1
|
Siddiquee NH, Hossain MI, Priya FM, Azam SB, Talukder MEK, Barua D, Malek S, Saha N, Muntaha S, Paul R, Ritu IJ, Tuly FI, Hossain A. Nature's defense against emerging neurodegenerative threats: Dynamic simulation, PCA, DCCM identified potential plant-based antiviral lead targeting borna disease virus nucleoprotein. PLoS One 2024; 19:e0310802. [PMID: 39774339 PMCID: PMC11684711 DOI: 10.1371/journal.pone.0310802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/06/2024] [Indexed: 01/11/2025] Open
Abstract
The rare zoonotic Borna disease virus (BDV) causes fatal neurological disease in various animals, with a high mortality rate exceeding 90% in central Europe. However, unlike most viruses, it establishes persistent infections within the host cell nucleus, hindering treatment. As successful BDV treatments remain elusive, the researchers turned to a computational approach, utilizing molecular docking, ADME/T, post-docking MMGBSA, MD simulation, DCCM, and PCA to identify promising phytochemical drug candidates targeting the BDV Nucleoprotein (PDB ID: 1N93). From IMPPAT 1940 unique phytochemical compounds of a total of 8617 compounds from 36 Indian medicinal plants were retrieved. Three compounds were chosen as leads with higher binding affinity of -6.244, -6.116, and -6.07 kcal/mol with CID 163114683 (IMPHY000668) Nimbochalcin, CID 20871246 (IMPHY007896) 3,4-Dihydroxy-5-oxocyclohex-3-ene-1-carboxylic acid, and CID 243 (IMPHY002962) Benzoic acid. The three top compounds coordinated with the protein's common amino acid residues at GLN 161, ARG 165, ILE 145, ILE 162, ILE 149, and VAL 229 during molecular docking, which implies that both lead compounds and the control ligand interact within the protein's shared active site. Afterwards, negative binding free energies of Nimbochalcin, 3,4-Dihydroxy-5-oxocyclohex-3-ene-1-carboxylic acid, and Benzoic acid were -51.21, -13.94, and -22.95 kcal/mol, accordingly. Favorable Pk and toxicological characteristics are shared by all of the chosen drugs, indicating their efficacy and safety. Using MD simulation, these three compounds were further assessed, and their stability in binding to the target protein was confirmed and subsequently, DCCM and PCA analyses were carried out from MD trajectory. MD simulations found that the protein binding site is highly stable when complexed with CID 20871246 and has a higher negative binding free energy value, indicating a strong interaction between the compound and the protein. Principal component analysis (PCA) identified three main components (PC1, PC2, and PC3) that accounted for 53.43%, 12.31%, and 5.97% of the variance, respectively. These findings provide intriguing evidence that the CID 20871246-1N93 complex is more stable than the other complexes. The BDV nucleoprotein was the target of this study's investigation where CID 20871246 (3,4-dihydroxy-5-oxocyclohex-3-ene-1-carboxylic acid) exhibited tremendous antiviral activity which is found in the flower of the plant Mangifera indica revealing as a possible therapeutic candidate.
Collapse
Affiliation(s)
- Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Md. Ifteker Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Farhana Mansoor Priya
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Sakia Binte Azam
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Microbiology, BRAC University, Dhaka, Bangladesh
| | - Md. Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Durjoy Barua
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Pharmacy, BGC Trust University, Chandanaish, Bangladesh
| | - Salina Malek
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka
| | - Niloy Saha
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Sidratul Muntaha
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ridoy Paul
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Israt Jahan Ritu
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Farjana Islam Tuly
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Abir Hossain
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
2
|
Allartz P, Hotop SK, Muntau B, Schlaphof A, Thomé-Bolduan C, Gabriel M, Petersen N, Lintzel M, Behrens C, Eggert P, Pörtner K, Steiner J, Brönstrup M, Tappe D. Detection of bornavirus-reactive antibodies and BoDV-1 RNA only in encephalitis patients from virus endemic areas: a comparative serological and molecular sensitivity, specificity, predictive value, and disease duration correlation study. Infection 2024; 52:59-71. [PMID: 37253816 PMCID: PMC10228883 DOI: 10.1007/s15010-023-02048-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Human Borna disease virus (BoDV-1) encephalitis is an emerging disease in Germany. This study investigates the spectrum of human BoDV-1 infection, characterizes anti-BoDV-1-antibodies and kinetics, and compares laboratory test performances. METHODS Three hundred four encephalitis cases, 308 nation-wide neuropsychiatric conditions, 127 well-defined psychiatric cases from Borna disease-endemic areas, and 20 persons with contact to BoDV-1 encephalitis patients or animals were tested for BoDV-1 infections by serology and PCR. RESULTS BoDV-1 infections were only found in encephalitis patients with residence in, or recent travel to, virus-endemic areas. Antibodies were detected as early as 12 days after symptom onset. Serum antibody levels correlated with disease duration. Serology was ordered after 50% of the disease duration had elapsed, reflecting low awareness. BoDV-1-antibodies were of IgG1 subclass, and the epitope on BoDV-1 antigens was determined. Specificity of the indirect immunofluorescence antibody test (IFAT) and lineblot (LB) from serum and cerebrospinal fluid (CSF), as well as PCR testing from CSF, was 100%. Sensitivity, depending on first or all samples, reached 75-86% in serum and 92-94% in CSF for the IFAT, and 33-57% in serum and 18-24% in CSF for the LB. Sensitivity for PCR in CSF was 25-67%. Positive predictive values were 100% each, while negative predictive values were 99% (IFAT), 91-97% (LB), and 90% (PCR). CONCLUSIONS There is no hint that BoDV-1 causes other diseases than encephalitis in humans. Awareness has to be increased in virus-endemic areas. Tests are robust but lack sensitivity. Detection of IgG1 against specific peptides may facilitate diagnosis. Screening of healthy individuals is likely not beneficial.
Collapse
Affiliation(s)
- Petra Allartz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | | | - Birgit Muntau
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Alexander Schlaphof
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Corinna Thomé-Bolduan
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Martin Gabriel
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Nadine Petersen
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Maren Lintzel
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Christoph Behrens
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Petra Eggert
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Kirsten Pörtner
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University Hospital Magdeburg, Magdeburg, Germany
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.
| |
Collapse
|
3
|
Wang ZX, Liu B, Yang T, Yu D, Zhang C, Zheng L, Xie J, Liu B, Liu M, Peng H, Lai L, Ouyang Q, Ouyang S, Zhang YA. Structure of the Spring Viraemia of Carp Virus Ribonucleoprotein Complex Reveals Its Assembly Mechanism and Application in Antiviral Drug Screening. J Virol 2023; 97:e0182922. [PMID: 36943056 PMCID: PMC10134867 DOI: 10.1128/jvi.01829-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.
Collapse
Affiliation(s)
- Zhao-Xi Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Bing Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tian Yang
- School of Physics, Peking University, Beijing, China
| | - Daqi Yu
- School of Physics, Peking University, Beijing, China
| | - Chu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liming Zheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jin Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bin Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Mengxi Liu
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hailin Peng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Physics, Peking University, Beijing, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Borna Disease Virus 1 Phosphoprotein Forms a Tetramer and Interacts with Host Factors Involved in DNA Double-Strand Break Repair and mRNA Processing. Viruses 2022; 14:v14112358. [PMID: 36366462 PMCID: PMC9692295 DOI: 10.3390/v14112358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
Determining the structural organisation of viral replication complexes and unravelling the impact of infection on cellular homeostasis represent important challenges in virology. This may prove particularly useful when confronted with viruses that pose a significant threat to human health, that appear unique within their family, or for which knowledge is scarce. Among Mononegavirales, bornaviruses (family Bornaviridae) stand out due to their compact genomes and their nuclear localisation for replication. The recent recognition of the zoonotic potential of several orthobornaviruses has sparked a surge of interest in improving our knowledge on this viral family. In this work, we provide a complete analysis of the structural organisation of Borna disease virus 1 (BoDV-1) phosphoprotein (P), an important cofactor for polymerase activity. Using X-ray diffusion and diffraction experiments, we revealed that BoDV-1 P adopts a long coiled-coil α-helical structure split into two parts by an original β-strand twist motif, which is highly conserved across the members of whole Orthobornavirus genus and may regulate viral replication. In parallel, we used BioID to determine the proximal interactome of P in living cells. We confirmed previously known interactors and identified novel proteins linked to several biological processes such as DNA repair or mRNA metabolism. Altogether, our study provides important structure/function cues, which may improve our understanding of BoDV-1 pathogenesis.
Collapse
|
5
|
Rubbenstroth D. Avian Bornavirus Research—A Comprehensive Review. Viruses 2022; 14:v14071513. [PMID: 35891493 PMCID: PMC9321243 DOI: 10.3390/v14071513] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Avian bornaviruses constitute a genetically diverse group of at least 15 viruses belonging to the genus Orthobornavirus within the family Bornaviridae. After the discovery of the first avian bornaviruses in diseased psittacines in 2008, further viruses have been detected in passerines and aquatic birds. Parrot bornaviruses (PaBVs) possess the highest veterinary relevance amongst the avian bornaviruses as the causative agents of proventricular dilatation disease (PDD). PDD is a chronic and often fatal disease that may engulf a broad range of clinical presentations, typically including neurologic signs as well as impaired gastrointestinal motility, leading to proventricular dilatation. It occurs worldwide in captive psittacine populations and threatens private bird collections, zoological gardens and rehabilitation projects of endangered species. In contrast, only little is known about the pathogenic roles of passerine and waterbird bornaviruses. This comprehensive review summarizes the current knowledge on avian bornavirus infections, including their taxonomy, pathogenesis of associated diseases, epidemiology, diagnostic strategies and recent developments on prophylactic and therapeutic countermeasures.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
6
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
7
|
Mukai Y, Horie M, Kojima S, Kawasaki J, Maeda K, Tomonaga K. An endogenous bornavirus-like nucleoprotein in miniopterid bats retains the RNA-binding properties of the original viral protein. FEBS Lett 2022; 596:323-337. [PMID: 35043395 DOI: 10.1002/1873-3468.14290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Endogenous bornavirus-like nucleoprotein elements (EBLNs) are sequences derived from bornaviral N genes in vertebrate genomes. Some EBLNs have been suggested to encode functional proteins in host cells; however, little is known about their evolution and functional relationship to the viral genes from which EBLNs originate. Here, we predicted functionality of EBLNs based on the properties of N as an RNA-binding protein. We showed an EBLN in miniopterid bats (miEBLN-1) has evolved under purifying selection and encodes an RNA-binding protein (miEBLN-1p) with biochemical properties similar to bornaviral N. Furthermore, we revealed miEBLN-1p interacts with host RNA-binding proteins, such as MOV10. These data suggest that miEBLN-1p has been exapted as an RNA-binding protein with similar properties to exogenous bornaviral N in miniopterid bats.
Collapse
Affiliation(s)
- Yahiro Mukai
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Japan
| | - Masayuki Horie
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Japan
- Hakubi Center for Advanced Research, Kyoto University, Japan
- Laboratory of Veterinary Microbiology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
- Osaka International Research Center for Infectious Diseases, Japan
| | - Shohei Kojima
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Japan
| | - Junna Kawasaki
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
8
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
9
|
Luo M, Terrell JR, Mcmanus SA. Nucleocapsid Structure of Negative Strand RNA Virus. Viruses 2020; 12:E835. [PMID: 32751700 PMCID: PMC7472042 DOI: 10.3390/v12080835] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Negative strand RNA viruses (NSVs) include many important human pathogens, such as influenza virus, Ebola virus, and rabies virus. One of the unique characteristics that NSVs share is the assembly of the nucleocapsid and its role in viral RNA synthesis. In NSVs, the single strand RNA genome is encapsidated in the linear nucleocapsid throughout the viral replication cycle. Subunits of the nucleocapsid protein are parallelly aligned along the RNA genome that is sandwiched between two domains composed of conserved helix motifs. The viral RNA-dependent-RNA polymerase (vRdRp) must recognize the protein-RNA complex of the nucleocapsid and unveil the protected genomic RNA in order to initiate viral RNA synthesis. In addition, vRdRp must continuously translocate along the protein-RNA complex during elongation in viral RNA synthesis. This unique mechanism of viral RNA synthesis suggests that the nucleocapsid may play a regulatory role during NSV replication.
Collapse
Affiliation(s)
- Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; (J.R.T.); (S.A.M.)
| | | | | |
Collapse
|
10
|
Nobach D, Müller J, Tappe D, Herden C. Update on immunopathology of bornavirus infections in humans and animals. Adv Virus Res 2020; 107:159-222. [PMID: 32711729 DOI: 10.1016/bs.aivir.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge on bornaviruses has expanded tremendously during the last decade through detection of novel bornaviruses and endogenous bornavirus-like elements in many eukaryote genomes, as well as by confirmation of insectivores as reservoir species for classical Borna disease virus 1 (BoDV-1). The most intriguing finding was the demonstration of the zoonotic potential of lethal human bornavirus infections caused by a novel bornavirus of different squirrel species (variegated squirrel 1 bornavirus, VSBV-1) and by BoDV-1 known as the causative agent for the classical Borna disease in horses and sheep. Whereas a T cell-mediated immunopathology has already been confirmed as key disease mechanism for infection with BoDV-1 by experimental studies in rodents, the underlying pathomechanisms remain less clear for human bornavirus infections, infection with other bornaviruses or infection of reservoir species. Thus, an overview of current knowledge on the pathogenesis of bornavirus infections focusing on immunopathology is given.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Müller
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany; Center for Brain, Mind and Behavior, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
11
|
Splicing-Dependent Subcellular Targeting of Borna Disease Virus Nucleoprotein Isoforms. J Virol 2019; 93:JVI.01621-18. [PMID: 30541858 DOI: 10.1128/jvi.01621-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
Targeting of viral proteins to specific subcellular compartments is a fundamental step for viruses to achieve successful replication in infected cells. Borna disease virus 1 (BoDV-1), a nonsegmented, negative-strand RNA virus, uniquely replicates and persists in the cell nucleus. Here, it is demonstrated that BoDV nucleoprotein (N) transcripts undergo mRNA splicing to generate truncated isoforms. In combination with alternative usage of translation initiation sites, the N gene potentially expresses at least six different isoforms, which exhibit diverse intracellular localizations, including the nucleoplasm, cytoplasm, and endoplasmic reticulum (ER), as well as intranuclear viral replication sites. Interestingly, the ER-targeting signal peptide in N is exposed by removing the intron by mRNA splicing. Furthermore, the spliced isoforms inhibit viral polymerase activity. Consistently, recombinant BoDVs lacking the N-splicing signals acquire the ability to replicate faster than wild-type virus in cultured cells, suggesting that N isoforms created by mRNA splicing negatively regulate BoDV replication. These results provided not only the mechanism of how mRNA splicing generates viral proteins that have distinct functions but also a novel strategy for replication control of RNA viruses using isoforms with different subcellular localizations.IMPORTANCE Borna disease virus (BoDV) is a highly neurotropic RNA virus that belongs to the orthobornavirus genus. A zoonotic orthobornavirus that is genetically related to BoDV has recently been identified in squirrels, thus increasing the importance of understanding the replication and pathogenesis of orthobornaviruses. BoDV replicates in the nucleus and uses alternative mRNA splicing to express viral proteins. However, it is unknown whether the virus uses splicing to create protein isoforms with different functions. The present study demonstrated that the nucleoprotein transcript undergoes splicing and produces four new isoforms in coordination with alternative usage of translation initiation codons. The spliced isoforms showed a distinct intracellular localization, including in the endoplasmic reticulum, and recombinant viruses lacking the splicing signals replicated more efficiently than the wild type. The results provided not only a new regulation of BoDV replication but also insights into how RNA viruses produce protein isoforms from small genomes.
Collapse
|
12
|
Abstract
Negative-sense single-stranded RNA virus (NSRV) is featured by their ribonucleoprotein (RNP) complex composed by viral polymerase and genomic RNA enwrapped by nucleocapsid protein (NP). The RNP is packaged in virions and plays a central role throughout virus lifecycle. In the past decade, structural biology presents molecular insights into NPs encoded by most representative NSRVs, helping to understand the mechanism of RNP formation. Interestingly, works initiated from structural biology also reveal unexpected biological functions of virus NP beyond a structural protein. All these further the knowledge of virus NP and provide great potential for the discovery of antiviral agents to target virus RNP formation. In this chapter, we will summarize the structures and functions of viral NPs, as well as the attempt of NP-targeted antiviral development.
Collapse
Affiliation(s)
- Zhiyong Lou
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China.
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Structural Insight into Nucleoprotein Conformation Change Chaperoned by VP35 Peptide in Marburg Virus. J Virol 2017; 91:JVI.00825-17. [PMID: 28566377 DOI: 10.1128/jvi.00825-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022] Open
Abstract
Marburg virus (MARV) encodes a nucleoprotein (NP) to encapsidate its genome by oligomerization and form a ribonucleoprotein complex (RNP). According to previous investigation on nonsegmented negative-sense RNA viruses (nsNSV), the newly synthesized NPs must be prevented from indiscriminately binding to noncognate RNAs. During the viral RNA synthesis process, the RNPs undergo a transition from an RNA-bound form to a template-free form, to open access for the interaction between the viral polymerase and the RNA template. In filoviruses, this transition is regulated by VP35 peptide and other viral components. To further understand the dynamic process of filovirus RNP formation, we report here the structure of MARV NPcore, both in the apo form and in the VP35 peptide-chaperoned form. These structures reveal a typical bilobed structure, with a positive-charged RNA binding groove between two lobes. In the apo form, the MARV NP exists in an interesting hexameric state formed by the hydrophobic interaction within the long helix of the NPcore C-terminal region, which shows high structural flexibility among filoviruses and may imply critical function during RNP formation. Moreover, the VP35 peptide-chaperoned NPcore remains in a monomeric state and completely loses its affinity for single-stranded RNA (ssRNA). The structural comparison reveals that the RNA binding groove undergoes a transition from closed state to open state, chaperoned by VP35 peptide, thus preventing the interaction for viral RNA. Our investigation provides considerable structural insight into the filovirus RNP working mechanism and may support the development of antiviral therapies targeting the RNP formation of filovirus.IMPORTANCE Marburg virus is one of the most dangerous viruses, with high morbidity and mortality. A recent outbreak in Angola in 2005 caused the deaths of 272 persons. NP is one of the most essential proteins, as it encapsidates and protects the whole virus genome simultaneously with self-assembly oligomerization. Here we report the structures of MARV NPcore in two different forms. In the MARV NP apo form, we identify an interesting hexamer formed by hydrophobic interaction within a long helix, which is highly conserved and flexible among filoviruses and may indicate its critical function during the virus RNP formation. Moreover, the structural comparison with the NP-VP35 peptide complex reveals a structural transition chaperoned by VP35, in which the RNA binding groove undergoes a transition from closed state to open state. Finally, we discussed the high conservation and critical role of the VP35 binding pocket and its potential use for therapeutic development.
Collapse
|
14
|
Yanai M, Sakai M, Makino A, Tomonaga K. Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein. Virol J 2017; 14:126. [PMID: 28693611 PMCID: PMC5504739 DOI: 10.1186/s12985-017-0793-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. RESULTS BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. CONCLUSIONS Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.
Collapse
Affiliation(s)
- Mako Yanai
- Laboratory of RNA virus, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Madoka Sakai
- Laboratory of RNA virus, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akiko Makino
- Laboratory of RNA virus, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Keizo Tomonaga
- Laboratory of RNA virus, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Molecular Viruses, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Jamin M, Yabukarski F. Nonsegmented Negative-Sense RNA Viruses-Structural Data Bring New Insights Into Nucleocapsid Assembly. Adv Virus Res 2016; 97:143-185. [PMID: 28057258 DOI: 10.1016/bs.aivir.2016.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Viruses with a nonsegmented negative-sense RNA genome (NNVs) include important human pathogens as well as life-threatening zoonotic viruses. These viruses share a common RNA replication complex, including the genomic RNA and three proteins, the nucleoprotein (N), the phosphoprotein (P), and the RNA-dependent RNA polymerase (L). During genome replication, the RNA polymerase complex first synthesizes positive-sense antigenomes, which in turn serve as template for the production of negative-sense progeny genomes. These newly synthesized antigenomic and genomic RNAs must be encapsidated by N, and the source of soluble, RNA-free N, competent for the encapsidation is a complex between N and P, named the N0-P complex. In this review, we summarize recent progress made in the structural characterization of the different components of this peculiar RNA polymerase machinery. We discuss common features and replication strategies and highlight idiosyncrasies encountered in different viruses, along with the key role of the dual ordered/disordered architecture of protein components and the dynamics of the viral polymerase machinery. In particular, we focus on the N0-P complex and its role in the nucleocapsid assembly process. These new results provide evidence that the mechanism of NC assembly is conserved between the different families and thus support a divergent evolution from a common ancestor. In addition, the successful inhibition of infection due to different NNVs by peptides derived from P suggests that the mechanism of NC assembly is a potential target for antiviral development.
Collapse
Affiliation(s)
- M Jamin
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France.
| | - F Yabukarski
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
16
|
Wang X, Li B, Guo Y, Shen S, Zhao L, Zhang P, Sun Y, Sui SF, Deng F, Lou Z. Molecular basis for the formation of ribonucleoprotein complex of Crimean-Congo hemorrhagic fever virus. J Struct Biol 2016; 196:455-465. [PMID: 27666016 DOI: 10.1016/j.jsb.2016.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 02/05/2023]
Abstract
Negative-sense single-strand RNA (-ssRNA) viruses comprise a large family of pathogens that cause severe human infectious diseases. All -ssRNA viruses encode a nucleocapsid protein (NP) to encapsidate the viral genome, which, together with polymerase, forms a ribonucleoprotein complex (RNP) that is packaged into virions and acts as the template for viral replication and transcription. In our previous work, we solved the monomeric structure of NP encoded by Crimean-Congo hemorrhagic fever virus (CCHFV), which belongs to the Nairovirus genus within the Bunyaviridae family, and revealed its unusual endonuclease activity. However, the mechanism of CCHFV RNP formation remains unclear, due to the difficulty in reconstructing the oligomeric CCHFV NP-RNA complex. Here, we identified and isolated the oligomeric CCHFV NP-RNA complex that formed in expression cells. Sequencing of RNA extracted from the complex revealed sequence specificity and suggested a potential encapsidation signal facilitating the association between NP and viral genome. A cryo-EM reconstruction revealed the ring-shaped architecture of the CCHFV NP-RNA oligomer, thus defining the interaction between the head and stalk domains that results in NP multimerization. This structure also suggested a modified gating mechanism for viral genome encapsidation, in which both the head and stalk domains participate in RNA binding. This work provides insight into the distinct mechanism underlying CCHFV RNP formation compared to other -ssRNA viruses.
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Biomembrane, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Baobin Li
- School of Medicine and MOE Laboratory of Protein Science, Tsinghua University, Beijing 100084, China; School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liang Zhao
- State Key Laboratory of Biomembrane, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peisheng Zhang
- School of Medicine and MOE Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhiyong Lou
- School of Medicine and MOE Laboratory of Protein Science, Tsinghua University, Beijing 100084, China; College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Binding of RNA by the Nucleoproteins of Influenza Viruses A and B. Viruses 2016; 8:v8090247. [PMID: 27649229 PMCID: PMC5035961 DOI: 10.3390/v8090247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022] Open
Abstract
This paper describes a biochemical study for making complexes between the nucleoprotein of influenza viruses A and B (A/NP and B/NP) and small RNAs (polyUC RNAs from 5 to 24 nucleotides (nt)), starting from monomeric proteins. We used negative stain electron microscopy, size exclusion chromatography-multi-angle laser light scattering (SEC-MALLS) analysis, and fluorescence anisotropy measurements to show how the NP-RNA complexes evolve. Both proteins make small oligomers with 24-nt RNAs, trimers for A/NP, and dimers, tetramers, and larger complexes for B/NP. With shorter RNAs, the affinities of NP are all in the same range at 50 mM NaCl, showing that the RNAs bind on the same site. The affinity of B/NP for a 24-nt RNA does not change with salt. However, the affinity of A/NP for a 24-nt RNA is lower at 150 and 300 mM NaCl, suggesting that the RNA binds to another site, either on the same protomer or on a neighbour protomer. For our fluorescence anisotropy experiments, we used 6-fluorescein amidite (FAM)-labelled RNAs. By using a (UC)6-FAM3′ RNA with 150 mM NaCl, we observed an interesting phenomenon that gives macromolecular complexes similar to the ribonucleoprotein particles purified from the viruses.
Collapse
|
18
|
Knock-Down of Endogenous Bornavirus-Like Nucleoprotein 1 Inhibits Cell Growth and Induces Apoptosis in Human Oligodendroglia Cells. Int J Mol Sci 2016; 17:435. [PMID: 27023521 PMCID: PMC4848891 DOI: 10.3390/ijms17040435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
Endogenous bornavirus-like nucleoprotein elements (EBLNs) have been discovered in the genomes of various animals including humans, whose functions have been seldom studied. To explore the biological functions of human EBLNs, we constructed a lentiviral vector expressing a short-hairpin RNA against human EBLN1, which successfully inhibited EBLN1 expression by above 80% in infected human oligodendroglia cells (OL cells). We found that EBLN1 silencing suppressed cell proliferation, induced G2/M phase arrest, and promoted apoptosis in OL cells. Gene expression profiling demonstrated that 1067 genes were up-regulated, and 2004 were down-regulated after EBLN1 silencing. The top 10 most upregulated genes were PI3, RND3, BLZF1, SOD2, EPGN, SBSN, INSIG1, OSMR, CREB3L2, and MSMO1, and the top 10 most-downregulated genes were KRTAP2-4, FLRT2, DIDO1, FAT4, ESCO2, ZNF804A, SUV420H1, ZC3H4, YAE1D1, and NCOA5. Pathway analysis revealed that these differentially expressed genes were mainly involved in pathways related to the cell cycle, the mitogen-activated protein kinase pathway, p53 signaling, and apoptosis. The gene expression profiles were validated by using quantitative reverse transcription polymerase chain reaction (RT-PCR) for detecting these 20 most-changed genes. Three genes closely related to glioma, RND3, OSMR, and CREB3L2, were significantly upregulated and might be the key factors in EBLN1 regulating the proliferation and apoptosis of OL cells. This study provides evidence that EBLN1 plays a key role in regulating cell life and death, thereby opening several avenues of investigation regarding EBLN1 in the future.
Collapse
|
19
|
Renner M, Bertinelli M, Leyrat C, Paesen GC, Saraiva de Oliveira LF, Huiskonen JT, Grimes JM. Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein. eLife 2016; 5:e12627. [PMID: 26880565 PMCID: PMC4798948 DOI: 10.7554/elife.12627] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/14/2016] [Indexed: 01/26/2023] Open
Abstract
Non-segmented, (-)RNA viruses cause serious human diseases. Human metapneumovirus (HMPV), an emerging pathogen of this order of viruses (Mononegavirales) is one of the main causes of respiratory tract illness in children. To help elucidate the assembly mechanism of the nucleocapsid (the viral RNA genome packaged by the nucleoprotein N) we present crystallographic structures of HMPV N in its assembled RNA-bound state and in a monomeric state, bound to the polymerase cofactor P. Our structures reveal molecular details of how P inhibits the self-assembly of N and how N transitions between the RNA-free and RNA-bound conformational state. Notably, we observe a role for the C-terminal extension of N in directly preventing premature uptake of RNA by folding into the RNA-binding cleft. Our structures suggest a common mechanism of how the growth of the nucleocapsid is orchestrated, and highlight an interaction site representing an important target for antivirals.
Collapse
Affiliation(s)
- Max Renner
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mattia Bertinelli
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Cédric Leyrat
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Guido C Paesen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Didcot, United Kingdom
| |
Collapse
|
20
|
Dayer MR, Dayer MS, Rezatofighi SE. Mechanism of preferential packaging of negative sense genomic RNA by viral nucleoproteins in Crimean-Congo hemorrhagic Fever virus. Protein J 2016; 34:91-102. [PMID: 25632888 PMCID: PMC7087998 DOI: 10.1007/s10930-015-9601-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Crimean-Congo Hemorrhagic Fever (CCHF) is an infectious disease of high virulence and mortality caused by a negative sense RNA nairovirus. The genomic RNA of CCHFV is enwrapped by its nucleoprotein. Positively charged residues on CCHFV nucleoprotein provide multiple binding sites to facilitate genomic RNA encapsidation. In the present work, we investigated the mechanism underlying preferential packaging of the negative sense genomic RNA by CCHFV nucleoprotein in the presence of host cell RNAs during viral assembly. The work included genome sequence analyses for different families of negative and positive sense RNA viruses, using serial docking experiments and molecular dynamic simulations. Our results indicated that the main determinant parameter of the nucleoprotein binding affinity for negative sense RNA is the ratio of purine/pyrimidine in the RNA molecule. A negative sense RNA with a purine/pyrimidine ratio (>1) higher than that of a positive sense RNA (<1) exhibits higher affinity for the nucleoprotein. Our calculations revealed that a negative sense RNA expresses about 0.5 kJ/mol higher binding energy per nucleotide compared to a positive sense RNA. This energy difference produces a binding energy high enough to make the negative sense RNA, the preferred substrate for packaging by CCHFV nucleoprotein in the presence of cellular or complementary positive sense RNAs. The outcome of this study may contribute to ongoing researches on other viral diseases caused by negative sense RNA viruses such as Ebola virus which poses a security threat to all humanity.
Collapse
Affiliation(s)
- Mohammad Reza Dayer
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran,
| | | | | |
Collapse
|
21
|
Abstract
Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus.
Collapse
Affiliation(s)
- Qian Cong
- a Departments of Biophysics and Biochemistry ; University of Texas Southwestern Medical Center at Dallas ; Dallas , TX USA
| | | | | |
Collapse
|
22
|
Kirchdoerfer RN, Abelson DM, Li S, Wood MR, Saphire EO. Assembly of the Ebola Virus Nucleoprotein from a Chaperoned VP35 Complex. Cell Rep 2015; 12:140-149. [PMID: 26119732 PMCID: PMC4500542 DOI: 10.1016/j.celrep.2015.06.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/01/2015] [Accepted: 05/29/2015] [Indexed: 12/25/2022] Open
Abstract
Ebolavirus NP oligomerizes into helical filaments found at the core of the virion, encapsidates the viral RNA genome, and serves as a scaffold for additional viral proteins within the viral nucleocapsid. We identified a portion of the phosphoprotein homolog VP35 that binds with high affinity to nascent NP and regulates NP assembly and viral genome binding. Removal of the VP35 peptide leads to NP self-assembly via its N-terminal oligomerization arm. NP oligomerization likely causes a conformational change between the NP N- and C-terminal domains, facilitating RNA binding. These functional data are complemented by crystal structures of the NP°-VP35 complex at 2.4 Å resolution. The interactions between NP and VP35 illuminated by these structures are conserved among filoviruses and provide key targets for therapeutic intervention.
Collapse
Affiliation(s)
- Robert N Kirchdoerfer
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dafna M Abelson
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Malcolm R Wood
- Core Microscopy Facility, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Longhi S. Structural disorder within paramyxoviral nucleoproteins. FEBS Lett 2015; 589:2649-59. [PMID: 26071376 DOI: 10.1016/j.febslet.2015.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
Abstract
In this review I summarize available data pointing to the abundance of structural disorder within the nucleoprotein (N) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. I provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous phosphoproteins. I also show that a significant flexibility persists within NTAIL-XD complexes, which makes them illustrative examples of "fuzziness". Finally, I discuss the functional implications of structural disorder for viral transcription and replication in light of the promiscuity of disordered regions and of the considerable reach they confer to the components of the replicative machinery.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
24
|
Insight into the Ebola virus nucleocapsid assembly mechanism: crystal structure of Ebola virus nucleoprotein core domain at 1.8 Å resolution. Protein Cell 2015; 6:351-62. [PMID: 25910597 PMCID: PMC4417675 DOI: 10.1007/s13238-015-0163-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/14/2015] [Indexed: 02/03/2023] Open
Abstract
Ebola virus (EBOV) is a key member of Filoviridae family and causes severe human infectious diseases with high morbidity and mortality. As a typical negative-sense single-stranded RNA (-ssRNA) viruses, EBOV possess a nucleocapsid protein (NP) to facilitate genomic RNA encapsidation to form viral ribonucleoprotein complex (RNP) together with genome RNA and polymerase, which plays the most essential role in virus proliferation cycle. However, the mechanism of EBOV RNP formation remains unclear. In this work, we solved the high resolution structure of core domain of EBOV NP. The polypeptide of EBOV NP core domain (NP(core)) possesses an N-lobe and C-lobe to clamp a RNA binding groove, presenting similarities with the structures of the other reported viral NPs encoded by the members from Mononegavirales order. Most strikingly, a hydrophobic pocket at the surface of the C-lobe is occupied by an α-helix of EBOV NP(core) itself, which is highly conserved among filoviridae family. Combined with other biochemical and biophysical evidences, our results provides great potential for understanding the mechanism underlying EBOV RNP formation via the mobility of EBOV NP element and enables the development of antiviral therapies targeting EBOV RNP formation.
Collapse
|
25
|
Ortín J, Martín-Benito J. The RNA synthesis machinery of negative-stranded RNA viruses. Virology 2015; 479-480:532-44. [PMID: 25824479 DOI: 10.1016/j.virol.2015.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/14/2015] [Accepted: 03/03/2015] [Indexed: 11/15/2022]
Abstract
The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes.
Collapse
Affiliation(s)
- Juan Ortín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias (ISCIII), Madrid, Spain.
| | - Jaime Martín-Benito
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CSIC), Madrid, Spain.
| |
Collapse
|
26
|
Makino A, Fujino K, Parrish NF, Honda T, Tomonaga K. Borna disease virus possesses an NF-ĸB inhibitory sequence in the nucleoprotein gene. Sci Rep 2015; 5:8696. [PMID: 25733193 PMCID: PMC4649702 DOI: 10.1038/srep08696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Borna disease virus (BDV) has a non-segmented, negative-stranded RNA genome and causes persistent infection in many animal species. Previous study has shown that the activation of the IκB kinase (IKK)/NF-κB pathway is reduced by BDV infection even in cells expressing constitutively active mutant IKK. This result suggests that BDV directly interferes with the IKK/NF-κB pathway. To elucidate the mechanism for the inhibition of NF-κB activation by BDV infection, we evaluated the cross-talk between BDV infection and the NF-κB pathway. Using Multiple EM for Motif Elicitation analysis, we found that the nucleoproteins of BDV (BDV-N) and NF-κB1 share a common ankyrin-like motif. When THP1-CD14 cells were pre-treated with the identified peptide, NF-κB activation by Toll-like receptor ligands was suppressed. The 20S proteasome assay showed that BDV-N and BDV-N-derived peptide inhibited the processing of NF-κB1 p105 into p50. Furthermore, immunoprecipitation assays showed that BDV-N interacted with NF-κB1 but not with NF-κB2, which shares no common motif with BDV-N. These results suggest BDV-N inhibits NF-κB1 processing by the 20S proteasome through its ankyrin-like peptide sequence, resulting in the suppression of IKK/NF-κB pathway activation. This inhibitory effect of BDV on the induction of the host innate immunity might provide benefits against persistent BDV infection.
Collapse
Affiliation(s)
- Akiko Makino
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kan Fujino
- Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan
| | | | - Tomoyuki Honda
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan [3] Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
27
|
Order and Disorder in the Replicative Complex of Paramyxoviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:351-81. [PMID: 26387109 DOI: 10.1007/978-3-319-20164-1_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we summarize available data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within NTAIL-XD complexes, which therefore provide illustrative examples of "fuzziness". The functional implications of structural disorder for viral transcription and replication are discussed in light of the ability of disordered regions to establish a complex molecular partnership and to confer a considerable reach to the elements of the replicative machinery.
Collapse
|
28
|
Dziubańska PJ, Derewenda U, Ellena JF, Engel DA, Derewenda ZS. The structure of the C-terminal domain of the Zaire ebolavirus nucleoprotein. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2420-9. [PMID: 25195755 PMCID: PMC4157450 DOI: 10.1107/s1399004714014710] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/22/2014] [Indexed: 11/11/2022]
Abstract
Ebolavirus (EBOV) causes severe hemorrhagic fever with a mortality rate of up to 90%. EBOV is a member of the order Mononegavirales and, like other viruses in this taxonomic group, contains a negative-sense single-stranded (ss) RNA. The EBOV ssRNA encodes seven distinct proteins. One of them, the nucleoprotein (NP), is the most abundant viral protein in the infected cell and within the viral nucleocapsid. Like other EBOV proteins, NP is multifunctional. It is tightly associated with the viral genome and is essential for viral transcription, RNA replication, genome packaging and nucleocapsid assembly prior to membrane encapsulation. NP is unusual among the Mononegavirales in that it contains two distinct regions, or putative domains, the C-terminal of which shows no homology to any known proteins and is purported to be a hub for protein-protein interactions within the nucleocapsid. The atomic structure of NP remains unknown. Here, the boundaries of the N- and C-terminal domains of NP from Zaire EBOV are defined, it is shown that they can be expressed as highly stable recombinant proteins in Escherichia coli, and the atomic structure of the C-terminal domain (residues 641-739) derived from analysis of two distinct crystal forms at 1.98 and 1.75 Å resolution is described. The structure reveals a novel tertiary fold that is distantly reminiscent of the β-grasp architecture.
Collapse
Affiliation(s)
- Paulina J. Dziubańska
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Jeffrey F. Ellena
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA
| | - Daniel A. Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| |
Collapse
|
29
|
Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proc Natl Acad Sci U S A 2014; 111:13175-80. [PMID: 25157155 DOI: 10.1073/pnas.1407046111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called "endogenous bornavirus-like elements" (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.
Collapse
|
30
|
Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone. Nat Struct Mol Biol 2014; 21:754-9. [DOI: 10.1038/nsmb.2868] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/03/2014] [Indexed: 11/08/2022]
|
31
|
Ehler A, Benz J, Schlatter D, Rudolph MG. Mapping the conformational space accessible to catechol-O-methyltransferase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2163-74. [PMID: 25084335 PMCID: PMC4118827 DOI: 10.1107/s1399004714012917] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/03/2014] [Indexed: 11/10/2022]
Abstract
Methylation catalysed by catechol-O-methyltransferase (COMT) is the main pathway of catechol neurotransmitter deactivation in the prefrontal cortex. Low levels of this class of neurotransmitters are held to be causative of diseases such as schizophrenia, depression and Parkinson's disease. Inhibition of COMT may increase neurotransmitter levels, thus offering a route for treatment. Structure-based drug design hitherto seems to be based on the closed enzyme conformation. Here, a set of apo, semi-holo, holo and Michaelis form crystal structures are described that define the conformational space available to COMT and that include likely intermediates along the catalytic pathway. Domain swaps and sizeable loop movements around the active site testify to the flexibility of this enzyme, rendering COMT a difficult drug target. The low affinity of the co-substrate S-adenosylmethionine and the large conformational changes involved during catalysis highlight significant energetic investment to achieve the closed conformation. Since each conformation of COMT is a bona fide target for inhibitors, other states than the closed conformation may be promising to address. Crystallographic data for an alternative avenue of COMT inhibition, i.e. locking of the apo state by an inhibitor, are presented. The set of COMT structures may prove to be useful for the development of novel classes of inhibitors.
Collapse
Affiliation(s)
- Andreas Ehler
- Molecular Design and Chemical Biology, F. Hoffmann-La Roche, Grenzacher Strasse 124, Basel, Switzerland
| | - Jörg Benz
- Molecular Design and Chemical Biology, F. Hoffmann-La Roche, Grenzacher Strasse 124, Basel, Switzerland
| | - Daniel Schlatter
- Molecular Design and Chemical Biology, F. Hoffmann-La Roche, Grenzacher Strasse 124, Basel, Switzerland
| | - Markus G. Rudolph
- Molecular Design and Chemical Biology, F. Hoffmann-La Roche, Grenzacher Strasse 124, Basel, Switzerland
| |
Collapse
|
32
|
Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions. J Virol 2014; 88:10851-63. [PMID: 25008930 DOI: 10.1128/jvi.00664-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED The genome of nonsegmented negative-strand RNA viruses is tightly embedded within a nucleocapsid made of a nucleoprotein (N) homopolymer. To ensure processive RNA synthesis, the viral polymerase L in complex with its cofactor phosphoprotein (P) binds the nucleocapsid that constitutes the functional template. Measles virus P and N interact through two binding sites. While binding of the P amino terminus with the core of N (NCORE) prevents illegitimate encapsidation of cellular RNA, the interaction between their C-terminal domains, P(XD) and N(TAIL) is required for viral RNA synthesis. To investigate the binding dynamics between the two latter domains, the P(XD) F497 residue that makes multiple hydrophobic intramolecular interactions was mutated. Using a quantitative mammalian protein complementation assay and recombinant viruses, we found that an increase in P(XD)-to-N(TAIL) binding strength is associated with a slower transcript accumulation rate and that abolishing the interaction renders the polymerase nonfunctional. The use of a newly developed system allowing conditional expression of wild-type or mutated P genes, revealed that the loss of the P(XD)-N(TAIL) interaction results in reduced transcription by preformed transcriptases, suggesting reduced engagement on the genomic template. These intracellular data indicate that the viral polymerase entry into and progression along its genomic template relies on a protein-protein interaction that serves as a tightly controlled dynamic anchor. IMPORTANCE Mononegavirales have a unique machinery to replicate RNA. Processivity of their polymerase is only achieved when the genome template is entirely embedded into a helical homopolymer of nucleoproteins that constitutes the nucleocapsid. The polymerase binds to the nucleocapsid template through the phosphoprotein. How the polymerase complex enters and travels along the nucleocapsid template to ensure uninterrupted synthesis of up to ∼ 6,700-nucleotide messenger RNAs from six to ten consecutive genes is unknown. Using a quantitative protein complementation assay and a biGene-biSilencing system allowing conditional expression of two P genes copies, the role of the P-to-N interaction in polymerase function was further characterized. We report here a dynamic protein anchoring mechanism that differs from all other known polymerases that rely only onto a sustained and direct binding to their nucleic acid template.
Collapse
|
33
|
Abstract
The influenza A viruses cause yearly epidemics and occasional pandemics of respiratory disease, which constitute a serious health and economic burden. Their genome consists of eight single-stranded, negative-polarity RNAs that associate to the RNA polymerase and many nucleoprotein monomers to form ribonucleoprotein complexes (RNPs). Here, we focus on the organization of these RNPs, as well as on the structure and interactions of its constitutive elements and we discuss the mechanisms by which the RNPs transcribe and replicate the viral genome.
Collapse
|
34
|
Zhang Y, Li L, Liu X, Dong S, Wang W, Huo T, Guo Y, Rao Z, Yang C. Crystal structure of Junin virus nucleoprotein. J Gen Virol 2013; 94:2175-2183. [DOI: 10.1099/vir.0.055053-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Junin virus (JUNV) has been identified as the aetiological agent of Argentine haemorrhagic fever (AHF), which is a serious public health problem with approximately 5 million people at risk. It is treated as a potential bioterrorism agent because of its rapid transmission by aerosols. JUNV is a negative-sense ssRNA virus that belongs to the genus Arenavirus within the family Arenaviridae, and its genomic RNA contains two segments encoding four proteins. Among these, the nucleoprotein (NP) has essential roles in viral RNA synthesis and immune suppression, but the molecular mechanisms of its actions are only partially understood. Here, we determined a 2.2 Å crystal structure of the C-terminal domain of JUNV NP. This structure showed high similarity to the Lassa fever virus (LASV) NP C-terminal domain. However, both the structure and function of JUNV NP showed differences compared with LASV NP. This study extends our structural insight into the negative-sense ssRNA virus NPs.
Collapse
Affiliation(s)
- Yinjie Zhang
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Le Li
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xiang Liu
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
| | - Shishang Dong
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Wenming Wang
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Tong Huo
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Zihe Rao
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Cheng Yang
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
35
|
Zheng W, Olson J, Vakharia V, Tao YJ. The crystal structure and RNA-binding of an orthomyxovirus nucleoprotein. PLoS Pathog 2013; 9:e1003624. [PMID: 24068932 PMCID: PMC3771910 DOI: 10.1371/journal.ppat.1003624] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/31/2013] [Indexed: 12/23/2022] Open
Abstract
Genome packaging for viruses with segmented genomes is often a complex problem. This is particularly true for influenza viruses and other orthomyxoviruses, whose genome consists of multiple negative-sense RNAs encapsidated as ribonucleoprotein (RNP) complexes. To better understand the structural features of orthomyxovirus RNPs that allow them to be packaged, we determined the crystal structure of the nucleoprotein (NP) of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV) (genus Isavirus). As the major protein component of the RNPs, ISAV-NP possesses a bi-lobular structure similar to the influenza virus NP. Because both RNA-free and RNA-bound ISAV NP forms stable dimers in solution, we were able to measure the NP RNA binding affinity as well as the stoichiometry using recombinant proteins and synthetic oligos. Our RNA binding analysis revealed that each ISAV-NP binds ∼12 nts of RNA, shorter than the 24–28 nts originally estimated for the influenza A virus NP based on population average. The 12-nt stoichiometry was further confirmed by results from electron microscopy and dynamic light scattering. Considering that RNPs of ISAV and the influenza viruses have similar morphologies and dimensions, our findings suggest that NP-free RNA may exist on orthomyxovirus RNPs, and selective RNP packaging may be accomplished through direct RNA-RNA interactions. Orthomyxoviruses are a family of RNA viruses that include the various types of influenza viruses. The genome of orthomyxoviruses consists of multiple segments of negative-sense, single-stranded RNA molecules, each packaged in the form of rod-shaped, double-helical ribonucleoprotein (RNP) complexes. How different RNPs interact with each other to ensure specific genome packaging is a long-standing question and crucial to our understanding of orthomyxovirus replication and influenza virus gene reassortment. Our study of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV), shows that its nucleoprotein (NP), which forms the protein scaffold backbone of the viral RNP, has a bi-lobular structure like the influenza virus NP. Because ISAV-NP forms stable dimers in solution, we were able to determine ISAV-NP RNA binding stoichiometry by biochemical assays, electron microscopy and dynamic light scattering. Our results indicate that each ISAV-NP binds ∼12-nt RNA, shorter than the 24–28 nts originally estimated for the influenza A virus based on population average. We propose that NP-free RNA exists on orthomyxovirus RNPs, and such RNA regions likely mediate specific RNP-RNP interactions during genome packaging. Further elucidation of the RNA-mediated RNP-RNP interactions will help us determine the molecular basis of gene reassortment by orthomyxoviruses including the influenza viruses.
Collapse
Affiliation(s)
- Wenjie Zheng
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - John Olson
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Vikram Vakharia
- Department of Marine Biotechnology, University of Maryland Baltimore County, Institute of Marine and Environmental Technology, Baltimore, Maryland, United States of America
| | - Yizhi Jane Tao
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Nucleocytoplasmic shuttling of viral proteins in borna disease virus infection. Viruses 2013; 5:1978-90. [PMID: 23965528 PMCID: PMC3761237 DOI: 10.3390/v5081978] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022] Open
Abstract
Nuclear import and export of viral RNA and proteins are critical to the replication cycle of viruses that replicate in the nucleus. Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that belongs to the order Mononegavirales. BDV has several distinguishing features, one of the most striking being the site of its replication. BDV RNA is transcribed and replicated in the nucleus, while most other negative-strand RNA viruses replicate in the cytoplasm. Therefore, the nucleocytoplasmic trafficking of BDV macromolecules plays a key role in virus replication. Growing evidence indicates that several BDV proteins, including the nucleoprotein, phosphoprotein, protein X and large protein, contribute to the nucleocytoplasmic trafficking of BDV ribonucleoprotein (RNP). The directional control of BDV RNP trafficking is likely determined by the ratios of and interactions between the nuclear localization signals and nuclear export signals in the RNP. In this review, we present a comprehensive view of several unique mechanisms that BDV has developed to control its RNP trafficking and discuss the significance of BDV RNP trafficking in the replication cycle of BDV.
Collapse
|
37
|
Zhou H, Sun Y, Wang Y, Liu M, Liu C, Wang W, Liu X, Li L, Deng F, Wang H, Guo Y, Lou Z. The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation. Protein Cell 2013; 4:445-55. [PMID: 23702688 PMCID: PMC4875558 DOI: 10.1007/s13238-013-3901-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 01/07/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), a member of the Phlebovirus genus from the Bunyaviridae family endemic to China, is the causative agent of life-threatening severe fever with thrombocytopenia syndrome (SFTS), which features high fever and hemorrhage. Similar to other negative-sense RNA viruses, SFTSV encodes a nucleocapsid protein (NP) that is essential for viral replication. NP facilitates viral RNA encapsidation and is responsible for the formation of ribonucleoprotein complex. However, recent studies have indicated that NP from Phlebovirus members behaves in inhomogeneous oligomerization states. In the present study, we report the crystal structure of SFTSV NP at 2.8 Å resolution and demonstrate the mechanism by which it processes a ringshaped hexameric form to accomplish RNA encapsidation. Key residues essential for oligomerization are identified through mutational analysis and identified to have a significant impact on RNA binding, which suggests that correct formation of highly ordered oligomers is a critical step in RNA encapsidation. The findings of this work provide new insights into the discovery of new antiviral reagents for Phlebovirus infection.
Collapse
Affiliation(s)
- Honggang Zhou
- grid.216938.70000000098787032College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 China ,grid.12527.330000000106623178Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine and Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Yuna Sun
- grid.9227.e0000000119573309National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Ying Wang
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin, 300457 China
| | - Min Liu
- grid.216938.70000000098787032College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 China ,High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin, 300457 China
| | - Chao Liu
- grid.216938.70000000098787032College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 China ,High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin, 300457 China
| | - Wenming Wang
- grid.216938.70000000098787032College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 China ,High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin, 300457 China
| | - Xiang Liu
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin, 300457 China
| | - Le Li
- grid.216938.70000000098787032College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 China ,High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin, 300457 China
| | - Fei Deng
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Hualin Wang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Yu Guo
- grid.216938.70000000098787032College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 China
| | - Zhiyong Lou
- grid.12527.330000000106623178Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine and Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
38
|
Li B, Wang Q, Pan X, Fernández de Castro I, Sun Y, Guo Y, Tao X, Risco C, Sui SF, Lou Z. Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation. Proc Natl Acad Sci U S A 2013; 110:9048-53. [PMID: 23569257 PMCID: PMC3670369 DOI: 10.1073/pnas.1222552110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bunyamwera virus (BUNV), which belongs to the genus Orthobunyavirus, is the prototypical virus of the Bunyaviridae family. Similar to other negative-sense single-stranded RNA viruses, bunyaviruses possess a nucleocapsid protein (NP) to facilitate genomic RNA encapsidation and virus replication. The structures of two NPs of members of different genera within the Bunyaviridae family have been reported. However, their structures, RNA-binding features, and functions beyond RNA binding significantly differ from one another. Here, we report the crystal structure of the BUNV NP-RNA complex. The polypeptide of the BUNV NP was found to possess a distinct fold among viral NPs. An N-terminal arm and a C-terminal tail were found to interact with neighboring NP protomers to form a tetrameric ring-shaped organization. Each protomer bound a 10-nt RNA molecule, which was acquired from the expression host, in the positively charged crevice between the N and C lobes. Inhomogeneous oligomerization was observed for the recombinant BUNV NP-RNA complex, which was similar to the Rift Valley fever virus NP-RNA complex. This result suggested that the flexibility of one NP protomer with adjacent protomers underlies the BUNV ribonucleoprotein complex (RNP) formation. Electron microscopy revealed that the monomer-sized NP-RNA complex was the building block of the natural BUNV RNP. Combined with previous results indicating that mutagenesis of the interprotomer or protein-RNA interface affects BUNV replication, our structure provides a great potential for understanding the mechanism underlying negative-sense single-stranded RNA RNP formation and enables the development of antiviral therapies targeting BUNV RNP formation.
Collapse
Affiliation(s)
- Baobin Li
- Laboratory of Structural Biology, School of Medicine
| | - Quan Wang
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xijiang Pan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Isabel Fernández de Castro
- Cell Structure Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Yu Guo
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xinwei Tao
- Laboratory of Structural Biology, School of Medicine
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiyong Lou
- Laboratory of Structural Biology, School of Medicine
- Ministry of Education Laboratory of Protein Science, and
| |
Collapse
|
39
|
Morin B, Kranzusch PJ, Rahmeh AA, Whelan SPJ. The polymerase of negative-stranded RNA viruses. Curr Opin Virol 2013; 3:103-10. [PMID: 23602472 PMCID: PMC4159711 DOI: 10.1016/j.coviro.2013.03.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022]
Abstract
Negative-sense (NS) RNA viruses deliver into cells a mega-dalton RNA-protein complex competent for transcription. Within this complex, the RNA is protected in a nucleocapsid protein (NP) sheath which the viral polymerase negotiates during RNA synthesis. The NP-RNA templates come as nonsegmented (NNS) or segmented (SNS), necessitating distinct strategies for transcription by their polymerases. Atomic-level understanding of the NP-RNA of both NNS and SNS RNA viruses show that the RNA must be transiently dissociated from NP during RNA synthesis. Here we summarize and compare the polymerases of NNS and SNS RNA viruses, and the current structural data on the polymerases. Those comparisons inform us on the evolution of related RNA synthesis machines which use two distinct mechanisms for mRNA cap formation.
Collapse
Affiliation(s)
- Benjamin Morin
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States
| | | | | | | |
Collapse
|
40
|
Sun Y, Guo Y, Lou Z. A versatile building block: the structures and functions of negative-sense single-stranded RNA virus nucleocapsid proteins. Protein Cell 2012; 3:893-902. [PMID: 23136065 DOI: 10.1007/s13238-012-2087-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022] Open
Abstract
Nucleocapsid protein (NPs) of negative-sense single-stranded RNA (-ssRNA) viruses function in different stages of viral replication, transcription, and maturation. Structural investigations show that -ssRNA viruses that encode NPs preliminarily serve as structural building blocks that encapsidate and protect the viral genomic RNA and mediate the interaction between genomic RNA and RNA-dependent RNA polymerase. However, recent structural results have revealed other biological functions of -ssRNA viruses that extend our understanding of the versatile roles of virally encoded NPs.
Collapse
Affiliation(s)
- Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | | | | |
Collapse
|
41
|
Phleboviruses encapsidate their genomes by sequestering RNA bases. Proc Natl Acad Sci U S A 2012; 109:19208-13. [PMID: 23129612 DOI: 10.1073/pnas.1213553109] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever and Toscana viruses are human pathogens for which no effective therapeutics exist. These and other phleboviruses have segmented negative-sense RNA genomes that are sequestered by a nucleocapsid protein (N) to form ribonucleoprotein (RNP) complexes of irregular, asymmetric structure, previously uncharacterized at high resolution. N binds nonspecifically to single-stranded RNA with nanomolar affinity. Crystal structures of Rift Valley fever virus N-RNA complexes reconstituted with defined RNAs of different length capture tetrameric, pentameric and hexameric N-RNA multimers. All N-N subunit contacts are mediated by a highly flexible α-helical arm. Arm movement gives rise to the three multimers in the crystal structures and also explains the asymmetric architecture of the RNP. Despite the flexible association of subunits, the crystal structures reveal an invariant, monomeric RNP building block, consisting of the core of one N subunit, the arm of a neighboring N, and four RNA nucleotides with the flanking phosphates. Up to three additional RNA nucleotides bind between subunits. The monomeric building block is matched in size to the repeating unit in viral RNP, as visualized by electron microscopy. N sequesters four RNA bases in a narrow hydrophobic binding slot and has polar contacts only with the sugar-phosphate backbone, which faces the solvent. All RNA bases, whether in the binding slot or in the subunit interface, face the protein in a manner that is incompatible with base pairing or with "reading" by the viral polymerase.
Collapse
|
42
|
Ortiz-Riaño E, Cheng BYH, de la Torre JC, Martínez-Sobrido L. D471G mutation in LCMV-NP affects its ability to self-associate and results in a dominant negative effect in viral RNA synthesis. Viruses 2012. [PMID: 23202457 PMCID: PMC3497045 DOI: 10.3390/v4102137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Arenaviruses merit significant interest because several family members are etiological agents of severe hemorrhagic fevers, representing a major burden to public health. Currently, there are no FDA-licensed vaccines against arenaviruses and the only available antiviral therapy is limited to the use of ribavirin that is partially effective. Arenavirus nucleoprotein (NP) is found associated with the genomic RNA forming the viral ribonucleoproteins (vRNPs) that together with the polymerase (L) direct viral replication and transcription. Virion formation requires the recruitment of vRNPs into budding sites, a process in which the arenavirus matrix-like protein (Z) plays a major role. Therefore, proper NP-NP and NP-Z interactions are required for the generation of infectious progeny. In this work we demonstrate the role of the amino acid residue D471 in the self-association of lymphocytic choriomeningitis virus nucleoprotein (LCMV-NP). Amino acid substitutions at this position abrogate NP oligomerization, affecting its ability to mediate replication and transcription of a minigenome reporter plasmid. However, its ability to interact with the Z protein, counteract the cellular interferon response and bind to dsRNA analogs was retained. Additionally, we also document the dominant negative effect of D471G mutation on viral infection, suggesting that NP self-association is an excellent target for the development of new antivirals against arenaviruses.
Collapse
Affiliation(s)
- Emilio Ortiz-Riaño
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642; (E.O-R); (B.Y.H.C); (L. M-S)
| | - Benson Y. H. Cheng
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642; (E.O-R); (B.Y.H.C); (L. M-S)
| | - Juan C. de la Torre
- To whom correspondence should be addressed;
(L.M-S), Tel.: +1-585-276-4733; (J.C. dlT), Tel.: +1-858-784-9462
| | - Luis Martínez-Sobrido
- To whom correspondence should be addressed;
(L.M-S), Tel.: +1-585-276-4733; (J.C. dlT), Tel.: +1-858-784-9462
| |
Collapse
|
43
|
Mutational analysis of positively charged amino acid residues of Uukuniemi phlebovirus nucleocapsid protein. Virus Res 2012; 167:118-23. [PMID: 22808531 DOI: 10.1016/j.virusres.2012.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to evaluate the contribution of positively charged amino acid residues for the Uukuniemi virus (UUKV) N protein functionality. Based on phlebovirus nucleocapsid (N) protein alignments and 3D-structure predictions of UUKV N protein, 14 positively charged residues were chosen as targets for the mutagenesis. The impact of mutations to the N protein functionality was analyzed using minigenome-, virus-like particle-, and mammalian two-hybrid-assays. Seven of the mutations affected the functional competence in all three assays, while others had milder impact or no impact at all. In the 3D-model of UUKV N protein, five of the affected residues, R61, R64, R73, R98 and R115, were located either within or in close proximity to the central cavity that could potentially bind RNA.
Collapse
|
44
|
The nucleocapsid of vesicular stomatitis virus. SCIENCE CHINA-LIFE SCIENCES 2012; 55:291-300. [PMID: 22566085 DOI: 10.1007/s11427-012-4307-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
The nucleocapsid of vesicular stomatitis virus serves as the genomic template for transcription and replication. The viral genomic RNA is sequestered in the nucleocapsid in every step of the virus replication cycle. The structure of the nucleocapsid and the entire virion revealed how the viral genomic RNA is encapsidated and packaged in the virus. A unique mechanism for viral RNA synthesis is derived from the structure of the nuleocapsid and its interactions with the viral RNA-dependent RNA polymerase.
Collapse
|
45
|
Structural basis for RNA binding and homo-oligomer formation by influenza B virus nucleoprotein. J Virol 2012; 86:6758-67. [PMID: 22496219 DOI: 10.1128/jvi.00073-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus nucleoprotein (NP) is the major component of the viral ribonucleoprotein complex, which is crucial for the transcription and replication of the viral genome. We have determined the crystal structure of influenza B virus NP to a resolution of 3.2 Å. Influenza B NP contains a head, a body domain, and a tail loop. The electropositive groove between the head and body domains of influenza B NP is crucial for RNA binding. This groove also contains an extended flexible charged loop (amino acids [aa] 125 to 149), and two lysine clusters at the first half of this loop were shown to be crucial for binding RNA. Influenza B virus NP forms a crystallographic homotetramer by inserting the tail loop into the body domain of the neighboring NP molecule. A deeply buried salt bridge between R472 and E395 and a hydrophobic cluster at F468 are the major driving forces for the insertion. The analysis of the influenza B virus NP structure and function and comparisons with influenza A virus NP provide insights into the mechanisms of action and underpin efforts to design inhibitors for this class of proteins.
Collapse
|
46
|
Abstract
Is it possible to meaningfully comprehend the diversity of the viral world? We propose that it is. This is based on the observation that, although there is immense genomic variation, every infective virion is restricted by strict constraints in structure space (i.e., there are a limited number of ways to fold a protein chain, and only a small subset of these have the potential to construct a virion, the hallmark of a virus). We have previously suggested the use of structure for the higher-order classification of viruses, where genomic similarities are no longer observable. Here, we summarize the arguments behind this proposal, describe the current status of structural work, highlighting its power to infer common ancestry, and discuss the limitations and obstacles ahead of us. We also reflect on the future opportunities for a more concerted effort to provide high-throughput methods to facilitate the large-scale sampling of the virosphere.
Collapse
|
47
|
Crimean-Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in bunyaviruses. Proc Natl Acad Sci U S A 2012; 109:5046-51. [PMID: 22421137 PMCID: PMC3324003 DOI: 10.1073/pnas.1200808109] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a virus with high mortality in humans, is a member of the genus Nairovirus in the family Bunyaviridae, and is a causative agent of severe hemorrhagic fever (HF). It is classified as a biosafety level 4 pathogen and a potential bioterrorism agent due to its aerosol infectivity and its ability to cause HF outbreaks with high case fatality (∼30%). However, little is known about the structural features and function of nucleoproteins (NPs) in the Bunyaviridae, especially in CCHFV. Here we report a 2.3-Å resolution crystal structure of the CCHFV nucleoprotein. The protein has a racket-shaped overall structure with distinct "head" and "stalk" domains and differs significantly with NPs reported so far from other negative-sense single-stranded RNA viruses. Furthermore, CCHFV NP shows a distinct metal-dependent DNA-specific endonuclease activity. Single residue mutations in the predicted active site resulted in a significant reduction in the observed endonuclease activity. Our results present a new folding mechanism and function for a negative-strand RNA virus nucleoprotein, extend our structural insight into bunyavirus NPs, and provide a potential target for antiviral drug development to treat CCHFV infection.
Collapse
|
48
|
Self-association of lymphocytic choriomeningitis virus nucleoprotein is mediated by its N-terminal region and is not required for its anti-interferon function. J Virol 2012; 86:3307-17. [PMID: 22258244 DOI: 10.1128/jvi.05503-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arenaviruses have a bisegmented, negative-strand RNA genome. Both the large (L) and small (S) genome segments use an ambisense coding strategy to direct the synthesis of two viral proteins. The L segment encodes the virus polymerase (L protein) and the matrix Z protein, whereas the S segment encodes the nucleoprotein (NP) and the glycoprotein precursor (GPC). NPs are the most abundant viral protein in infected cells and virions and encapsidate genomic RNA species to form an NP-RNA complex that, together with the virus L polymerase, forms the virus ribonucleoprotein (RNP) core capable of directing both replication and transcription of the viral genome. RNP formation predicts a self-association property of NPs. Here we document self-association (homotypic interaction) of the NP of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), as well as those of the hemorrhagic fever (HF) arenaviruses Lassa virus (LASV) and Machupo virus (MACV). We also show heterotypic interaction between NPs from both closely (LCMV and LASV) and distantly (LCMV and MACV) genetically related arenaviruses. LCMV NP self-association was dependent on the presence of single-stranded RNA and mediated by an N-terminal region of the NP that did not overlap with the previously described C-terminal NP domain involved in either counteracting the host type I interferon response or interacting with LCMV Z.
Collapse
|
49
|
Abstract
The Bunyaviridae family is comprised of a large number of negative-sense, single-stranded RNA viruses that infect animals, insects, and plants. The tripartite genome of bunyaviruses, encapsidated in the form of individual ribonucleoprotein complexes, encodes four structural proteins, the glycoproteins Gc and Gn, the nucleoprotein N, and the viral polymerase L. Some bunyaviruses also use an ambi-sense strategy to encode the nonstructural proteins NSs and NSm. While some bunyaviruses have a T = 12 icosahedral symmetry, others only have locally ordered capsids, or capsids with no detectable symmetry. Bunyaviruses enter cells through clathrin-mediated endocytosis or phagocytosis. In endosome, viral glycoproteins facilitate membrane fusion at acidic pH, thus allowing bunyaviruses to uncoat and deliver their genomic RNA into host cytoplasm. Bunyaviruses replicate in cytoplasm where the viral polymerase L catalyzes both transcription and replication of the viral genome. While transcription requires a cap primer for initiation and ends at specific termination signals before the 3' end of the template is reached, replication copies the entire template and does not depend on any primer for initiation. This review will discuss some of the most interesting aspects of bunyavirus replication, including L protein/N protein-mediated cap snatching, prime-and-realign for transcription and replication initiation, translation-coupled transcription, sequence/secondary structure-dependent transcription termination, ribonucleoprotein encapsidation, and N protein-mediated initiation of viral protein translation. Recent developments on the structure and functional characterization of the bunyavirus capsid and the RNA synthesis machineries (including both protein L and N) will also be discussed.
Collapse
|
50
|
Habchi J, Longhi S. Structural disorder within paramyxovirus nucleoproteins and phosphoproteins. ACTA ACUST UNITED AC 2012; 8:69-81. [DOI: 10.1039/c1mb05204g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|