1
|
Mamun Y, Tse-Dinh YC, Chapagain P. Insights into the DNA and RNA Interactions of Human Topoisomerase III Beta Using Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:6062-6071. [PMID: 39024468 PMCID: PMC11323020 DOI: 10.1021/acs.jcim.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Human topoisomerase III beta (hTOP3B) is the only topoisomerase in the human cell that can act on both DNA and RNA substrates. Recent findings have emphasized the physiological importance of hTOP3B and consolidated it as a valuable drug target for antiviral and anticancer therapeutics. Although type IA topoisomerases of different organisms have been studied over the years, the step-by-step interaction of hTOP3B and nucleic acid substrates is still not well understood. Due to the lack of hTOP3B-RNA structures as well as DNA/RNA covalent complexes, computational investigations have been limited. In our study, we utilized molecular dynamics (MD) simulations to study the interactions between hTOP3B and nucleic acids to get a closer look into the residues that play a role in binding DNA or RNA and facilitate catalysis, along with the differences and similarities when hTOP3B interacts with DNA compared to RNA. For this, we generated multiple models of hTOP3B complexed with DNA and RNA sequences using the hTOP3B crystal structure and 8-mer single-stranded DNA and RNA sequences. These models include both covalent and noncovalent complexes, which are then subjected to MD simulations and analyzed. Our findings highlight the complexes' stability, sequence preference, and interactions of the binding pocket residues with different nucleotides. Our work demonstrates that hTOP3B forms stable complexes with both DNA and RNA and provides a better understanding of the enzyme's interaction with different nucleic acid substrate sequences.
Collapse
Affiliation(s)
- Yasir Mamun
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| |
Collapse
|
2
|
Vidmar V, Vayssières M, Lamour V. What's on the Other Side of the Gate: A Structural Perspective on DNA Gate Opening of Type IA and IIA DNA Topoisomerases. Int J Mol Sci 2023; 24:ijms24043986. [PMID: 36835394 PMCID: PMC9960139 DOI: 10.3390/ijms24043986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
DNA topoisomerases have an essential role in resolving topological problems that arise due to the double-helical structure of DNA. They can recognise DNA topology and catalyse diverse topological reactions by cutting and re-joining DNA ends. Type IA and IIA topoisomerases, which work by strand passage mechanisms, share catalytic domains for DNA binding and cleavage. Structural information has accumulated over the past decades, shedding light on the mechanisms of DNA cleavage and re-ligation. However, the structural rearrangements required for DNA-gate opening and strand transfer remain elusive, in particular for the type IA topoisomerases. In this review, we compare the structural similarities between the type IIA and type IA topoisomerases. The conformational changes that lead to the opening of the DNA-gate and strand passage, as well as allosteric regulation, are discussed, with a focus on the remaining questions about the mechanism of type IA topoisomerases.
Collapse
Affiliation(s)
- Vita Vidmar
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Marlène Vayssières
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Valérie Lamour
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
- Hôpitaux Universitaires de Strasbourg, 67098 Strasbourg, France
- Correspondence:
| |
Collapse
|
3
|
Hodson C, Low JKK, van Twest S, Jones SE, Swuec P, Murphy V, Tsukada K, Fawkes M, Bythell-Douglas R, Davies A, Holien JK, O'Rourke JJ, Parker BL, Glaser A, Parker MW, Mackay JP, Blackford AN, Costa A, Deans AJ. Mechanism of Bloom syndrome complex assembly required for double Holliday junction dissolution and genome stability. Proc Natl Acad Sci U S A 2022; 119:e2109093119. [PMID: 35115399 PMCID: PMC8832983 DOI: 10.1073/pnas.2109093119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.
Collapse
Affiliation(s)
- Charlotte Hodson
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Paolo Swuec
- Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Vincent Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Kaima Tsukada
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| | | | - Jessica K Holien
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Astrid Glaser
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael W Parker
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia;
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
4
|
Deatherage DE, Barrick JE. High-throughput characterization of mutations in genes that drive clonal evolution using multiplex adaptome capture sequencing. Cell Syst 2021; 12:1187-1200.e4. [PMID: 34536379 DOI: 10.1016/j.cels.2021.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Understanding how cells are likely to evolve can guide medical interventions and bioengineering efforts that must contend with unwanted mutations. The adaptome of a cell-the neighborhood of genetic changes that are most likely to drive adaptation in a given environment-can be mapped by tracking rare beneficial variants during the early stages of clonal evolution. We used multiplex adaptome capture sequencing (mAdCap-seq), a procedure that combines unique molecular identifiers and hybridization-based enrichment, to characterize mutations in eight Escherichia coli genes known to be under selection in a laboratory environment. We tracked 301 mutations at frequencies as low as 0.01% and inferred the fitness effects of 240 of these mutations. There were distinct molecular signatures of selection on protein structure and function for the three genes with the most beneficial mutations. Our results demonstrate how mAdCap-seq can be used to deeply profile a targeted portion of a cell's adaptome.
Collapse
Affiliation(s)
- Daniel E Deatherage
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Spakman D, Bakx JAM, Biebricher AS, Peterman EJG, Wuite GJL, King GA. Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches. Nucleic Acids Res 2021; 49:5470-5492. [PMID: 33963870 PMCID: PMC8191776 DOI: 10.1093/nar/gkab239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Topoisomerases are essential enzymes that regulate DNA topology. Type 1A family topoisomerases are found in nearly all living organisms and are unique in that they require single-stranded (ss)DNA for activity. These enzymes are vital for maintaining supercoiling homeostasis and resolving DNA entanglements generated during DNA replication and repair. While the catalytic cycle of Type 1A topoisomerases has been long-known to involve an enzyme-bridged ssDNA gate that allows strand passage, a deeper mechanistic understanding of these enzymes has only recently begun to emerge. This knowledge has been greatly enhanced through the combination of biochemical studies and increasingly sophisticated single-molecule assays based on magnetic tweezers, optical tweezers, atomic force microscopy and Förster resonance energy transfer. In this review, we discuss how single-molecule assays have advanced our understanding of the gate opening dynamics and strand-passage mechanisms of Type 1A topoisomerases, as well as the interplay of Type 1A topoisomerases with partner proteins, such as RecQ-family helicases. We also highlight how these assays have shed new light on the likely functional roles of Type 1A topoisomerases in vivo and discuss recent developments in single-molecule technologies that could be applied to further enhance our understanding of these essential enzymes.
Collapse
Affiliation(s)
- Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Julia A M Bakx
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Graeme A King
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
6
|
Verma S, Ravichandiran V, Ranjan N, Flora SJS. Recent Advances in Therapeutic Applications of Bisbenzimidazoles. Med Chem 2021; 16:454-486. [PMID: 31038072 DOI: 10.2174/1573406415666190416120801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/19/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Nitrogen-containing heterocycles are one of the most common structural motifs in approximately 80% of the marketed drugs. Of these, benzimidazoles analogues are known to elicit a wide spectrum of pharmaceutical activities such as anticancer, antibacterial, antiparasitic, antiviral, antifungal as well as chemosensor effect. Based on the benzimidazole core fused heterocyclic compounds, crescent-shaped bisbenzimidazoles were developed which provided an early breakthrough in the sequence-specific DNA recognition. Over the years, a number of functional variations in the bisbenzimidazole core have led to the emergence of their unique properties and established them as versatile ligands against several classes of pathogens. The present review provides an overview of diverse pharmacological activities of the bisbenzimidazole analogues in the past decade with a brief account of its development through the years.
Collapse
Affiliation(s)
- Smita Verma
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Vishnuvardh Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India
| | - Swaran J S Flora
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India
| |
Collapse
|
7
|
Dasgupta T, Ferdous S, Tse-Dinh YC. Mechanism of Type IA Topoisomerases. Molecules 2020; 25:E4769. [PMID: 33080770 PMCID: PMC7587558 DOI: 10.3390/molecules25204769] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022] Open
Abstract
Topoisomerases in the type IA subfamily can catalyze change in topology for both DNA and RNA substrates. A type IA topoisomerase may have been present in a last universal common ancestor (LUCA) with an RNA genome. Type IA topoisomerases have since evolved to catalyze the resolution of topological barriers encountered by genomes that require the passing of nucleic acid strand(s) through a break on a single DNA or RNA strand. Here, based on available structural and biochemical data, we discuss how a type IA topoisomerase may recognize and bind single-stranded DNA or RNA to initiate its required catalytic function. Active site residues assist in the nucleophilic attack of a phosphodiester bond between two nucleotides to form a covalent intermediate with a 5'-phosphotyrosine linkage to the cleaved nucleic acid. A divalent ion interaction helps to position the 3'-hydroxyl group at the precise location required for the cleaved phosphodiester bond to be rejoined following the passage of another nucleic acid strand through the break. In addition to type IA topoisomerase structures observed by X-ray crystallography, we now have evidence from biophysical studies for the dynamic conformations that are required for type IA topoisomerases to catalyze the change in the topology of the nucleic acid substrates.
Collapse
Affiliation(s)
- Tumpa Dasgupta
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Biochemistry PhD Program, Florida International University, Miami, FL 33199, USA
| | - Shomita Ferdous
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Biochemistry PhD Program, Florida International University, Miami, FL 33199, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
8
|
Tiwari PB, Chapagain PP, Seddek A, Annamalai T, Üren A, Tse-Dinh YC. Covalent Complex of DNA and Bacterial Topoisomerase: Implications in Antibacterial Drug Development. ChemMedChem 2020; 15:623-631. [PMID: 32043806 PMCID: PMC7133791 DOI: 10.1002/cmdc.201900721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/11/2022]
Abstract
A topoisomerase-DNA transient covalent complex can be a druggable target for novel topoisomerase poison inhibitors that represent a new class of antibacterial or anticancer drugs. Herein, we have investigated molecular features of the functionally important Escherichia coli topoisomerase I (EctopoI)-DNA covalent complex (EctopoIcc) for molecular simulations, which is very useful in the development of new antibacterial drugs. To demonstrate the usefulness of our approach, we used a model small molecule (SM), NSC76027, obtained from virtual screening. We examined the direct binding of NSC76027 to EctopoI as well as inhibition of EctopoI relaxation activity of this SM via experimental techniques. We then performed molecular dynamics (MD) simulations to investigate the dynamics and stability of EctopoIcc and EctopoI-NSC76027-DNA ternary complex. Our simulation results show that NSC76027 forms a stable ternary complex with EctopoIcc. EctopoI investigated here also serves as a model system for investigating a complex of topoisomerase and DNA in which DNA is covalently attached to the protein.
Collapse
Affiliation(s)
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular sciences institute, Florida International University, Miami, FL 33199, USA
| | - Ahmed Seddek
- Biomolecular sciences institute, Florida International University, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Thirunavukkarasu Annamalai
- Biomolecular sciences institute, Florida International University, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Aykut Üren
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular sciences institute, Florida International University, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
9
|
Cao N, Tan K, Annamalai T, Joachimiak A, Tse-Dinh YC. Investigating mycobacterial topoisomerase I mechanism from the analysis of metal and DNA substrate interactions at the active site. Nucleic Acids Res 2019; 46:7296-7308. [PMID: 29905859 PMCID: PMC6101483 DOI: 10.1093/nar/gky492] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
We have obtained new crystal structures of Mycobacterium tuberculosis topoisomerase I, including structures with ssDNA substrate bound to the active site, with and without Mg2+ ion present. Significant enzyme conformational changes upon DNA binding place the catalytic tyrosine in a pre-transition state position for cleavage of a specific phosphodiester linkage. Meanwhile, the enzyme/DNA complex with bound Mg2+ ion may represent the post-transition state for religation in the enzyme's multiple-step DNA relaxation catalytic cycle. The first observation of Mg2+ ion coordinated with the TOPRIM residues and DNA phosphate in a type IA topoisomerase active site allows assignment of likely catalytic role for the metal and draws a comparison to the proposed mechanism for type IIA topoisomerases. The critical function of a strictly conserved glutamic acid in the DNA cleavage step was assessed through site-directed mutagenesis. The functions assigned to the observed Mg2+ ion can account for the metal requirement for DNA rejoining but not DNA cleavage by type IA topoisomerases. This work provides new structural insights into a more stringent requirement for DNA rejoining versus cleavage in the catalytic cycle of this essential enzyme, and further establishes the potential for selective interference of DNA rejoining by this validated TB drug target.
Collapse
Affiliation(s)
- Nan Cao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA.,Biomolecular Sciences Institute, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| | - Kemin Tan
- Structural Biology Center, Biosciences, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA.,Biomolecular Sciences Institute, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| | - Andrzej Joachimiak
- Structural Biology Center, Biosciences, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA.,Biomolecular Sciences Institute, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| |
Collapse
|
10
|
Mills M, Tse-Dinh YC, Neuman KC. Direct observation of topoisomerase IA gate dynamics. Nat Struct Mol Biol 2018; 25:1111-1118. [PMID: 30478267 PMCID: PMC6379066 DOI: 10.1038/s41594-018-0158-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Type IA topoisomerases cleave single-stranded DNA and relieve negative supercoils in discrete steps corresponding to the passage of the intact DNA strand through the cleaved strand. Although type IA topoisomerases are assumed to accomplish this strand passage via a protein-mediated DNA gate, opening of this gate has never been observed. We developed a single-molecule assay to directly measure gate opening of the Escherichia coli type IA topoisomerases I and III. We found that after cleavage of single-stranded DNA, the protein gate opens by as much as 6.6 nm and can close against forces in excess of 16 pN. Key differences in the cleavage, ligation, and gate dynamics of these two enzymes provide insights into their different cellular functions. The single-molecule results are broadly consistent with conformational changes obtained from molecular dynamics simulations. These results allowed us to develop a mechanistic model of interactions between type IA topoisomerases and single-stranded DNA.
Collapse
Affiliation(s)
- Maria Mills
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Garnier F, Debat H, Nadal M. Type IA DNA Topoisomerases: A Universal Core and Multiple Activities. Methods Mol Biol 2018; 1703:1-20. [PMID: 29177730 DOI: 10.1007/978-1-4939-7459-7_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All the type IA topoisomerases display universal characteristics relying on a core region basically responsible for the transesterification and the strand passage reaction. First limited to the bacterial domain for a long time, these enzymes were further retrieved in Archaea and Eukarya as well. This is representative of an extremely ancient origin, probably due to an inheritance from the RNA world. As remaining evidence, some current topoisomerases IA have retained a RNA topoisomerase activity. Despite the presence of this core region in all of these TopoIAs, some differences exist and are originated from variable regions, located essentially within both extremities, conferring on them their specificities. During the last 2 decades the evidence of multiple activities and dedicated roles highlighted the importance of the topoisomerases IA. It is now obvious that topoisomerases IA are key enzymes involved in the maintenance of the genome stability. The discovery of these new activities was done thanks to the use of more accurate assays, based on new sophisticated DNA substrates.
Collapse
Affiliation(s)
- Florence Garnier
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Hélène Debat
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Marc Nadal
- Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France.
| |
Collapse
|
12
|
Strzalka A, Szafran MJ, Strick T, Jakimowicz D. C-terminal lysine repeats in Streptomyces topoisomerase I stabilize the enzyme-DNA complex and confer high enzyme processivity. Nucleic Acids Res 2017; 45:11908-11924. [PMID: 28981718 PMCID: PMC5714199 DOI: 10.1093/nar/gkx827] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
Streptomyces topoisomerase I (TopA) exhibits exceptionally high processivity. The enzyme, as other actinobacterial topoisomerases I, differs from its bacterial homologs in its C-terminal domain (CTD). Here, bioinformatics analyses established that the presence of lysine repeats is a characteristic feature of actinobacterial TopA CTDs. Streptomyces TopA contains the longest stretch of lysine repeats, which terminate with acidic amino acids. DNA-binding studies revealed that the lysine repeats stabilized the TopA–DNA complex, while single-molecule experiments showed that their elimination impaired enzyme processivity. Streptomyces coelicolor TopA processivity could not be restored by fusion of its N-terminal domain (NTD) with the Escherichia coli TopA CTD. The hybrid protein could not re-establish the distribution of multiple chromosomal copies in Streptomyces hyphae impaired by TopA depletion. We expected that the highest TopA processivity would be required during the growth of multigenomic sporogenic hyphae, and indeed, the elimination of lysine repeats from TopA disturbed sporulation. We speculate that the interaction of the lysine repeats with DNA allows the stabilization of the enzyme–DNA complex, which is additionally enhanced by acidic C-terminal amino acids. The complex stabilization, which may be particularly important for GC-rich chromosomes, enables high enzyme processivity. The high processivity of TopA allows rapid topological changes in multiple chromosomal copies during Streptomyces sporulation.
Collapse
Affiliation(s)
- Agnieszka Strzalka
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Marcin J Szafran
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Terence Strick
- Institut Jacques Monod, CNRS UMR 7592, University Paris Diderot, Sorbonne Paris Cite, F-75205 Paris, France
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14A, 50-383 Wroclaw, Poland
| |
Collapse
|
13
|
Gunn KH, Marko JF, Mondragón A. An orthogonal single-molecule experiment reveals multiple-attempt dynamics of type IA topoisomerases. Nat Struct Mol Biol 2017; 24:484-490. [PMID: 28414321 PMCID: PMC5516274 DOI: 10.1038/nsmb.3401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/17/2017] [Indexed: 12/19/2022]
Abstract
Topoisomerases are enzymes involved in maintaining the topological state of cellular DNA. Despite many structural, biophysical, and biochemical studies, their dynamic characteristics remain poorly understood. Recent single molecule experiments revealed that an important feature of the type IA topoisomerase mechanism is the presence of pauses between relaxation events. However, these experiments cannot determine whether the protein remains DNA bound during the pauses or the relationship between domain movements in the protein and topological changes in the DNA. By combining two orthogonal single molecule techniques, we observed that topoisomerase IA is constantly changing conformation and attempting to modify the topology of DNA, but only succeeds in a fraction of the attempts. Thus, its mechanism can be described as a series of DNA strand passage attempts that culminate in a successful relaxation event.
Collapse
Affiliation(s)
- Kathryn H Gunn
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
14
|
Goto-Ito S, Yamagata A, Takahashi TS, Sato Y, Fukai S. Structural basis of the interaction between Topoisomerase IIIβ and the TDRD3 auxiliary factor. Sci Rep 2017; 7:42123. [PMID: 28176834 PMCID: PMC5296760 DOI: 10.1038/srep42123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Topoisomerase IIIβ (TOP3β) is a DNA/RNA topoisomerase that has been implicated in epigenetic or translational control of gene expression. In cells, TOP3β co-exists with its specific auxiliary factor, TDRD3. TDRD3 serves as a scaffold protein to recruit TOP3β to its DNA/RNA substrates accumulating in specific cellular sites such as methylated chromatins or neural stress granules. Here we report the crystal structures of the catalytic domain of TOP3β, the DUF1767–OB-fold domains of TDRD3 and their complex at 3.44 Å, 1.62 Å and 3.6 Å resolutions, respectively. The toroidal-shaped catalytic domain of TOP3β binds the OB-fold domain of TDRD3. The TDRD3 OB-fold domain harbors the insertion loop, which is protruding from the core structure. Both the insertion loop and core region interact with TOP3β. Our pull-down binding assays showed that hydrophobic characters of the core surface and the amino- and carboxy-terminal regions of the insertion loop are essential for the interaction. Furthermore, by comparison with the structure of the homologous Topoisomerase IIIα (TOP3α)–RMI1 complex, we identified Arg96, Val109, Phe139 and the short insertion loop of TDRD3 as the critical structural elements for the specific interaction with TOP3β to avoid the non-cognate interaction with TOP3α.
Collapse
Affiliation(s)
- Sakurako Goto-Ito
- Structural Biology Laboratory, Structural Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,CREST, JST, Saitama 332-0012, Japan
| | - Atsushi Yamagata
- Structural Biology Laboratory, Structural Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,CREST, JST, Saitama 332-0012, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan
| | - Tomio S Takahashi
- Structural Biology Laboratory, Structural Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,CREST, JST, Saitama 332-0012, Japan
| | - Yusuke Sato
- Structural Biology Laboratory, Structural Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,CREST, JST, Saitama 332-0012, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan
| | - Shuya Fukai
- Structural Biology Laboratory, Structural Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,CREST, JST, Saitama 332-0012, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan
| |
Collapse
|
15
|
Cheng B, Zhou Q, Weng L, Leszyk JD, Greenberg MM, Tse-Dinh YC. Identification of proximal sites for unwound DNA substrate in Escherichia coli topoisomerase I with oxidative crosslinking. FEBS Lett 2016; 591:28-38. [PMID: 27926785 DOI: 10.1002/1873-3468.12517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 11/11/2022]
Abstract
Topoisomerases catalyze changes in DNA topology by directing the movement of DNA strands through consecutive cleavage-rejoining reactions of the DNA backbone. We describe the use of a phenylselenyl-modified thymidine incorporated into a specific position of a partially unwound DNA substrate in crosslinking studies of Escherichia coli topoisomerase I to gain new insights into its catalytic mechanism. Crosslinking of the phenylselenyl-modified thymidine to the topoisomerase protein was achieved by the addition of a mild oxidant. Following nuclease and trypsin digestion, lysine residues on topoisomerase I crosslinked to the modified thymidine were identified by mass spectrometry. The crosslinked sites may correspond to proximal sites for the unwound DNA strand as it interacts with enzyme in the different stages of the catalytic cycle.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Qingxuan Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Liwei Weng
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - John D Leszyk
- Department of Biochemistry and Molecular Pharmacology and Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
16
|
Tan K, Cao N, Cheng B, Joachimiak A, Tse-Dinh YC. Insights from the Structure of Mycobacterium tuberculosis Topoisomerase I with a Novel Protein Fold. J Mol Biol 2015; 428:182-193. [PMID: 26655023 DOI: 10.1016/j.jmb.2015.11.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023]
Abstract
The DNA topoisomerase I enzyme of Mycobacterium tuberculosis (MtTOP1) is essential for the viability of the organism and survival in a murine model. This topoisomerase is being pursued as a novel target for the discovery of new therapeutic agents for the treatment of drug-resistant tuberculosis. In this study, we succeeded in obtaining a structure of MtTOP1 by first predicting that the C-terminal region of MtTOP1 contains four repeated domains that do not involve the Zn-binding tetracysteine motifs seen in the C-terminal domains of Escherichia coli topoisomerase I. A construct (amino acids A2-T704), MtTOP1-704t, that includes the N-terminal domains (D1-D4) and the first predicted C-terminal domain (D5) of MtTOP1 was expressed and found to retain DNA cleavage-religation activity and catalyze single-stranded DNA catenation. MtTOP1-704t was crystallized, and a structure of 2.52Å resolution limit was obtained. The structure of the MtTOP1 N-terminal domains has features that have not been observed in other previously available bacterial topoisomerase I crystal structures. The first C-terminal domain D5 forms a novel protein fold of a four-stranded antiparallel β-sheet stabilized by a crossing-over α-helix. Since there is only one type IA topoisomerase present in Mycobacteriaceae and related Actinobacteria, this subfamily of type IA topoisomerase may be required for multiple functions in DNA replication, transcription, recombination, and repair. The unique structural features observed for MtTOP1 may allow these topoisomerase I enzymes to carry out physiological functions associated with topoisomerase III enzyme in other bacteria.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Nan Cao
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Bokun Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Andrzej Joachimiak
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
17
|
Cheng H, Liao Y, Schaeffer RD, Grishin NV. Manual classification strategies in the ECOD database. Proteins 2015; 83:1238-51. [PMID: 25917548 DOI: 10.1002/prot.24818] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/30/2015] [Accepted: 04/19/2015] [Indexed: 12/28/2022]
Abstract
ECOD (Evolutionary Classification Of protein Domains) is a comprehensive and up-to-date protein structure classification database. The majority of new structures released from the PDB (Protein Data Bank) each week already have close homologs in the ECOD hierarchy and thus can be reliably partitioned into domains and classified by software without manual intervention. However, those proteins that lack confidently detectable homologs require careful analysis by experts. Although many bioinformatics resources rely on expert curation to some degree, specific examples of how this curation occurs and in what cases it is necessary are not always described. Here, we illustrate the manual classification strategy in ECOD by example, focusing on two major issues in protein classification: domain partitioning and the relationship between homology and similarity scores. Most examples show recently released and manually classified PDB structures. We discuss multi-domain proteins, discordance between sequence and structural similarities, difficulties with assessing homology with scores, and integral membrane proteins homologous to soluble proteins. By timely assimilation of newly available structures into its hierarchy, ECOD strives to provide a most accurate and updated view of the protein structure world as a result of combined computational and expert-driven analysis.
Collapse
Affiliation(s)
- Hua Cheng
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Yuxing Liao
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - R Dustin Schaeffer
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390.,Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
18
|
Abstract
Topoisomerases are the enzymes responsible for maintaining the supercoiled state of DNA in the cell and also for many other DNA-topology-associated reactions. Type IA enzymes alter DNA topology by breaking one DNA strand and passing another strand or strands through the break. Although all type IA topoisomerases are related at the sequence, structure and mechanism levels, different type IA enzymes do not participate in the same cellular processes. We have studied the mechanism of DNA relaxation by Escherichia coli topoisomerases I and III using single-molecule techniques to understand their dissimilarities. Our experiments show important differences at the single-molecule level, while also recovering the results from bulk experiments. Overall, topoisomerase III relaxes DNA using fast processive runs followed by long pauses, whereas topoisomerase I relaxes DNA through slow processive runs followed by short pauses. These two properties combined give rise to the overall relaxation rate, which is higher for topoisomerase I than for topoisomerase III, as expected from many biochemical observations. The results help us to understand better the role of these two topoisomerases in the cell and also serve to illustrate the power of single-molecule experiments to uncover new functional characteristics of biological molecules.
Collapse
|
19
|
Abstract
Topoisomerases are ubiquitous enzymes that control DNA supercoiling and entanglements. They are essential during transcription and replication, and topoisomerase inhibitors are among the most effective and most commonly used anticancer and antibacterial drugs. This review consists of two parts. In the first part ("Lessons"), it gives background information on the catalytic mechanisms of the different enzyme families (6 different genes in humans and 4 in most bacteria), describes the "interfacial inhibition" by which topoisomerase-targeted drugs act as topoisomerase poisons, and describes clinically relevant topoisomerase inhibitors. It generalizes the interfacial inhibition principle, which was discovered from the mechanism of action of topoisomerase inhibitors, and discusses how topoisomerase inhibitors kill cells by trapping topoisomerases on DNA rather than by classical enzymatic inhibition. Trapping protein-DNA complexes extends to a novel mechanism of action of PARP inhibitors and could be applied to the targeting of transcription factors. The second part of the review focuses on the challenges for discovery and precise use of topoisomerase inhibitors, including targeting topoisomerase inhibitors using chemical coupling and encapsulation for selective tumor delivery, use of pharmacodynamic biomarkers to follow drug activity, complexity of the response determinants for anticancer activity and patient selection, prospects of rational combinations with DNA repair inhibitors targeting tyrosyl-DNA-phosphodiesterases 1 and 2 (TDP1 and TDP2) and PARP, and the unmet need to develop inhibitors for type IA enzymes.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular
Pharmacology, Center for Cancer
Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
20
|
Rudolph MG, del Toro Duany Y, Jungblut SP, Ganguly A, Klostermeier D. Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling. Nucleic Acids Res 2012. [PMID: 23209025 PMCID: PMC3553957 DOI: 10.1093/nar/gks1073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reverse gyrase is an ATP-dependent topoisomerase that is unique to hyperthermophilic archaea and eubacteria. The only reverse gyrase structure determined to date has revealed the arrangement of the N-terminal helicase domain and the C-terminal topoisomerase domain that intimately cooperate to generate the unique function of positive DNA supercoiling. Although the structure has elicited hypotheses as to how supercoiling may be achieved, it lacks structural elements important for supercoiling and the molecular mechanism of positive supercoiling is still not clear. We present five structures of authentic Thermotoga maritima reverse gyrase that reveal a first view of two interacting zinc fingers that are crucial for positive DNA supercoiling. The so-called latch domain, which connects the helicase and the topoisomerase domains is required for their functional cooperation and presents a novel fold. Structural comparison defines mobile regions in parts of the helicase domain, including a helical insert and the latch that are likely important for DNA binding during catalysis. We show that the latch, the helical insert and the zinc fingers contribute to the binding of DNA to reverse gyrase and are uniquely placed within the reverse gyrase structure to bind and guide DNA during strand passage. A possible mechanism for positive supercoiling by reverse gyrases is presented.
Collapse
Affiliation(s)
- Markus G Rudolph
- pRED, Pharma Research and Early Development, Discovery Technologies, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Terekhova K, Gunn KH, Marko JF, Mondragón A. Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA via distinct pathways. Nucleic Acids Res 2012; 40:10432-40. [PMID: 22923519 PMCID: PMC3488232 DOI: 10.1093/nar/gks780] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Escherichia coli topoisomerases I and III (Topo I and Topo III) relax negatively supercoiled DNA and also catenate/decatenate DNA molecules containing single-stranded DNA regions. Although these enzymes share the same mechanism of action and have similar structures, they participate in different cellular processes. In bulk experiments Topo I is more efficient at DNA relaxation, whereas Topo III is more efficient at catenation/decatenation, probably reflecting their differing cellular roles. To examine the differences in the mechanism of these two related type IA topoisomerases, single-molecule relaxation studies were conducted on several DNA substrates: negatively supercoiled DNA, positively supercoiled DNA with a mismatch and positively supercoiled DNA with a bulge. The experiments show differences in the way the two proteins work at the single-molecule level, while also recovering observations from the bulk experiments. Overall, Topo III relaxes DNA efficiently in fast processive runs, but with long pauses before relaxation runs, whereas Topo I relaxes DNA in slow processive runs but with short pauses before runs. The combination of these properties results in Topo I having an overall faster total relaxation rate, even though the relaxation rate during a run for Topo III is much faster.
Collapse
Affiliation(s)
- Ksenia Terekhova
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
22
|
Park JE, Kim HI, Park JW, Park JK, Lee JS. Cloning and biochemical characterization of Staphylococcus aureus type IA DNA topoisomerase comprised of distinct five domains. Arch Biochem Biophys 2011; 508:78-86. [PMID: 21281597 DOI: 10.1016/j.abb.2011.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 11/30/2022]
Abstract
DNA topoisomerases play critical roles in regulating DNA topology and are essential enzymes for cell survival. In this study, a gene encoding type IA DNA topoisomerase was cloned from Staphylococcus aureus (S. aureus) sp. strain C-66, and the biochemical properties of recombinant enzyme was characterized. The nucleotide sequence analysis showed that the cloned gene contained an open reading frame (2070 bp) that could encode a polypeptide of 689 amino acids. The cloned gene actually produced 79.1 kDa functional enzyme (named Sau-TopoI) in Escherichia coli (E. coli). Sau-TopoI enzyme purified from E. coli showed ATP-independent and Mg(2+)-dependent manners for relaxing negatively supercoiled DNA. The relaxation activity of Sau-TopoI was inhibited by camptothecin, but not by nalidixic acid and etoposide. Cleavage site mapping showed that the enzyme could preferentially bind to and cleave the sequence GGNN↓CAT (N and ↓ represent any nucleotide and cleavage site, respectively). All these results suggest that the purified enzyme is type IA DNA topoisomerase. In addition, domain mapping analysis showed that the enzyme was composed of conserved four domains (I through IV), together with a variable C-terminal region containing a unique domain V.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Biotechnology, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | | | |
Collapse
|
23
|
Narula G, Becker J, Cheng B, Dani N, Abrenica MV, Tse-Dinh YC. The DNA relaxation activity and covalent complex accumulation of Mycobacterium tuberculosis topoisomerase I can be assayed in Escherichia coli: application for identification of potential FRET-dye labeling sites. BMC BIOCHEMISTRY 2010; 11:41. [PMID: 20920291 PMCID: PMC2958883 DOI: 10.1186/1471-2091-11-41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/30/2010] [Indexed: 01/30/2023]
Abstract
Background Mycobacterium tuberculosis topoisomerase I (MtTOP1) and Escherichia coli topoisomerase I have highly homologous transesterification domains, but the two enzymes have distinctly different C-terminal domains. To investigate the structure-function of MtTOP1 and to target its activity for development of new TB therapy, it is desirable to have a rapid genetic assay for its catalytic activity, and potential bactericidal consequence from accumulation of its covalent complex. Results We show that plasmid-encoded recombinant MtTOP1 can complement the temperature sensitive topA function of E. coli strain AS17. Moreover, expression of MtTOP1-G116 S enzyme with the TOPRIM mutation that inhibits DNA religation results in SOS induction and loss of viability in E. coli. The absence of cysteine residues in the MtTOP1 enzyme makes it an attractive system for introduction of potentially informative chemical or spectroscopic probes at specific positions via cysteine mutagenesis. Such probes could be useful for development of high throughput screening (HTS) assays. We employed the AS17 complementation system to screen for sites in MtTOP1 that can tolerate cysteine substitution without loss of complementation function. These cysteine substitution mutants were confirmed to have retained the relaxation activity. One such mutant of MtTOP1 was utilized for fluorescence probe incorporation and fluorescence resonance energy transfer measurement with fluorophore-labeled oligonucleotide substrate. Conclusions The DNA relaxation and cleavage complex accumulation of M. tuberculosis topoisomerase I can be measured with genetic assays in E. coli, facilitating rapid analysis of its activities, and discovery of new TB therapy targeting this essential enzyme.
Collapse
Affiliation(s)
- Gagandeep Narula
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wu CY, Chen YC, Lim C. A structural-alphabet-based strategy for finding structural motifs across protein families. Nucleic Acids Res 2010; 38:e150. [PMID: 20525797 PMCID: PMC2919736 DOI: 10.1093/nar/gkq478] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Proteins with insignificant sequence and overall structure similarity may still share locally conserved contiguous structural segments; i.e. structural/3D motifs. Most methods for finding 3D motifs require a known motif to search for other similar structures or functionally/structurally crucial residues. Here, without requiring a query motif or essential residues, a fully automated method for discovering 3D motifs of various sizes across protein families with different folds based on a 16-letter structural alphabet is presented. It was applied to structurally non-redundant proteins bound to DNA, RNA, obligate/non-obligate proteins as well as free DNA-binding proteins (DBPs) and proteins with known structures but unknown function. Its usefulness was illustrated by analyzing the 3D motifs found in DBPs. A non-specific motif was found with a ‘corner’ architecture that confers a stable scaffold and enables diverse interactions, making it suitable for binding not only DNA but also RNA and proteins. Furthermore, DNA-specific motifs present ‘only’ in DBPs were discovered. The motifs found can provide useful guidelines in detecting binding sites and computational protein redesign.
Collapse
Affiliation(s)
- Chih Yuan Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | | | | |
Collapse
|
25
|
Cheng B, Annamalai T, Sorokin E, Abrenica M, Aedo S, Tse-Dinh YC. Asp-to-Asn substitution at the first position of the DxD TOPRIM motif of recombinant bacterial topoisomerase I is extremely lethal to E. coli. J Mol Biol 2009; 385:558-67. [PMID: 19013470 PMCID: PMC2905861 DOI: 10.1016/j.jmb.2008.10.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022]
Abstract
The TOPRIM domain found in many nucleotidyl transferases contains a DxD motif involved in magnesium ion coordination for catalysis. Medium- to high-copy-number plasmid clones of Yersinia pestis topoisomerase I (YpTOP) with Asp-to-Asn substitution at the first aspartate residue (D117N) of this motif could not be generated in Escherichia coli without second-site mutation even when expression was under the control of the tightly regulated BAD promoter and suppressed by 2% glucose in the medium. Arabinose induction of a single-copy YpTOP-D117N mutant gene integrated into the chromosome resulted in approximately 10(5)-fold of cell killing in 2.5 h. Attempt to induce expression of the corresponding E. coli topoisomerase I mutant (EcTOP-D111N) encoded on a high-copy-number plasmid resulted in either loss of viability or reversion of the clone to wild type. High-copy-number plasmid clones of YpTOP-D119N and EcTOP-D113N with the Asn substitution at the second Asp of the TOPRIM motif could be stably maintained, but overexpression also decreased cell viability significantly. The Asp-to-Asn substitutions at these TOPRIM residues can selectively decrease Mg(2+) binding affinity with minimal disruption of the active-site geometry, leading to trapping of the covalent complex with cleaved DNA and causing bacterial cell death. The extreme sensitivity of the first TOPRIM position suggested that this might be a useful site for binding of small molecules that could act as topoisomerase poisons.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | | | - Elena Sorokin
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Maria Abrenica
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Sandra Aedo
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Yuk-Ching Tse-Dinh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| |
Collapse
|
26
|
Abstract
Topoisomerases are ubiquitous proteins found in all three domains of life. They change the topology of DNA via transient breaks on either one or two of the DNA strands to allow passage of another single or double DNA strand through the break. Topoisomerases are classified into two types: type I enzymes cleave one DNA strand and pass either one or two DNA strands through the break before resealing it, while type II molecules cleave both DNA strands in concert and pass another double strand through the break followed by religation of the double strand break. Here we review recent work on the structure of type I enzymes. These structural studies are providing atomic details that, together with the existing wealth of biochemical and biophysical data, are bringing our understanding of the mechanism of action of these enzymes to the atomic level.
Collapse
Affiliation(s)
- Nicole M Baker
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | | | |
Collapse
|
27
|
Abstract
DNA topoisomerases are a diverse set of essential enzymes responsible for maintaining chromosomes in an appropriate topological state. Although they vary considerably in structure and mechanism, the partnership between topoisomerases and DNA has engendered commonalities in how these enzymes engage nucleic acid substrates and control DNA strand manipulations. All topoisomerases can harness the free energy stored in supercoiled DNA to drive their reactions; some further use the energy of ATP to alter the topology of DNA away from an enzyme-free equilibrium ground state. In the cell, topoisomerases regulate DNA supercoiling and unlink tangled nucleic acid strands to actively maintain chromosomes in a topological state commensurate with particular replicative and transcriptional needs. To carry out these reactions, topoisomerases rely on dynamic macromolecular contacts that alternate between associated and dissociated states throughout the catalytic cycle. In this review, we describe how structural and biochemical studies have furthered our understanding of DNA topoisomerases, with an emphasis on how these complex molecular machines use interfacial interactions to harness and constrain the energy required to manage DNA topology.
Collapse
|
28
|
Cheng B, Sorokin EP, Tse-Dinh YC. Mutation adjacent to the active site tyrosine can enhance DNA cleavage and cell killing by the TOPRIM Gly to Ser mutant of bacterial topoisomerase I. Nucleic Acids Res 2008; 36:1017-25. [PMID: 18096618 PMCID: PMC2241903 DOI: 10.1093/nar/gkm1126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/24/2007] [Accepted: 12/03/2007] [Indexed: 11/14/2022] Open
Abstract
The TOPRIM DXDXXG residues of type IA and II topoisomerases are involved in Mg(II) binding and the cleavage-rejoining of DNA. Mutation of the strictly conserved glycine to serine in Yersinia pestis and Escherichia coli topoisomerase I results in bacterial cell killing due to inhibition of DNA religation after DNA cleavage. In this study, all other substitutions at the TOPRIM glycine of Y. pestis topoisomerase I were examined. While the Gly to Ala substitution allowed both DNA cleavage and religation, other mutations abolished DNA cleavage. DNA cleavage activity retained by the Gly to Ser mutant could be significantly enhanced by a second mutation of the methionine residue adjacent to the active site tyrosine. Induction of mutant topoisomerase with both the TOPRIM glycine and active site region methionine mutations resulted in up to 40-fold higher cell killing rate when compared with the single TOPRIM Gly to Ser mutant. Bacterial type IA topoisomerases are potential targets for discovery of novel antibiotics. These results suggest that compounds that interact simultaneously with the TOPRIM motif and the molecular surface around the active site tyrosine could be highly efficient topoisomerase poisons through both enhancement of DNA cleavage and inhibition of DNA rejoining.
Collapse
Affiliation(s)
| | | | - Yuk-Ching Tse-Dinh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
29
|
Changela A, DiGate RJ, Mondragón A. Structural studies of E. coli topoisomerase III-DNA complexes reveal a novel type IA topoisomerase-DNA conformational intermediate. J Mol Biol 2007; 368:105-18. [PMID: 17331537 PMCID: PMC1885233 DOI: 10.1016/j.jmb.2007.01.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/22/2007] [Accepted: 01/26/2007] [Indexed: 11/27/2022]
Abstract
Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5' phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.
Collapse
Affiliation(s)
- Anita Changela
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208
| | - Russell J. DiGate
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Philadelphia, PA 19104
| | - Alfonso Mondragón
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208
| |
Collapse
|
30
|
Viard T, de la Tour CB. Type IA topoisomerases: a simple puzzle? Biochimie 2006; 89:456-67. [PMID: 17141394 DOI: 10.1016/j.biochi.2006.10.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 10/20/2006] [Indexed: 11/30/2022]
Abstract
Type IA topoisomerases are enzymes that can modify DNA topology. They form a distinct family of proteins present in all domains of life, from bacteria to archaea and higher eukaryotes. They are composed of two domains: a core domain containing all the conserved motifs involved in the trans-esterification reactions, and a carboxyl-terminal domain that is highly variable in size and sequence. The latter appears to interact with other proteins, defining the physiological use of the topoisomerase activity. The evolutionary relevance of this topoisomerase-cofactor complex, also known as the "toposome", as well as its enzymatic consequences are discussed in this review.
Collapse
Affiliation(s)
- Thierry Viard
- Nicholas Cozzarelli Laboratory, Molecular and Cell Biology Department, 16 Barker Hall, University of California, Berkeley, CA 94720-3204, USA.
| | | |
Collapse
|
31
|
Cartei G, Trestin A, Colombrino E, Nadai M, Richter SN, Barzon L, Palù G, Palumbo M. Topoisomerase I, IIα and IIβ mRNA expression in peripheral blood mononuclear cells of patients with solid tumor: preliminary results. Ann Oncol 2006; 17 Suppl 5:v25-28. [PMID: 16807458 DOI: 10.1093/annonc/mdj945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The pyrimidine antimetabolite Gemcitabine (G) (2',2'-difluorodeoxycytidine) is used against several malignancies G exerts its antitumour effect mainly by incorporation of its triphosphate metabolite (dFdCTP) into DNA. Subsequently, DNA polymerase adds one additional deoxynucleotide and DNA synthesis is interrupted. The nuclear enzymes topoisomerase I and II (TPs) are critical for DNA function and cell survival; they control, maintain and modify DNA topology during both replication and translation of genetic materials. These enzymes induce cuts in one or both strands of DNA, allowing strands to pass through the nick and then rejoining the nicked strand of DNA. Anti-topoisomerase (TPs-inhibitors) drugs exist and are largely used in chemotherapy, however, most often blindly of the cancer TPs status. AIM To understand the best association between G and TPs-inhibitors, we studied: (a) Topoisomerases I, II alpha and II beta mRNA expression in Peripheral Mononuclear Blood Cells (PBMCs) of patients with solid tumor, after 1, 2, 3, 4, 5, 6 h after treatment with Gemcitabine (G); b) in vivo expression of TPs genes after administration of Gemcitabine (a topoisomerases up-regulating drug) combined with the TPs inhibitors drugs (TID) Topotecan (T) and Etoposide (E), added to the culture beneath 1 h after TPD treatment. TPs mRNA expression was measured by quantitative real-time RT-PCR in PBMCs. RESULTS The administration of 1-h infused G is followed by a fast rise of TPs expression (P > 0.0001 Student's t test, paired data, each patient control of himself); TPs inhibitors, sequentially given after G, highly reduced the TPs rising (P > 0.0001). CONCLUSIONS G induces a TPs increase. A rationale might be available for combination chemotherapy (G plus TPs inhibitors). The study is ongoing to enroll further patients.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antimetabolites, Antineoplastic/administration & dosage
- Antimetabolites, Antineoplastic/pharmacology
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Deoxycytidine/administration & dosage
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Administration Schedule
- Enzyme Inhibitors/administration & dosage
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukocytes, Mononuclear/metabolism
- Middle Aged
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- RNA, Messenger/metabolism
- Time Factors
- Topoisomerase I Inhibitors
- Topoisomerase II Inhibitors
- Gemcitabine
Collapse
Affiliation(s)
- G Cartei
- UOC Medical Oncology, 1 Floor, National Cancer Institute IOV-IRCSS, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Duguet M, Serre MC, Bouthier de La Tour C. A universal type IA topoisomerase fold. J Mol Biol 2006; 359:805-12. [PMID: 16647715 DOI: 10.1016/j.jmb.2006.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
A class of enzymes, called DNA topoisomerases, is responsible for controlling the topological state of cellular DNA. Among these, type IA topoisomerases form a vast family that is present in all living organisms, including higher eukaryotes, in which they play important roles in genome stability. The known 3D structures of three of these enzymes indicate that they share a common toroidal architecture. We previously showed that the toroidal structure could be split off from the core enzyme of Thermotoga maritima topoisomerase I by limited proteolysis. This structure is produced by the association of two tandemly repeated elementary folds in a head-to-tail orientation. By using a combination of structural and sequence data analysis, we show that the elementary fold of about 150 amino acid residues, referred to as the topofold, is likely to be present in the whole topoisomerase IA family. Within each enzyme, the successive topofolds share two conserved sequence motifs located at the base of the ring, and referred to as the MI and MII motifs. However, the overall sequences of the folds have largely diverged. By contrast, secondary and tertiary structures appear remarkably conserved. We suggest that this twofold repeat has evolved by gene duplication/fusion from an ancestral topofold.
Collapse
Affiliation(s)
- Michel Duguet
- Laboratoire d'Enzymologie des Acides Nucléiques, Institut de Génétique et Microbiologie, Université Paris-Sud, Unité Mixte de Recherche 8621, Centre National de la Recherche Scientifique, 91405 Orsay, France
| | | | | |
Collapse
|
33
|
Strahs D, Zhu CX, Cheng B, Chen J, Tse-Dinh YC. Experimental and computational investigations of Ser10 and Lys13 in the binding and cleavage of DNA substrates by Escherichia coli DNA topoisomerase I. Nucleic Acids Res 2006; 34:1785-97. [PMID: 16582104 PMCID: PMC1421505 DOI: 10.1093/nar/gkl109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/01/2006] [Accepted: 03/08/2006] [Indexed: 11/16/2022] Open
Abstract
Ser10 and Lys13 found near the active site tyrosine of Escherichia coli DNA topoisomerase I are conserved among the type IA topoisomerases. Site-directed mutagenesis of these two residues to Ala reduced the relaxation and DNA cleavage activity, with a more severe effect from the Lys13 mutation. Changing Ser10 to Thr or Lys13 to Arg also resulted in loss of DNA cleavage and relaxation activity of the enzyme. In simulations of the open form of the topoisomerase-DNA complex, Lys13 interacts directly with Glu9 (proposed to be important in the catalytic mechanism). This interaction is removed in the K13A mutant, suggesting the importance of lysine as either a proton donor or a stabilizing cation during strand cleavage, while the Lys to Arg mutation significantly distorts catalytic residues. Ser10 forms a direct hydrogen bond with a phosphate group near the active site and is involved in direct binding of the DNA substrate; this interaction is disturbed in the S10A and S10T mutants. This combination of a lysine and a serine residue conserved in the active site of type IA topoisomerases may be required for correct positioning of the scissile phosphate and coordination of catalytic residues relative to each other so that DNA cleavage and subsequent strand passage can take place.
Collapse
Affiliation(s)
- Daniel Strahs
- Department of Biology and Health Sciences, Pace UniversityNew York, NY 10038, USA
| | - Chang-Xi Zhu
- Department of Biochemistry and Molecular Biology, New York Medical College ValhallaNY 10595, USA
- Department of Biology and Health Sciences, Pace UniversityNew York, NY 10038, USA
| | - Bokun Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College ValhallaNY 10595, USA
- Department of Biology and Health Sciences, Pace UniversityNew York, NY 10038, USA
| | - Jason Chen
- Department of Biology and Health Sciences, Pace UniversityNew York, NY 10038, USA
| | - Yuk-Ching Tse-Dinh
- To whom correspondence should be addressed. Tel: +1 914 594 4061; Fax: +1 914 594 4058;
| |
Collapse
|
34
|
Hansen G, Harrenga A, Wieland B, Schomburg D, Reinemer P. Crystal structure of full length topoisomerase I from Thermotoga maritima. J Mol Biol 2006; 358:1328-40. [PMID: 16600296 DOI: 10.1016/j.jmb.2006.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Revised: 03/05/2006] [Accepted: 03/06/2006] [Indexed: 12/01/2022]
Abstract
DNA topoisomerases are a family of enzymes altering the topology of DNA by concerted breakage and rejoining of the phosphodiester backbone of DNA. Bacterial and archeal type IA topoisomerases, including topoisomerase I, topoisomerase III, and reverse gyrase, are crucial in regulation of DNA supercoiling and maintenance of genetic stability. The crystal structure of full length topoisomerase I from Thermotoga maritima was determined at 1.7A resolution and represents an intact and fully active bacterial topoisomerase I. It reveals the torus-like structure of the conserved transesterification core domain comprising domains I-IV and a tightly associated C-terminal zinc ribbon domain (domain V) packing against domain IV of the core domain. The previously established zinc-independence of the functional activity of T.maritima topoisomerase I is further supported by its crystal structure as no zinc ion is bound to domain V. However, the structural integrity is preserved by the formation of two disulfide bridges between the four Zn-binding cysteine residues. A functional role of domain V in DNA binding and recognition is suggested and discussed in the light of the structure and previous biochemical findings. In addition, implications for bacterial topoisomerases I are provided.
Collapse
Affiliation(s)
- Guido Hansen
- Bayer HealthCare AG, Pharma R and D Europe, Enabling Technologies, D-42096 Wuppertal, Germany
| | | | | | | | | |
Collapse
|
35
|
Tolstonog GV, Li G, Shoeman RL, Traub P. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA. DNA Cell Biol 2005; 24:85-110. [PMID: 15699629 DOI: 10.1089/dna.2005.24.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic intermediate filament (cIF) proteins interact strongly with single-stranded (ss) DNAs and RNAs, particularly with G-rich sequences. To test the hypothesis that this interaction depends on special nucleotide sequences and, possibly, higher order structures of ssDNA, a random mixture of mouse genomic ssDNA fragments generated by a novel "whole ssDNA genome PCR" technique via RNA intermediates was subjected to three rounds of affinity binding to in vitro reconstituted vimentin IFs at physiological ionic strength with intermediate PCR amplification of the bound ssDNA segments. Nucleotide sequence and computer folding analysis of the vimentin-selected fragments revealed an enrichment in microsatellites, predominantly of the (GT)n type, telomere DNA, and C/T-rich sequences, most of which, however, were incapable of folding into stable stem-loop structures. Because G-rich sequences were underrepresented in the vimentin-bound fraction, it had to be assumed that such sequences require intramolecular folding or lateral assembly into multistrand structures to be able to stably interact with vimentin, but that this requirement was inadequately fulfilled under the conditions of the selection experiment. For that reason, the few vimentin-selected G-rich ssDNA fragments and a number of telomere models were analyzed for their capacity to form inter- and intramolecular Gquadruplexes (G4 DNAs) under optimized conditions and to interact as such with vimentin and its type III relatives, glial fibrillary acidic protein, and desmin. Band shift assays indeed demonstrated differential binding of the cIF proteins to parallel four-stranded G4 DNAs and, with lower affinity, to bimolecular G'2 and unimolecular G'4 DNA configurations, whereby the transition regions from four- to single-strandedness played an additional role in the binding reaction. In this respect, the binding activity of cIF proteins was comparable with that toward other noncanonical DNA structures, like ds/ss DNA forks, triplex DNA, four-way junction DNA and Z-DNA, which also involve configurational transitions in their interaction with the filament proteins. Association of the cIF proteins with the corresponding nonfolded G-rich ssDNAs was negligible. Considering the almost universal involvement of ssDNA regions and G-quadruplexes in nuclear processes, including DNA transcription and recombination as well as telomere maintenance and dynamics, it is plausible to presume that cIF proteins as complementary constituents of the nuclear matrix participate in the cell- and tissue-specific regulation of these processes.
Collapse
|
36
|
|
37
|
Cheng B, Feng J, Mulay V, Gadgil S, Tse-Dinh YC. Site-directed mutagenesis of residues involved in G Strand DNA binding by Escherichia coli DNA topoisomerase I. J Biol Chem 2004; 279:39207-13. [PMID: 15215234 DOI: 10.1074/jbc.m405891200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of complexes between type IA DNA topoisomerases and single-stranded DNA suggest that the residues Ser-192, Arg-195, and Gln-197 in a conserved region of Escherichia coli topoisomerase I may be important for direct interactions with phosphates on the G strand of DNA, which is the substrate for DNA cleavage and religation (Changela A., DiGate, R. J., and Mondragón, A. (2001) Nature 411, 1077-1081; Perry, K., and Mondragón, A. (2003) Structure 11, 1349-1358). Site-directed mutagenesis experiments altering these residues to alanines and other amino acids were carried out to probe the relevance of these interactions in the catalytic activities of the enzyme. The results show that the side chains of Arg-195 and Gln-197 are required for DNA cleavage by the enzyme and are likely to be important for positioning of the G strand of DNA at the active site prior to DNA cleavage. Mutation of Ser-192 did not affect DNA binding and cleavage but nevertheless decreased the overall rate of relaxation of supercoiled DNA probably because of its participation in a later step of the reaction pathway.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
38
|
Viard T, Cossard R, Duguet M, de La Tour CB. Thermotoga maritima-Escherichia coli chimeric topoisomerases. Answers about involvement of the carboxyl-terminal domain in DNA topoisomerase I-mediated catalysis. J Biol Chem 2004; 279:30073-80. [PMID: 15140883 DOI: 10.1074/jbc.m309692200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial topoisomerases I are generally composed of two domains as follows: a core domain, which contains all the conserved motifs involved in the trans-esterification reactions, and a carboxyl-terminal domain, highly variable in size and sequence. In the present work, we have addressed the question of the respective roles of the two domains in the different steps of the topoisomerization cycle. For this purpose, we prepared various recombinant topoisomerases from two model enzymes: topoisomerase I from the hyperthermophilic bacterium Thermotoga maritima and topoisomerase I from Escherichia coli. We compared the properties of the two core domains to that of the topoisomerases formed by combining the core domain of one enzyme to the carboxyl-terminal domain of the other. We found that, contrary to E. coli (Lima, C. D., Wang, J. C., and Mondragon, A. (1993) J. Mol. Biol. 232, 1213-1216), the core domain from T. maritima (TmTop65) is able to sustain by itself a complete topoisomerization cycle, although with low efficiency. Fusion of TmTop65 to the entire carboxyl-terminal domain from E. coli considerably increases binding efficiency, thermal stability, and DNA relaxation activity. Moreover, the chimera predominantly acquires the cleavage specificity of E. coli full-length topoisomerase. For the chimera obtained by fusion of the T. maritima carboxyl-terminal domain to the core EcTop67, very low DNA relaxation activity and binding are recovered, but formation of a covalent DNA adduct is impaired. Taken together, our results show that the presence and the nature of the carboxyl-terminal domain of bacterial topoisomerases I strongly determine their DNA binding efficiency and cleavage specificity but is not strictly required for strand passage.
Collapse
Affiliation(s)
- Thierry Viard
- Laboratoire d'Enzymologie des Acides Nucléiques, Institut de Génétique et Microbiologie, UMR 8621 CNRS, Bātiment 400, Université Paris Sud, Centre d'Orsay, 91405 Orsay, France
| | | | | | | |
Collapse
|