
|
Wang J, An M, Haubner BJ, Penninger JM. Cardiac regeneration: Options for repairing the injured heart. Front Cardiovasc Med 2023; 9:981982. [PMID: 36712238 PMCID: PMC9877631 DOI: 10.3389/fcvm.2022.981982] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiac regeneration is one of the grand challenges in repairing injured human hearts. Numerous studies of signaling pathways and metabolism on cardiac development and disease pave the way for endogenous cardiomyocyte regeneration. New drug delivery approaches, high-throughput screening, as well as novel therapeutic compounds combined with gene editing will facilitate the development of potential cell-free therapeutics. In parallel, progress has been made in the field of cell-based therapies. Transplantation of human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) can partially rescue the myocardial defects caused by cardiomyocyte loss in large animals. In this review, we summarize current cell-based and cell-free regenerative therapies, discuss the importance of cardiomyocyte maturation in cardiac regenerative medicine, and envision new ways of regeneration for the injured heart.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Bernhard Johannes Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Josef M. Penninger
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC – Vienna BioCenter, Vienna, Austria
| |
Collapse
|
35
|
Kobayashi H, Tohyama S, Kanazawa H, Ichimura H, Chino S, Tanaka Y, Suzuki Y, Zhao J, Shiba N, Kadota S, Narita K, Naito T, Seto T, Kuwahara K, Shiba Y, Fukuda K. Intracoronary transplantation of pluripotent stem cell-derived cardiomyocytes: Inefficient procedure for cardiac regeneration. J Mol Cell Cardiol 2023; 174:77-87. [PMID: 36403760 DOI: 10.1016/j.yjmcc.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Advances in stem cell biology have facilitated cardiac regeneration, and many animal studies and several initial clinical trials have been conducted using human pluripotent stem cell-derived cardiomyocytes (PSC-CMs). Most preclinical and clinical studies have typically transplanted PSC-CMs via the following two distinct approaches: direct intramyocardial injection or epicardial delivery of engineered heart tissue. Both approaches present common disadvantages, including a mandatory thoracotomy and poor engraftment. Furthermore, a standard transplantation approach has yet to be established. In this study, we tested the feasibility of performing intracoronary administration of PSC-CMs based on a commonly used method of transplanting somatic stem cells. Six male cynomolgus monkeys underwent intracoronary administration of dispersed human PSC-CMs or PSC-CM aggregates, which are called cardiac spheroids, with multiple cell dosages. The recipient animals were sacrificed at 4 weeks post-transplantation for histological analysis. Intracoronary administration of dispersed human PSC-CMs in the cynomolgus monkeys did not lead to coronary embolism or graft survival. Although the transplanted cardiac spheroids became partially engrafted, they also induced scar formation due to cardiac ischemic injury. Cardiac engraftment and scar formation were reasonably consistent with the spheroid size or cell dosage. These findings indicate that intracoronary transplantation of PSC-CMs is an inefficient therapeutic approach.
Collapse
Affiliation(s)
- Hideki Kobayashi
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Ichimura
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Shuji Chino
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Yota Suzuki
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Jian Zhao
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Shin Kadota
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Kazumasa Narita
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan; Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Takafumi Naito
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan; Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Yuji Shiba
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan.
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Li K, Cardoso C, Moctezuma-Ramirez A, Elgalad A, Perin E. Evaluation of large animal models for preclinical studies of heart failure with preserved ejection fraction using clinical score systems. Front Cardiovasc Med 2023; 10:1099453. [PMID: 37034319 PMCID: PMC10076838 DOI: 10.3389/fcvm.2023.1099453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a complex, heterogeneous spectrum of pathologic features combined with average left ventricular volume and diastolic dysfunction. HFpEF is a significant public health problem associated with high morbidity and mortality rates. Currently, effective treatments for HFpEF represent the greatest unmet need in cardiovascular medicine. A lack of an efficient preclinical model has hampered the development of new devices and medications for HFpEF. Because large animal models have similar physiologic traits as humans and appropriate organ sizes, they are the best option for limiting practical constraints. HFpEF is a highly integrated, multiorgan, systemic disorder requiring a multipronged investigative approach. Here, we review the large animal models of HFpEF reported to date and describe the methods that have been used to create HFpEF, including surgery-induced pressure overloading, medicine-induced pressure overloading, and diet-induced metabolic syndrome. In addition, for the first time to our knowledge, we use two established clinical HFpEF algorithms (HFA-PEFF and H2FPEF scores) to evaluate the currently available large animal models. We also discuss new technologies, such as continuous remote pressure monitors and inflatable aortic cuffs, as well as how the models could be improved. Based on current progress and our own experience, we believe an efficient large animal model of HFpEF should simultaneously encompass multiple pathophysiologic factors, along with multiorgan dysfunction. This could be fully evaluated through available methods (imaging, blood work). Although many models have been studied, only a few studies completely meet clinical score standards. Therefore, it is critical to address the deficiencies of each model and incorporate novel techniques to establish a more reliable model, which will help facilitate the understanding of HFpEF mechanisms and the development of a treatment.
Collapse
Affiliation(s)
- Ke Li
- Center for Preclinical Cardiovascular Research, The Texas Heart Institute, Houston, TX, United States
| | - Cristiano Cardoso
- Center for Preclinical Cardiovascular Research, The Texas Heart Institute, Houston, TX, United States
| | - Angel Moctezuma-Ramirez
- Center for Preclinical Cardiovascular Research, The Texas Heart Institute, Houston, TX, United States
| | - Abdelmotagaly Elgalad
- Center for Preclinical Cardiovascular Research, The Texas Heart Institute, Houston, TX, United States
- Correspondence: Abdelmotagaly Elgalad
| | - Emerson Perin
- Center for Clinical Research, The Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
37
|
Slotvitsky M, Berezhnoy A, Scherbina S, Rimskaya B, Tsvelaya V, Balashov V, Efimov AE, Agapov I, Agladze K. Polymer Kernels as Compact Carriers for Suspended Cardiomyocytes. MICROMACHINES 2022; 14:51. [PMID: 36677111 PMCID: PMC9865253 DOI: 10.3390/mi14010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Induced pluripotent stem cells (iPSCs) constitute a potential source of patient-specific human cardiomyocytes for a cardiac cell replacement therapy via intramyocardial injections, providing a major benefit over other cell sources in terms of immune rejection. However, intramyocardial injection of the cardiomyocytes has substantial challenges related to cell survival and electrophysiological coupling with recipient tissue. Current methods of manipulating cell suspensions do not allow one to control the processes of adhesion of injected cells to the tissue and electrophysiological coupling with surrounding cells. In this article, we documented the possibility of influencing these processes using polymer kernels: biocompatible fiber fragments of subcellular size that can be adsorbed to a cell, thereby creating the minimum necessary adhesion foci to shape the cell and provide support for the organization of the cytoskeleton and the contractile apparatus prior to adhesion to the recipient tissue. Using optical excitation markers, the restoration of the excitability of cardiomyocytes in suspension upon adsorption of polymer kernels was shown. It increased the likelihood of the formation of a stable electrophysiological coupling in vitro. The obtained results may be considered as a proof of concept that the stochastic engraftment process of injected suspension cells can be controlled by smart biomaterials.
Collapse
Affiliation(s)
- Mikhail Slotvitsky
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Andrey Berezhnoy
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Serafima Scherbina
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Beatrisa Rimskaya
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Valerya Tsvelaya
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Victor Balashov
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Anton E. Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Schukinskaya St., 1, 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Schukinskaya St., 1, 123182 Moscow, Russia
| | - Konstantin Agladze
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| |
Collapse
|
38
|
Li J, Liu L, Zhang J, Qu X, Kawamura T, Miyagawa S, Sawa Y. Engineered Tissue for Cardiac Regeneration: Current Status and Future Perspectives. Bioengineering (Basel) 2022; 9:605. [PMID: 36354516 PMCID: PMC9688015 DOI: 10.3390/bioengineering9110605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2023] Open
Abstract
Heart failure (HF) is the leading cause of death worldwide. The most effective HF treatment is heart transplantation, the use of which is restricted by the limited supply of donor hearts. The human pluripotent stem cell (hPSC), including human embryonic stem cell (hESC) and the induced pluripotent stem cells (hiPSC), could be produced in an infinite manner and differentiated into cardiomyocytes (CMs) with high efficiency. The hPSC-CMs have, thus, offered a promising alternative for heart transplant. In this review, we introduce the tissue-engineering technologies for hPSC-CM, including the materials for cell culture and tissue formation, and the delivery means into the heart. The most recent progress in clinical application of hPSC-CMs is also introduced. In addition, the bottleneck limitations and future perspectives for clinical translation are further discussed.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Cardiovascular Division, Osaka Police Hospital, Tennoji, Osaka 543-0035, Japan
| |
Collapse
|
39
|
Menasché P. Human embryonic stem cells still have a place in the cell therapy landscape. Cardiovasc Res 2022; 118:e96-e97. [PMID: 35859007 DOI: 10.1093/cvr/cvac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou; Université Paris Cité, Inserm, PARCC, Paris, France
| |
Collapse
|
40
|
Fang J, Li JJ, Zhong X, Zhou Y, Lee RJ, Cheng K, Li S. Engineering stem cell therapeutics for cardiac repair. J Mol Cell Cardiol 2022; 171:56-68. [PMID: 35863282 DOI: 10.1016/j.yjmcc.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular disease is the leading cause of death in the world. Stem cell-based therapies have been widely investigated for cardiac regeneration in patients with heart failure or myocardial infarction (MI) and surged ahead on multiple fronts over the past two decades. To enhance cellular therapy for cardiac regeneration, numerous engineering techniques have been explored to engineer cells, develop novel scaffolds, make constructs, and deliver cells or their derivatives. This review summarizes the state-of-art stem cell-based therapeutics for cardiac regeneration and discusses the emerged bioengineering approaches toward the enhancement of therapeutic efficacy of stem cell therapies in cardiac repair. We cover the topics in stem cell source and engineering, followed by stem cell-based therapies such as cell aggregates and cell sheets, and biomaterial-mediated stem cell therapies such as stem cell delivery with injectable hydrogel, three-dimensional scaffolds, and microneedle patches. Finally, we discuss future directions and challenges of engineering stem cell therapies for clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jennifer J Li
- Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Xintong Zhong
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Ke Cheng
- Department of Biomedical Engineering, North Carolina State University, NC, USA
| | - Song Li
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
41
|
Shazly T, Smith A, Uline MJ, Spinale FG. Therapeutic payload delivery to the myocardium: Evolving strategies and obstacles. JTCVS OPEN 2022; 10:185-194. [PMID: 36004211 PMCID: PMC9390211 DOI: 10.1016/j.xjon.2022.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Key Words
- BMC, bone marrow cell
- HF, heart failure
- ID, intracoronary delivery
- IMD, intramyocardial delivery
- IPD, intrapericardial delivery
- LV, left ventricle
- MI, myocardial infarct
- MSC, mesenchymal stem cell
- TED, transendocardial delivery
- bFGF, basic fibroblast growth factor
- biomaterial
- cardiac
- injection
- local delivery
- myocardium
- payload
Collapse
Affiliation(s)
- Tarek Shazly
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Arianna Smith
- College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Fla
| | - Mark J. Uline
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Francis G. Spinale
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
- Cardiovascular Translational Research Center, School of Medicine, University of South Carolina, Columbia, SC
- Columbia VA Health Care System, Columbia, SC
| |
Collapse
|
42
|
Schmitt PR, Dwyer KD, Coulombe KLK. Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2461-2480. [PMID: 35623101 DOI: 10.1021/acsabm.2c00174] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite numerous advances in treatments for cardiovascular disease, heart failure (HF) remains the leading cause of death worldwide. A significant factor contributing to the progression of cardiovascular diseases into HF is the loss of functioning cardiomyocytes. The recent growth in the field of cardiac tissue engineering has the potential to not only reduce the downstream effects of injured tissues on heart function and longevity but also re-engineer cardiac function through regeneration of contractile tissue. One leading strategy to accomplish this is via a cellularized patch that can be surgically implanted onto a diseased heart. A key area of this field is the use of tissue scaffolds to recapitulate the mechanical and structural environment of the native heart and thus promote engineered myocardium contractility and function. While the strong mechanical properties and anisotropic structural organization of the native heart can be largely attributed to a robust extracellular matrix, similar strength and organization has proven to be difficult to achieve in cultured tissues. Polycaprolactone (PCL) is an emerging contender to fill these gaps in fabricating scaffolds that mimic the mechanics and structure of the native heart. In the field of cardiovascular engineering, PCL has recently begun to be studied as a scaffold for regenerating the myocardium due to its facile fabrication, desirable mechanical, chemical, and biocompatible properties, and perhaps most importantly, biodegradability, which make it suitable for regenerating and re-engineering function to the heart after disease or injury. This review focuses on the application of PCL as a scaffold specifically in myocardium repair and regeneration and outlines current fabrication approaches, properties, and possibilities of PCL incorporation into engineered myocardium, as well as provides suggestions for future directions and a roadmap toward clinical translation of this technology.
Collapse
Affiliation(s)
- Phillip R Schmitt
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kiera D Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
43
|
Morita Y, Kishino Y, Fukuda K, Tohyama S. Scalable manufacturing of clinical-grade differentiated cardiomyocytes derived from human-induced pluripotent stem cells for regenerative therapy. Cell Prolif 2022; 55:e13248. [PMID: 35534945 PMCID: PMC9357358 DOI: 10.1111/cpr.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Basic research on human pluripotent stem cell (hPSC)‐derived cardiomyocytes (CMs) for cardiac regenerative therapy is one of the most active and complex fields to achieve this alternative to heart transplantation and requires the integration of medicine, science, and engineering. Mortality in patients with heart failure remains high worldwide. Although heart transplantation is the sole strategy for treating severe heart failure, the number of donors is limited. Therefore, hPSC‐derived CM (hPSC‐CM) transplantation is expected to replace heart transplantation. To achieve this goal, for basic research, various issues should be considered, including how to induce hPSC proliferation efficiently for cardiac differentiation, induce hPSC‐CMs, eliminate residual undifferentiated hPSCs and non‐CMs, and assess for the presence of residual undifferentiated hPSCs in vitro and in vivo. In this review, we discuss the current stage of resolving these issues and future directions for realizing hPSC‐based cardiac regenerative therapy.
Collapse
Affiliation(s)
- Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Karbassi E, Murry CE. Flexing Their Muscles: Maturation of Stem Cell-Derived Cardiomyocytes on Elastomeric Substrates to Enhance Cardiac Repair. Circulation 2022; 145:1427-1430. [PMID: 35500046 PMCID: PMC9069846 DOI: 10.1161/circulationaha.122.059079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, Center for Cardiovascular Biology, and Department of Laboratory Medicine & Pathology (E.K., C.E.M.), University of Washington, Seattle
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, Center for Cardiovascular Biology, and Department of Laboratory Medicine & Pathology (E.K., C.E.M.), University of Washington, Seattle.,Division of Cardiology, Department of Medicine (C.E.M.), University of Washington, Seattle.,Department of Bioengineering (C.E.M.), University of Washington, Seattle.,Sana Biotechnology, Seattle, WA (C.E.M.)
| |
Collapse
|
45
|
Kelly JM, Anderson C, Breuer CK. The Potential Role of Regenerative Medicine on the Future Management of Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2022; 9:jcdd9040107. [PMID: 35448083 PMCID: PMC9030758 DOI: 10.3390/jcdd9040107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The development and translation of regenerative medicine approaches for the treatment of hypoplastic left heart syndrome (HLHS) provides a promising alternative to the current standard of care. We review the strategies that have been pursued to date and those that hold the greatest promise in moving forward. Significant challenges remain. Continued scientific advances and technological breakthroughs will be required if we are to translate this technology to the clinic and move from palliative to curative treatment.
Collapse
Affiliation(s)
- John M. Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Cole Anderson
- Biomedical Engineering Graduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Correspondence: ; Tel.: +1-614-722-2000
| |
Collapse
|
46
|
Saito Y, Nakamura K, Yoshida M, Sugiyama H, Akagi S, Miyoshi T, Morita H, Ito H. Enhancement of pacing function by HCN4 overexpression in human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2022; 13:141. [PMID: 35365232 PMCID: PMC8973792 DOI: 10.1186/s13287-022-02818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The number of patients with bradyarrhythmia and the number of patients with cardiac pacemakers are increasing with the aging population and the increase in the number of patients with heart diseases. Some patients in whom a cardiac pacemaker has been implanted experience problems such as pacemaker infection and inconvenience due to electromagnetic interference. We have reported that overexpression of HCN channels producing a pacemaker current in mouse embryonic stem cell-derived cardiomyocytes showed enhanced pacing function in vitro and in vivo. The aim of this study was to determine whether HCN4 overexpression in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can strengthen the pacing function of the cells. Methods Human HCN4 was transduced in the AAVS1 locus of human induced pluripotent stem cells by nucleofection and HCN4-overexpressing iPSC-CMs were generated. Gene expression profiles, frequencies of spontaneous contraction and pacing abilities of HCN4-overexpressing and non-overexpressing iPSC-CMs in vitro were compared. Results HCN4-overexpressing iPSC-CMs showed higher spontaneous contraction rates than those of non-overexpressing iPSC-CMs. They responded to an HCN channel blocker and β adrenergic stimulation. The pacing rates against parent iPSC line-derived cardiomyocytes were also higher in HCN4-overexpressing iPSC-CMs than in non-overexpressing iPSC-CMs. Conclusions Overexpression of HCN4 showed enhancement of If current, spontaneous firing and pacing function in iPSC-CMs. These data suggest this transgenic cell line may be useful as a cardiac pacemaker. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02818-y.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama, Japan.
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan.
| | - Masashi Yoshida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Dentistry, and Pharmaceutical Science, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiroki Sugiyama
- Department of Internal Medicine, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan
| |
Collapse
|
47
|
Cardiac Cell Therapy with Pluripotent Stem Cell-Derived Cardiomyocytes: What Has Been Done and What Remains to Do? Curr Cardiol Rep 2022; 24:445-461. [PMID: 35275365 PMCID: PMC9068652 DOI: 10.1007/s11886-022-01666-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Exciting pre-clinical data presents pluripotent stem cell-derived cardiomyocytes (PSC-CM) as a novel therapeutic prospect following myocardial infarction, and worldwide clinical trials are imminent. However, despite notable advances, several challenges remain. Here, we review PSC-CM pre-clinical studies, identifying key translational hurdles. We further discuss cell production and characterization strategies, identifying markers that may help generate cells which overcome these barriers. RECENT FINDINGS PSC-CMs can robustly repopulate infarcted myocardium with functional, force generating cardiomyocytes. However, current differentiation protocols produce immature and heterogenous cardiomyocytes, creating related issues such as arrhythmogenicity, immunogenicity and poor engraftment. Recent efforts have enhanced our understanding of cardiovascular developmental biology. This knowledge may help implement novel differentiation or gene editing strategies that could overcome these limitations. PSC-CMs are an exciting therapeutic prospect. Despite substantial recent advances, limitations of the technology remain. However, with our continued and increasing biological understanding, these issues are addressable, with several worldwide clinical trials anticipated in the coming years.
Collapse
|
48
|
Garbern JC, Lee RT. Heart regeneration: 20 years of progress and renewed optimism. Dev Cell 2022; 57:424-439. [PMID: 35231426 PMCID: PMC8896288 DOI: 10.1016/j.devcel.2022.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide, and thus there remains great interest in regenerative approaches to treat heart failure. In the past 20 years, the field of heart regeneration has entered a renaissance period with remarkable progress in the understanding of endogenous heart regeneration, stem cell differentiation for exogenous cell therapy, and cell-delivery methods. In this review, we highlight how this new understanding can lead to viable strategies for human therapy. For the near term, drugs, electrical and mechanical devices, and heart transplantation will remain mainstays of cardiac therapies, but eventually regenerative therapies based on fundamental regenerative biology may offer more permanent solutions for patients with heart failure.
Collapse
Affiliation(s)
- Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA,Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA,Corresponding author and lead contact: Richard T. Lee, Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, Phone: 617-496-5394, Fax: 617-496-8351,
| |
Collapse
|
49
|
Soma Y, Morita Y, Kishino Y, Kanazawa H, Fukuda K, Tohyama S. The Present State and Future Perspectives of Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells. Front Cardiovasc Med 2021; 8:774389. [PMID: 34957258 PMCID: PMC8692665 DOI: 10.3389/fcvm.2021.774389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
The number of patients with heart failure (HF) is increasing with aging in our society worldwide. Patients with HF who are resistant to medication and device therapy are candidates for heart transplantation (HT). However, the shortage of donor hearts is a serious issue. As an alternative to HT, cardiac regenerative therapy using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, is expected to be realized. Differentiation of hPSCs into cardiomyocytes (CMs) is facilitated by mimicking normal heart development. To prevent tumorigenesis after transplantation, it is important to eliminate non-CMs, including residual hPSCs, and select only CMs. Among many CM selection systems, metabolic selection based on the differences in metabolism between CMs and non-CMs is favorable in terms of cost and efficacy. Large-scale culture systems have been developed because a large number of hPSC-derived CMs (hPSC-CMs) are required for transplantation in clinical settings. In large animal models, hPSC-CMs transplanted into the myocardium improved cardiac function in a myocardial infarction model. Although post-transplantation arrhythmia and immune rejection remain problems, their mechanisms and solutions are under investigation. In this manner, the problems of cardiac regenerative therapy are being solved individually. Thus, cardiac regenerative therapy with hPSC-CMs is expected to become a safe and effective treatment for HF in the near future. In this review, we describe previous studies related to hPSC-CMs and discuss the future perspectives of cardiac regenerative therapy using hPSC-CMs.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Tani H, Tohyama S, Kishino Y, Kanazawa H, Fukuda K. Production of functional cardiomyocytes and cardiac tissue from human induced pluripotent stem cells for regenerative therapy. J Mol Cell Cardiol 2021; 164:83-91. [PMID: 34822838 DOI: 10.1016/j.yjmcc.2021.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022]
Abstract
The emergence of human induced pluripotent stem cells (hiPSCs) has revealed the potential for curing end-stage heart failure. Indeed, transplantation of hiPSC-derived cardiomyocytes (hiPSC-CMs) may have applications as a replacement for heart transplantation and conventional regenerative therapies. However, there are several challenges that still must be overcome for clinical applications, including large-scale production of hiPSCs and hiPSC-CMs, elimination of residual hiPSCs, purification of hiPSC-CMs, maturation of hiPSC-CMs, efficient engraftment of transplanted hiPSC-CMs, development of an injection device, and avoidance of post-transplant arrhythmia and immunological rejection. Thus, we developed several technologies based on understanding of the metabolic profiles of hiPSCs and hiPSC derivatives. In this review, we outline how to overcome these hurdles to realize the transplantation of hiPSC-CMs in patients with heart failure and introduce cutting-edge findings and perspectives for future regenerative therapy.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|