1
|
Qin J, Zhu W, Zhou W. Navigating the Paradox of IL-22: Friend or Foe in Hepatic Health? J Gastroenterol Hepatol 2025. [PMID: 40358483 DOI: 10.1111/jgh.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/11/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Interleukin-22 (IL-22), a cytokine from the IL-10 family produced by T cells and innate lymphoid cells, plays a crucial role in immune responses and tissue regeneration. Its association with liver disease has garnered significant attention; however, its exact impact remains controversial. This review aims to enhance the current understanding of the dual role of IL-22 in liver disease by exploring its protective and pathogenic effects. First, we provide an overview of IL-22 biology, including its source, receptors, and signaling pathways. Subsequently, we offer a comprehensive overview of the dual function of IL-22 in non-neoplastic liver disease, emphasizing its antiapoptotic and regenerative properties. We also discuss the applicability of the conclusions drawn from studies on nonalcoholic fatty liver disease to metabolic dysfunction-associated steatotic liver disease. Furthermore, we elaborate on the intricate role of IL-22 in hepatocellular carcinoma, particularly its influence on the tumor microenvironment, proliferation, and immune evasion. In conclusion, IL-22 is paradoxical in liver disease, acting as a friend and foe. It is imperative to understand this paradox to develop targeted therapies that capitalize on the beneficial effects of IL-22 while mitigating its detrimental effects.
Collapse
Affiliation(s)
- Jianqi Qin
- The Second Hospital of Lanzhou University, Department of General Surgery, Lanzhou University Second Clinical Medical College; Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Weixiong Zhu
- The Second Hospital of Lanzhou University, Department of General Surgery, Lanzhou University Second Clinical Medical College; Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Wence Zhou
- The Second Hospital of Lanzhou University, Department of General Surgery, Lanzhou University Second Clinical Medical College; Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Sun L, Spiteri AG, Griffith BD, Zhang Y, Di Magliano MP, Olivei AC, McGue JJ, Edwards J, Frankel TL. IL-22BP Modulates Injury in Acute Pancreatitis but Delays Tissue Recovery in Chronic Pancreatitis. Cell Mol Gastroenterol Hepatol 2025:101520. [PMID: 40274099 DOI: 10.1016/j.jcmgh.2025.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND & AIMS In acute pancreatitis, interleukin (IL)-22 signaling is increased, whereas overall expression of the cytokine paradoxically drops, suggesting an additional level of control. Here, we investigate the regulation of IL-22 signaling by its soluble neutralizing receptor interleukin-22 binding protein (IL-22BP) in the context of both acute and chronic pancreatitis. METHODS Cerulein was used to induce acute and chronic pancreatitis in both wild-type mice and IL-22BP knockout mice. Histology, multiplex immunofluorescence and flow cytometry were performed to compare differences in tissue injury, recovery, fibrosis, and inflammation at various times of recovery. RESULTS Loss of IL-22BP resulted in increased canonical IL-22 signaling and the expression of the anti-autophagy protein Bcl-XL. This was associated with decreased severity of acute pancreatitis, as evidenced by lower serum amylase and tissue injury. In chronic pancreatitis, IL-22BP expression was induced in the inflammatory and recovery phases and genetic deletion resulted in unchecked IL-22 signaling, as demonstrated by persistent p-Stat3 signaling and proliferation of both epithelial cells and fibroblasts. Loss of IL-22BP increased myeloid cell infiltration, which persisted throughout recovery. Mechanistically, IL-22 activity forced persistent acinar to ductal metaplasia and delayed tissue recovery. CONCLUSIONS IL-22BP plays an important role in modulating IL-22 activity during tissue injury and recovery after pancreatitis. Loss of IL-22BP attenuated acute pancreatitis but promoted chronic fibrosis and inflammation through uncontrolled IL-22 signaling and subsequent deleterious effects on epithelial cells, fibroblasts, and immune infiltration.
Collapse
Affiliation(s)
- Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Andrew G Spiteri
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Brian D Griffith
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca Di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Alberto C Olivei
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jake J McGue
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jacob Edwards
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Timothy L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
3
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
4
|
Dean LS, Threatt AN, Jones K, Oyewole EO, Pauly M, Wahl M, Barahona M, Reiter RW, Nordgren TM. I don't know about you, but I'm feeling IL-22. Cytokine Growth Factor Rev 2024; 80:1-11. [PMID: 39537498 PMCID: PMC12097143 DOI: 10.1016/j.cytogfr.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Defense of the human body against damaging and pathogenic insults is a heavily regulated affair. A primary mechanism of defense at sites of insult are soluble mediators whose defensive maneuvers increase barrier integrity and promote pro-reparative and resolution processes. IL-22 is a cytokine in the IL-10 cytokine family that has garnered increased attention in recent years due to its intimate link in promoting resolution of inflammatory insults, while simultaneously being over expressed in certain fibrotic and chronic inflammatory-skewed diseases. The spatial action of IL-22 centers around the barrier sites of the body, including the skin, lungs, and gut mucosa. As such, a detailed understanding of the role of this cytokine, the producers and responders, and the diseases resulting from over- or under-expression have prominent impacts on a variety of disease outcomes. Herein we present a comprehensive review of IL-22; from historical perspectives and initial discovery, as well as more recent data that dramatically expands on the cellular sources and impact of this cytokine. We aim to showcase the duality of IL-22 and highlight addressable gaps in the field of IL-22 crosstalk and impacts at the ever-important mucosal and tissue barrier sites.
Collapse
Affiliation(s)
- Logan S Dean
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Alissa N Threatt
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Kaylee Jones
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Emmanuel O Oyewole
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Morgan Pauly
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Maëlis Wahl
- Department of Biochemistry and Molecular Biology, Colorado State University, CO 80521, United States
| | - Melea Barahona
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Rose W Reiter
- Department of Molecular, Cellular, and Integrative Neuroscience, Colorado State University, CO 80521, United States
| | - Tara M Nordgren
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States.
| |
Collapse
|
5
|
Sajiir H, Ramm GA, Macdonald GA, McGuckin MA, Prins JB, Hasnain SZ. Harnessing IL-22 for metabolic health: promise and pitfalls. Trends Mol Med 2024:S1471-4914(24)00283-1. [PMID: 39578121 DOI: 10.1016/j.molmed.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Primarily perceived as an anti-inflammatory and antimicrobial mediator in mucosa and skin, interleukin-22 (IL-22) has emerged as a pivotal metabolic regulator. Central to IL-22 signaling is its receptor, IL-22RA1. Through IL-22RA1, IL-22 orchestrates glucose homeostasis by modulating insulin secretion, reducing cellular stress in pancreatic islets, promoting beta-cell regeneration, and influencing hepatic glucose and lipid metabolism. These actions suggest its potential as a therapeutic for metabolic dysfunctions like diabetes, obesity, and steatohepatitis. However, clinical applications of IL-22 face challenges related to off-target effects and safety concerns. This review explores IL-22's physiological roles, regulatory mechanisms, and profound influence on metabolic tissues. It also underscores IL-22's dual role in metabolic health and disease, advocating further research to harness its therapeutic potential.
Collapse
Affiliation(s)
- Haressh Sajiir
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Michael A McGuckin
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Johannes B Prins
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Health Translation Queensland, UQ Oral Health Building, Herston, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia; Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
6
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Guo C, Sharma AK, Guzmán J, Herrmann C, Boulant S, Stanifer ML. Interleukin-22 Promotes Cell Proliferation to Combat Virus Infection in Human Intestinal Epithelial Cells. J Interferon Cytokine Res 2024; 44:438-452. [PMID: 39076109 DOI: 10.1089/jir.2024.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Interferon lambdas (IFN-λs) are crucial to control virus infections at mucosal surfaces. Interleukin-22 (IL-22) was reported to help IFN-λ control rotavirus infection in the intestinal epithelium of mice either by aiding in the induction of interferon-stimulated genes (ISGs) or by increasing cell proliferation thereby clearing virally infected cells. We investigated whether IL-22 and IFN-λs exhibit similar synergistic effects in human intestinal epithelial cells (IECs) models. Our results showed that co-treatment of IL-22 and IFN-λ induced more phosphorylation of STAT1 than either cytokine used alone. However, this increased STAT1 activation did not translate to increased ISGs production or antiviral protection. Transcriptomics analysis revealed that despite sharing a common subunit (IL-10Rb) within their heterodimeric receptors and activating similar STATs, the signaling generated by IL-22 and IFN-λs is independent, with IFN-λ signaling inducing ISGs and IL-22 signaling inducing cell proliferation genes. Using human intestinal organoids, we confirmed that IL-22 increased the size of the organoids through increased cell proliferation and expression of the stem cell marker (OLFM4). These findings suggest that in human intestinal cells, IFN-λs and IL-22 act independently to clear virus infections. IFN-λs induce ISGs to control virus replication and spread, whereas IL-22 increases cell proliferation to eliminate infected cells and repair the damage epithelium. Although these two cytokines do not act synergistically, each plays a key function in the protection of human IECs.
Collapse
Affiliation(s)
- Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ashwini Kumar Sharma
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University and BioQuant, Heidelberg, Germany
| | - José Guzmán
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carl Herrmann
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University and BioQuant, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Megan L Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Kuchař M, Sloupenská K, Rašková Kafková L, Groza Y, Škarda J, Kosztyu P, Hlavničková M, Mierzwicka JM, Osička R, Petroková H, Walimbwa SI, Bharadwaj S, Černý J, Raška M, Malý P. Human IL-22 receptor-targeted small protein antagonist suppress murine DSS-induced colitis. Cell Commun Signal 2024; 22:469. [PMID: 39354587 PMCID: PMC11446014 DOI: 10.1186/s12964-024-01846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Human interleukin-22 (IL-22) is known as a "dual function" cytokine that acts as a master regulator to maintain homeostasis, structural integrity of the intestinal epithelial barrier, and shielding against bacterial pathogens. On the other hand, the overexpression of IL-22 is associated with hyper-proliferation and recruitment of pathologic effector cells, leading to tissue damage and chronic inflammation in specific diseases including inflammatory bowel disease (IBD). To study a role of IL-22-mediated signaling axis during intestinal inflammation, we generated a set of small protein blockers of IL-22R1 and verified their inhibitory potential on murine model of colitis. METHODS We used directed evolution of proteins to identify binders of human IL-22 receptor alpha (IL-22R1), designated as ABR ligands. This approach combines the assembly of a highly complex combinatorial protein library derived from small albumin-binding domain scaffold and selection of promising protein variants using ribosome display followed by large-scale ELISA screening. The binding affinity and specificity of ABR variants were analyzed on transfected HEK293T cells by flow cytometry and LigandTracer. Inhibitory function was further verified by competition ELISA, HEK-Blue IL-22 reporter cells, and murine dextran sulfate sodium (DSS)-induced colitis. RESULTS We demonstrate that ABR specifically recognizes transgenic IL-22R1 expressed on HEK293T cells and IL-22R1 on TNFα/IFNγ-activated HaCaT cells. Moreover, some ABR binders compete with the IL-22 cytokine and function as IL-22R1 antagonists in HEK-Blue IL22 reporter cells. In a murine model of DSS-induced acute intestinal inflammation, daily intraperitoneal administration of the best IL-22R1 antagonist, ABR167, suppressed the development of clinical and histological markers of colitis including prevention of mucosal inflammation and architecture deterioration. In addition, ABR167 reduces the DSS-induced increase in mRNA transcript levels of inflammatory cytokines such as IL-1β, IL-6, IL-10, and IL-17A. CONCLUSIONS We developed small anti-human IL-22R1 blockers with antagonistic properties that ascertain a substantial role of IL-22-mediated signaling in the development of intestinal inflammation. The developed ABR blockers can be useful as a molecular clue for further IBD drug development.
Collapse
Affiliation(s)
- Milan Kuchař
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Kristýna Sloupenská
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Leona Rašková Kafková
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jozef Škarda
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava, 708 00, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Marie Hlavničková
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Radim Osička
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Stephen I Walimbwa
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| |
Collapse
|
9
|
Correia AF, Oliveira CGCD, Oliveira DCD, Pereira MC, Carvalho FA, Martins ECC, Oliveira DCD. Circulating Interleukin-22 in Patients with Acute Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. J Clin Med 2024; 13:4971. [PMID: 39274184 PMCID: PMC11396034 DOI: 10.3390/jcm13174971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Acute coronary syndrome (ACS) represents an important clinical manifestation of coronary artery disease (CAD) and is characterized by a particularly poor prognosis. Myocardial reperfusion through primary percutaneous coronary intervention (PPCI) is imperative in the event of acute ST elevation myocardial infarction (STEMI). Interleukin-22 (IL-22) regulates immune and inflammatory responses. This interleukin has been described in the scenario of the CAD, but there are no data in patients with STEMI undergoing PPCI. Objectives: The goals of this study were to investigate the differences in circulating IL-22 levels between patients with STEMI undergoing PPCI and healthy controls and to determine whether these differences were associated with the culprit coronary artery, door-to-balloon time (DBT), final angiographic result, CAD classification, and presence of diabetes mellitus (DM). Methods: A total of 280 participants were recruited, comprising 210 STEMI cases and 70 healthy controls. Participants underwent clinical and angiographic evaluations, and serum IL-22 levels were measured using an enzyme-linked immunosorbent assay (ELISA). Data analysis was performed using the Mann-Whitney and Fisher tests, with p < 0.05 indicating significance. Results: Serum IL-22 levels were lower in cases (149.63, 84.99-294.56) than in the controls (482.67, 344.33-641.00); p < 0.001. Lower IL-22 levels were associated with the right coronary artery (RCA) (144.57, 70.84-242.43; 146.00, 63.60-279.67; 191.71, 121.80-388.97); p = 0.033. IL-22 was lower with shorter DBT (≤60 min, 106.00, 49.60-171.71; >60 min, 153.00, 88.86-313.60); p = 0.043. Conclusions: IL-22 levels were significantly lower in patients with STEMI than in healthy controls.
Collapse
Affiliation(s)
- Augusto Ferreira Correia
- Internal Medicine Department, Cardiology Division, Federal University of Pernambuco, Recife 50670-901, Brazil
- Cardiology Emergency Room of Pernambuco, University of Pernambuco, Recife 52010-010, Brazil
| | | | | | - Michelly Cristina Pereira
- Internal Medicine Department, Cardiology Division, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | | | - Dinaldo Cavalcanti de Oliveira
- Internal Medicine Department, Cardiology Division, Federal University of Pernambuco, Recife 50670-901, Brazil
- Cardiology Emergency Room of Pernambuco, University of Pernambuco, Recife 52010-010, Brazil
| |
Collapse
|
10
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
11
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Guo C, Boulant S, Stanifer ML. The Role of Interleukin-22 in Controlling Virus Infections at Mucosal Surfaces. J Interferon Cytokine Res 2024; 44:349-354. [PMID: 38868897 DOI: 10.1089/jir.2024.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
- Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Megan Lynn Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Wu Q, Jin Y, Li S, Guo X, Sun W, Liu J, Li Q, Niu D, Zou Y, Du X, Li Y, Zhao T, Li Z, Li X, Ren G. Oncolytic Newcastle disease virus carrying the IL24 gene exerts antitumor effects by inhibiting tumor growth and vascular sprouting. Int Immunopharmacol 2024; 136:112305. [PMID: 38823178 DOI: 10.1016/j.intimp.2024.112305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
The second-leading cause of death, cancer, poses a significant threat to human life. Innovations in cancer therapies are crucial due to limitations in traditional approaches. Newcastle disease virus (NDV), a nonpathogenic oncolytic virus, exhibits multifunctional anticancer properties by selectively infecting, replicating, and eliminating tumor cells. To enhance NDV's antitumor activity, four oncolytic NDV viruses were developed, incorporating IL24 and/or GM-CSF genes at different gene loci using reverse genetics. In vitro experiments revealed that oncolytic NDV virus augmented the antitumor efficacy of the parental virus rClone30, inhibiting tumor cell proliferation, inducing tumor cell fusion, and promoting apoptosis. Moreover, NDV carrying the IL24 gene inhibited microvessel formation in CAM experiments. Evaluation in a mouse model of liver cancer confirmed the therapeutic efficacy of oncolytic NDV viral therapy. Tumors in mice treated with oncolytic NDV virus significantly decreased in size, accompanied by tumor cell detachment and apoptosis evident in pathological sections. Furthermore, oncolytic NDV virus enhanced T cell and dendritic cell production and substantially improved the survival rate of mice with hepatocellular carcinoma, with rClone30-IL24(P/M) demonstrating significant therapeutic effects. This study establishes a basis for utilizing oncolytic NDV virus as an antitumor agent in clinical practice.
Collapse
Affiliation(s)
- Qing Wu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuhan Jin
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaochen Guo
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenying Sun
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinmiao Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianhui Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Dun Niu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yimeng Zou
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Du
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanan Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianqi Zhao
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhitong Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Guiping Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Sajiir H, Wong KY, Müller A, Keshvari S, Burr L, Aiello E, Mezza T, Giaccari A, Sebastiani G, Dotta F, Ramm GA, Macdonald GA, McGuckin MA, Prins JB, Hasnain SZ. Pancreatic beta-cell IL-22 receptor deficiency induces age-dependent dysregulation of insulin biosynthesis and systemic glucose homeostasis. Nat Commun 2024; 15:4527. [PMID: 38811550 PMCID: PMC11137127 DOI: 10.1038/s41467-024-48320-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
The IL-22RA1 receptor is highly expressed in the pancreas, and exogenous IL-22 has been shown to reduce endoplasmic reticulum and oxidative stress in human pancreatic islets and promote secretion of high-quality insulin from beta-cells. However, the endogenous role of IL-22RA1 signaling on these cells remains unclear. Here, we show that antibody neutralisation of IL-22RA1 in cultured human islets leads to impaired insulin quality and increased cellular stress. Through the generation of mice lacking IL-22ra1 specifically on pancreatic alpha- or beta-cells, we demonstrate that ablation of murine beta-cell IL-22ra1 leads to similar decreases in insulin secretion, quality and islet regeneration, whilst increasing islet cellular stress, inflammation and MHC II expression. These changes in insulin secretion led to impaired glucose tolerance, a finding more pronounced in female animals compared to males. Our findings attribute a regulatory role for endogenous pancreatic beta-cell IL-22ra1 in insulin secretion, islet regeneration, inflammation/cellular stress and appropriate systemic metabolic regulation.
Collapse
Affiliation(s)
- Haressh Sajiir
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kuan Yau Wong
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alexandra Müller
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sahar Keshvari
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lucy Burr
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Respiratory and Sleep Medicine, Mater Health, South Brisbane, QLD, Australia
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Michael A McGuckin
- School of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Johannes B Prins
- Health Translation Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Krupka-Olek M, Bożek A, Aebisher D, Bartusik-Aebisher D, Cieślar G, Kawczyk-Krupka A. Potential Aspects of the Use of Cytokines in Atopic Dermatitis. Biomedicines 2024; 12:867. [PMID: 38672221 PMCID: PMC11048200 DOI: 10.3390/biomedicines12040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Atopic dermatitis (AD) is an abnormal inflammatory response in the skin to food, environmental IgE, or non-IgE allergens. This disease belongs to a group of inflammatory diseases that affect both children and adults. In highly developed countries, AD is diagnosed twice as often in children than in adults, which may possibly be connected to increased urbanization. The immune system's pathomechanisms of AD involve humoral mechanisms with IgE, cellular T lymphocytes, dendritic cells occurring in the dermis, Langerhans cells occurring in the epidermis, and other cells infiltrating the site of inflammation (eosinophils, macrophages, mast cells, neutrophils, and basophils). Cytokines are small proteins that affect the interaction and communication between cells. This review characterizes cytokines and potential aspects of the treatment of atopic dermatitis, as well as new strategies that are currently being developed, including targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Magdalena Krupka-Olek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.B.)
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Bożek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.B.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland;
| |
Collapse
|
16
|
Gardner S, Jin Y, Fyfe PK, Voisin TB, Bellón JS, Pohler E, Piehler J, Moraga I, Bubeck D. Structural insights into IL-11-mediated signalling and human IL6ST variant-associated immunodeficiency. Nat Commun 2024; 15:2071. [PMID: 38453915 PMCID: PMC10920896 DOI: 10.1038/s41467-024-46235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
IL-11 and IL-6 activate signalling via assembly of the cell surface receptor gp130; however, it is unclear how signals are transmitted across the membrane to instruct cellular responses. Here we solve the cryoEM structure of the IL-11 receptor recognition complex to discover how differences in gp130-binding interfaces may drive signalling outcomes. We explore how mutations in the IL6ST gene encoding for gp130, which cause severe immune deficiencies in humans, impair signalling without blocking cytokine binding. We use cryoEM to solve structures of both IL-11 and IL-6 complexes with a mutant form of gp130 associated with human disease. Together with molecular dynamics simulations, we show that the disease-associated variant led to an increase in flexibility including motion within the cytokine-binding core and increased distance between extracellular domains. However, these distances are minimized as the transmembrane helix exits the membrane, suggesting a stringency in geometry for signalling and dimmer switch mode of action.
Collapse
Affiliation(s)
- Scott Gardner
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Yibo Jin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Paul K Fyfe
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tomas B Voisin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Centre for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Elizabeth Pohler
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jacob Piehler
- Department of Biology/Chemistry and Centre for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Ignacio Moraga
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
17
|
Zhang Z, Chakawa MB, Galeas-Pena M, Frydman JA, Allen MJ, Jones M, Pociask D. IL-22 Binding Protein Controls IL-22-Driven Bleomycin-Induced Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:338-352. [PMID: 38101567 PMCID: PMC10913761 DOI: 10.1016/j.ajpath.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
The high mortality rates of acute lung injury and acute respiratory distress syndrome challenge the field to identify biomarkers and factors that can be exploited for therapeutic approaches. IL-22 is a cytokine that has antibacterial and reparative properties in the lung. However, it also can exacerbate inflammation and requires tight control by the extracellular inhibitory protein known as IL-22 binding protein (IL-22BP) (Il22ra2). This study showed the necessity of IL-22BP in controlling and preventing acute lung injury using IL-22BP knockout mice (Il22ra2-/-) in the bleomycin model of acute lung injury/acute respiratory distress syndrome. Il22ra2-/- mice had greater sensitivity (weight loss and death) and pulmonary inflammation in the acute phase (first 7 days) of the injury compared with wild-type C57Bl/6 controls. The inflammation was driven by excess IL-22 production, inducing the influx of pathogenic IL-17A+ γδ T cells to the lung. Interestingly, this inflammation was initiated in part by the noncanonical IL-22 signaling to macrophages, which express the IL-22 receptor (Il22ra1) in vivo after bleomycin challenge. This study further showed that IL-22 receptor alpha-1+ macrophages can be stimulated by IL-22 to produce a number of IL-17-inducing cytokines such as IL-1β, IL-6, and transforming growth factor-β1. Together, the results suggest that IL-22BP prevents IL-22 signaling to macrophages and reduces bleomycin-mediated lung injury.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Mazvita B Chakawa
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Michelle Galeas-Pena
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Joshua A Frydman
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Michaela J Allen
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - MaryJane Jones
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Derek Pociask
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
18
|
Wang K, Zhou M, Si H, Ma J. Gut microbiota-mediated IL-22 alleviates metabolic inflammation. Life Sci 2023; 334:122229. [PMID: 37922980 DOI: 10.1016/j.lfs.2023.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Low-grade chronic inflammation, also known as metabolic inflammation, promotes the development of metabolic diseases. Increasing evidence suggests that changes in gut microbes and metabolites disrupt the integrity of the gut barrier and exert significant effects on the metabolism of various tissues, including the liver and adipose tissue, thereby contributing to metabolic inflammation. We observed that IL-22 is a key signaling molecule that serves as a bridge between intestinal microbes and the host, effectively alleviating metabolic inflammation by modulating the host immunomodulatory network. Here, we focused on elucidating the underlying mechanisms by which the gut microbiota and their metabolites reduce inflammation via IL-22, highlighting the favorable impact of IL-22 on metabolic inflammation. Furthermore, we discuss the potential of IL-22 as a therapeutic target for the management of metabolic inflammation and related diseases.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
19
|
Ronström JW, Williams SB, Payne A, Obray DJ, Hafen C, Burris M, Scott Weber K, Steffensen SC, Yorgason JT. Interleukin-10 enhances activity of ventral tegmental area dopamine neurons resulting in increased dopamine release. Brain Behav Immun 2023; 113:145-155. [PMID: 37453452 PMCID: PMC10530119 DOI: 10.1016/j.bbi.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Dopamine transmission from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) regulates important aspects of motivation and is influenced by the neuroimmune system. The neuroimmune system is a complex network of leukocytes, microglia and astrocytes that detect and remove foreign threats like bacteria or viruses and communicate with each other to regulate non-immune (e.g neuronal) cell activity through cytokine signaling. Inflammation is a key regulator of motivational states, though the effects of specific cytokines on VTA circuitry and motivation are largely unknown. Therefore, electrophysiology, neurochemical, immunohistochemical and behavioral studies were performed to determine the effects of the anti-inflammatory cytokine interleukin-10 (IL-10) on mesolimbic activity, dopamine transmission and conditioned behavior. IL-10 enhanced VTA dopamine firing and NAc dopamine levels via decreased VTA GABA currents in dopamine neurons. The IL-10 receptor was localized on VTA dopamine and non-dopamine cells. The IL-10 effects on dopamine neurons required post-synaptic phosphoinositide 3-kinase activity, and IL-10 appeared to have little-to-no efficacy on presynaptic GABA terminals. Intracranial IL-10 enhanced NAc dopamine levels in vivo and produced conditioned place aversion. Together, these studies identify the IL-10R on VTA dopamine neurons as a potential regulator of motivational states.
Collapse
Affiliation(s)
- Joakim W Ronström
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Stephanie B Williams
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Andrew Payne
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Daniel J Obray
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Caylor Hafen
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Matthew Burris
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, United States
| | - K Scott Weber
- Brigham Young University, Department of Microbiology and Molecular Biology, Provo, UT 84602, United States
| | - Scott C Steffensen
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States
| | - Jordan T Yorgason
- Brigham Young University, Department of Psychology/Neuroscience, Provo, UT 84602, United States; Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, United States.
| |
Collapse
|
20
|
Seth P, Dubey S. IL-22 as a target for therapeutic intervention: Current knowledge on its role in various diseases. Cytokine 2023; 169:156293. [PMID: 37441942 DOI: 10.1016/j.cyto.2023.156293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
IL-22 has emerged as a crucial cytokine mediating protective response against pathogens and tissue regeneration. Dysregulated production of IL-22 has been shown to play a pivotal role in the pathogenesis of various diseases like malignant tumours, viral, cardiovascular, allergic and autoimmune disorders. Interleukin 22 belongs to IFN-IL-10 cytokine family. It is a major proinflammatory cytokine secreted by activated Th1 cells (Th22), though can also be secreted by many other immune cells like group 3 innate lymphocytes, γδ T cells, NK cells, NK T cells, and mucosal associated invariant T cells. Th22 cells exclusively release IL-22 but not IL-17 or IFN-γ (as Th1 cells releases IFN-γ along with IL-22 and Th17 cells releases IL-17 along with IL-22) and also express aryl hydrocarbon receptor as the key transcription factor. Th22 cells also exhibit expression of chemokine receptor CCR6 and skin-homing receptors CCR4 and CCR10 indicating the involvement of this subset in bolstering epithelial barrier immunity and promoting secretion of antimicrobial peptides (AMPs) from intestinal epithelial cells. The function of IL-22 is modulated by IL-22 binding protein (binds to IL-22 and inhibits it binding to its cell surface receptor); which serves as a competitor for IL-22R1 chain of IL-22 receptor. The pathogenic and protective nature of the Th22 cells is modulated both by the site of infected tissue and the type of disease pathology. This review aims to discuss key features of IL-22 biology, comparisons between IL and 22 and IFN-γ and its role as a potential immune therapy target in different maladies.
Collapse
Affiliation(s)
- Pranav Seth
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Shweta Dubey
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India.
| |
Collapse
|
21
|
McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J 2023; 290:2525-2552. [PMID: 35246947 PMCID: PMC10952290 DOI: 10.1111/febs.16420] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Cytokines are soluble factors vital for mammalian physiology. Cytokines elicit highly pleiotropic activities, characterized by their ability to induce a wide spectrum of functional responses in a diverse range of cell subsets, which makes their study very challenging. Cytokines activate signalling via receptor dimerization/oligomerization, triggering activation of the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. Given the strong crosstalk and shared usage of key components of cytokine signalling pathways, a long-standing question in the field pertains to how functional diversity is achieved by cytokines. Here, we discuss how biophysical - for example, ligand-receptor binding affinity and topology - and cellular - for example, receptor, JAK and STAT protein levels, endosomal compartment - parameters contribute to the modulation and diversification of cytokine responses. We review how these parameters ultimately converge into a common mechanism to fine-tune cytokine signalling that involves the control of the number of Tyr residues phosphorylated in the receptor intracellular domain upon cytokine stimulation. This results in different kinetics of STAT activation, and induction of specific gene expression programs, ensuring the generation of functional diversity by cytokines using a limited set of signalling intermediaries. We describe how these first principles of cytokine signalling have been exploited using protein engineering to design cytokine variants with more specific and less toxic responses for immunotherapy.
Collapse
Affiliation(s)
- Alison McFarlane
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Elizabeth Pohler
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Ignacio Moraga
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
22
|
Aksun S, Ersal E, Portakal O, Yildiz BO. Interleukin-22/Interleukin-22 binding protein axis and oral contraceptive use in polycystic ovary syndrome. Endocrine 2023:10.1007/s12020-023-03360-4. [PMID: 37012532 DOI: 10.1007/s12020-023-03360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is associated with alterations in gut microbiota. The cytokine interleukin-22 (IL-22) is produced by immune cells and closely linked to gut immunity, which is tightly controlled by its binding protein (IL-22BP). In this study, we aimed to assess whether IL-22/IL-22BP axis is altered in PCOS at baseline and in response to short-term oral contraceptive (OC) therapy. METHODS We have evaluated circulating concentrations of IL-22 and IL-22BP in serum samples of 63 PCOS patients and 39 age- and BMI-matched healthy controls. Blood samples were taken in the early follicular phase of a cycle and stored at -80 °C. Serum IL-22 and IL-22BP levels were measured by ELISA at baseline in both women with PCOS and controls, and after 3 months of OC use in PCOS group. IL-22/IL-22BP ratio was calculated in order to have a better reflection of IL-22 biological activity. RESULTS At baseline, serum IL-22, IL-22BP concentrations and IL22/IL-22BP ratio were similar between women with PCOS and healthy controls. Three months of OC use along with general lifestyle advice resulted in a significant increase in IL-22/IL-22BP ratio in the PCOS group (62.4 [IQR:14.7-172.7] at baseline vs 73.8 [IQR:15.1-264.3] after OC use respectively p = 0.011). CONCLUSIONS Results of this study show that women with PCOS have similar circulating concentrations of IL-22 and IL-22BP with healthy women and that short term oral contraception is associated with an increase in IL-22/IL-22BP ratio suggesting higher biological activity of the IL-22 system with OC use in PCOS.
Collapse
Affiliation(s)
- Seren Aksun
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ece Ersal
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Oytun Portakal
- Department of Biochemistry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Bulent Okan Yildiz
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey.
- Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey.
| |
Collapse
|
23
|
Madeshiya AK, Pillai A. Innate lymphoid cells in depression: Current status and perspectives. Biomark Neuropsychiatry 2022; 7. [PMID: 37123464 PMCID: PMC10136288 DOI: 10.1016/j.bionps.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The recent discovery of innate lymphoid cells (ILCs) has provided new insights into our understanding of the pathogenesis of many disease conditions with immune dysregulation. Type 1 innate lymphoid cells (ILC1s) induce type I immunity and are characterized by the expression of signature cytokine IFN-γ and the master transcription factor T-bet; ILC2s stimulate type II immune responses and are defined by the expression of signature cytokines IL-5 and IL-13, and transcription factors ROR-α and GATA3; ILC3s requires the transcription factor RORγt and produce IL-22 and IL-17. ILCs are largely tissue-resident and are enriched at barrier surfaces of the mammalian body. Increasing evidence shows that inflammation is involved in the pathogenesis of depression. Although few studies have directly investigated the role of ILCs in depression, several studies have examined the levels of cytokines produced by ILCs in depressed subjects. This review summarizes the potential roles of ILCs in depression. A better understanding of the biology of ILCs may lead to the development of new therapeutic strategies for the management of depression.
Collapse
|
24
|
Gu J, Zhou P, Liu Y, Xu Q, Chen X, Chen M, Lu C, Qu C, Tong Y, Yu Q, Lu X, Yu C, Liu Z. Down-regulating Interleukin-22/Interleukin-22 binding protein axis promotes inflammation and aggravates diet-induced metabolic disorders. Mol Cell Endocrinol 2022; 557:111776. [PMID: 36108991 DOI: 10.1016/j.mce.2022.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
The prevalence of metabolic diseases has become a severe public health problem. Previously, we reported that Interleukin-22 (IL-22) was independently associated with type 2 diabetes mellitus and cardiovascular disease, and could protect endothelial cells from glucose- and lysophosphatidylcholine-induced injury. The activity of IL-22 is strongly regulated by IL-22-binding protein (IL-22BP). The aim of this investigation was to determine the effect of IL-22/IL-22BP axis on glucolipid metabolism. Serum IL-22 and IL-22BP expression in metabolic syndrome (MetS) patients and healthy controls was examined. IL-22BP-knockout (IL-22ra2-/-) and wild-type (WT) mice were fed with control diet (CTD) and high-fat diet (HFD) for 12 weeks. The IL-22 related pathway expression, the glucolipid metabolism, and inflammatory markers in mice were examined. Serum IL-22 and IL-22BP levels were found significantly increased in MetS patients (p < 0.001). IL-22BP deficiency down-regulated IL-22-related pathway, aggravated glucolipid metabolism disorder, and promoted inflammation in mice. Collectively, this work deepens the understanding of the relationship between IL-22/IL-22BP axis and metabolism disorders, and identified that down-regulation of IL-22/IL-22BP axis promotes metabolic disorders in mice.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Ping Zhou
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Ying Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Qiao Xu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Xi Chen
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Mengqi Chen
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Chen Lu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, 109 Longmian Avenue, Jiangning District, Nanjing, China
| | - Chen Qu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Yanli Tong
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, 109 Longmian Avenue, Jiangning District, Nanjing, China; Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, PR China.
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China.
| |
Collapse
|
25
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
26
|
Ma Q, Luan J, Bai Y, Xu C, Liu F, Chen B, Ju D, Xu H. Interleukin-22 in Renal Protection and Its Pathological Role in Kidney Diseases. Front Immunol 2022; 13:851818. [PMID: 35432360 PMCID: PMC9008451 DOI: 10.3389/fimmu.2022.851818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney injury has gradually become a worldwide public health problem currently affecting approximately 10% of the population and can eventually progress to chronic end-stage renal disease characteristic by the result of epithelial atrophy. Interleukin-22 (IL-22) is a cytokine produced by activated immune cells, while acting mainly on epithelial cells ranging from innate immune response to tissue regeneration to maintain barrier integrity and promote wound healing. Accumulating data suggests that IL-22 has emerged as a fundamental mediator of epithelial homeostasis in the kidney through promoting tissue repair and regeneration, inhibiting oxidative stress, and producing antimicrobial peptides. Binding of IL-22 to its transmembrane receptor complex triggers janus kinase/tyrosine kinase 2 phosphorylation, which further activates a number of downstream cascades, including signal transducer and activator of transcription 3, MAP kinase, and protein kinase B, and initiates a wide array of downstream effects. However, the activation of the IL-22 signaling pathways promotes the activation of complement systems and enhances the infiltration of chemokines, which does harm to the kidney and may finally result in chronic renal failure of different autoimmune kidney diseases, including lupus nephritis, and IgA nephropathy. This review describes current knowledge of the basic features of IL-22, including structure, cellular origin and associated signaling pathways. Also, we summarize the latest progress in understanding the physiological and pathological effects of IL-22 in the kidney, suggesting the potential strategies for the specific application of this cytokine in the treatment of kidney disease.
Collapse
Affiliation(s)
- Qianqian Ma
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jingyun Luan
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Bai
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Caili Xu
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Fangyu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bufeng Chen
- Department of Urology, Binzhou Medical University, Binzhou, China
| | - Dianwen Ju
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Xu
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
27
|
Kim S, Hong EH, Lee CK, Ryu Y, Jeong H, Heo S, Lee JJ, Ko HJ. Amelioration of DSS-Induced Acute Colitis in Mice by Recombinant Monomeric Human Interleukin-22. Immune Netw 2022; 22:e26. [PMID: 35799707 PMCID: PMC9250870 DOI: 10.4110/in.2022.22.e26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
IL-22, a pleiotropic cytokine, is known to have a profound effect on the regeneration of damaged intestinal barriers. The tissue-protective properties of IL-22 are expected to be potentially exploited in the attenuation and treatment of colitis. However, because of the disease-promoting role of IL-22 in chronic inflammation, a comprehensive evaluation is required to translate IL-22 into the clinical domain. Here, we present the effective production of soluble human IL-22 in bacteria to prove whether recombinant IL-22 has the ability to ameliorate colitis and inflammation. IL-22 was expressed in the form of a biologically active monomer and non-functional oligomers. Monomeric IL-22 (mIL-22) was highly purified through a series of 3 separate chromatographic methods and an enzymatic reaction. We reveal that the resulting mIL-22 is correctly folded and is able to phosphorylate STAT3 in HT-29 cells. Subsequently, we demonstrate that mIL-22 enables the attenuation of dextran sodium sulfate-induced acute colitis in mice, as well as the suppression of pro-inflammatory cytokine production. Collectively, our results suggest that the recombinant mIL-22 is suitable to study the biological roles of endogenous IL-22 in immune responses and can be developed as a biological agent associated with inflammatory disorders.
Collapse
Affiliation(s)
- Suhyun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Eun-Hye Hong
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Cheol-Ki Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Yiseul Ryu
- Institute of Life Sciences (ILS), Kangwon National University, Chuncheon 24341, Korea
| | - Hyunjin Jeong
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Seungnyeong Heo
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
- Institute of Life Sciences (ILS), Kangwon National University, Chuncheon 24341, Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
28
|
Yan J, Yu J, Liu K, Liu Y, Mao C, Gao W. The Pathogenic Roles of IL-22 in Colitis: Its Transcription Regulation by Musculin in T Helper Subsets and Innate Lymphoid Cells. Front Immunol 2021; 12:758730. [PMID: 34992594 PMCID: PMC8724035 DOI: 10.3389/fimmu.2021.758730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
IL-22 plays a crucial role in promoting inflammation, antimicrobial immunity and tissue repair at barrier surfaces. The role of IL-22 in colitis is still controversial: while IL-22 has a protective effect on gut epithelium in acute injuries, it also enhances colitis in a context-dependent manner. Here, we summarize the Yin and Yang of IL-22 in colitis. Particularly, we emphasize the role of innate lymphoid cells (ILCs) in IL-22 production and regulation. A previously underappreciated transcription factor, Musculin (MSC), has been recently identified to be expressed in not only Th17 cells, but also RORγt+/Id2+ IL-22-producing group 3 ILCs in the gut of naïve mice. We hypothesize that the co-expression and interaction of MSC with the key transcription repressor Id2 in developing lymphoid cells (e.g., in LTi cells) and ILC precursors might fine tune the developmental programs or regulate the plasticity of adaptive Th subset and innate ILCs. The much-elevated expression of IL-22 in MSC-/- ILC3s suggests that MSC may function as: 1) a transcription suppressor for cytokines, particularly for IL-22, and/or 2) a gatekeeper for specific lineages of Th cells and innate ILCs as well. Amelioration of colitis symptoms in MSC-/- mice by IL-22-blocking agent IL-22BP-Fc suggests a counterintuitive pathogenic role of IL-22 in the absence of MSC as a checkpoint. The theory that exuberant production of IL-22 under pathological conditions (e.g., in human inflammatory bowel disease, IBD) may cause epithelial inflammation due to endoplasmic reticulum (ER) stress response is worth further investigation. Rheostatic regulation of IL-22 may be of therapeutic value to restore homeostatic balance and promote intestinal health in human colitis.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ke Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yijia Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | | | - Wenda Gao
- Antagen Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
29
|
Lücke J, Shiri AM, Zhang T, Kempski J, Giannou AD, Huber S. Rationalizing heptadecaphobia: T H 17 cells and associated cytokines in cancer and metastasis. FEBS J 2021; 288:6942-6971. [PMID: 33448148 DOI: 10.1111/febs.15711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the leading causes of death worldwide. When cancer patients are diagnosed with metastasis, meaning that the primary tumor has spread to at least one different site, their life expectancy decreases dramatically. In the past decade, the immune system´s role in fighting cancer and metastasis has been studied extensively. Importantly, immune cells and inflammatory reactions generate potent antitumor responses but also contribute to tumor development. However, the molecular and cellular mechanisms underlying this dichotomic interaction between the immune system and cancer are still poorly understood. Recently, a spotlight has been cast on the distinct subsets of immune cells and their derived cytokines since evidence has implicated their crucial impact on cancer development. T helper 17 cell (TH 17) cells, which express the master transcriptional factor Retinoic acid-receptor-related orphan receptor gamma t, are among these critical cell subsets and are defined by their production of type 3 cytokines, such as IL-17A, IL-17F, and IL-22. Depending on the tumor microenvironment, these cytokines can also be produced by other immune cell sources, such as T cytotoxic 17 cell, innate lymphoid cells, NKT cells, or γδ T cells. To date, a lot of data have been collected describing the divergent functions of IL-17A, IL-17F, and IL-22 in malignancies. In this comprehensive review, we discuss the role of these TH 17- and non-TH 17-derived type 3 cytokines in different tumor entities. Furthermore, we will provide a structured insight into the strict regulation and subsequent downstream mechanisms of these cytokines in cancer and metastasis.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
30
|
Xiao Z, Liu L, Pei X, Sun W, Jin Y, Yang ST, Wang M. A Potential Probiotic for Diarrhea: Clostridium tyrobutyricum Protects Against LPS-Induced Epithelial Dysfunction via IL-22 Produced By Th17 Cells in the Ileum. Front Immunol 2021; 12:758227. [PMID: 34917080 PMCID: PMC8670534 DOI: 10.3389/fimmu.2021.758227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics are clinically used for diarrhea and inflammatory bowel diseases in both humans and animals. Previous studies have shown that Clostridium tyrobutyricum (Ct) protects against intestinal dysfunction, while its regulatory function in the gut needs further investigation and the related mechanisms are still not fully elucidated. This study aims to further verify the protective function of Ct and reveal its underlying mechanisms in alleviating diarrhea and intestinal inflammation. Ct inhibited LPS-induced diarrhea and intestinal inflammation in the ileum. IL-22 was identified and the protective role of Ct in the ileum presented an IL-22-dependent manner according to the transcriptomic analysis and in vivo interference mice experiments. The flow cytometric analysis of immune cells in the ileum showed that Ct enhanced the proportions of Th17 cells in response to LPS. The results of in situ hybridization further verified that Ct triggered Th17 cells to produce IL-22, which combined with IL-22RA1 expressed in the epithelial cells. Moreover, Ct was unable to enhance the levels of short-chain fatty acids (SCFAs) in the ileum, suggesting that the protective role of Ct in the ileum was independent of SCFAs. This study uncovered the role of Ct in alleviating diarrhea and inflammation with the mechanism of stimulating Th17 cells in the lamina propria to produce IL-22, highlighting its potential application as a probiotic for diarrhea and inflammation in the ileum.
Collapse
Affiliation(s)
- Zhiping Xiao
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lujie Liu
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xun Pei
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wanjing Sun
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuyue Jin
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Minqi Wang
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Zenewicz LA. IL-22 Binding Protein (IL-22BP) in the Regulation of IL-22 Biology. Front Immunol 2021; 12:766586. [PMID: 34868019 PMCID: PMC8634938 DOI: 10.3389/fimmu.2021.766586] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023] Open
Abstract
Cytokines are powerful mediators of inflammation. Consequently, their potency is regulated in many ways to protect the host. Several cytokines, including IL-22, have coordinating binding proteins or soluble receptors that bind to the cytokine, block the interaction with the cellular receptor, and thus prevent cellular signaling. IL-22 is a critical cytokine in the modulation of tissue responses during inflammation and is highly upregulated in many chronic inflammatory disease patients, including those with psoriasis, rheumatoid arthritis, and inflammatory bowel disease (IBD). In healthy individuals, low levels of IL-22 are secreted by immune cells, mainly in the gastrointestinal (GI) tract. However, much of this IL-22 is likely not biologically active due to the high levels of IL-22 binding protein (IL-22BP) produced by intestinal dendritic cells (DCs). IL-22BP is a soluble receptor homolog that binds to IL-22 with greater affinity than the membrane spanning receptor. Much is known regarding the regulation and function of IL-22 in health and disease. However, less is known about IL-22BP. In this review, we will focus on IL-22BP, including its regulation, role in IL-22 biology and inflammation, and promise as a therapeutic. IL-22 can be protective or pathogenic, depending on the context of inflammation. IL-22BP also has divergent roles. Ongoing and forthcoming studies will expand our knowledge of IL-22BP and IL-22 biology, and suggest that IL-22BP holds promise as a way to regulate IL-22 biology in patients with chronic inflammatory disease.
Collapse
Affiliation(s)
- Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
32
|
Luo JW, Hu Y, Liu J, Yang H, Huang P. Interleukin-22: a potential therapeutic target in atherosclerosis. Mol Med 2021; 27:88. [PMID: 34388961 PMCID: PMC8362238 DOI: 10.1186/s10020-021-00353-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Atherosclerosis is recognized as a chronic immuno-inflammatory disease that is characterized by the accumulation of immune cells and lipids in the vascular wall. In this review, we focus on the latest advance regarding the regulation and signaling pathways of IL-22 and highlight its impacts on atherosclerosis. MAIN BODY IL-22, an important member of the IL-10 family of cytokines, is released by cells of the adaptive and innate immune system and plays a key role in the development of inflammatory diseases. The binding of IL-22 to its receptor complex can trigger a diverse array of downstream signaling pathways, in particular the JAK/STAT, to induce the expression of chemokines and proinflammatory cytokines. Recently, numerous studies suggest that IL-22 is involved in the pathogenesis of atherosclerosis by regulation of VSMC proliferation and migration, angiogenesis, inflammatory response, hypertension, and cholesterol metabolism. CONCLUSION IL-22 promotes the development of atherosclerosis by multiple mechanisms, which may be a promising therapeutic target in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jin-Wen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Yuan Hu
- Department of Ultrasound Medicine, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Jian Liu
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Huan Yang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, People's Republic of China.
| | - Peng Huang
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China.
| |
Collapse
|
33
|
Lücke J, Sabihi M, Zhang T, Bauditz LF, Shiri AM, Giannou AD, Huber S. The good and the bad about separation anxiety: roles of IL-22 and IL-22BP in liver pathologies. Semin Immunopathol 2021; 43:591-607. [PMID: 33851257 PMCID: PMC8443499 DOI: 10.1007/s00281-021-00854-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The human liver fulfills several vital tasks daily and possesses an impressive ability to self-regenerate. However, the capacity of this self-healing process can be exhausted by a variety of different liver diseases, such as alcoholic liver damage, viral hepatitis, or hepatocellular carcinoma. Over time, all these diseases generally lead to progressive liver failure that can become fatal if left untreated. Thus, a great effort has been directed towards the development of innovative therapies. The most recently discovered therapies often involve modifying the patient's immune system to enhance a beneficial immune response. Current data suggest that, among others, the cytokine IL-22 might be a promising therapeutical candidate. IL-22 and its endogenous antagonist, IL-22BP, have been under thorough scientific investigation for nearly 20 years. While IL-22 is mainly produced by TH22 cells, ILC3s, NKT cells, or γδ T cells, sources of IL-22BP include dendritic cells, eosinophils, and CD4+ cells. In many settings, IL-22 was shown to promote regenerative potential and, thus, could protect tissues from pathogens and damage. However, the effects of IL-22 during carcinogenesis are more ambiguous and depend on the tumor entity and microenvironment. In line with its capabilities of neutralizing IL-22 in vivo, IL-22BP possesses often, but not always, an inverse expression pattern compared to its ligand. In this comprehensive review, we will summarize past and current findings regarding the roles of IL-22 and IL-22BP in liver diseases with a particular focus on the leading causes of advanced liver failure, namely, liver infections, liver damage, and liver malignancies.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lennart Fynn Bauditz
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
34
|
Gu P, Wang D, Zhang J, Wang X, Chen Z, Gu L, Liu M, Meng F, Yang J, Cai H, Xiao Y, Chen Y, Cao M. Protective function of interleukin-22 in pulmonary fibrosis. Clin Transl Med 2021; 11:e509. [PMID: 34459137 PMCID: PMC8387792 DOI: 10.1002/ctm2.509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive scarring disease with unknown etiology. The evidence of a pathogenic role for transforming growth factor-beta (TGF-β) in the development and progression of IPF is overwhelming. In the present study, we investigated the role of interleukin-22 (IL-22) in the pathogenesis of IPF by regulating the TGF-β pathway. We measured parameters and tissue samples from a clinical cohort of IPF. IL-22R knock out (IL-22RA1-/- ) and IL-22 supplementation mouse models were used to determine if IL-22 is protective in vivo. For the mechanistic study, we tested A549, primary mouse type II alveolar epithelial cell, human embryonic lung fibroblast, and primary fibroblast for their responses to IL-22 and/or TGF-β1. In a clinical cohort, the expression level of IL-22 in the peripheral blood and lung tissues of IPF patients was lower than healthy controls, and the lower IL-22 expression was associated with poorer pulmonary function. IL-22R-/- mice demonstrated exacerbated inflammation and fibrosis. Reciprocally, IL-22 augmentation by intranasal instillation of recombinant IL-22 repressed inflammation and fibrotic phenotype. In vitro, IL-22 treatment repressed TGF-β1 induced gene markers representing epithelial-mesenchymal-transition and fibroblast-myofibroblast-transition, likely via the inhibition of TGF-β receptor expression and subsequent Smad2/3 activation. IL-22 appears to be protective against pulmonary fibrosis by inhibiting TGF-β1 signaling, and IL-22 augmentation may be a promising approach to treat IPF.
Collapse
Affiliation(s)
- Peiyu Gu
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Ji Zhang
- Wuxi Transplant CenterWuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxiJiangsuChina
| | - Xin Wang
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zhiyong Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Lina Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Mengying Liu
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Fanqing Meng
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Hourong Cai
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Yonglong Xiao
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Yin Chen
- Department of Pharmacology and ToxicologySchool of Pharmacy; University of ArizonaTucsonAZ
- Asthma & Airway Disease Research CenterUniversity of ArizonaTucsonAZ
| | - Mengshu Cao
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
35
|
Yang N, Chen Z, Zhang X, Shi Y. Novel Targeted Biological Agents for the Treatment of Atopic Dermatitis. BioDrugs 2021; 35:401-415. [PMID: 34213742 DOI: 10.1007/s40259-021-00490-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatologic disease clinically characterized by intense itch, recurrent eczematous lesions, and a chronic or relapsing disease course. Mild-to-moderate AD can be controlled by using moisturizers and topical immunomodulators such as topical corticosteroids and calcineurin inhibitors. If topical therapies fail, phototherapy and systemic immunosuppressant therapies, such as ciclosporin, methotrexate, and azathioprine, can be considered. However, relapse and side effects could still occur. The pathogenesis of AD involves epidermal barrier dysfunction, skin microbiome abnormalities, and cutaneous inflammation. Inflammatory mediators, such as interleukin (IL)-4, IL-13, IL-31, IL-33, IL-17, IL-23, and thymic stromal lymphopoietin, are involved in AD development. Therefore, a series of biological agents targeting these cytokines are promising approaches for treating AD. Dupilumab is the first biological agent approved for the treatment of AD in patients aged 6 years and older in the United States. Tralokinumab, lebrikizumab, and nemolizumab have also been confirmed to have significant efficacy against AD in phase III or IIb clinical trials. Also, fezakinumab was effective in severe AD patients in a phase IIa trial. However, phase II trials of ustekinumab, tezepelumab, etokimab, secukinumab, and omalizumab have failed to meet their primary endpoints. Phase II trials of GBR 830 and KHK 4083 are ongoing. In general, further studies are needed to explore new therapeutic targets and improve the efficacy of biological agents.
Collapse
Affiliation(s)
- Nan Yang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zeyu Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China. .,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
36
|
Dębińska A. New Treatments for Atopic Dermatitis Targeting Skin Barrier Repair via the Regulation of FLG Expression. J Clin Med 2021; 10:jcm10112506. [PMID: 34198894 PMCID: PMC8200961 DOI: 10.3390/jcm10112506] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic, inflammatory skin disorders with a complex etiology and a broad spectrum of clinical phenotypes. Despite its high prevalence and effect on the quality of life, safe and effective systemic therapies approved for long-term management of AD are limited. A better understanding of the pathogenesis of atopic dermatitis in recent years has contributed to the development of new therapeutic approaches that target specific pathophysiological pathways. Skin barrier dysfunction and immunological abnormalities are critical in the pathogenesis of AD. Recently, the importance of the downregulation of epidermal differentiation complex (EDC) molecules caused by external and internal stimuli has been extensively emphasized. The purpose of this review is to discuss the innovations in the therapy of atopic dermatitis, including biologics, small molecule therapies, and other drugs by highlighting regulatory mechanisms of skin barrier-related molecules, such as filaggrin (FLG) as a crucial pathway implicated in AD pathogenesis.
Collapse
Affiliation(s)
- Anna Dębińska
- 1st Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, Chałubińskiego 2a, 50-368 Wrocław, Poland
| |
Collapse
|
37
|
Saxton RA, Henneberg LT, Calafiore M, Su L, Jude KM, Hanash AM, Garcia KC. The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design. Immunity 2021; 54:660-672.e9. [PMID: 33852830 PMCID: PMC8054646 DOI: 10.1016/j.immuni.2021.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/17/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Interleukin-22 (IL-22) acts on epithelial cells to promote tissue protection and regeneration, but can also elicit pro-inflammatory effects, contributing to disease pathology. Here, we engineered a high-affinity IL-22 super-agonist that enabled the structure determination of the IL-22-IL-22Rα-IL-10Rβ ternary complex to a resolution of 2.6 Å. Using structure-based design, we systematically destabilized the IL-22-IL-10Rβ binding interface to create partial agonist analogs that decoupled downstream STAT1 and STAT3 signaling. The extent of STAT bias elicited by a single ligand varied across tissues, ranging from full STAT3-biased agonism to STAT1/3 antagonism, correlating with IL-10Rβ expression levels. In vivo, this tissue-selective signaling drove tissue protection in the pancreas and gastrointestinal tract without inducing local or systemic inflammation, thereby uncoupling these opposing effects of IL-22 signaling. Our findings provide insight into the mechanisms underlying the cytokine pleiotropy and illustrate how differential receptor expression levels and STAT response thresholds can be synthetically exploited to endow pleiotropic cytokines with enhanced functional specificity.
Collapse
Affiliation(s)
- Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Lukas T Henneberg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Marco Calafiore
- Departments of Medicine, Human Oncology and Pathogenesis Program, and Immunology and Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - Leon Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Alan M Hanash
- Departments of Medicine, Human Oncology and Pathogenesis Program, and Immunology and Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Liu D, Qiao C, Luo H. MicroRNA-1278 ameliorates the inflammation of cardiomyocytes during myocardial ischemia by targeting both IL-22 and CXCL14. Life Sci 2021; 269:118817. [PMID: 33275986 DOI: 10.1016/j.lfs.2020.118817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
AIMS This study aimed to elucidate the role of microRNAs (miRNAs) during myocardial infarction (MI) development in vivo and in vitro. MAIN METHODS Differentially expressed miRNAs between heart tissue from the MI mouse model and the control mouse were identified via microarray. Quantitative PCR (qPCR) and western blotting (WB) were performed to examine the expression levels of miRNAs and proteins, respectively. EdU-staining and colony formation assay were performed to assess cell viability and growth. Annexin V- and PI-staining-based flow cytometry was used to assess cell apoptosis. An MI mouse model was also established to study the function of miR-1278 in vivo. KEY FINDINGS The levels of miR-1278 were reduced in the infarct regions of heart tissues of the MI mouse model and in H2O2-treated newborn murine ventricular cardiomyocytes (NMVCs) compared to those in the heart tissues of healthy mice and non-treated NMVCs. H2O2 treatment suppressed the proliferation of NMVCs, while miR-1278 upregulation improved it. Moreover, we found that miR-1278 inhibited the upregulation of IL-22 and CXCL14 expression in H2O2-treated NMVCs by directly binding with the 3'-UTRs of both IL-22 and CXCL14. Furthermore, restoration of IL-22 and CXCL14 in H2O2-treated NMVCs promoted miR-1278-induced inflammation and apoptosis. Administration of agomiR-1278 to the MI mouse model significantly improved cardiac activity. SIGNIFICANCE Collectively, our findings illustrate that the expression of miR-1278 is low in H2O2-treated NMVCs and post-MI cardiac tissues, and the overexpression of miR-1278 in these protects against cell death by modulating IL-22 and CXCL14 expression.
Collapse
Affiliation(s)
- Donghai Liu
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chenhui Qiao
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Hong Luo
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
39
|
Abstract
Interleukin-22 (IL-22) is secreted by a wide range of immune cells and its downstream effects are mediated by the IL-22 receptor, which is present on non-immune cells in many organs throughout the body. IL-22 is an inflammatory mediator that conditions the tissue compartment by upregulating innate immune responses and is also a homeostatic factor that promotes tissue integrity and regeneration. Interestingly, the IL-22 system has also been linked to many T cell driven inflammatory diseases. Despite this, the downstream effects of IL-22 on the adaptive immune system has received little attention. We have reviewed the literature for experimental data that suggest IL-22 mediated effects on T cells, either transduced directly or via mediators expressed by innate immune cells or non-immune cells in response to IL-22. Collectively, the reviewed data indicate that IL-22 has a hitherto unappreciated influence on T helper cell polarization, or the secretion of signature cytokines, that is context dependent but in many cases results in a reduction of the Th1 type response and to some extent promotion of regulatory T cells. Further studies are needed that specifically address these aspects of IL-22 signaling, which can benefit the understanding and treatment of a wide range of diseases.
Collapse
Affiliation(s)
- Hannes Lindahl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
40
|
Su SB, Qin SY, Xian XL, Huang FF, Huang QL, ZhangDi HJ, Jiang HX. Interleukin-22 regulating Kupffer cell polarization through STAT3/Erk/Akt crosstalk pathways to extenuate liver fibrosis. Life Sci 2021; 264:118677. [PMID: 33129875 DOI: 10.1016/j.lfs.2020.118677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
AIMS Interleukin (IL)-22 activates multiple signaling pathways to exert anti-inflammatory effects, but few studies have examined whether and how IL-22 may shift macrophage polarization between M1 (pro-inflammatory) and M2 (anti-inflammatory) states and thereby influence the progression of hepatic fibrosis. MAIN METHODS Utilized CCl4 to induce liver fibrosis in mice, detected the role of IL-22 in inhibiting liver fibrosis by regulating Kupffer cells (KCs) polarization in vivo and in vitro. U937 cells were used to confirm the mechanism of IL-22 regulating macrophage polarization via the STAT3/Erk/Akt pathways. Human liver specimens were collected to verify the correlation between the levels of IL-22 and KCs during liver fibrogenesis. KEY FINDINGS During CCl4-induced liver fibrosis progression in mice, adding exogenous IL-22 significantly inhibited pro-fibrogenic and macrophage phenotype-altering factors secreted by M1-KCs, and it increased the number of M2-KCs. In co-cultures of hepatic stellate cells and KCs from mice treated with IL-22, a high M2/M1-KCs ratio inhibited collagen production and stellate cell activation. These results suggest that IL-22 can increase the ratio of M2-KCs to M1-KCs and thereby attenuate the progression of liver fibrosis. Mechanistic studies in vitro showed that IL-22 promoted polarization of lipopolysaccharide-treated U937 macrophages from M1 to M2. The cytokine exerted these effects by activating the STAT3 pathway while suppressing Erk1/2 and Akt pathways. Furthermore, immunofluorescent staining in human liver specimens confirmed that IL-22 levels positively correlated with the number of M2-KCs during liver fibrogenesis. SIGNIFICANCE IL-22 regulates the STAT3/Erk/Akt to increase the M2/M1-KCs ratio and thereby slow liver fibrogenesis.
Collapse
Affiliation(s)
- Si-Biao Su
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Shan-Yu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Xiao-Long Xian
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Fei-Fei Huang
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Qiu-Lan Huang
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Han-Jing ZhangDi
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, China.
| |
Collapse
|
41
|
Sakemi R, Mitsuyama K, Morita M, Yoshioka S, Kuwaki K, Tokuyasu H, Fukunaga S, Mori A, Araki T, Yoshimura T, Yamasaki H, Tsuruta K, Morita T, Yamasaki S, Mizoguchi A, Sou S, Torimura T. Altered serum profile of the interleukin-22 system in inflammatory bowel disease. Cytokine 2020; 136:155264. [PMID: 32920320 DOI: 10.1016/j.cyto.2020.155264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM Interleukin-22 (IL-22), plays a vital role in the mucosal repair of inflammatory bowel disease (IBD). Serum levels of IL-22 and IL-22 binding protein (IL-22BP), a soluble inhibitory IL-22 receptor, were measured in patients with IBD to investigate the profile of IL-22 in the systemic circulation. METHODS Blood samples from 92 healthy subjects, 98 patients with ulcerative colitis (UC), and 105 patients with Crohn's disease (CD) were analyzed for serum levels of IL-22, IL-22BP, human β-defensin 2 (hBD-2), and serum inflammatory parameters. Disease activity was assessed by the partial Mayo score and Harvey-Bradshaw index for UC and CD, respectively. RESULTS Serum IL-22 level was lower in UC (P < 0.001) and CD (P < 0.001) vs control and its decrease was more pronounced in CD than in UC (P = 0.019). Serum IL-22BP level was lower in UC (P < 0.001) and CD (P < 0.001) vs control and correlated with inflammatory parameters (albumin and C-reactive protein (CRP) in UC; hemoglobin, albumin, and CRP in CD). Serum IL-22/IL-22BP ratios were higher in UC (P = 0.009) vs control and correlated with inflammatory parameters (albumin and CRP). Serum hBD-2 level was higher only in CD (P = 0.015) but did not correlate with serum IL-22 levels, IL-22BP levels, IL-22/IL-22BP ratios, or inflammatory parameters. CONCLUSIONS Dysregulation of the IL-22 system in the blood may play a role in the pathogenesis of IBD. Further studies are needed to understand the pathogenic and clinical significance of the blood IL-22 system in IBD.
Collapse
Affiliation(s)
- Ryosuke Sakemi
- Department of Gastroenterology, Tobata Kyoritsu Hospital, 2-5-1 Sawami, Tobata-ku, Kitakyushu 804-0093, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan.
| | - Masaru Morita
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Shinichiro Yoshioka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Kotaro Kuwaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Hidenori Tokuyasu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Shuhei Fukunaga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Atsushi Mori
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Toshihiro Araki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Tetsuhiro Yoshimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Hiroshi Yamasaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Kozo Tsuruta
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Taku Morita
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Sayo Yamasaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Suketo Sou
- Department of Gastroenterology, Tobata Kyoritsu Hospital, 2-5-1 Sawami, Tobata-ku, Kitakyushu 804-0093, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
42
|
Walter MR. The Role of Structure in the Biology of Interferon Signaling. Front Immunol 2020; 11:606489. [PMID: 33281831 PMCID: PMC7689341 DOI: 10.3389/fimmu.2020.606489] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Interferons (IFNs) are a family of cytokines with the unique ability to induce cell intrinsic programs that enhance resistance to viral infection. Induction of an antiviral state at the cell, tissue, organ, and organismal level is performed by three distinct IFN families, designated as Type-I, Type-II, and Type-III IFNs. Overall, there are 21 human IFNs, (16 type-I, 12 IFNαs, IFNβ, IFNϵ, IFNκ, and IFNω; 1 type-II, IFNγ; and 4 type-III, IFNλ1, IFNλ2, IFNλ3, and IFNλ4), that induce pleotropic cellular activities essential for innate and adaptive immune responses against virus and other pathogens. IFN signaling is initiated by binding to distinct heterodimeric receptor complexes. The three-dimensional structures of the type-I (IFNα/IFNAR1/IFNAR2), type-II (IFNγ/IFNGR1/IFNGR2), and type-III (IFNλ3/IFNλR1/IL10R2) signaling complexes have been determined. Here, we highlight similar and unique features of the IFNs, their cell surface complexes and discuss their role in inducing downstream IFN signaling responses.
Collapse
Affiliation(s)
- Mark R Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
43
|
Premzl M. Comparative genomic analysis of eutherian interferon genes. Genomics 2020; 112:4749-4759. [DOI: 10.1016/j.ygeno.2020.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023]
|
44
|
Yang Y, Wang J, Xu J, Liu Q, Wang Z, Zhu X, Ai X, Gao Q, Chen X, Zou J. Characterization of IL-22 Bioactivity and IL-22-Positive Cells in Grass Carp Ctenopharyngodon idella. Front Immunol 2020; 11:586889. [PMID: 33178219 PMCID: PMC7593840 DOI: 10.3389/fimmu.2020.586889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin (IL)-22 plays an important role in regulating inflammation and clearance of infectious pathogens. IL-22 homologs have been discovered in fish, but the functions and sources of IL-22 have not been fully characterized. In this study, an IL-22 homolog was identified in grass carp and its bioactivities were investigated. The grass carp IL-22 was constitutively expressed in tissues, with the highest expression detected in the gills and hindgut. It was upregulated in the spleen after infection with Flavobacterium columnare and grass carp reovirus and in the primary head kidney and spleen leukocytes stimulated with LPS and IL-34. Conversely, it was downregulated by Th2 cytokines such as IL-4/13B and IL-10. The recombinant IL-22 produced in bacteria showed a stimulatory effect on the expression of inflammatory cytokines and STAT3 in the primary head kidney leukocytes and CIK cells. Moreover, the IL-22-positive cells were found to be induced in the hindgut and head kidney 24 h after infection by F. columnare. Our data suggest that IL-22 plays an important role in regulating mucosal and systemic immunity against bacterial and viral infection.
Collapse
Affiliation(s)
- Yibin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiawen Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
45
|
Chen J, Lodi R, Zhang S, Su Z, Wu Y, Xia L. The double-edged role of IL-22 in organ fibrosis. Immunopharmacol Immunotoxicol 2020; 42:392-399. [PMID: 32689851 DOI: 10.1080/08923973.2020.1799388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Fibrosis is unregulated tissue repair in damaged or diseased organs, and the accumulation of excess extracellular matrix (ECM) impacts the structure and functions of organs, leading to death. Fibrosis is usually triggered by inflammation and tissue damage, and inflammatory mediators stimulate the proliferation of myofibroblasts and the excessive production of ECM. The IL-10 family cytokines play important roles in the development of fibrosis, and its member IL-22 has recently attracted specific attention. IL-22 plays great roles in preventing pathogens invasion and tissue damage, as well as making a contribution to pathogenic processes. Increasing evidence suggested that IL-22 is a key molecule in tissue repair, proliferation and mucosal barrier defense, and it has also been suggested to play both pro-fibrotic and anti-fibrotic roles in tissues. In this review, we summarized the pro-fibrotic and anti-fibrotic functions of IL-22 in various organs which may be of great significance for the development of potential therapeutic strategies for fibrosis-related diseases.
Collapse
Affiliation(s)
- Jia Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | | | - Shiqing Zhang
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yan Wu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
46
|
Li B, Huang L, Lv P, Li X, Liu G, Chen Y, Wang Z, Qian X, Shen Y, Li Y, Fang W. The role of Th17 cells in psoriasis. Immunol Res 2020; 68:296-309. [PMID: 32827097 DOI: 10.1007/s12026-020-09149-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
T helper 17 (Th17) cells have been involved in the pathogenesis of many autoimmune and inflammatory diseases, like psoriasis, multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). However, the role of Th17 cells in psoriasis has not been clarified completely. Th17-derived proinflammatory cytokines including IL-17A, IL-17F, IL-21, IL-22, and IL-26 have a critical role in the pathogenesis of these disorders. In this review, we introduced the signaling and transcriptional regulation of Th17 cells. And then, we demonstrate the immunopathology role of Th17 cells and functions of the related cytokines in the psoriasis to get a better understanding of the inflammatory mechanisms mediated by Th17 cells in this disease.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Peng Lv
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiaoxian Qian
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yixiao Shen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
47
|
Sabihi M, Böttcher M, Pelczar P, Huber S. Microbiota-Dependent Effects of IL-22. Cells 2020; 9:E2205. [PMID: 33003458 PMCID: PMC7599675 DOI: 10.3390/cells9102205] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokines are important contributors to immune responses against microbial and environmental threats and are of particular importance at epithelial barriers. These interfaces are continuously exposed to external factors and thus require immune components to both protect the host from pathogen invasion and to regulate overt inflammation. Recently, substantial efforts have been devoted to understanding how cytokines act on certain cells at barrier sites, and why the dysregulation of immune responses may lead to pathogenesis. In particular, the cytokine IL-22 is involved in preserving an intact epithelium, maintaining a balanced microbiota and a functioning defense system against external threats. However, a tight regulation of IL-22 is generally needed, since uncontrolled IL-22 production can lead to the progression of autoimmunity and cancer. Our aim in this review is to summarize novel findings on IL-22 and its interactions with specific microbial stimuli, and subsequently, to understand their contributions to the function of IL-22 and the clinical outcome. We particularly focus on understanding the detrimental effects of dysregulated control of IL-22 in certain disease contexts.
Collapse
Affiliation(s)
| | | | | | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (M.S.); (M.B.); (P.P.)
| |
Collapse
|
48
|
Arshad T, Mansur F, Palek R, Manzoor S, Liska V. A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration. Front Immunol 2020; 11:2148. [PMID: 33042126 PMCID: PMC7527413 DOI: 10.3389/fimmu.2020.02148] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Wound healing and tissue regeneration is an intricate biological process that involves repair of cellular damage and maintenance of tissue integrity. Cascades involved in wound healing and tissue regeneration highly overlap with cancer causing pathways. Usually, subsequent tissue damage events include release of a number of cytokines to accomplish post-trauma restoration. IL-22 is one of the cytokines that are immediately produced to initiate immune response against several tissue impairments. IL-22 is a fundamental mediator in inflammation, mucous production, protective role against pathogens, wound healing, and tissue regeneration. However, accumulating evidence suggests pivotal role of IL-22 in instigation of various cancers due to its pro-inflammatory and tissue repairing activity. In this review, we summarize how healing effects of IL-22, when executed in an uncontrollable fashion can lead to carcinogenesis.
Collapse
Affiliation(s)
- Tanzeela Arshad
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fizzah Mansur
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Richard Palek
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
49
|
Mossner S, Kuchner M, Fazel Modares N, Knebel B, Al-Hasani H, Floss DM, Scheller J. Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130. J Biol Chem 2020; 295:12378-12397. [PMID: 32611765 PMCID: PMC7458808 DOI: 10.1074/jbc.ra120.013927] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cytokine signaling is transmitted by cell-surface receptors that function as biological switches controlling mainly immune-related processes. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of GFP and mCherry nanobodies fused to transmembrane and intracellular domains of cytokine receptors that phenocopy cytokine signaling induced by nonphysiological homo- and heterodimeric GFP-mCherry ligands. Interleukin 22 (IL-22) signals via both IL-22 receptor α1 (IL-22Rα1) and the common IL-10R2, belongs to the IL-10 cytokine family, and is critically involved in tissue regeneration. Here, IL-22 SyCyRs phenocopied native IL-22 signal transduction, indicated by induction of cytokine-dependent cellular proliferation, signal transduction, and transcriptome analysis. Whereas homodimeric IL-22Rα1 SyCyRs failed to activate signaling, homodimerization of the second IL-22 signaling chain, SyCyR(IL-10R2), which previously was considered not to induce signal transduction, led to induction of signal transduction. Interestingly, the SyCyR(IL-10R2) and SyCyR(IL-22Rα1) constructs could form functional heterodimeric receptor signaling complexes with the synthetic IL-6 receptor chain SyCyR(gp130). In summary, we have demonstrated that IL-22 signaling can be phenocopied by synthetic cytokine receptors, identified a functional IL-10R2 homodimeric receptor complex, and uncovered broad receptor cross-talk of IL-22Rα1 and IL-20R2 with gp130.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marcus Kuchner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nastaran Fazel Modares
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
50
|
Støy S, Laursen TL, Glavind E, Eriksen PL, Terczynska-Dyla E, Magnusson NE, Hamilton-Dutoit S, Mortensen FV, Veidal SS, Rigbolt K, Riggio O, Deleuran B, Vilstrup H, Sandahl TD. Low Interleukin-22 Binding Protein Is Associated With High Mortality in Alcoholic Hepatitis and Modulates Interleukin-22 Receptor Expression. Clin Transl Gastroenterol 2020; 11:e00197. [PMID: 32955203 PMCID: PMC8443818 DOI: 10.14309/ctg.0000000000000197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION In alcoholic hepatitis (AH), high interleukin (IL)-22 production is associated with disease improvement, purportedly through enhanced infection resistance and liver regeneration. IL-22 binding protein (BP) binds and antagonizes IL-22 bioactivity, but data on IL-22BP in liver disease suggest a complex interplay. Despite the scarcity of human data, IL-22 is in clinical trial as treatment of AH. We, therefore, in patients with AH, described the IL-22 system focusing on IL-22BP and associations with disease course, and mechanistically pursued the human associations in vitro. METHODS We prospectively studied 41 consecutive patients with AH at diagnosis, days 7 and 90, and followed them for up to 1 year. We measured IL-22 pathway proteins in liver biopsies and blood and investigated IL-22BP effects on IL-22 in hepatocyte cultures. RESULTS IL-22BP was produced in the gut and was identifiable in the patients with AH' livers. Plasma IL-22BP was only 50% of controls and the IL-22/IL-22BP ratio thus elevated. Consistently, IL-22-inducible genes were upregulated in AH livers at diagnosis. Low plasma IL-22BP was closely associated with high 1-year mortality. In vitro, IL-22 stimulation reduced IL-22 receptor (R) expression, but coincubation with IL-22BP sustained IL-22R expression. In the AH livers, IL-22R mRNA expression was similar to healthy livers, although IL-22R liver protein was higher at diagnosis. DISCUSSION Plasma IL-22BP was associated with an adverse disease course, possibly because its low level reduces IL-22R expression so that IL-22 bioactivity was reduced. This suggests the IL-BP interplay to be central in AH pathogenesis, and in future treatment trials (see Visual abstract, Supplementary Digital Content 5, http://links.lww.com/CTG/A338).
Collapse
Affiliation(s)
- Sidsel Støy
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Emilie Glavind
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Ewa Terczynska-Dyla
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Nils Erik Magnusson
- Diabetes and Hormone Diseases-Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Denmark
| | | | | | | | | | - Oliviero Riggio
- Department of Clinical Medicine, Sapienza University of Rome, Italy
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|