1
|
Alhaddad A, Mosalam EM, AboShabaan HS, Sallam AS, Mahfouz MM, Elhosary E, Mohammed AA, Metwally EM, Shaldam MA, Ghoneim MES. Mechanistic and Molecular Insights into Empagliflozin's Role in Ferroptosis and Inflammation Trajectories in Acetaminophen-Induced Hepatotoxicity. Pharmaceuticals (Basel) 2025; 18:405. [PMID: 40143181 PMCID: PMC11944739 DOI: 10.3390/ph18030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Acetaminophen (APAP)-induced acute liver injury (ALI) is increasingly becoming a public health issue with high rate of morbidity and mortality. Therefore, there is a critical demand for finding protective modalities by understanding the underlying proposed mechanisms including, but not limited to, ferroptosis and inflammation. Objectives: This study seeks to investigate the possible hepatoprotective effect of empagliflozin (EMPA) against APAP-induced ALI through modulation of ferroptosis and inflammatory cascades. Methods: Mice were allocated into the following five groups: vehicle control, APAP, EMPA 10, EMPA 20 (10 and 20 mg/kg/day, respectively, P.O.), and N-acetylcysteine (NAC, hepatoprotective agent against APAP-induced ALI). The hepatic injury was detected by determining liver enzymes and by histopathological examination. Inflammation, oxidative stress, apoptosis, and ferroptosis were also evaluated. Results: The APAP group showed an elevated level of hepatic enzymes with disrupted hepatic architecture. This toxicity was promoted by inflammation, oxidative stress, apoptosis, and ferroptosis, as indicated by elevated cytokines, lipid peroxidation, reduced antioxidants, increased caspase-3, decreased Bcl-2, and activation of the NF-κB/STAT3/hepcidin pathway. Pretreatment with EMPA remarkably reversed these features, which was reflected by restoration of the histoarchitecture of hepatic tissue, but the higher dose of EMPA was more efficient. Conclusions: APAP can induce ALI through initiation of inflammatory and oxidative conditions, which favor ferroptosis. EMPA hindered these unfavorable consequences; an outcome which indicates its anti-inflammatory, antioxidant, anti-apoptotic, and anti-ferroptotic effects. This modulatory action advocated EMPA as a potential hepatoprotective agent.
Collapse
Affiliation(s)
- Aisha Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia;
| | - Esraa M. Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt
- Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Hind S. AboShabaan
- Clinical Pathology Department, National Liver Institute Hospital, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| | - Amany Said Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt; (A.S.S.); (M.M.M.)
| | - Marwa M. Mahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt; (A.S.S.); (M.M.M.)
| | - Enas Elhosary
- Department of Pathology, Faculty of Medicine, Helwan University, Cairo 11795, Egypt;
| | - Asmaa A. Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Girls, AL Azhar University, Cairo 11651, Egypt;
| | - Ebtehal M. Metwally
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| | - Moataz A. Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 12613, Kafrelsheikh, Egypt;
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Monufia Governorate, Egypt;
| |
Collapse
|
2
|
Lynch DM, Forrester B, Webb T, Ciulli A. Unravelling the druggability and immunological roles of the SOCS-family proteins. Front Immunol 2024; 15:1449397. [PMID: 39676878 PMCID: PMC11638205 DOI: 10.3389/fimmu.2024.1449397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
The Suppressor of Cytokine Signalling (SOCS) protein family play a critical role in cytokine signalling and regulation of the JAK/STAT pathway with functional consequences to the immune response. Members of this family are implicated in multiple different signalling cascades that drive autoimmune diseases and cancer, through their binding to phosphotyrosine modified proteins as well as ubiquitination activity as part of Cullin5 RING E3 ligases. Here we review the SOCS family members CISH and SOCS1-SOCS7, with a focus on their complex role in immunity. The interactome and signalling network of this protein family is discussed, and the intricate mechanisms through which SOCS proteins alter and manage the immune system are assessed. We offer structural insights into how SOCS proteins engage their interacting partners and native substrates at the protein-protein interaction level. We describe how this knowledge has enabled drug discovery efforts on SOCS proteins to date and propose strategies for therapeutic intervention using small molecules, either via direct inhibition or leveraging their E3 ligase activity for targeted protein degradation.
Collapse
Affiliation(s)
| | | | | | - Alessio Ciulli
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
3
|
Ahmed CM, Johnson HM, Lewin AS. Corneal application of SOCS1/3 peptides for the treatment of eye diseases mediated by inflammation and oxidative stress. Front Immunol 2024; 15:1416181. [PMID: 39104531 PMCID: PMC11298391 DOI: 10.3389/fimmu.2024.1416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Several blinding diseases affecting the retina and optic nerve are exacerbated by or caused by dysregulated inflammation and oxidative stress. These diseases include uveitis, age related macular degeneration, diabetic retinopathy and glaucoma. Consequently, despite their divergent symptoms, treatments that reduce oxidative stress and suppress inflammation may be therapeutic. The production of inflammatory cytokines and their activities are regulated by a class of proteins termed Suppressors of Cytokine Signaling (SOCS). SOCS1 and SOCS3 are known to dampen signaling via pathways employing Janus kinases and signal transducer and activator of transcription proteins (JAK/STAT), Toll-like Receptors (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen activated kinase (MAPK) and NLR family pyrin domain containing 3 (NLRP3). We have developed cell-penetrating peptides from the kinase inhibitory region of the SOCS1 and SOCS3 (denoted as R9-SOCS1-KIR and R9-SOCS3-KIR) and tested them in retinal pigment epithelium (RPE) cells and in macrophage cell lines. SOCS-KIR peptides exhibited anti-inflammatory, anti-oxidant and anti-angiogenic properties. In cell culture, both Th1 and Th17 cells were suppressed together with the inhibition of other inflammatory markers. We also observed a decrease in oxidants and a simultaneous rise in neuroprotective and anti-oxidant effectors. In addition, treatment prevented the loss of gap junction proteins and the ensuing drop in transepithelial electrical resistance in RPE cells. When tested in mouse models by eye drop instillation, they showed protection against autoimmune uveitis, as a prophylactic as well as a therapeutic. Mice with endotoxin-induced uveitis were protected by eye drop administration as well. R9-SOCS3-KIR was particularly effective against the pathways acting through STAT3, e.g. IL-6 and VEGF-A mediated responses that lead to macular degeneration. Eye drop administration of R9-SOCS3-KIR stimulated production of antioxidant effectors and reduced clinical symptoms in mouse model of oxidative stress that replicates the RPE injury occurring in AMD. Because these peptides suppress multiple pathogenic stimuli and because they can be delivered topically to the cornea, they are attractive candidates for therapeutics for uveitis, macular degeneration, diabetic retinopathy and glaucoma.
Collapse
Affiliation(s)
- Chulbul M. Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Chen H, Wu Y, Li K, Currie I, Keating N, Dehkhoda F, Grohmann C, Babon JJ, Nicholson SE, Sleebs BE. Optimization of Phosphotyrosine Peptides that Target the SH2 Domain of SOCS1 and Block Substrate Ubiquitination. ACS Chem Biol 2022; 17:449-462. [PMID: 34989544 DOI: 10.1021/acschembio.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) has emerged as a potential therapeutic target in inflammatory and viral diseases. SOCS1 operates via its kinase inhibitory region, Src homology 2 (SH2) domain, and SOCS box to negatively regulate the Janus kinase/signal transducers and activators of transcription signaling pathway. In this study, we utilized native phosphotyrosine peptide substrates as a starting point to iteratively explore the requirement of each amino acid position to target the SH2 domain of SOCS1. We show that Met, Thr, Thr, Val, and Asp in the respective -1, +1, +2, +3, and +5 positions within the peptide substrate are favored for binding to the SOCS1-SH2 domain and identifying several phosphotyrosine peptides that have potent SOCS1 binding affinity with IC50 values ranging from 20 to 70 nM and greater than 100-fold selectivity against the closely related SOCS family proteins, CIS, SOCS2, and SOCS3. The optimized phosphotyrosine peptide was shown to stabilize SOCS1 in a thermal shift assay using cell lysates and inhibited SOCS1-mediated ubiquitination of a target substrate in a biochemical assay. Collectively, these data provide the framework to develop cell-permeable peptidomimetics that further investigate the potential of the SOCS1-SH2 domain as a therapeutic target in inflammatory and viral diseases.
Collapse
Affiliation(s)
- Hao Chen
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Yuntong Wu
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Iain Currie
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Farhad Dehkhoda
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Christoph Grohmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Jeffrey J. Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
5
|
Assmann JLJC, Leon LG, Stavast CJ, van den Bogaerdt SE, Schilperoord-Vermeulen J, Sandberg Y, Bellido M, Erkeland SJ, Feith DJ, Loughran TP, Langerak AW. miR-181a is a novel player in the STAT3-mediated survival network of TCRαβ+ CD8+ T large granular lymphocyte leukemia. Leukemia 2021; 36:983-993. [PMID: 34873301 PMCID: PMC8979821 DOI: 10.1038/s41375-021-01480-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022]
Abstract
T-LGL cells arise as a consequence of chronic antigenic stimulation and inflammation and thrive because of constitutive activation of the STAT3 and ERK pathway. Notably, in 40% of patients, constitutive STAT3 activation is due to STAT3 activating mutations, whereas in 60% this is unknown. As miRNAs are amongst the most potent regulators in health and disease, we hypothesized that aberrant miRNA expression could contribute to dysregulation of these pathways. miRNA sequencing in T-LGL leukemia cases and aged-matched healthy control TEMRA cells revealed overexpression of miR-181a. Furthermore, geneset enrichment analysis (GSEA) of downregulated targets of miR-181a implicated involvement in regulating STAT3 and ERK1/2 pathways. Flow cytometric analyses showed increased SOCS3+ and DUSP6+ T-LGL cells upon miR-181a inhibition. In addition, miR-181a-transfected human CD8+ T cells showed increased basal STAT3 and ERK1/2 phosphorylation. By using TL1, a human T-LGL cell line, we could show that miR-181a is an actor in T-LGL leukemia, driving STAT3 activation by SOCS3 inhibition and ERK1/2 phosphorylation by DUSP6 inhibition and verified this mechanism in an independent cell line. In addition, miR-181a inhibition resulted in a higher sensitivity to FAS-mediated apoptosis. Collectively, our data show that miR-181a could be the missing link to explain why STAT3-unmutated patients show hyperactive STAT3.
Collapse
Affiliation(s)
- Jorn L J C Assmann
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Leticia G Leon
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christiaan J Stavast
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sanne E van den Bogaerdt
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joyce Schilperoord-Vermeulen
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Yorick Sandberg
- Department of Hematology, Maasstadziekenhuis, Rotterdam, The Netherlands
| | - Mar Bellido
- Department of Hematology, Faculty of Medical Sciences, Groningen University Medical Center, Groningen, The Netherlands
| | - Stefan J Erkeland
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - David J Feith
- Division of Hematology/Oncology, Department of Medicine, UVA Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Thomas P Loughran
- Division of Hematology/Oncology, Department of Medicine, UVA Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. .,ACE Rare Immunological Diseases Center, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Karki P, Ke Y, Zhang CO, Li Y, Tian Y, Son S, Yoshimura A, Kaibuchi K, Birukov KG, Birukova AA. SOCS3-microtubule interaction via CLIP-170 and CLASP2 is critical for modulation of endothelial inflammation and lung injury. J Biol Chem 2021; 296:100239. [PMID: 33372035 PMCID: PMC7949054 DOI: 10.1074/jbc.ra120.014232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Proinflammatory cytokines such as IL-6 induce endothelial cell (EC) barrier disruption and trigger an inflammatory response in part by activating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The protein suppressor of cytokine signaling-3 (SOCS3) is a negative regulator of JAK-STAT, but its role in modulation of lung EC barrier dysfunction caused by bacterial pathogens has not been investigated. Using human lung ECs and EC-specific SOCS3 knockout mice, we tested the hypothesis that SOCS3 confers microtubule (MT)-mediated protection against endothelial dysfunction. SOCS3 knockdown in cultured ECs or EC-specific SOCS3 knockout in mice resulted in exacerbated lung injury characterized by increased permeability and inflammation in response to IL-6 or heat-killed Staphylococcus aureus (HKSA). Ectopic expression of SOCS3 attenuated HKSA-induced EC dysfunction, and this effect required assembled MTs. SOCS3 was enriched in the MT fractions, and treatment with HKSA disrupted SOCS3-MT association. We discovered that-in addition to its known partners gp130 and JAK2-SOCS3 interacts with MT plus-end binding proteins CLIP-170 and CLASP2 via its N-terminal domain. The resulting SOCS3-CLIP-170/CLASP2 complex was essential for maximal SOCS3 anti-inflammatory effects. Both IL-6 and HKSA promoted MT disassembly and disrupted SOCS3 interaction with CLIP-170 and CLASP2. Moreover, knockdown of CLIP-170 or CLASP2 impaired SOCS3-JAK2 interaction and abolished the anti-inflammatory effects of SOCS3. Together, these findings demonstrate for the first time an interaction between SOCS3 and CLIP-170/CLASP2 and reveal that this interaction is essential to the protective effects of SOCS3 in lung endothelium.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sophia Son
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Nagoya, Japan
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
7
|
Seiffert P, Bugge K, Nygaard M, Haxholm GW, Martinsen JH, Pedersen MN, Arleth L, Boomsma W, Kragelund BB. Orchestration of signaling by structural disorder in class 1 cytokine receptors. Cell Commun Signal 2020; 18:132. [PMID: 32831102 PMCID: PMC7444064 DOI: 10.1186/s12964-020-00626-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Class 1 cytokine receptors (C1CRs) are single-pass transmembrane proteins responsible for transmitting signals between the outside and the inside of cells. Remarkably, they orchestrate key biological processes such as proliferation, differentiation, immunity and growth through long disordered intracellular domains (ICDs), but without having intrinsic kinase activity. Despite these key roles, their characteristics remain rudimentarily understood. METHODS The current paper asks the question of why disorder has evolved to govern signaling of C1CRs by reviewing the literature in combination with new sequence and biophysical analyses of chain properties across the family. RESULTS We uncover that the C1CR-ICDs are fully disordered and brimming with SLiMs. Many of these short linear motifs (SLiMs) are overlapping, jointly signifying a complex regulation of interactions, including network rewiring by isoforms. The C1CR-ICDs have unique properties that distinguish them from most IDPs and we forward the perception that the C1CR-ICDs are far from simple strings with constitutively bound kinases. Rather, they carry both organizational and operational features left uncovered within their disorder, including mechanisms and complexities of regulatory functions. CONCLUSIONS Critically, the understanding of the fascinating ability of these long, completely disordered chains to orchestrate complex cellular signaling pathways is still in its infancy, and we urge a perceptional shift away from the current simplistic view towards uncovering their full functionalities and potential. Video abstract.
Collapse
Affiliation(s)
- Pernille Seiffert
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Katrine Bugge
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mads Nygaard
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Gitte W. Haxholm
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jacob H. Martinsen
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Martin N. Pedersen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen Ø, Denmark
| | - Birthe B. Kragelund
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov 2019; 18:949-963. [PMID: 31666732 DOI: 10.1038/s41573-019-0047-y] [Citation(s) in RCA: 581] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Proteolysis-targeting chimeras (PROTACs) and related molecules that induce targeted protein degradation by the ubiquitin-proteasome system represent a new therapeutic modality and are the focus of great interest, owing to potential advantages over traditional occupancy-based inhibitors with respect to dosing, side effects, drug resistance and modulating 'undruggable' targets. However, the technology is still maturing, and the design elements for successful PROTAC-based drugs are currently being elucidated. Importantly, fewer than 10 of the more than 600 E3 ubiquitin ligases have so far been exploited for targeted protein degradation, and expansion of knowledge in this area is a key opportunity. Here, we briefly discuss lessons learned about targeted protein degradation in chemical biology and drug discovery and systematically review the expression profile, domain architecture and chemical tractability of human E3 ligases that could expand the toolbox for PROTAC discovery.
Collapse
|
9
|
Structural insights into substrate recognition by the SOCS2 E3 ubiquitin ligase. Nat Commun 2019; 10:2534. [PMID: 31182716 PMCID: PMC6557900 DOI: 10.1038/s41467-019-10190-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
The suppressor of cytokine signaling 2 (SOCS2) acts as substrate recognition subunit of a Cullin5 E3 ubiquitin ligase complex. SOCS2 binds to phosphotyrosine-modified epitopes as degrons for ubiquitination and proteasomal degradation, yet the molecular basis of substrate recognition has remained elusive. Here, we report co-crystal structures of SOCS2-ElonginB-ElonginC in complex with phosphorylated peptides from substrates growth hormone receptor (GHR-pY595) and erythropoietin receptor (EpoR-pY426) at 1.98 Å and 2.69 Å, respectively. Both peptides bind in an extended conformation recapitulating the canonical SH2 domain-pY pose, but capture different conformations of the EF loop via specific hydrophobic interactions. The flexible BG loop is fully defined in the electron density, and does not contact the substrate degron directly. Cancer-associated SNPs located around the pY pocket weaken substrate-binding affinity in biophysical assays. Our findings reveal insights into substrate recognition and specificity by SOCS2, and provide a blueprint for small molecule ligand design. The suppressor of cytokine signaling 2 (SOCS2) is a component of the Cullin5 E3 ubiquitin ligase complex. Here the authors provide insights into substrate recognition and specificity of SOCS2 by determining the crystal structures of the SOCS2-ElonginB-ElonginC in complex with phosphorylated peptides from two of its substrates the growth hormone receptor and erythropoietin receptor.
Collapse
|
10
|
Abstract
The development and activity of our immune system are largely controlled by the action of pleiotropic cytokines and growth factors, small secreted proteins, which bind to receptors on the surface of immune cells to initiate an appropriate physiological response. Cytokine signalling is predominantly executed by intracellular proteins known as the Janus kinases (JAKs) and the signal transducers and activators of transcriptions (STATs). Although the 'nuts and bolts' of cytokine-activated pathways have been well established, the nuanced way in which distinct cellular outcomes are achieved and the precise molecular details of the proteins that regulate these pathways are still being elucidated. This is highlighted by the intricate role of the suppressor of cytokine signalling (SOCS) proteins. The SOCS proteins act as negative feedback inhibitors, dampening specific cytokine signals to prevent excessive cellular responses and returning the cell to a homeostatic state. A great deal of study has demonstrated their ability to inhibit these pathways at the receptor complex, either through direct inhibition of JAK activity or by targeting the receptor complex for proteasomal degradation. Detailed analysis of individual SOCS proteins is slowly revealing the complex and highly controlled manner by which they can achieve specificity for distinct substrates. However, for many of the SOCS, a level of detail is still lacking, including confident identification of the full suite of tyrosine phosphorylated targets of their SH2 domain. This review will highlight the general mechanisms which govern SOCS specificity of action and discuss the similarities and differences between selected SOCS proteins, focusing on CIS, SOCS1 and SOCS3. Because of the functional and sequence similarities within the SOCS family, we will also discuss the evidence for functional redundancy.
Collapse
Affiliation(s)
- Edmond M Linossi
- a Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
- b Department of Medical Biology , University of Melbourne , Parkville , Australia
| | - Dale J Calleja
- a Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
| | - Sandra E Nicholson
- a Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
- b Department of Medical Biology , University of Melbourne , Parkville , Australia
| |
Collapse
|
11
|
A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18102010. [PMID: 28934129 PMCID: PMC5666700 DOI: 10.3390/ijms18102010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein–protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the perspective of intrinsic disorder provides useful information that can potentially lead to future experimental studies that may uncover latent and novel pathways associated with the disease.
Collapse
|
12
|
Abstract
Erythropoietin (EPO) is a hormone that is important for regulating red blood cell production. It is functional through binding to its receptor-EpoR. EpoR is a single-span membrane protein. It contains an extracellular region, a transmembrane domain, and a C-terminus. The extracellular region is important for binding to EPO, and its conformation is critical for signal transduction. The transmembrane domain contains 21 residues forming a helix which plays an important role in transferring ligand-induced conformational changes of the extracellular domain across the cell membrane. The C-terminal region contains the Janus kinase 2-binding sites and eight tyrosine residues that can be phosphorylated to become binding sites for transcription factors to active the downstream pathways. This chapter focuses on structural description of the domains of the EpoR. The recent progress in the structural determination of these domains is summarized, which will be useful for understanding their function in signal transduction.
Collapse
|
13
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
14
|
Dumpati R, Dulapalli R, Kondagari B, Ramatenki V, Vellanki S, Vadija R, Vuruputuri U. Suppressor of Cytokine Signalling-3 as a Drug Target for Type 2 Diabetes Mellitus: A Structure-Guided Approach. ChemistrySelect 2016. [DOI: 10.1002/slct.201600640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ramakrishna Dumpati
- Department of Chemistry; University College of Science; Osmania University; Tarnaka, Hyderabad, Telangana INDIA - 500007
| | - Ramasree Dulapalli
- Department of Chemistry; University College of Science; Osmania University; Tarnaka, Hyderabad, Telangana INDIA - 500007
| | - Bhargavi Kondagari
- Department of Chemistry; University College of Science; Osmania University; Tarnaka, Hyderabad, Telangana INDIA - 500007
| | - Vishwanath Ramatenki
- Department of Chemistry; University College of Science; Osmania University; Tarnaka, Hyderabad, Telangana INDIA - 500007
| | - Santhiprada Vellanki
- Department of Chemistry; University College of Science; Osmania University; Tarnaka, Hyderabad, Telangana INDIA - 500007
| | - Rajender Vadija
- Department of Chemistry; University College of Science; Osmania University; Tarnaka, Hyderabad, Telangana INDIA - 500007
| | - Uma Vuruputuri
- Department of Chemistry; University College of Science; Osmania University; Tarnaka, Hyderabad, Telangana INDIA - 500007
| |
Collapse
|
15
|
Feng Y, Sanders AJ, Morgan LD, Harding KG, Jiang WG. Potential roles of suppressor of cytokine signaling in wound healing. Regen Med 2016; 11:193-209. [PMID: 26877242 DOI: 10.2217/rme.16.4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wound healing is a dynamic process comprising three overlapping, highly orchestrated stages known as inflammation, proliferation and re-epithelialization, and tissue remodeling. This complex process is regulated by numerous cytokines, with dysregulation of cytokine-induced signaling leading to impaired wound healing. Suppressor of cytokine signaling (SOCS) proteins are a family of eight intracellular proteins which may hold the potential to maintain homeostasis during wound healing through their negative feedback inhibition of cytokine signaling. To date, the roles of SOCS proteins in inflammation, autoimmunity and cancer have been comprehensively illustrated; however, only a limited number of studies focused on their role in wound healing. This review demonstrates the possible links between SOCS proteins and wound healing, and also highlights the potential importance of this family in a variety of other aspects of regenerative medicine.
Collapse
Affiliation(s)
- Yi Feng
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Liam D Morgan
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Keith G Harding
- Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
16
|
Song JN, Zhang M, Li DD, Li M, An JY, Cheng MF, Guo XY. Dynamic expression of the suppressor of cytokine signaling-3 and cytokines in the cerebral basilar artery of rats with subarachnoid hemorrhage, and the effect of acetylcholine. Acta Neurochir (Wien) 2014; 156:941-9; discussion 949. [PMID: 24463741 DOI: 10.1007/s00701-014-1998-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/09/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND There are complex interactions between acetylcholine (ACh), the suppressor of cytokine signaling-3 (SOCS-3), and cytokines, however, little is known about their dynamic expression or their effects on cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH). Therefore, we aimed to describe and clarify the dynamic expression of SOCS-3 and cytokines after SAH, as well as the relationships between the levels of SOCS-3, cytokines, and ACh. METHODS The rat model of single cisterna magna injection was used to mimic acute SAH. The degree of CVS was indicated by lumen diameter and artery wall thickness under H&E staining. A semi-quantitative immunohistochemical analysis method was used to clarify the role of SOCS-3 in the CVS after SAH. We also measured the content of IL-6 and IL-10 in cerebrospinal fluid. RESULTS We found that SOCS-3 expression levels increased rapidly within 12 h after SAH, more slowly after 12 h, and did not reach a peak within 48 h. Interleukin 6 (IL-6) levels rapidly increased within 24 h after SAH, reached a peak 24 h after SAH, and decreased slightly at 48 h. IL-10 levels increased during the first 6 h after SAH, after which this increase tapered off. ACh treatment reduced IL-6 levels and resulted in elevated levels of SOCS-3, but had no effect on IL-10 expression. Furthermore, ACh treatment relieved basilar arterial vasospasm, whereas mecamylamine pretreatment counteracted the activity of ACh. CONCLUSIONS Taken together, these data indicate that SOCS-3 was involved in vasospasm via an IL-6- and IL-10-related mechanism, and that CVS following SAH could be reversed by the intraventricular injection of ACh.
Collapse
Affiliation(s)
- Jin-Ning Song
- Department of Neurosurgery, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi' an, Shaanxi, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
17
|
Liang Y, Xu WD, Peng H, Pan HF, Ye DQ. SOCS signaling in autoimmune diseases: molecular mechanisms and therapeutic implications. Eur J Immunol 2014; 44:1265-75. [PMID: 24595859 DOI: 10.1002/eji.201344369] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/08/2014] [Accepted: 02/25/2014] [Indexed: 11/08/2022]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are mainly induced by various cytokines and have been described as classical inhibitors of cytokine signaling. SOCS signaling is involved in the regulation of immune cells, and recent findings suggest that SOCS proteins, especially SOCS1 and SOCS3, are often dysregulated in a wide variety of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, psoriasis, and multiple sclerosis. Recent studies suggest that SOCS signaling could be therapeutically targeted in various autoimmune diseases. In this review, we discuss recent studies on the role of SOCS proteins in the development and pathogenesis of autoimmune diseases, as well as their clinical implications.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Carow B, Rottenberg ME. SOCS3, a Major Regulator of Infection and Inflammation. Front Immunol 2014; 5:58. [PMID: 24600449 PMCID: PMC3928676 DOI: 10.3389/fimmu.2014.00058] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/31/2014] [Indexed: 12/18/2022] Open
Abstract
In this review, we describe the role of suppressor of cytokine signaling-3 (SOCS3) in modulating the outcome of infections and autoimmune diseases as well as the underlying mechanisms. SOCS3 regulates cytokine or hormone signaling usually preventing, but in some cases aggravating, a variety of diseases. A main role of SOCS3 results from its binding to both the JAK kinase and the cytokine receptor, which results in the inhibition of STAT3 activation. Available data also indicate that SOCS3 can regulate signaling via other STATs than STAT3 and also controls cellular pathways unrelated to STAT activation. SOCS3 might either act directly by hampering JAK activation or by mediating the ubiquitination and subsequent proteasome degradation of the cytokine/growth factor/hormone receptor. Inflammation and infection stimulate SOCS3 expression in different myeloid and lymphoid cell populations as well as in diverse non-hematopoietic cells. The accumulated data suggest a relevant program coordinated by SOCS3 in different cell populations, devoted to the control of immune homeostasis in physiological and pathological conditions such as infection and autoimmunity.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
19
|
Gao A, Van Dyke TE. Role of suppressors of cytokine signaling 3 in bone inflammatory responses. Front Immunol 2014; 4:506. [PMID: 24454312 PMCID: PMC3887271 DOI: 10.3389/fimmu.2013.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/21/2013] [Indexed: 12/23/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a potent regulator of cytokine signaling in macrophages and T cells. In recent studies, evidence has been provided for SOCS3 activation in all major bone cells including osteoclasts, chondrocytes, synoviocytes, and osteoblasts. The investigation of SOCS3 function in bone remodeling systems implicates SOCS3 as a key signaling molecule in bone cell-mediated inflammatory responses. Both pro- and anti-inflammatory functions of SOCS3 have been demonstrated in different types of bone cells. This review provides an overview of the important role of SOCS3 in inflammatory responses of various bone cells and in bone inflammatory disorders such as periodontal disease and arthritis. Understanding the roles of SOCS3 in inflammatory diseases of bone and joints such as arthritis, osteomyelitis, and periodontal diseases is critical to revealing insights into signaling pathways that can be manipulated in potential therapeutic approaches.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Applied Oral Sciences, The Forsyth Institute , Cambridge, MA , USA
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute , Cambridge, MA , USA
| |
Collapse
|
20
|
Babon JJ, Varghese LN, Nicola NA. Inhibition of IL-6 family cytokines by SOCS3. Semin Immunol 2014; 26:13-9. [PMID: 24418198 DOI: 10.1016/j.smim.2013.12.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023]
Abstract
IL-6 a multi-functional cytokine with important effects in both inflammation and haematopoiesis. SOCS3 is the primary inhibitor of IL-6 signalling, interacting with gp130, the common shared chain of the IL-6 family of cytokines, and JAK1, JAK2 and TYK2 to control both the duration of signalling and the biological response. Recent biochemical and structural studies have shown SOCS3 binds to only these three JAKs, all of which are associated with IL-6 signalling, and not JAK3. This specificity is determined by a three residue "GQM" motif in the kinase domain of JAK1, JAK2 and TYK2. SOCS3 binds to JAK and gp130 simultaneously, and inhibits JAK activity in an ATP-independent manner by partially occluding the kinase's substrate binding groove with its kinase inhibitory region. We therefore propose a model in which each of gp130, JAK and SOCS3 are directly bound to the other two, allowing SOCS3 to inhibit IL6 signalling with high potency and specificity.
Collapse
Affiliation(s)
- Jeffrey J Babon
- Walter and Eliza Hall Institute, Parkville, Australia; The University of Melbourne, Parkville, Australia.
| | - Leila N Varghese
- Walter and Eliza Hall Institute, Parkville, Australia; The University of Melbourne, Parkville, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute, Parkville, Australia; The University of Melbourne, Parkville, Australia
| |
Collapse
|
21
|
Iglesias-Gato D, Chuan YC, Wikström P, Augsten S, Jiang N, Niu Y, Seipel A, Danneman D, Vermeij M, Fernandez-Perez L, Jenster G, Egevad L, Norstedt G, Flores-Morales A. SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer. Carcinogenesis 2013; 35:24-33. [PMID: 24031028 DOI: 10.1093/carcin/bgt304] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED Anabolic signals such as androgens and the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis play an essential role in the normal development of the prostate but also in its malignant transformation. In this study, we investigated the role of suppressor of cytokine signaling 2 (SOCS2) as mediator of the cross talk between androgens and GH signals in the prostate and its potential role as tumor suppressor in prostate cancer (PCa). We observed that SOCS2 protein levels assayed by immunohistochemistry are elevated in hormone therapy-naive localized prostatic adenocarcinoma in comparison with benign tissue. In contrast, however, castration-resistant bone metastases exhibit reduced levels of SOCS2 in comparison with localized or hormone naive, untreated metastatic tumors. In PCa cells, SOCS2 expression is induced by androgens through a mechanism that requires signal transducer and activator of transcription 5 protein (STAT5) and androgen receptor-dependent transcription. Consequentially, SOCS2 inhibits GH activation of Janus kinase 2, Src and STAT5 as well as both cell invasion and cell proliferation in vitro. In vivo, SOCS2 limits proliferation and production of IGF-1 in the prostate in response to GH. Our results suggest that the use of GH-signaling inhibitors could be of value as a complementary treatment for castration-resistant PCa. SUMMARY Androgen induced SOCS2 ubiquitin ligase expression and inhibited GH signaling as well as cell proliferation and invasion in PCa, whereas reduced SOCS2 was present in castration-resistant cases. GH-signaling inhibitors might be a complementary therapeutic option for advanced PCa.
Collapse
Affiliation(s)
- Diego Iglesias-Gato
- Molecular Endocrinology Group, Department of Disease Biology, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
White CA, Nicola NA. SOCS3: An essential physiological inhibitor of signaling by interleukin-6 and G-CSF family cytokines. JAKSTAT 2013; 2:e25045. [PMID: 24416642 PMCID: PMC3876435 DOI: 10.4161/jkst.25045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/15/2013] [Indexed: 12/21/2022] Open
Abstract
SOCS3 is an inducible negative feedback inhibitor of cytokine signaling. Conditional deletion of SOCS3 in mice using the Cre-lox system has now been applied to a range of cell types in the steady-state and under inflammatory, pathogenic, or tumorigenic stress, with the resulting phenotypes demonstrating the effects of SOCS3 in physiological and disease contexts. Together with recent structural and biochemical studies on the mechanisms of SOCS3 binding to cytokine receptors and associated kinases, we now have a better understanding of the non-redundant roles of SOCS3 in the inhibition of cytokine signaling via the receptors gp130, G-CSFR, leptinR, and IL-12Rβ. This review discusses the known functional activities of SOCS3 in fertility and development, inflammation, innate and adaptive immunity, and malignancy as determined by genetic studies in mice.
Collapse
Affiliation(s)
- Christine A White
- Walter and Eliza Hall Institute of Medical Research; Parkville, VIC Australia ; Department of Medical Biology; University of Melbourne; Parkville, VIC Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute of Medical Research; Parkville, VIC Australia ; Department of Medical Biology; University of Melbourne; Parkville, VIC Australia
| |
Collapse
|
23
|
Linossi EM, Babon JJ, Hilton DJ, Nicholson SE. Suppression of cytokine signaling: the SOCS perspective. Cytokine Growth Factor Rev 2013; 24:241-8. [PMID: 23545160 PMCID: PMC3816980 DOI: 10.1016/j.cytogfr.2013.03.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/05/2013] [Indexed: 12/22/2022]
Abstract
The discovery of the Suppressor of Cytokine Signaling (SOCS) family of proteins has resulted in a significant body of research dedicated to dissecting their biological functions and the molecular mechanisms by which they achieve potent and specific inhibition of cytokine and growth factor signaling. The Australian contribution to this field has been substantial, with the initial discovery of SOCS1 by Hilton, Starr and colleagues (discovered concurrently by two other groups) and the following work, providing a new perspective on the regulation of JAK/STAT signaling. In this review, we reflect on the critical discoveries that have lead to our current understanding of how SOCS proteins function and discuss what we see as important questions for future research.
Collapse
Affiliation(s)
- Edmond M Linossi
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | | | | | | |
Collapse
|
24
|
Kershaw NJ, Murphy JM, Liau NPD, Varghese LN, Laktyushin A, Whitlock EL, Lucet IS, Nicola NA, Babon JJ. SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition. Nat Struct Mol Biol 2013; 20:469-76. [PMID: 23454976 PMCID: PMC3618588 DOI: 10.1038/nsmb.2519] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/11/2013] [Indexed: 12/03/2022]
Abstract
The inhibitory protein SOCS3 plays a key role in the immune and hematopoietic systems by regulating signaling induced by specific cytokines. SOCS3 functions by inhibiting the catalytic activity of Janus Kinases (JAKs) that initiate signaling within the cell. We determined the crystal structure of a ternary complex between murine SOCS3, JAK2 (kinase domain) and a fragment of the IL-6 receptor β-chain. The structure shows that SOCS3 binds JAK2 and receptor simultaneously, using two opposing surfaces. Whilst the phosphotyrosine-binding groove on the SOCS3 SH2 domain is occupied by receptor, JAK2 binds in a phospho-independent manner to a non-canonical surface. The kinase inhibitory region of SOCS3 occludes the substrate-binding groove on JAK2 and biochemical studies show it blocks substrate association. These studies reveal that SOCS3 targets specific JAK-cytokine receptor pairs and explains the mechanism and specificity of SOCS action.
Collapse
Affiliation(s)
- Nadia J Kershaw
- Department of Structural Biology, Walter and Eliza Hall Institute, Parkville, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Suppressors of cytokine signaling 3 (SOCS3) has been shown to be an important and non-redundant feedback inhibitor of several cytokines including leukemia inhibitory factor, IL-6, IL-11, Ciliary neurotrophic factor (CNTF), leptin, and granulocyte colony-stimulating factor (G-CSF). Loss of SOCS3 in vivo has profound effects on placental development, inflammation, fat-induced weight gain, and insulin sensitivity. SOCS3 expression is induced by Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling and it then binds to specific cytokine receptors (including gp130, G-CSF, and leptin receptors). SOCS3 then inhibits JAK/STAT signaling in two distinct ways. First, SOCS3 is able to directly inhibit the catalytic activity of JAK1, JAK2, or TYK2 while remaining bound to the cytokine receptor. Second, SOCS3 recruits elongins B/C and Cullin5 to generate an E3 ligase that ubiquitinates both JAK and cytokine receptor targeting them for proteasomal degradation. Detailed in vivo studies have revealed that SOCS3 action not only limits the duration of cytokine signaling to prevent overactivity but it is also important in maintaining the specificity of cytokine signaling.
Collapse
Affiliation(s)
- Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| | | |
Collapse
|
26
|
Feng ZP, Chandrashekaran IR, Low A, Speed TP, Nicholson SE, Norton RS. The N-terminal domains of SOCS proteins: a conserved region in the disordered N-termini of SOCS4 and 5. Proteins 2012; 80:946-57. [PMID: 22423360 DOI: 10.1002/prot.23252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Suppressors of cytokine signaling (SOCS) proteins function as negative regulators of cytokine signaling and are involved in fine tuning the immune response. The structure and role of the SH2 domains and C-terminal SOCS box motifs of the SOCS proteins are well characterized, but the long N-terminal domains of SOCS4-7 remain poorly understood. Here, we present bioinformatic analyses of the N-terminal domains of the mammalian SOCS proteins, which indicate that these domains of SOCS4, 5, 6, and 7 are largely disordered. We have also identified a conserved region of about 70 residues in the N-terminal domains of SOCS4 and 5 that is predicted to be more ordered than the surrounding sequence. The conservation of this region can be traced as far back as lower vertebrates. As conserved regions with increased structural propensity that are located within long disordered regions often contain molecular recognition motifs, we expressed the N-terminal conserved region of mouse SOCS4 for further analysis. This region, mSOCS4₈₆₋₁₅₅, has been characterized by circular dichroism and nuclear magnetic resonance spectroscopy, both of which indicate that it is predominantly unstructured in aqueous solution, although it becomes helical in the presence of trifluoroethanol. The high degree of sequence conservation of this region across different species and between SOCS4 and SOCS5 nonetheless implies that it has an important functional role, and presumably this region adopts a more ordered conformation in complex with its partners. The recombinant protein will be a valuable tool in identifying these partners and defining the structures of these complexes.
Collapse
Affiliation(s)
- Zhi-Ping Feng
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Gao Y, Cimica V, Reich NC. Suppressor of cytokine signaling 3 inhibits breast tumor kinase activation of STAT3. J Biol Chem 2012; 287:20904-12. [PMID: 22547065 DOI: 10.1074/jbc.m111.334144] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Breast tumor kinase (Brk) was originally isolated from a human metastatic breast tumor, but also is found expressed in other epithelial tumors and in a subset of normal epithelia. Brk is a tyrosine kinase and its expression in breast carcinoma has been linked to tumor progression. The signal transducer and activator of transcription 3 (STAT3) is one of the substrate targets of Brk, and elevated tyrosine phosphorylation of STAT3 is known to contribute to oncogenesis. Conventional activation of STAT3 occurs in response to cytokine stimulation of Janus tyrosine kinases (JAK). One of the negative regulators discovered in cytokine signaling of the JAK-STAT pathway is the suppressor of cytokine signaling 3 (SOCS3). In this report we describe the finding that SOCS3 can also inhibit the unconventional target, Brk. Investigation of the mechanism by which SOCS3 inhibits Brk reveals the SOCS3 protein binds to Brk primarily via its SH2 domain, and its main inhibitory effect is mediated by the SOCS3 kinase inhibitory region (KIR). SOCS3 has only a modest effect on promoting Brk degradation, and this requires the C-terminal SOCS box domain. SOCS3 is the only known inhibitor of Brk, and knowledge of the mechanisms by which SOCS3 inhibits Brk may lead to methods that block Brk in cancer progression.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
28
|
Abstract
Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathways play crucial roles in lymphopoiesis. In particular, JAK3 has unique functions in the lymphoid system such that JAK3 ablation results in phenotypes resembling severe combined immunodeficiency syndrome. This review focuses on the biochemistry, immunological functions, and clinical significance of JAK3. Compared with other members of the JAK family, the biochemical properties of JAK3 are relatively less well characterized and thus largely inferred from studies of JAK2. Furthermore, new findings concerning the cross-talks between Notch and JAK signaling pathways through ubiquitin-mediated protein degradation are discussed in more detail.
Collapse
Affiliation(s)
- Wei Wu
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, 73104, USA
| | | |
Collapse
|
29
|
Wu W, Sun XH. A mechanism underlying NOTCH-induced and ubiquitin-mediated JAK3 degradation. J Biol Chem 2011; 286:41153-41162. [PMID: 21969365 DOI: 10.1074/jbc.m111.273755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although NOTCH signaling is well known to regulate lymphopoiesis, Janus kinase 3 (JAK3) also plays a critical role in promoting lymphocyte development. We have previously found that NOTCH signaling leads to the degradation of JAK3 in B lineage cells, suggesting that NOTCH signaling exerts its biological effect on lymphopoiesis through modulating JAK3 levels. Here, we delineate the biochemical mechanisms involved in NOTCH-induced JAK3 ubiquitination and degradation. NOTCH signaling is known to transcriptionally activate the genes encoding ASB2 (ankyrin-repeat SOCS box containing protein 2) and SKP2 (S-phase kinase-associated protein 2). We show that not only NOTCH but also ASB2 and SKP2 can promote the ubiquitination and degradation of JAK3. Both ASB2 and SKP2 can interact with JAK3 through different domains; the FERM and pseudo-kinase domains each had high affinities for ASB2, whereas the kinase domain primarily associated with SKP2. ASB2 and SKP2 previously have been shown to associate with each other to bridge the formation of a non-canonical Cullin1 and Cullin5-containing dimeric E3 ligase complex. Interestingly, the R980W mutant of JAK3 exhibited diminished interaction with SKP2 and resistance to NOTCH or ASB2-induced degradation. Furthermore, dominant-negative mutants of either Cullin1 or Cullin5, which lack the C terminus responsible for recruiting the E2 enzymes, were able to prevent JAK3 degradation induced by both ASB2/SKP2 and NOTCH signaling. Together, these results suggest that JAK3 ubiquitination involves the non-canonical dimeric E3 ligase complex, and the R980W mutant will serve as an excellent tool for investigating the biological significance of NOTCH-mediated JAK3 turnover.
Collapse
Affiliation(s)
- Wei Wu
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xiao-Hong Sun
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
30
|
Nie L, Zhao Y, Wu W, Yang YZ, Wang HC, Sun XH. Notch-induced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes. Cell Res 2010; 21:754-69. [PMID: 21119685 DOI: 10.1038/cr.2010.165] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Notch signaling controls multiple developmental processes, thus demanding versatile functions. We have previously shown that this may be partly achieved by accelerating ubiquitin-mediated degradation of important regulators of differentiation. However, the underlying mechanism was unknown. We now find that Notch signaling transcriptionally activates the gene encoding ankyrin-repeat SOCS box-containing protein 2 (Asb2). Asb2 promotes the ubiquitination of Notch targets such as E2A and Janus kinase (Jak) 2, and a dominant-negative (DN) mutant of Asb2 blocks Notch-induced degradation of these proteins. Asb2 likely binds Jak2 directly but associates with E2A through Skp2. We next provide evidence to suggest that Asb2 bridges the formation of non-canonical cullin-based complexes through interaction with not only ElonginB/C and Cullin (Cul) 5, but also the F-box-containing protein, Skp2, which is known to associate with Skp1 and Cul1. Consistently, ablating the function of Cul1 or Cul5 using DN mutants or siRNAs protected both E2A and Jak2 from Asb2-mediated or Notch-induced degradation. By shifting monomeric E3 ligase complexes to dimeric forms through activation of Asb2 transcription, Notch could effectively control the turnover of a variety of substrates and it exerts diverse effects on cell proliferation and differentiation.
Collapse
Affiliation(s)
- Lei Nie
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Zadjali F, Pike ACW, Vesterlund M, Sun J, Wu C, Li SSC, Rönnstrand L, Knapp S, Bullock AN, Flores-Morales A. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase. J Biol Chem 2010; 286:480-90. [PMID: 21030588 DOI: 10.1074/jbc.m110.173526] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The c-KIT receptor tyrosine kinase mediates the cellular response to stem cell factor (SCF). Whereas c-KIT activity is important for the proliferation of hematopoietic cells, melanocytes and germ cells, uncontrolled c-KIT activity contributes to the growth of diverse human tumors. Suppressor of cytokine signaling 6 (SOCS6) is a member of the SOCS family of E3 ubiquitin ligases that can interact with c-KIT and suppress c-KIT-dependent pathways. Here, we analyzed the molecular mechanisms that determine SOCS6 substrate recognition. Our results show that the SH2 domain of SOCS6 is essential for its interaction with c-KIT pY568. The 1.45-Å crystal structure of SOCS6 SH2 domain bound to the c-KIT substrate peptide (c-KIT residues 564-574) revealed a highly complementary and specific interface giving rise to a high affinity interaction (K(d) = 0.3 μm). Interestingly, the SH2 binding pocket extends to substrate residue position pY+6 and envelopes the c-KIT phosphopeptide with a large BG loop insertion that contributes significantly to substrate interaction. We demonstrate that SOCS6 has ubiquitin ligase activity toward c-KIT and regulates c-KIT protein turnover in cells. Our data support a role of SOCS6 as a feedback inhibitor of SCF-dependent signaling and provides molecular data to account for target specificity within the SOCS family of ubiquitin ligases.
Collapse
Affiliation(s)
- Fahad Zadjali
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Niazi UH, Bibby J, Sutcliffe MJ. In-silico characterization of the effects of phosphorylated tyrosines 86 and 106 on structure and binding of MAL: insight into hyperinflammatory response to infection by the human malaria parasites. J Recept Signal Transduct Res 2010; 31:53-65. [DOI: 10.3109/10799893.2010.512014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Kaneko T, Huang H, Zhao B, Li L, Liu H, Voss CK, Wu C, Schiller MR, Li SSC. Loops govern SH2 domain specificity by controlling access to binding pockets. Sci Signal 2010; 3:ra34. [PMID: 20442417 DOI: 10.1126/scisignal.2000796] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cellular functions require specific protein-protein interactions that are often mediated by modular domains that use binding pockets to engage particular sequence motifs in their partners. Yet, how different members of a domain family select for distinct sequence motifs is not fully understood. The human genome encodes 120 Src homology 2 (SH2) domains (in 110 proteins), which mediate protein-protein interactions by binding to proteins with diverse phosphotyrosine (pTyr)-containing sequences. The structure of the SH2 domain of BRDG1 bound to a peptide revealed a binding pocket that was blocked by a loop residue in most other SH2 domains. Analysis of 63 SH2 domain structures suggested that the SH2 domains contain three binding pockets, which exhibit selectivity for the three positions after the pTyr in a peptide, and that SH2 domain loops defined the accessibility and shape of these pockets. Despite sequence variability in the loops, we identified conserved structural features in the loops of SH2 domains responsible for controlling access to these surface pockets. We engineered new loops in an SH2 domain that altered specificity as predicted. Thus, selective blockage of binding subsites or pockets by surface loops provides a molecular basis by which the diverse modes of ligand recognition by the SH2 domain may have evolved and provides a framework for engineering SH2 domains and designing SH2-specific inhibitors.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Herrmann JL, Markel TA, Abarbanell AM, Weil BR, Wang M, Wang Y, Tan J, Meldrum DR. Proinflammatory stem cell signaling in cardiac ischemia. Antioxid Redox Signal 2009; 11:1883-96. [PMID: 19187005 PMCID: PMC2872207 DOI: 10.1089/ars.2009.2434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease remains a leading cause of mortality in developed nations, despite continued advancement in modern therapy. Progenitor and stem cell-based therapy is a novel treatment for cardiovascular disease, and modest benefits in cardiac recovery have been achieved in small clinical trials. This therapeutic modality remains challenged by limitations of low donor-cell survival rates, transient recovery of cardiac function, and the technical difficulty of applying directed cell therapy. Understanding the signaling mechanisms involved in the stem cell response to ischemia has revealed opportunities to modify directly aspects of these pathways to improve their cardioprotective abilities. This review highlights general considerations of stem cell therapy for cardiac disease, reviews the major proinflammatory signaling pathways of mesenchymal stem cells, and reviews ex vivo modifications of stem cells based on these pathways.
Collapse
Affiliation(s)
- Jeremy L Herrmann
- Clarian Cardiovascular Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wunderlich Z, Mirny LA. Using genome-wide measurements for computational prediction of SH2-peptide interactions. Nucleic Acids Res 2009; 37:4629-41. [PMID: 19502496 PMCID: PMC2724268 DOI: 10.1093/nar/gkp394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peptide-recognition modules (PRMs) are used throughout biology to mediate protein–protein interactions, and many PRMs are members of large protein domain families. Recent genome-wide measurements describe networks of peptide–PRM interactions. In these networks, very similar PRMs recognize distinct sets of peptides, raising the question of how peptide-recognition specificity is achieved using similar protein domains. The analysis of individual protein complex structures often gives answers that are not easily applicable to other members of the same PRM family. Bioinformatics-based approaches, one the other hand, may be difficult to interpret physically. Here we integrate structural information with a large, quantitative data set of SH2 domain–peptide interactions to study the physical origin of domain–peptide specificity. We develop an energy model, inspired by protein folding, based on interactions between the amino-acid positions in the domain and peptide. We use this model to successfully predict which SH2 domains and peptides interact and uncover the positions in each that are important for specificity. The energy model is general enough that it can be applied to other members of the SH2 family or to new peptides, and the cross-validation results suggest that these energy calculations will be useful for predicting binding interactions. It can also be adapted to study other PRM families, predict optimal peptides for a given SH2 domain, or study other biological interactions, e.g. protein–DNA interactions.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Biophysics Program, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
36
|
Babon JJ, Sabo JK, Soetopo A, Yao S, Bailey MF, Zhang JG, Nicola NA, Norton RS. The SOCS box domain of SOCS3: structure and interaction with the elonginBC-cullin5 ubiquitin ligase. J Mol Biol 2008; 381:928-40. [PMID: 18590740 DOI: 10.1016/j.jmb.2008.06.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/27/2022]
Abstract
Suppressor of cytokine signalling 3 (SOCS3) is responsible for regulating the cellular response to a variety of cytokines, including interleukin 6 and leukaemia inhibitory factor. Identification of the SOCS box domain led to the hypothesis that SOCS3 can associate with functional E3 ubiquitin ligases and thereby induce the degradation of bound signalling proteins. This model relies upon an interaction between the SOCS box, elonginBC and a cullin protein that forms the E3 ligase scaffold. We have investigated this interaction in vitro using purified components and show that SOCS3 binds to elonginBC and cullin5 with high affinity. The SOCS3-elonginBC interaction was further characterised by determining the solution structure of the SOCS box-elonginBC ternary complex and by deletion and alanine scanning mutagenesis of the SOCS box. These studies revealed that conformational flexibility is a key feature of the SOCS-elonginBC interaction. In particular, the SOCS box is disordered in isolation and only becomes structured upon elonginBC association. The interaction depends upon the first 12 residues of the SOCS box domain and particularly on a deeply buried, conserved leucine. The SOCS box, when bound to elonginBC, binds tightly to cullin5 with 100 nM affinity. Domains upstream of the SOCS box are not required for elonginBC or cullin5 association, indicating that the SOCS box acts as an independent binding domain capable of recruiting elonginBC and cullin5 to promote E3 ligase formation.
Collapse
Affiliation(s)
- Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang S, Guo D, Jiang L, Zhang Q, Qiu X, Wang E. SOCS3 inhibiting migration of A549 cells correlates with PYK2 signaling in vitro. BMC Cancer 2008; 8:150. [PMID: 18507841 PMCID: PMC2429913 DOI: 10.1186/1471-2407-8-150] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 05/28/2008] [Indexed: 12/20/2022] Open
Abstract
Background Suppressor of cytokine signaling 3 (SOCS3) is considered to inhibit cytokine responses and play a negative role in migration of various cells. Proline-rich tyrosine kinase 2 (PYK2) is a non-receptor kinase and has been found crucial to cell motility. However, little is known about whether SOCS3 could regulate PYK2 pro-migratory function in lung cancer. Methods The methylation status of SOCS3 was investigated in HBE and A549 cell lines by methylation-specific PCR. A549 cells were either treated with a demethylation agent 5-aza-2'-deoxycytidine or transfected with three SOCS3 mutants with various functional domains deleted. Besides, cells were pretreated with a proteasome inhibitor β-lactacystin where indicated. The effects of SOCS3 up-regulation on PYK2 expression, PYK2 and ERK1/2 phosphorylations were assessed by western blot using indicated antibodies. RT-PCR was used to estimate PYK2 mRNA levels. Transwell experiments were performed to evaluate cell migration. Results SOCS3 expression was found impaired in A549 cells and higher PYK2 activity was correlated with enhanced cell migration. We identified that SOCS3 was aberrantly methylated in the exon 2, and 5-aza-2'-deoxycytidine restored SOCS3 expression. Reactivation of SOCS3 attenuated PYK2 expression and phosphorylation, cell migration was inhibited as well. Transfection studies indicated that exogenous SOCS3 interacted with PYK2, and both the Src homology 2 (SH2) and the kinase inhibitory region (KIR) domains of SOCS3 contributed to PYK2 binding. Furthermore, SOCS3 was found to inhibit PYK2-associated ERK1/2 activity in A549 cells. SOCS3 possibly promoted degradation of PYK2 in a SOCS-box-dependent manner and interfered with PYK2-related signaling events, such as cell migration. Conclusion These data indicate that SOCS3 negatively regulates cell motility and decreased SOCS3 induced by methylation may confer a migration advantage to A549 cells. These results also suggest a negative role of SOCS3 in PYK2 signaling, and a previously unidentified regulatory mechanism for PYK2 function.
Collapse
Affiliation(s)
- Siyang Zhang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, PR China.
| | | | | | | | | | | |
Collapse
|
38
|
Wang T, Secombes CJ. Rainbow trout suppressor of cytokine signalling (SOCS)-1, 2 and 3: Molecular identification, expression and modulation. Mol Immunol 2008; 45:1449-57. [DOI: 10.1016/j.molimm.2007.08.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/24/2007] [Accepted: 08/29/2007] [Indexed: 11/30/2022]
|
39
|
Bullock AN, Rodriguez MC, Debreczeni JÉ, Songyang Z, Knapp S. Structure of the SOCS4-ElonginB/C complex reveals a distinct SOCS box interface and the molecular basis for SOCS-dependent EGFR degradation. Structure 2007; 15:1493-504. [PMID: 17997974 PMCID: PMC2225448 DOI: 10.1016/j.str.2007.09.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/06/2007] [Accepted: 09/18/2007] [Indexed: 11/21/2022]
Abstract
Tyrosine kinase signaling is tightly controlled by negative feedback inhibitors including suppressors of cytokine signaling (SOCS). SOCS assemble as SH2 domain substrate recognition modules in ElonginB/C-cullin ubiquitin ligases. In accordance, SOCS4 reduces STAT3 signaling from EGFR through increased receptor degradation. Variable C-termini in SOCS4-SOCS7 exclude these family members from a SOCS2-type domain arrangement in which a strictly conserved C terminus determines domain packing. The structure of the SOCS4-ElonginC-ElonginB complex reveals a distinct SOCS structural class. The N-terminal ESS helix functionally replaces the CIS/SOCS1-SOCS3 family C terminus in a distinct SH2-SOCS box interface that facilitates further interdomain packing between the extended N- and C-terminal regions characteristic for this subfamily. Using peptide arrays and calorimetry the STAT3 site in EGFR (pY(1092)) was identified as a high affinity SOCS4 substrate (K(D) = 0.5 microM) revealing a mechanism for EGFR degradation. SOCS4 also bound JAK2 and KIT with low micromolar affinity, whereas SOCS2 was specific for GH-receptor.
Collapse
Affiliation(s)
- Alex N. Bullock
- University of Oxford, Structural Genomics Consortium, Botnar Research Centre, Oxford OX3 7LD, United Kingdom
| | - Maria C. Rodriguez
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Judit É. Debreczeni
- University of Oxford, Structural Genomics Consortium, Botnar Research Centre, Oxford OX3 7LD, United Kingdom
| | - Zhou Songyang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Stefan Knapp
- University of Oxford, Structural Genomics Consortium, Botnar Research Centre, Oxford OX3 7LD, United Kingdom
| |
Collapse
|
40
|
Kurdi M, Booz GW. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J Cardiovasc Pharmacol 2007; 50:126-41. [PMID: 17703129 DOI: 10.1097/fjc.0b013e318068dd49] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of the transcription factor signal transducers and activators of transcription (STAT) 3 is a defining feature of the interleukin (IL)-6 family of cytokines, which include IL-6, leukemia inhibitory factor, and cardiotrophin-1. These cytokines, as well as STAT3 activation, have been shown to be protective for cardiac myocytes and necessary for ischemia preconditioning. However, the mechanisms that regulate IL-6-type cytokine signaling in cardiac myocytes are largely unexplored. We propose that the protective character of IL-6-type cytokine signaling in cardiac myocytes is determined principally by three mechanisms: redox status of the nonreceptor tyrosine kinase Janus kinase 1 (JAK) 1 that activates STAT3, phosphorylation of STAT3 within the transcriptional activation domain on serine 727, and STAT3-mediated induction of suppressor of cytokine signaling (SOCS) 3 that terminates IL-6-type cytokine signaling. Moreover, we hypothesize that hyperactivation of the JAK kinases, particularly JAK2, mismatched STAT3 serine-tyrosine phosphorylation or heightened STAT3 transcriptional activity, and SOCS3 induction may ultimately prove detrimental. Here we summarize recent evidence that supports this hypothesis, as well as additional possible mechanisms of JAK-STAT regulation. Understanding how IL-6-type cytokine signaling is regulated in cardiac myocytes has great significance for exploiting the therapeutic potential of these cytokines and the phenomenon of preconditioning.
Collapse
Affiliation(s)
- Mazen Kurdi
- Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, The Texas A&M University System Health Science Center, College Station, TX 76504, USA
| | | |
Collapse
|
41
|
Huang H, Li L, Wu C, Schibli D, Colwill K, Ma S, Li C, Roy P, Ho K, Songyang Z, Pawson T, Gao Y, Li SSC. Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics 2007; 7:768-84. [PMID: 17956856 DOI: 10.1074/mcp.m700312-mcp200] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Src homology 2 (SH2) domains are the largest family of interaction modules encoded by the human genome to recognize tyrosine-phosphorylated sequences and thereby play pivotal roles in transducing and controlling cellular signals emanating from protein-tyrosine kinases. Different SH2 domains select for distinct phosphopeptides, and the function of a given SH2 domain is often dictated by the specific motifs that it recognizes. Therefore, deciphering the phosphotyrosyl peptide motif recognized by an SH2 domain is the key to understanding its cellular function. Here we cloned all 120 SH2 domains identified in the human genome and determined the phosphotyrosyl peptide binding properties of 76 SH2 domains by screening an oriented peptide array library. Of these 76, we defined the selectivity for 43 SH2 domains and refined the binding motifs for another 33 SH2 domains. We identified a number of novel binding motifs, which are exemplified by the BRDG1 SH2 domain that selects specifically for a bulky, hydrophobic residue at P + 4 relative to the Tyr(P) residue. Based on the oriented peptide array library data, we developed scoring matrix-assisted ligand identification (or SMALI), a Web-based program for predicting binding partners for SH2-containing proteins. When applied to SH2D1A/SAP (SLAM-associated protein), a protein whose mutation or deletion underlies the X-linked lymphoproliferative syndrome, SMALI not only recapitulated known interactions but also identified a number of novel interacting proteins for this disease-associated protein. SMALI also identified a number of potential interactors for BRDG1, a protein whose function is largely unknown. Peptide in-solution binding analysis demonstrated that a SMALI score correlates well with the binding energy of a peptide to a given SH2 domain. The definition of the specificity space of the human SH2 domain provides both the necessary molecular basis and a platform for future exploration of the functions for SH2-containing proteins in cells.
Collapse
Affiliation(s)
- Haiming Huang
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dye BT, Schulman BA. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. ACTA ACUST UNITED AC 2007; 36:131-50. [PMID: 17477837 DOI: 10.1146/annurev.biophys.36.040306.132820] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Covalent attachment of ubiquitin-like proteins (Ubls) is a predominant mechanism for regulating protein function in eukaryotes. Several structurally related Ubls, such as ubiquitin, SUMO, NEDD8, and ISG15, modify a vast number of proteins, altering their functions in a variety of ways. Ubl modifications can affect the target's half-life, subcellular localization, enzymatic activity, or ability to interact with protein or DNA partners. Generally, these diverse Ubls are covalently attached via their C termini to their targets by parallel, but specific, cascades involving three classes of enzymes known as E1, E2, and E3. Structures are now available for many protein complexes in E1-E2-E3 cascades, revealing a series of modular building blocks and providing mechanistic insights into their functions.
Collapse
Affiliation(s)
- Billy T Dye
- Howard Hughes Medical Institute, Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
43
|
Uyttendaele I, Lemmens I, Verhee A, De Smet AS, Vandekerckhove J, Lavens D, Peelman F, Tavernier J. Mammalian protein-protein interaction trap (MAPPIT) analysis of STAT5, CIS, and SOCS2 interactions with the growth hormone receptor. Mol Endocrinol 2007; 21:2821-31. [PMID: 17666591 DOI: 10.1210/me.2006-0541] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Binding of GH to its receptor induces rapid phosphorylation of conserved tyrosine motifs that function as recruitment sites for downstream signaling molecules. Using mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, we mapped the binding sites in the GH receptor for signal transducer and activator of transcription 5 (STAT5) a and b and for the negative regulators of cytokine signaling cytokine-inducible Src-homology 2 (SH2)-containing protein (CIS) and suppressor of cytokine signaling 2 (SOCS2). Y534, Y566, and Y627 are the major recruitment sites for STAT5. A non-overlapping recruitment pattern is observed for SOCS2 and CIS with positions Y487 and Y595 as major binding sites, ruling out SOCS-mediated inhibition of STAT5 activation by competition for shared binding sites. More detailed analysis revealed that CIS binding to the Y595, but not to the Y487 motif, depends on both its SH2 domain and the C-terminal part of its SOCS box, with a critical role for the CIS Y253 residue. This functional divergence of the two CIS/SOCS2 recruitment sites is also observed upon substitution of the Y+1 residue by leucine, turning the Y487, but not the Y595 motif into a functional STAT5 recruitment site.
Collapse
Affiliation(s)
- Isabel Uyttendaele
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research, Ghent University, Faculty of Medicine and Health Sciences, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Suppressor of cytokine signalling (SOCS) proteins are inhibitors of cytokine signalling pathways. Studies have shown that SOCS proteins are key physiological regulators of both innate and adaptive immunity. These molecules positively and negatively regulate macrophage and dendritic-cell activation and are essential for T-cell development and differentiation. Evidence is also emerging of the involvement of SOCS proteins in diseases of the immune system. In this Review we bring together data from recent studies on SOCS proteins and their role in immunity, and propose a cohesive model of how cytokine signalling regulates immune-cell function.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
45
|
Knisz J, Rothman PB. Suppressor of cytokine signaling in allergic inflammation. J Allergy Clin Immunol 2007; 119:739-45. [PMID: 17258308 DOI: 10.1016/j.jaci.2006.12.620] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/08/2006] [Accepted: 12/11/2006] [Indexed: 01/14/2023]
Abstract
The immunopathological hallmark of allergic diseases is elevated total and allergen specific serum IgE levels along with inflammation. This inflammation results from the activation of a cadre of hematopoietic and nonhematopoetic cells. This coordinated activation is the result of the increased production of a variety of soluble factors including chemokines and cytokines. The magnitude and the duration of cytokine action will determine the response to an allergen, either mounting a low-grade immunologic response or resulting in exaggerated reaction such as asthma or atopic dermatitis. Thus, the action of cytokines is tightly regulated both developmentally and within the cell. The suppressor of cytokine signaling (SOCS) protein family represents a novel group of cytoplasmic negative feedback regulators of type I and II cytokines. Several of the signaling pathways regulated by SOCS proteins are important in allergic immune responses. Thus, SOCS proteins may be important regulators of atopy.
Collapse
Affiliation(s)
- Judit Knisz
- University of Iowa, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|