1
|
Kumariya R, Sun J, Lusvarghi S, O'Dell S, Zhao G, Doria-Rose NA, Bewley CA. An engineered antibody-lectin conjugate targeting the HIV glycan shield protects humanized mice against HIV challenge. Mol Ther 2025:S1525-0016(25)00213-8. [PMID: 40156187 DOI: 10.1016/j.ymthe.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/19/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Enveloped viruses responsible for global health pandemics often display a glycan shield on their surface envelope glycoproteins. In HIV, the glycan shield is formed by clusters of high-mannose glycans and plays essential roles in viral fitness and immune evasion. A few mannose-binding lectins potently inactivate HIV but have not been fully exploited due to poor pharmacokinetics and short serum half-lives. To address this, we engineered an antibody-lectin conjugate comprising the anti-HIV lectin griffithsin (GRFT) to the Fc region of human IgG1, with the aim of extending its serum half-life and augmenting anti-HIV activity by inducing immune effector responses. Engineered mGRFT-Fc produced in bacteria exhibited picomolar anti-HIV activity and an extended serum half-life, and mGRFT-Fc produced in mammalian cells (mGRFT-Fcglyc) elicited immune effector responses. In HIV-infected CD34+-humanized mice, both GRFT and mGRFT-Fcglyc effectively suppressed viral loads for up to 8 weeks after a single dose. Significantly, mGRFT-Fcglyc prevented HIV infection by neutralizing HIV and provided sustained protection from break-through infections via Fc-mediated immune effector responses, exhibiting a dual mode of protection. This study demonstrates the successful engineering of a lectin-based biologic and provides early evidence that a glycan-targeting agent alone can confer protection from viral infection in vivo.
Collapse
Affiliation(s)
- Rashmi Kumariya
- Natural Products Chemistry Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jiadong Sun
- Natural Products Chemistry Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sabrina Lusvarghi
- Natural Products Chemistry Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gengxiang Zhao
- Natural Products Chemistry Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Carole A Bewley
- Natural Products Chemistry Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Bains A, Fischer K, Guan W, LiWang PJ. The Antiviral Activity of the Lectin Griffithsin against SARS-CoV-2 Is Enhanced by the Presence of Structural Proteins. Viruses 2023; 15:2452. [PMID: 38140693 PMCID: PMC10747160 DOI: 10.3390/v15122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Although COVID-19 transmission has been reduced by the advent of vaccinations and a variety of rapid monitoring techniques, the SARS-CoV-2 virus itself has shown a remarkable ability to mutate and persist. With this long track record of immune escape, researchers are still exploring prophylactic treatments to curtail future SARS-CoV-2 variants. Specifically, much focus has been placed on the antiviral lectin Griffithsin in preventing spike protein-mediated infection via the hACE2 receptor (direct infection). However, an oft-overlooked aspect of SARS-CoV-2 infection is viral capture by attachment receptors such as DC-SIGN, which is thought to facilitate the initial stages of COVID-19 infection in the lung tissue (called trans-infection). In addition, while immune escape is dictated by mutations in the spike protein, coronaviral virions also incorporate M, N, and E structural proteins within the particle. In this paper, we explored how several structural facets of both the SARS-CoV-2 virion and the antiviral lectin Griffithsin can affect and attenuate the infectivity of SARS-CoV-2 pseudovirus. We found that Griffithsin was a better inhibitor of hACE2-mediated direct infection when the coronaviral M protein is present compared to when it is absent (possibly providing an explanation regarding why Griffithsin shows better inhibition against authentic SARS-CoV-2 as opposed to pseudotyped viruses, which generally do not contain M) and that Griffithsin was not an effective inhibitor of DC-SIGN-mediated trans-infection. Furthermore, we found that DC-SIGN appeared to mediate trans-infection exclusively via binding to the SARS-CoV-2 spike protein, with no significant effect observed when other viral proteins (M, N, and/or E) were present. These results provide etiological data that may help to direct the development of novel antiviral treatments, either by leveraging Griffithsin binding to the M protein as a novel strategy to prevent SARS-CoV-2 infection or by narrowing efforts to inhibit trans-infection to focus on DC-SIGN binding to SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Arjan Bains
- Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Kathryn Fischer
- Quantitative and Systems Biology, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Patricia J. LiWang
- Molecular Cell Biology, Health Sciences Research Institute, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| |
Collapse
|
3
|
Nangarlia A, Hassen FF, Canziani G, Bandi P, Talukder C, Zhang F, Krauth D, Gary EN, Weiner DB, Bieniasz P, Navas-Martin S, O'Keefe BR, Ang CG, Chaiken I. Irreversible Inactivation of SARS-CoV-2 by Lectin Engagement with Two Glycan Clusters on the Spike Protein. Biochemistry 2023; 62:2115-2127. [PMID: 37341186 PMCID: PMC10663058 DOI: 10.1021/acs.biochem.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Host cell infection by SARS-CoV-2, similar to that by HIV-1, is driven by a conformationally metastable and highly glycosylated surface entry protein complex, and infection by these viruses has been shown to be inhibited by the mannose-specific lectins cyanovirin-N (CV-N) and griffithsin (GRFT). We discovered in this study that CV-N not only inhibits SARS-CoV-2 infection but also leads to irreversibly inactivated pseudovirus particles. The irreversibility effect was revealed by the observation that pseudoviruses first treated with CV-N and then washed to remove all soluble lectin did not recover infectivity. The infection inhibition of SARS-CoV-2 pseudovirus mutants with single-site glycan mutations in spike suggested that two glycan clusters in S1 are important for both CV-N and GRFT inhibition: one cluster associated with the RBD (receptor binding domain) and the second with the S1/S2 cleavage site. We observed lectin antiviral effects with several SARS-CoV-2 pseudovirus variants, including the recently emerged omicron, as well as a fully infectious coronavirus, therein reflecting the breadth of lectin antiviral function and the potential for pan-coronavirus inactivation. Mechanistically, observations made in this work indicate that multivalent lectin interaction with S1 glycans is likely a driver of the lectin infection inhibition and irreversible inactivation effect and suggest the possibility that lectin inactivation is caused by an irreversible conformational effect on spike. Overall, lectins' irreversible inactivation of SARS-CoV-2, taken with their breadth of function, reflects the therapeutic potential of multivalent lectins targeting the vulnerable metastable spike before host cell encounter.
Collapse
Affiliation(s)
- Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Farah Fazloon Hassen
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Gabriela Canziani
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Praneeta Bandi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Choya Talukder
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Douglas Krauth
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ebony N Gary
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - David B Weiner
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- Department of Microbiology and Immunology, Center for Molecular Virology & Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Philadelphia, Pennsylvania 19102, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland 21702, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Charles G Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
4
|
Salampe M, Mamada SS, Evary YM, Mitra S, Bin Emran T, Harapan H, Nainu F, Simal-Gandara J. Promising Marine Natural Products for Tackling Viral Outbreaks: A Focus on Possible Targets and Structure-activity Relationship. Curr Top Med Chem 2023; 23:1352-1379. [PMID: 36045529 DOI: 10.2174/1568026622666220831114838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Recently, people worldwide have experienced several outbreaks caused by viruses that have attracted much interest globally, such as HIV, Zika, Ebola, and the one being faced, SARSCoV- 2 viruses. Unfortunately, the availability of drugs giving satisfying outcomes in curing those diseases is limited. Therefore, it is necessary to dig deeper to provide compounds that can tackle the causative viruses. Meanwhile, the efforts to explore marine natural products have been gaining great interest as the products have consistently shown several promising biological activities, including antiviral activity. This review summarizes some products extracted from marine organisms, such as seaweeds, seagrasses, sponges, and marine bacteria, reported in recent years to have potential antiviral activities tested through several methods. The mechanisms by which those compounds exert their antiviral effects are also described here, with several main mechanisms closely associated with the ability of the products to block the entry of the viruses into the host cells, inhibiting replication or transcription of the viral genetic material, and disturbing the assembly of viral components. In addition, the structure-activity relationship of the compounds is also highlighted by focusing on six groups of marine compounds, namely sulfated polysaccharides, phlorotannins, terpenoids, lectins, alkaloids, and flavonoids. In conclusion, due to their uniqueness compared to substances extracted from terrestrial sources, marine organisms provide abundant products having promising activities as antiviral agents that can be explored to tackle virus-caused outbreaks.
Collapse
Affiliation(s)
| | - Sukamto Salang Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Yayu Mulsiani Evary
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka ,1207, Bangladesh
| | - Harapan Harapan
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
5
|
Sun J, Zhao G, Bylund T, Lee M, Adibhatla S, Kwong PD, Chuang GY, Rawi R, Bewley CA. C3-Symmetric Aromatic Core of Griffithsin Is Essential for Potent Anti-HIV Activity. ACS Chem Biol 2022; 17:1450-1459. [PMID: 35537058 PMCID: PMC10091857 DOI: 10.1021/acschembio.1c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lectins, carbohydrate-binding proteins of nonimmune origin, bind to carbohydrates and glycan shields present on the surfaces of cells and viral spike proteins. Lectins thus hold great promise as therapeutic and diagnostic proteins, exemplified by their potent antiviral activities and the desire to engineer synthetic carbohydrate receptors based on lectin recognition principles. Here, we describe a new carbohydrate-binding architectural motif─namely, a C3-symmetric tyrosine-based aromatic core, present in the therapeutic lectin griffithsin (GRFT). By using structure-based amino acid substitutions, X-ray crystallography, molecular dynamics (MD) simulations, and HIV-1 neutralization assays, we show that this core is critical for potent (pM) antiviral activity and nanomolar binding to the glycan shield largely consisting of high mannose glycans. Crystal structures and MD simulations show that CH-π interactions stabilize the aromatic cluster to maintain the three pseudo-symmetric carbohydrate-binding sites, nonaromatic amino acid substitutions (Tyr to Ala) abrogate antiviral activity, and increasing the aromatic CH-π edge-to-centroid interface via a Tyr to Trp substitution yields a GRFT variant with improved potency and increased residence time of Man-9 observed in MD simulations. NMR titrations of a Tyr-to-Ala variant indicate that disruption of the aromatic prevents the intermolecular crosslinking between two equivalents of Man-9 and one carbohydrate-binding face observed in wild-type GRFT and known to be critical for picomolar potency of this lectin. This C3-symmetric aromatic core defines a new recognition motif for the design of carbohydrate receptors and suggests principles for engineering known lectins to have increased affinity and stability.
Collapse
Affiliation(s)
- Jiadong Sun
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Srikar Adibhatla
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Armario-Najera V, Blanco-Perera A, Shenoy SR, Sun Y, Marfil S, Muñoz-Basagoiti J, Perez-Zsolt D, Blanco J, Izquierdo-Useros N, Capell T, O'Keefe BR, Christou P. Physicochemical characterization of the recombinant lectin scytovirin and microbicidal activity of the SD1 domain produced in rice against HIV-1. PLANT CELL REPORTS 2022; 41:1013-1023. [PMID: 35178612 PMCID: PMC9034974 DOI: 10.1007/s00299-022-02834-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Rice-produced SD1 retains its physicochemical properties and provides efficient pre-exposure HIV-1 prophylaxis against infection in vitro. Scytovirin (SVN) is an HIV-neutralizing lectin that features two structural domains (SD1 and SD2) that bind to HIV-1 envelope glycoproteins. We expressed SD1 in rice seeds as a potential large-scale production platform and confirmed that rice-derived SD1 binds the HIV-1 envelope glycoprotein gp120 in vitro. We analyzed the thermodynamic properties of SD1 compared to full-size SVN (produced in E. coli) by isothermal titration and differential scanning calorimetry to characterize the specific interactions between SVN/SD1 and gp120 as well as to high-mannose oligosaccharides. SVN bound with moderate affinity (Kd = 1.5 µM) to recombinant gp120, with 2.5-fold weaker affinity to nonamannoside (Kd of 3.9 µM), and with tenfold weaker affinity to tetramannoside (13.8 µM). The melting temperature (Tm) of full-size SVN was 59.1 °C and the enthalpy of unfolding (ΔHunf) was 16.4 kcal/mol, but the Tm fell when SVN bound to nonamannoside (56.5 °C) and twice as much energy was required for unfolding (ΔHunf = 33.5 kcal/mol). Interestingly, binding to tetramannoside destabilized the structure of SD1 (ΔTm ~ 11.5 °C) and doubled the enthalpy of unfolding, suggesting a dimerization event. The similar melting phenomenon shared by SVN and SD1 in the presence of oligomannose confirmed their conserved oligosaccharide-binding mechanisms. SD1 expressed in transgenic rice was able to neutralize HIV-1 in vitro. SD1 expressed in rice, therefore, is suitable as a microbicide component.
Collapse
Affiliation(s)
- Victoria Armario-Najera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Amaya Blanco-Perera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Shilpa R Shenoy
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, 21702, USA
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Yi Sun
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | | | | | - Julià Blanco
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
- Chair of AIDS and Related Diseases, University of Vic-Central University of Catalonia, 08500, Vic, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA.
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Frederick, MD, USA.
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
7
|
Popović-Djordjević J, Quispe C, Giordo R, Kostić A, Katanić Stanković JS, Tsouh Fokou PV, Carbone K, Martorell M, Kumar M, Pintus G, Sharifi-Rad J, Docea AO, Calina D. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur J Med Chem 2022; 233:114217. [DOI: 10.1016/j.ejmech.2022.114217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 12/22/2022]
|
8
|
Barre A, Van Damme EJM, Klonjkowski B, Simplicien M, Sudor J, Benoist H, Rougé P. Legume Lectins with Different Specificities as Potential Glycan Probes for Pathogenic Enveloped Viruses. Cells 2022; 11:cells11030339. [PMID: 35159151 PMCID: PMC8834014 DOI: 10.3390/cells11030339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pathogenic enveloped viruses are covered with a glycan shield that provides a dual function: the glycan structures contribute to virus protection as well as host cell recognition. The three classical types of N-glycans, in particular complex glycans, high-mannose glycans, and hybrid glycans, together with some O-glycans, participate in the glycan shield of the Ebola virus, influenza virus, human cytomegalovirus, herpes virus, human immunodeficiency virus, Lassa virus, and MERS-CoV, SARS-CoV, and SARS-CoV-2, which are responsible for respiratory syndromes. The glycans are linked to glycoproteins that occur as metastable prefusion glycoproteins on the surface of infectious virions such as gp120 of HIV, hemagglutinin of influenza, or spike proteins of beta-coronaviruses. Plant lectins with different carbohydrate-binding specificities and, especially, mannose-specific lectins from the Vicieae tribe, such as pea lectin and lentil lectin, can be used as glycan probes for targeting the glycan shield because of their specific interaction with the α1,6-fucosylated core Man3GlcNAc2, which predominantly occurs in complex and hybrid glycans. Other plant lectins with Neu5Ac specificity or GalNAc/T/Tn specificity can also serve as potential glycan probes for the often sialylated complex glycans and truncated O-glycans, respectively, which are abundantly distributed in the glycan shield of enveloped viruses. The biomedical and therapeutical potential of plant lectins as antiviral drugs is discussed.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Bernard Klonjkowski
- UMR Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Jan Sudor
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
- Correspondence: ; Tel.: +33-069-552-0851
| |
Collapse
|
9
|
Algal and Cyanobacterial Lectins and Their Antimicrobial Properties. Mar Drugs 2021; 19:md19120687. [PMID: 34940686 PMCID: PMC8707200 DOI: 10.3390/md19120687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lectins are proteins with a remarkably high affinity and specificity for carbohydrates. Many organisms naturally produce them, including animals, plants, fungi, protists, bacteria, archaea, and viruses. The present report focuses on lectins produced by marine or freshwater organisms, in particular algae and cyanobacteria. We explore their structure, function, classification, and antimicrobial properties. Furthermore, we look at the expression of lectins in heterologous systems and the current research on the preclinical and clinical evaluation of these fascinating molecules. The further development of these molecules might positively impact human health, particularly the prevention or treatment of diseases caused by pathogens such as human immunodeficiency virus, influenza, and severe acute respiratory coronaviruses, among others.
Collapse
|
10
|
Nabeta HW, Kouokam JC, Lasnik AB, Fuqua JL, Palmer KE. Novel Antifungal Activity of Q-Griffithsin, a Broad-Spectrum Antiviral Lectin. Microbiol Spectr 2021; 9:e0095721. [PMID: 34494857 PMCID: PMC8557872 DOI: 10.1128/spectrum.00957-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
There is a rising global incidence of Candida strains with high levels of resistance to fluconazole and other antifungal drugs, hence the need for novel antifungal treatment strategies. Here, we describe the first evidence of antifungal activity of Q-Griffithsin (Q-GRFT), a recombinant oxidation-resistant variant of Griffithsin, a marine red algal lectin with broad-spectrum antiviral activity. We demonstrated that Q-GRFT binds to α-mannan in the Candida albicans cell wall. We also observed that Q-GRFT binding disrupted cell wall integrity and induced reactive oxidative species (ROS) formation, resulting in cell death. Furthermore, we showed that Q-GRFT inhibited the growth of other Candida species C. glabrata, C. parapsilosis, and C. krusei and had modest activity against some strains of multi- and pandrug-resistant C. auris. We found that Q-GRFT induced differential expression of numerous genes involved in response to cell stress, including those responsible for neutralizing ROS production and cell cycle regulation. In conclusion, this novel antifungal activity suggests that Q-GRFT is potentially an ideal drug candidate and represents an alternative strategy for the prevention and treatment of candidiasis. IMPORTANCE Fungal infections contribute to morbidity and mortality annually, and the number of organisms that are nonresponsive to the current available drug regimens are on the rise. There is a need to develop new agents to counter these infections and to add to the limited arsenal available to treat fungal infections. Our study has identified Q-GRFT, a broad-spectrum antiviral protein that harbors growth-inhibitory activity against several Candida strains, as a potential candidate for the prevention and treatment of fungal infections.
Collapse
Affiliation(s)
- Henry W. Nabeta
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Joseph C. Kouokam
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Amanda B. Lasnik
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Joshua L. Fuqua
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Kenneth E. Palmer
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Nascimento da Silva LC, Mendonça JSP, de Oliveira WF, Batista KLR, Zagmignan A, Viana IFT, Dos Santos Correia MT. Exploring lectin-glycan interactions to combat COVID-19: Lessons acquired from other enveloped viruses. Glycobiology 2021; 31:358-371. [PMID: 33094324 PMCID: PMC7665446 DOI: 10.1093/glycob/cwaa099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/30/2020] [Accepted: 09/26/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of a new human coronavirus (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from non-mammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of non-mammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlights the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.
Collapse
Affiliation(s)
- Luís Cláudio Nascimento da Silva
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil.,Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Juliana Silva Pereira Mendonça
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50.670-901, Brazil
| | - Karla Lílian Rodrigues Batista
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Adrielle Zagmignan
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | |
Collapse
|
12
|
Sangtani R, Ghosh A, Jha HC, Parmar HS, Bala K. Potential of algal metabolites for the development of broad-spectrum antiviral therapeutics: Possible implications in COVID-19 therapy. Phytother Res 2021; 35:2296-2316. [PMID: 33210447 PMCID: PMC7753317 DOI: 10.1002/ptr.6948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 01/25/2023]
Abstract
Covid-19 pandemic severely affected human health worldwide. Till October 19, 2020, total confirmed patients of COVID-19 are 39,944,882, whereas 1,111,998 people died across the globe. Till to date, we do not have any specific medicine and/or vaccine to treat COVID-19; however, research is still going on at war footing. So far vaccine development is concerned, here it is noteworthy that till now three major variants (named A, B, and C) of severe acute respiratory syndrome-coronavirus2 (SARS-CoV-2) have been recognized. Increased mutational rate and formation of new viral variants may increase the attrition rate of vaccines and/or candidate chemotherapies. Herbal remedies are chemical cocktails, thus open another avenue for effective antiviral therapeutics development. In fact, India is a large country, which is densely populated, but the overall severity of COVID-19 per million populations is lesser than any other country of the world. One of the major reasons for the aforesaid difference is the use of herbal remedies by the Government of India as a preventive measure for COVID-19. Therefore, the present review focuses on the epidemiology and molecular pathogenesis of COVID-19 and explores algal metabolites for their antiviral properties.
Collapse
Affiliation(s)
- Rimjhim Sangtani
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| | - Atreyee Ghosh
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| | - Hem C. Jha
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| | | | - Kiran Bala
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| |
Collapse
|
13
|
Barre A, Damme EJV, Simplicien M, Benoist H, Rougé P. Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Mar Drugs 2020; 18:E543. [PMID: 33138151 PMCID: PMC7693892 DOI: 10.3390/md18110543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Seaweed lectins, especially high-mannose-specific lectins from red algae, have been identified as potential antiviral agents that are capable of blocking the replication of various enveloped viruses like influenza virus, herpes virus, and HIV-1 in vitro. Their antiviral activity depends on the recognition of glycoprotein receptors on the surface of sensitive host cells-in particular, hemagglutinin for influenza virus or gp120 for HIV-1, which in turn triggers fusion events, allowing the entry of the viral genome into the cells and its subsequent replication. The diversity of glycans present on the S-glycoproteins forming the spikes covering the SARS-CoV-2 envelope, essentially complex type N-glycans and high-mannose type N-glycans, suggests that high-mannose-specific seaweed lectins are particularly well adapted as glycan probes for coronaviruses. This review presents a detailed study of the carbohydrate-binding specificity of high-mannose-specific seaweed lectins, demonstrating their potential to be used as specific glycan probes for coronaviruses, as well as the biomedical interest for both the detection and immobilization of SARS-CoV-2 to avoid shedding of the virus into the environment. The use of these seaweed lectins as replication blockers for SARS-CoV-2 is also discussed.
Collapse
Affiliation(s)
- Annick Barre
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Els J.M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium;
| | - Mathias Simplicien
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Hervé Benoist
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Pierre Rougé
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| |
Collapse
|
14
|
Decker JS, Menacho-Melgar R, Lynch MD. Low-Cost, Large-Scale Production of the Anti-viral Lectin Griffithsin. Front Bioeng Biotechnol 2020; 8:1020. [PMID: 32974328 PMCID: PMC7471252 DOI: 10.3389/fbioe.2020.01020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
Griffithsin, a broad-spectrum antiviral lectin, has potential to prevent and treat numerous viruses including HIV, HCV, HSV, SARS-CoV, and SARS-CoV-2. For these indications, the annual demand for Griffithsin could reach billions of doses and affordability is paramount. We report the lab-scale validation of a bioprocess that supports production volumes of >20 tons per year at a cost of goods sold below $3,500/kg. Recombinant expression in engineered E. coli enables Griffithsin titers ∼2.5 g/L. A single rapid precipitation step provides > 90% yield with 2-, 3-, and 4-log reductions in host cell proteins, endotoxin, and nucleic acids, respectively. Two polishing chromatography steps remove residual contaminants leading to pure, active Griffithsin. Compared to a conventional one this process shows lower costs and improved economies of scale. These results support the potential of biologics in very large-scale, cost-sensitive applications such as antivirals, and highlight the importance of bioprocess innovations in enabling these applications.
Collapse
Affiliation(s)
| | | | - Michael D. Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
15
|
Cao Y, Park SJ, Im W. A systematic analysis of protein-carbohydrate interactions in the Protein Data Bank. Glycobiology 2020; 31:126-136. [PMID: 32614943 DOI: 10.1093/glycob/cwaa062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Protein-carbohydrate interactions underlie essential biological processes. Elucidating the mechanism of protein-carbohydrate recognition is a prerequisite for modeling and optimizing protein-carbohydrate interactions, which will help in discovery of carbohydrate-derived therapeutics. In this work, we present a survey of a curated database consisting of 6,402 protein-carbohydrate complexes in the Protein Data Bank (PDB). We performed an all-against-all comparison of a subset of nonredundant binding sites, and the result indicates that the interaction pattern similarity is not completely relevant to the binding site structural similarity. Investigation of both binding site and ligand promiscuities reveals that the geometry of chemical feature points is more important than local backbone structure in determining protein-carbohydrate interactions. A further analysis on the frequency and geometry of atomic interactions shows that carbohydrate functional groups are not equally involved in binding interactions. Finally, we discuss the usefulness of protein-carbohydrate complexes in the PDB with acknowledgement that the carbohydrates in many structures are incomplete.
Collapse
Affiliation(s)
- Yiwei Cao
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Sciences and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Sciences and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Sciences and Engineering, Lehigh University, Bethlehem, PA 18015, USA.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| |
Collapse
|
16
|
Lo MK, Spengler JR, Krumpe LRH, Welch SR, Chattopadhyay A, Harmon JR, Coleman-McCray JD, Scholte FEM, Hotard AL, Fuqua JL, Rose JK, Nichol ST, Palmer KE, O'Keefe BR, Spiropoulou CF. Griffithsin Inhibits Nipah Virus Entry and Fusion and Can Protect Syrian Golden Hamsters From Lethal Nipah Virus Challenge. J Infect Dis 2020; 221:S480-S492. [PMID: 32037447 PMCID: PMC7199786 DOI: 10.1093/infdis/jiz630] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that causes fatal encephalitis and respiratory disease in humans. There is currently no approved therapeutic for human use against NiV infection. Griffithsin (GRFT) is high-mannose oligosaccharide binding lectin that has shown in vivo broad-spectrum activity against viruses, including severe acute respiratory syndrome coronavirus, human immunodeficiency virus 1, hepatitis C virus, and Japanese encephalitis virus. In this study, we evaluated the in vitro antiviral activities of GRFT and its synthetic trimeric tandemer (3mG) against NiV and other viruses from 4 virus families. The 3mG had comparatively greater potency than GRFT against NiV due to its enhanced ability to block NiV glycoprotein-induced syncytia formation. Our initial in vivo prophylactic evaluation of an oxidation-resistant GRFT (Q-GRFT) showed significant protection against lethal NiV challenge in Syrian golden hamsters. Our results warrant further development of Q-GRFT and 3mG as potential NiV therapeutics.
Collapse
Affiliation(s)
- Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lauren R H Krumpe
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Jessica R Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anne L Hotard
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joshua L Fuqua
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - John K Rose
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.,Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Johnson J, Flores MG, Rosa J, Han C, Salvi AM, DeMali KA, Jagnow JR, Sparks A, Haim H. The High Content of Fructose in Human Semen Competitively Inhibits Broad and Potent Antivirals That Target High-Mannose Glycans. J Virol 2020; 94:e01749-19. [PMID: 32102878 PMCID: PMC7163146 DOI: 10.1128/jvi.01749-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/17/2020] [Indexed: 11/20/2022] Open
Abstract
Semen is the primary transmission vehicle for various pathogenic viruses. Initial steps of transmission, including cell attachment and entry, likely occur in the presence of semen. However, the unstable nature of human seminal plasma and its toxic effects on cells in culture limit the ability to study in vitro virus infection and inhibition in this medium. We found that whole semen significantly reduces the potency of antibodies and microbicides that target glycans on the envelope glycoproteins (Envs) of HIV-1. The extraordinarily high concentration of the monosaccharide fructose in semen contributes significantly to the effect by competitively inhibiting the binding of ligands to α1,2-linked mannose residues on Env. Infection and inhibition in whole human seminal plasma are accurately mimicked by a stable synthetic simulant of seminal fluid that we formulated. Our findings indicate that, in addition to the protein content of biological secretions, their small-solute composition impacts the potency of antiviral microbicides and mucosal antibodies.IMPORTANCE Biological secretions allow viruses to spread between individuals. Each type of secretion has a unique composition of proteins, salts, and sugars, which can affect the infectivity potential of the virus and inhibition of this process. Here, we describe HIV-1 infection and inhibition in whole human seminal plasma and a synthetic simulant that we formulated. We discovered that the sugar fructose in semen decreases the activity of a broad and potent class of antiviral agents that target mannose sugars on the envelope protein of HIV-1. This effect of semen fructose likely reduces the efficacy of such inhibitors to prevent the sexual transmission of HIV-1. Our findings suggest that the preclinical evaluation of microbicides and vaccine-elicited antibodies will be improved by their in vitro assessment in synthetic formulations that simulate the effects of semen on HIV-1 infection and inhibition.
Collapse
Affiliation(s)
- Jacklyn Johnson
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Manuel G Flores
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John Rosa
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Changze Han
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Alicia M Salvi
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kris A DeMali
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jennifer R Jagnow
- In Vitro Fertilization and Reproductive Testing Laboratory, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Amy Sparks
- In Vitro Fertilization and Reproductive Testing Laboratory, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Fischer K, Nguyen K, LiWang PJ. Griffithsin Retains Anti-HIV-1 Potency with Changes in gp120 Glycosylation and Complements Broadly Neutralizing Antibodies PGT121 and PGT126. Antimicrob Agents Chemother 2019; 64:e01084-19. [PMID: 31611356 PMCID: PMC7187567 DOI: 10.1128/aac.01084-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/19/2019] [Indexed: 11/20/2022] Open
Abstract
Griffithsin (Grft) is an antiviral lectin that has been shown to potently inhibit HIV-1 by binding high-mannose N-linked glycosylation sites on HIV-1 gp120. A key factor for Grft potency is glycosylation at N295 of gp120, which is directly adjacent to N332, a target glycan for an entire class of broadly neutralizing antibodies (bNAbs). Here, we unify previous work on the importance of other glycans to Grft potency against HIV-1 and Grft's role in mediating the conformational change of gp120 by mutating nearly every glycosylation site in gp120. In addition to a significant loss of Grft activity by the removal of glycosylation at N295, glycan absence at N332 or N448 was found to have moderate effects on Grft potency. Interestingly, in the absence of N295, Grft effectiveness could be improved by a mutation that results in the glycan at N448 shifting to N446, indicating that the importance of individual glycans may be related to their effect on glycosylation density. Grft's ability to alter the structure of gp120, exposing the CD4 binding site, correlated with the presence of glycosylation at N295 only in clade B strains, not clade C strains. We further demonstrate that Grft can rescue the activity of the bNAbs PGT121 and PGT126 in the event of a loss or a shift of glycosylation at N332, where the bNAbs suffer a drastic loss of potency. Despite targeting the same region, Grft in combination with PGT121 and PGT126 produced additive effects. This indicates that Grft could be an important combinational therapeutic.
Collapse
Affiliation(s)
- Kathryn Fischer
- Molecular Cell Biology, University of California, Merced, Merced, California, USA
| | - Kimberly Nguyen
- Molecular Cell Biology, University of California, Merced, Merced, California, USA
| | - Patricia J LiWang
- Molecular Cell Biology, University of California, Merced, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, Merced, California, USA
| |
Collapse
|
19
|
Hamorsky KT, Kouokam JC, Dent MW, Grooms TN, Husk AS, Hume SD, Rogers KA, Villinger F, Morris MK, Hanson CV, Matoba N. Engineering of a Lectibody Targeting High-Mannose-Type Glycans of the HIV Envelope. Mol Ther 2019; 27:2038-2052. [PMID: 31471224 PMCID: PMC6839005 DOI: 10.1016/j.ymthe.2019.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022] Open
Abstract
High-mannose-type glycans (HMGs) are aberrantly enriched on HIV envelope glycoproteins. However, there is currently no drug selectively targeting HIV-associated HMGs. Here, we describe a novel HMG-targeting "lectibody," a recombinant Fc-fusion protein comprising human IgG1 Fc and a novel actinohivin lectin variant (Avaren) obtained by structure-guided modifications for improved overall surface charge properties (AvFc). AvFc was engineered and produced using a rapid and scalable plant-based transient overexpression system. The lectibody exhibited potent antiviral activity against HIV-1 groups M and O primary viruses, as well as HIV-2 and simian immunodeficiency virus (SIV) strains, without affecting normal human blood cells. Furthermore, the lectibody induced Fc-mediated cell killing activity against HIV-1-infected cells and selectively recognized SIVmac239-infected macaque mesenteric lymph node cells in vitro. AvFc showed an extended serum half-life in rats and rhesus macaques, while no discernible toxicity was observed upon repeated systemic dosing in mice. These results highlight AvFc's potential as a biotherapeutic targeting HIV-associated HMGs of cell-free virions, as well as productively infected cells, providing a foundation for new anti-HIV strategies. Efficient and cost-effective bioproduction in greenhouse facilities may open unique possibilities for further development of AvFc.
Collapse
Affiliation(s)
- Krystal Teasley Hamorsky
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Calvin Kouokam
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew W Dent
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Tiffany N Grooms
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Adam S Husk
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Kenneth A Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | | | - Carl V Hanson
- California Department of Public Health, Richmond, CA, USA
| | - Nobuyuki Matoba
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
20
|
Jan M, Upadhyay C, Hioe CE. HIV-1 Envelope Glycan Composition as a Key Determinant of Efficient Virus Transmission via DC-SIGN and Resistance to Inhibitory Lectins. iScience 2019; 21:413-427. [PMID: 31704652 PMCID: PMC6889591 DOI: 10.1016/j.isci.2019.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 02/04/2023] Open
Abstract
The HIV-1 envelope (Env) surface is shrouded with an assortment of oligomannose-, hybrid-, and complex-type glycans that enable virus interaction with carbohydrate-recognizing lectins. This study examined the importance of glycan heterogeneity for HIV-1 transmission through the trans-infection pathway by the host mannose-binding lectin DC-SIGN. A diversity of glycan content was observed among HIV-1 strains and associated with varying degrees of trans-infection via DC-SIGN and sensitivity to trans-infection blockage by antiviral lectins. When Env glycans were modified to display only the oligomannose type, DC-SIGN-mediated virus capture was enhanced; however, virus trans-infection was diminished because of increased degradation, which was alleviated by incorporation with hybrid-type glycans. Amino acid changes in the Env signal peptide (SP) modulated the Env glycan content, leading to alterations in DC-SIGN-dependent trans-infection and virus sensitivity to antiviral lectins. Hence, SP variation and glycosylation that confer varied types of oligosaccharides to HIV-1 Env are critical determinants for virus fitness and phenotypic diversity.
Collapse
Affiliation(s)
- Muzafar Jan
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Research Service, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Research Service, James J. Peters VA Medical Center, Bronx, NY 10468, USA,Corresponding author
| |
Collapse
|
21
|
Griffithsin, a Highly Potent Broad-Spectrum Antiviral Lectin from Red Algae: From Discovery to Clinical Application. Mar Drugs 2019; 17:md17100567. [PMID: 31590428 PMCID: PMC6835697 DOI: 10.3390/md17100567] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Virus entry into a susceptible host cell is the first step in the formation of all viral diseases. Controlling viral infections by disrupting viral entry is advantageous for antibody-mediated neutralization by the host’s immune system and as a preventive and therapeutic antiviral strategy. Recently, several plant-derived carbohydrate-binding proteins (lectins) have emerged as a new class of antiviral biologics by taking advantage of a unique glycosylation pattern only found on the surface of viruses. In particular, a red algae-derived griffithsin (GRFT) protein has demonstrated superior in vitro and in vivo antiviral activity with minimum host toxicity against a variety of clinically relevant, enveloped viruses. This review examines the structural characteristics of GRFT, focusing on its carbohydrate-binding capability. Its in vitro antiviral profiles against human immunodeficiency virus (HIV) are also discussed followed by a description of the results from a combination study using anti-HIV drugs. The results of several studies regarding its novel antiviral mechanism of action are provided in conjunction with an explanation of viral resistance profiles to GRFT. In addition, its in vitro and in vivo host toxicity profiles are summarized with its pharmacokinetic behavior using in vivo efficacy study results. Also, a large-scale production and formulation strategy, as well as a drug delivery strategy, for GRFT as a new class of broad-spectrum microbicides is discussed. Finally, results from two ongoing clinical studies examining GRFT’s effects on viruses are presented.
Collapse
|
22
|
Barre A, Simplicien M, Benoist H, Van Damme EJM, Rougé P. Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Mar Drugs 2019; 17:E440. [PMID: 31357490 PMCID: PMC6723950 DOI: 10.3390/md17080440] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
To date, a number of mannose-specific lectins have been isolated and characterized from seaweeds, especially from red algae. In fact, man-specific seaweed lectins consist of different structural scaffolds harboring a single or a few carbohydrate-binding sites which specifically recognize mannose-containing glycans. Depending on the structural scaffold, man-specific seaweed lectins belong to five distinct structurally-related lectin families, namely (1) the griffithsin lectin family (β-prism I scaffold); (2) the Oscillatoria agardhii agglutinin homolog (OAAH) lectin family (β-barrel scaffold); (3) the legume lectin-like lectin family (β-sandwich scaffold); (4) the Galanthus nivalis agglutinin (GNA)-like lectin family (β-prism II scaffold); and, (5) the MFP2-like lectin family (MFP2-like scaffold). Another algal lectin from Ulva pertusa, has been inferred to the methanol dehydrogenase related lectin family, because it displays a rather different GlcNAc-specificity. In spite of these structural discrepancies, all members from the five lectin families share a common ability to specifically recognize man-containing glycans and, especially, high-mannose type glycans. Because of their mannose-binding specificity, these lectins have been used as valuable tools for deciphering and characterizing the complex mannose-containing glycans from the glycocalyx covering both normal and transformed cells, and as diagnostic tools and therapeutic drugs that specifically recognize the altered high-mannose N-glycans occurring at the surface of various cancer cells. In addition to these anti-cancer properties, man-specific seaweed lectins have been widely used as potent human immunodeficiency virus (HIV-1)-inactivating proteins, due to their capacity to specifically interact with the envelope glycoprotein gp120 and prevent the virion infectivity of HIV-1 towards the host CD4+ T-lymphocyte cells in vitro.
Collapse
Affiliation(s)
- Annick Barre
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Mathias Simplicien
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Hervé Benoist
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Pierre Rougé
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
23
|
Pang Y, Gou M, Yang K, Lu J, Han Y, Teng H, Li C, Wang H, Liu C, Zhang K, Yang Y, Li Q. Crystal structure of a cytocidal protein from lamprey and its mechanism of action in the selective killing of cancer cells. Cell Commun Signal 2019; 17:54. [PMID: 31133022 PMCID: PMC6537362 DOI: 10.1186/s12964-019-0358-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background In previous research, we found that lamprey immune protein (LIP) possessed cytocidal activity against tumor cells, but the mechanism of the selective recognition and killing of tumor cells by LIP was not identified. Methods Superresolution microscopy, crystallographic structural analysis, glycan chip assay, SPR experiments, FACS assays, computational studies and mass spectrometric analysis firmly establish the mode of action of LIP, which involves dual selective recognition and efficient binding. Results We determined the overall crystallographic structure of LIP at a resolution of 2.25 Å. LIP exhibits an elongated structure with dimensions of 105 Å × 30 Å × 30 Å containing an N-terminal lectin module and a C-terminal aerolysin module. Moreover, the Phe209-Gly232 region is predicted to insert into the lipid bilayer to form a transmembrane β-barrel, in which the hydrophobic residues face the lipid bilayer, and the polar residues constitute the hydrophilic lumen of the pore. We found that LIP is able to kill various human cancer cells with minimal effects on normal cells. Notably, by coupling biochemical and computational studies, we propose a hypothetical mechanism that involves dual selective recognition and efficient binding dependent on both N-linked glycans on GPI-anchored proteins (GPI-APs) and sphingomyelin (SM) in lipid rafts. Furthermore, specific binding of the lectin module with biantennary bisialylated nonfucosylated N-glycan or sialyl Lewis X-containing glycan structures on GPI-APs triggers substantial conformational changes in the aerolysin module, which interacts with SM, ultimately resulting in the formation of a membrane-bound oligomer in lipid rafts. Conclusions LIP holds great potential for the application of a marine protein towards targeted cancer therapy and early diagnosis in humans. Electronic supplementary material The online version of this article (10.1186/s12964-019-0358-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Kai Yang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Hongming Teng
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Changzhi Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Haina Wang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Kejia Zhang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China.
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China. .,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
24
|
Garton M, MacKinnon SS, Malevanets A, Wodak SJ. Interplay of self-association and conformational flexibility in regulating protein function. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0190. [PMID: 29735742 DOI: 10.1098/rstb.2017.0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Many functional roles have been attributed to homodimers, the most common mode of protein self-association, notably in the regulation of enzymes, ion channels, transporters and transcription factors. Here we review findings that offer new insights into the different roles conformational flexibility plays in regulating homodimer function. Intertwined homodimers of two-domain proteins and their related family members display significant conformational flexibility, which translates into concerted motion between structural domains. This flexibility enables the corresponding proteins to regulate function across family members by modulating the spatial positions of key recognition surfaces of individual domains, to either maintain subunit interfaces, alter them or break them altogether, leading to a variety of functional consequences. Many proteins may exist as monomers but carry out their biological function as homodimers or higher-order oligomers. We present early evidence that in such systems homodimer formation primes the protein for its functional role. It does so by inducing elevated mobility in protein regions corresponding to the binding epitopes of functionally important ligands. In some systems this process acts as an allosteric response elicited by the self-association reaction itself. Our analysis furthermore suggests that the induced extra mobility likely facilitates ligand binding through the mechanism of conformational selection.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Michael Garton
- Department of Molecular Genetics, University of Toronto, The Donnelly Centre, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Stephen S MacKinnon
- Cyclica Inc., 18 King Street East, Suite 810, Toronto, Ontario M5C 1C4, Canada
| | - Anatoly Malevanets
- Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Shoshana J Wodak
- VIB Structural Biology research Centre, VUB, Building E Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
25
|
Zaitseva J, Vaknin D, Krebs C, Doroghazi J, Milam SL, Balasubramanian D, Duck NB, Freigang J. Structure-function characterization of an insecticidal protein GNIP1Aa, a member of an MACPF and β-tripod families. Proc Natl Acad Sci U S A 2019; 116:2897-2906. [PMID: 30728296 PMCID: PMC6386698 DOI: 10.1073/pnas.1815547116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The crystal structure of the Gram-negative insecticidal protein, GNIP1Aa, has been solved at 2.5-Å resolution. The protein consists of two structurally distinct domains, a MACPF (membrane attack complex/PerForin) and a previously uncharacterized type of domain. GNIP1Aa is unique in being a prokaryotic MACPF member to have both its structure and function identified. It was isolated from a Chromobacterium piscinae strain and is specifically toxic to Diabrotica virgifera virgifera larvae upon feeding. In members of the MACPF family, the MACPF domain has been shown to be important for protein oligomerization and formation of transmembrane pores, while accompanying domains define the specificity of the target of the toxicity. In GNIP1Aa the accompanying C-terminal domain has a unique fold composed of three pseudosymmetric subdomains with shared sequence similarity, a feature not obvious from the initial sequence examination. Our analysis places this domain into a protein family, named here β-tripod. Using mutagenesis, we identified functionally important regions in the β-tripod domain, which may be involved in target recognition.
Collapse
Affiliation(s)
| | | | | | | | - Sara L Milam
- Agricultural Solutions, BASF, Morrisville, NC 27560
| | | | | | | |
Collapse
|
26
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
27
|
Kim BM, Lotter‐Stark HCT, Rybicki EP, Chikwamba RK, Palmer KE. Characterization of the hypersensitive response-like cell death phenomenon induced by targeting antiviral lectin griffithsin to the secretory pathway. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1811-1821. [PMID: 29509998 PMCID: PMC6131415 DOI: 10.1111/pbi.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 05/23/2023]
Abstract
Griffithsin (GRFT) is an antiviral lectin, originally derived from a red alga, which is currently being investigated as a topical microbicide to prevent transmission of human immunodeficiency virus (HIV). Targeting GRFT to the apoplast for production in Nicotiana benthamiana resulted in necrotic symptoms associated with a hypersensitive response (HR)-like cell death, accompanied by H2 O2 generation and increased PR1 expression. Mannose-binding lectins surfactant protein D (SP-D), cyanovirin-N (CV-N) and human mannose-binding lectin (hMBL) also induce salicylic acid (SA)-dependent HR-like cell death in N. benthamiana, and this effect is mediated by the lectin's glycan binding activity. We found that secreted GRFT interacts with an endogenous glycoprotein, α-xylosidase (XYL1), which is involved in cell wall organization. The necrotic effect could be mitigated by overexpression of Arabidopsis XYL1, and by co-expression of SA-degrading enzyme NahG, providing strategies for enhancing expression of oligomannose-binding lectins in plants.
Collapse
Affiliation(s)
- Bo Min Kim
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | | | - Edward P. Rybicki
- Department of Molecular & Cell BiologyInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Rachel K. Chikwamba
- BiosciencesCouncil for Scientific and Industrial Research (CSIR)PretoriaSouth Africa
| | - Kenneth E. Palmer
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
28
|
Habibi P, Soccol CR, O’Keefe BR, Krumpe LR, Wilson J, de Macedo LLP, Faheem M, Dos Santos VO, Prado GS, Botelho MA, Lacombe S, Grossi-de-Sa MF. Gene-silencing suppressors for high-level production of the HIV-1 entry inhibitor griffithsin in Nicotiana benthamiana. Process Biochem 2018; 70:45-54. [PMID: 32288594 PMCID: PMC7108441 DOI: 10.1016/j.procbio.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 11/26/2022]
Abstract
The exploration of emerging host organisms for the economic and efficient production of protein microbicides against HIV is urgently needed in resource-poor areas worldwide. In this study, the production of the novel HIV entry inhibitor candidate, griffithsin (GRFT), was investigated using Nicotiana benthamiana as the expression platform based on a non-viral vector. To increase the yield of recombinant GRFT, the RNA silencing defense mechanism of N. benthamiana was abolished by using three gene silencing suppressors. A transient expression system was used by transferring the GRFT gene, which encodes 122 amino acids, under the control of the enhanced CaMV 35S promoter. The presence of correctly assembled GRFT in transgenic leaves was confirmed using immunoglobulin-specific sandwich ELISA. The data demonstrated that the use of three gene silencing suppressors allowed the highest accumulation of GRFT, with a yield of 400 μg g-1 fresh weight, and this amount was reduced to 287 μg g-1 after purification, representing a recovery of 71.75%. The analysis also showed that the ability of GRFT expressed in N. benthamiana to bind to glycoprotein 120 is close to that of the GRFT protein purified from E. coli. Whole-cell assays using purified GRFT showed that our purified GRFT was potently active against HIV. This study provides the first high-level production of the HIV-1 entry inhibitor griffithsin with a non-viral expression system and illustrates the robustness of the co-agroinfiltration expression system improved through the use of three gene silencing suppressors.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, USA
| | - Lauren R.H. Krumpe
- Basic Science Program, Leidos Biomedical Research, Inc., Molecular Targets Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | | | - Muhammad Faheem
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | | | - Guilherme Souza Prado
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | | | - Severine Lacombe
- IRD, CIRAD, Universite Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
- Catholic University of Brasília, Brasília-DF, Brazil
- Post Graduation Program in Biotechnology, University Potiguar, Natal, RN, Brazil
| |
Collapse
|
29
|
Tyo KM, Duan J, Kollipara P, Dela Cerna MVC, Lee D, Palmer KE, Steinbach-Rankins JM. pH-responsive delivery of Griffithsin from electrospun fibers. Eur J Pharm Biopharm 2018; 138:64-74. [PMID: 29698714 DOI: 10.1016/j.ejpb.2018.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Human immunodeficiency virus (HIV-1) affects over 36 million people globally. Current prevention strategies utilize antiretrovirals that have demonstrated protection, but result in antiviral resistance, adverse toxicity, and require frequent administration. A novel biologic, griffithsin (GRFT), has demonstrated outstanding safety and efficacy against laboratory and primary HIV isolates and against intravaginal murine herpes simplex virus 2 (HSV-2) challenge, making it a promising microbicide candidate. However, transient activity and instability remain concerns surrounding biologic delivery, particularly in the harsh environment of the female reproductive tract (FRT). Recently, electrospun fibers (EFs) have demonstrated promise for intravaginal delivery, with the potential to conserve active agent until release is needed. The goal of this study was to fabricate and characterize pH-responsive fibers comprised of poly(lactic-co-glycolic acid) (PLGA) or methoxypolyethylene glycol-b-PLGA (mPEG-PLGA) with varying ratios of poly(n-butyl acrylate-co-acrylic acid) (PBA-co-PAA), to selectively release GRFT under pH-conditions that mimic semen introduction. Fibers comprised of mPEG-PLGA:PBA-co-PAA (90:10 w/w) demonstrated high GRFT loading that was maintained within simulated vaginal fluid (SVF), and pH-dependent release upon exposure to buffered and SVF:simulated semen solutions. Moreover, GRFT fibers demonstrated potent in vitro efficacy against HIV-1 and safety in vaginal epithelial cells, suggesting their future potential for efficacious biologic delivery to the FRT.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Jinghua Duan
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Pravallika Kollipara
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Mark Vincent C Dela Cerna
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States.
| |
Collapse
|
30
|
Jan M, Upadhyay C, Alcami Pertejo J, Hioe CE, Arora SK. Heterogeneity in glycan composition on the surface of HIV-1 envelope determines virus sensitivity to lectins. PLoS One 2018; 13:e0194498. [PMID: 29579062 PMCID: PMC5868795 DOI: 10.1371/journal.pone.0194498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
Lectins that target N-glycans on the surface of HIV-1 envelope (Env) glycoprotein have the potential for use as antiviral agents. Although progress has been made in deciphering the molecular details of lectin and Env glycan interaction, further studies are needed to better understand Env glycan heterogeneity among HIV-1 isolates and its influence on virus-neutralization sensitivity to lectins. This study evaluated a panel of lectins with fine specificity for distinct oligosaccharides and assessed their ability to inhibit infection of HIV-1 viruses known to have differing sensitivity to anti-HIV Env antibodies. The results showed that HIV-1 isolates have different sensitivity to lectins specific for α1-3Man, α1-6Man, and α1-2Man binding lectins. Considering that lectins exclusively recognize the oligosaccharide components of virus Env, these data suggest that glycan heterogeneity among HIV-1 isolates may explain this differential sensitivity. To evaluate this further, chronic and acute viruses were produced in the presence of different glycosidase inhibitors to express more homogenous glycans. Viruses enriched for α1-2Man terminating Man5-9GlcNAc2 glycans became similarly sensitive to α1-2Man-binding lectins. The α1-3Man- and α1-6Man-binding lectins also were more potent against viruses expressing predominantly Man5GlcNAc2 and hybrid type glycans with terminal α1-3Man and α1-6Man. Furthermore, lectin-mediated inhibition was competitively alleviated by mannan and this effect was augmented by enrichment of mannose-type glycans on the virus. In addition, while Env of viruses enriched with mannose-type glycans were sensitive to Endo-H deglycosylation, Env of untreated viruses were partially resistant, indicating that HIV-1 Env glycans are heterogeneously comprised of complex, hybrid, and mannose types. Overall, our data demonstrate that HIV-1 isolates display differential sensitivity to lectins, in part due to the microheterogeneity of N-linked glycans expressed on the surface of the virus Env glycoprotein.
Collapse
Affiliation(s)
- Muzafar Jan
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Chitra Upadhyay
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - José Alcami Pertejo
- Imunopatologia Del SIDA, Centro Nacional De Microbiologia, Instituo De Salud Carlos III, Madrid, Spain
| | - Catarina E. Hioe
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Sunil K. Arora
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
31
|
Singh RS, Walia AK. Lectins from red algae and their biomedical potential. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:1833-1858. [PMID: 32214665 PMCID: PMC7088393 DOI: 10.1007/s10811-017-1338-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 05/08/2023]
Abstract
Lectins are unique proteins or glycoproteins of non-immune origin that bind specifically to carbohydrates. They recognise and interact reversibly to either free carbohydrates or glycoconjugates, without modifying their structure. Lectins are highly diverse and widely distributed in nature and have been extensively reported from various red algae species. Numerous red algae species have been reported to possess lectins having carbohydrate specificity towards complex glycoproteins or high-mannose N-glycans. These lectin-glycan interactions further trigger many biochemical responses which lead to their extensive use as valuable tools in biomedical research. Thus, owing to their exceptional glycan recognition property, red algae lectins are potential candidate for inhibition of various viral diseases. Hence, the present report integrates existing information on the red algae lectins, their carbohydrate specificity, and characteristics of purified lectins. Further, the review also reports the current state of research into their anti-viral activity against various enveloped viruses such as HIV, hepatitis, influenza, encephalitis, coronavirus and herpes simplex virus and other biomedical activities such as anti-cancer, anti-microbial, anti-inflammatory, anti-nociceptive and acaricidal activities.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| | - Amandeep Kaur Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| |
Collapse
|
32
|
Vuong HR, Tyo KM, Steinbach-Rankins JM. Fabrication and Characterization of Griffithsin-modified Fiber Scaffolds for Prevention of Sexually Transmitted Infections. J Vis Exp 2017. [PMID: 29155732 DOI: 10.3791/56492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Electrospun fibers (EFs) have been widely used in a variety of therapeutic applications; however, they have only recently been applied as a technology to prevent and treat sexually transmitted infections (STIs). Moreover, many EF technologies focus on encapsulating the active agent, relative to utilizing the surface to impart biofunctionality. Here we describe a method to fabricate and surface-modify poly(lactic-co-glycolic) acid (PLGA) electrospun fibers, with the potent antiviral lectin Griffithsin (GRFT). PLGA is an FDA-approved polymer that has been widely used in drug delivery due to its outstanding chemical and biocompatible properties. GRFT is a natural, potent, and safe lectin that possesses broad activity against numerous viruses including human immunodeficiency virus type 1 (HIV-1). When combined, GRFT-modified fibers have demonstrated potent inactivation of HIV-1 in vitro. This manuscript describes the methods to fabricate and characterize GRFT-modified EFs. First, PLGA is electrospun to create a fiber scaffold. Fibers are subsequently surface-modified with GRFT using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS)chemistry. Scanning electron microscopy (SEM) was used to assess the size and morphology of surface-modified formulations. Additionally, a gp120 or hemagglutinin (HA)-based ELISA may be used to quantify the amount of GRFT conjugated to, as well as GRFT desorption from the fiber surface. This protocol can be more widely applied to fabricate fibers that are surface-modified with a variety of different proteins.
Collapse
Affiliation(s)
- Hung R Vuong
- Department of Chemistry, University of Louisville
| | - Kevin M Tyo
- Department of Pharmacology and Toxicology, University of Louisville; Center for Predictive Medicine, University of Louisville
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, University of Louisville; Center for Predictive Medicine, University of Louisville; Department of Microbiology and Immunology, University of Louisville; Department of Bioengineering, University of Louisville;
| |
Collapse
|
33
|
Lusvarghi S, Ghirlando R, Davison JR, Bewley CA. Chemical and Biophysical Approaches for Complete Characterization of Lectin-Carbohydrate Interactions. Methods Enzymol 2017; 598:3-35. [PMID: 29306440 PMCID: PMC6141027 DOI: 10.1016/bs.mie.2017.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lectins are carbohydrate-binding proteins unrelated to antibodies or enzymes. While carbohydrates are present on all cells and pathogens, lectins are also ubiquitous in nature and their interactions with glycans mediate countless biological and physical interactions. Due to the multivalency found in both lectins and their glycan-binding partners, complete characterization of these interactions can be complex and typically requires the use of multiple complimentary techniques. In this chapter, we provide a general strategy and protocols for chemical and biophysical approaches that can be used to characterize carbohydrate-mediated interactions in the context of individual oligosaccharides, as part of a glycoprotein, and ending with visualization of interactions with whole virions.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
34
|
Mitchell CA, Ramessar K, O'Keefe BR. Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res 2017; 142:37-54. [PMID: 28322922 PMCID: PMC5414728 DOI: 10.1016/j.antiviral.2017.03.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 01/27/2023]
Abstract
Many natural lectins have been reported to have antiviral activity. As some of these have been put forward as potential development candidates for preventing or treating viral infections, we have set out in this review to survey the literature on antiviral lectins. The review groups lectins by structural class and class of source organism we also detail their carbohydrate specificity and their reported antiviral activities. The review concludes with a brief discussion of several of the pertinent hurdles that heterologous proteins must clear to be useful clinical candidates and cites examples where such studies have been reported for antiviral lectins. Though the clearest path currently being followed is the use of antiviral lectins as anti-HIV microbicides via topical mucosal administration, some investigators have also found systemic efficacy against acute infections following subcutaneous administration.
Collapse
Affiliation(s)
- Carter A Mitchell
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702-1201, USA
| | - Koreen Ramessar
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702-1201, USA
| | - Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702-1201, USA.
| |
Collapse
|
35
|
Hopper JTS, Ambrose S, Grant OC, Krumm SA, Allison TM, Degiacomi MT, Tully MD, Pritchard LK, Ozorowski G, Ward AB, Crispin M, Doores KJ, Woods RJ, Benesch JLP, Robinson CV, Struwe WB. The Tetrameric Plant Lectin BanLec Neutralizes HIV through Bidentate Binding to Specific Viral Glycans. Structure 2017; 25:773-782.e5. [PMID: 28434916 DOI: 10.1016/j.str.2017.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/23/2017] [Indexed: 11/30/2022]
Abstract
Select lectins have powerful anti-viral properties that effectively neutralize HIV-1 by targeting the dense glycan shield on the virus. Here, we reveal the mechanism by which one of the most potent lectins, BanLec, achieves its inhibition. We identify that BanLec recognizes a subset of high-mannose glycans via bidentate interactions spanning the two binding sites present on each BanLec monomer that were previously considered separate carbohydrate recognition domains. We show that both sites are required for high-affinity glycan binding and virus neutralization. Unexpectedly we find that BanLec adopts a tetrameric stoichiometry in solution whereby the glycan-binding sites are positioned to optimally target glycosylated viral spikes. The tetrameric architecture, together with bidentate binding to individual glycans, leads to layers of multivalency that drive viral neutralization through enhanced avidity effects. These structural insights will prove useful in engineering successful lectin therapeutics targeting the dense glycan shield of HIV.
Collapse
Affiliation(s)
- Jonathan T S Hopper
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Stephen Ambrose
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Oliver C Grant
- Department of Biochemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Stefanie A Krumm
- Department of Infectious Diseases, King's College London, London SE1 9RT, UK
| | - Timothy M Allison
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Matteo T Degiacomi
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Mark D Tully
- Diamond Light Source B21, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Laura K Pritchard
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, CHAVI-ID, IAVI Neutralizing Antibody Center & Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, CHAVI-ID, IAVI Neutralizing Antibody Center & Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK
| | - Katie J Doores
- Department of Infectious Diseases, King's College London, London SE1 9RT, UK
| | - Robert J Woods
- Department of Biochemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Justin L P Benesch
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Carol V Robinson
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Weston B Struwe
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK; Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
36
|
Barton C, Kouokam JC, Hurst H, Palmer KE. Pharmacokinetics of the Antiviral Lectin Griffithsin Administered by Different Routes Indicates Multiple Potential Uses. Viruses 2016; 8:v8120331. [PMID: 27999325 PMCID: PMC5192392 DOI: 10.3390/v8120331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
Griffithsin (GRFT) is a red alga-derived lectin with demonstrated broad spectrum antiviral activity against enveloped viruses, including severe acute respiratory syndrome-Coronavirus (SARS-CoV), Japanese encephalitis virus (JEV), hepatitis C virus (HCV), and herpes simplex virus-2 (HSV-2). However, its pharmacokinetic profile remains largely undefined. Here, Sprague Dawley rats were administered a single dose of GRFT at 10 or 20 mg/kg by intravenous, oral, and subcutaneous routes, respectively, and serum GRFT levels were measured at select time points. In addition, the potential for systemic accumulation after oral dosing was assessed in rats after 10 daily treatments with GRFT (20 or 40 mg/kg). We found that parenterally-administered GRFT in rats displayed a complex elimination profile, which varied according to administration routes. However, GRFT was not orally bioavailable, even after chronic treatment. Nonetheless, active GRFT capable of neutralizing HIV-Env pseudoviruses was detected in rat fecal extracts after chronic oral dosing. These findings support further evaluation of GRFT for pre-exposure prophylaxis against emerging epidemics for which specific therapeutics are not available, including systemic and enteric infections caused by susceptible enveloped viruses. In addition, GRFT should be considered for antiviral therapy and the prevention of rectal transmission of HIV-1 and other susceptible viruses.
Collapse
Affiliation(s)
- Christopher Barton
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - J Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Harrell Hurst
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
37
|
Grooms TN, Vuong HR, Tyo KM, Malik DA, Sims LB, Whittington CP, Palmer KE, Matoba N, Steinbach-Rankins JM. Griffithsin-Modified Electrospun Fibers as a Delivery Scaffold To Prevent HIV Infection. Antimicrob Agents Chemother 2016; 60:6518-6531. [PMID: 27550363 PMCID: PMC5075055 DOI: 10.1128/aac.00956-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/07/2016] [Indexed: 01/19/2023] Open
Abstract
Despite current prophylactic strategies, sexually transmitted infections (STIs) remain significant contributors to global health challenges, spurring the development of new multipurpose delivery technologies to protect individuals from and treat virus infections. However, there are few methods currently available to prevent and no method to date that cures human immunodeficiency virus (HIV) infection or combinations of STIs. While current oral and topical preexposure prophylaxes have protected against HIV infection, they have primarily relied on antiretrovirals (ARVs) to inhibit infection. Yet continued challenges with ARVs include user adherence to daily treatment regimens and the potential toxicity and antiviral resistance associated with chronic use. The integration of new biological agents may avert some of these adverse effects while also providing new mechanisms to prevent infection. Of the biologic-based antivirals, griffithsin (GRFT) has demonstrated potent inhibition of HIV-1 (and a multitude of other viruses) by adhering to and inactivating HIV-1 immediately upon contact. In parallel with the development of GRFT, electrospun fibers (EFs) have emerged as a promising platform for the delivery of agents active against HIV infection. In the study described here, our goal was to extend the mechanistic diversity of active agents and electrospun fibers by incorporating the biologic GRFT on the EF surface rather than within the EFs to inactivate HIV prior to cellular entry. We fabricated and characterized GRFT-modified EFs (GRFT-EFs) with different surface modification densities of GRFT and demonstrated their safety and efficacy against HIV-1 infection in vitro We believe that EFs are a unique platform that may be enhanced by incorporation of additional antiviral agents to prevent STIs via multiple mechanisms.
Collapse
Affiliation(s)
- Tiffany N Grooms
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Hung R Vuong
- Department of Biochemistry, University of Louisville, Louisville, Kentucky, USA
| | - Kevin M Tyo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Danial A Malik
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lee B Sims
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | | | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Owensboro Cancer Research Program at University of Louisville James Graham Brown Cancer Center, Owensboro, Kentucky, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Owensboro Cancer Research Program at University of Louisville James Graham Brown Cancer Center, Owensboro, Kentucky, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
38
|
Lusvarghi S, Bewley CA. Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential. Viruses 2016; 8:v8100296. [PMID: 27783038 PMCID: PMC5086628 DOI: 10.3390/v8100296] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 01/03/2023] Open
Abstract
Griffithsin (GRFT), an algae-derived lectin, is one of the most potent viral entry inhibitors discovered to date. It is currently being developed as a microbicide with broad-spectrum activity against several enveloped viruses. GRFT can inhibit human immunodeficiency virus (HIV) infection at picomolar concentrations, surpassing the ability of most anti-HIV agents. The potential to inhibit other viruses as well as parasites has also been demonstrated. Griffithsin's antiviral activity stems from its ability to bind terminal mannoses present in high-mannose oligosaccharides and crosslink these glycans on the surface of the viral envelope glycoproteins. Here, we review structural and biochemical studies that established mode of action and facilitated construction of GRFT analogs, mechanisms that may lead to resistance, and in vitro and pre-clinical results that support the therapeutic potential of this lectin.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res 2016; 133:1-8. [PMID: 27424494 PMCID: PMC7113895 DOI: 10.1016/j.antiviral.2016.07.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 01/15/2023]
Abstract
Highly pathogenic human coronaviruses associated with a severe respiratory syndrome, including Middle East respiratory syndrome coronavirus (MERS-CoV), have recently emerged. The MERS-CoV epidemic started in 2012 and is still ongoing, with a mortality rate of approximately 35%. No vaccine is available against MERS-CoV and therapeutic options for MERS-CoV infections are limited to palliative and supportive care. A search for specific antiviral treatments is urgently needed. Coronaviruses are enveloped viruses, with the spike proteins present on their surface responsible for virus entry into the target cell. Lectins are attractive anti-coronavirus candidates because of the highly glycosylated nature of the spike protein. We tested the antiviral effect of griffithsin (GRFT), a lectin isolated from the red marine alga Griffithsia sp. against MERS-CoV infection. Our results demonstrate that while displaying no significant cytotoxicity, griffithsin is a potent inhibitor of MERS-CoV infection. Griffithsin also inhibits entry into host cells of particles pseudotyped with the MERS-CoV spike protein, suggesting that griffithsin inhibits spike protein function during entry. Spike proteins have a dual function during entry, they mediate binding to the host cell surface and also the fusion of the viral envelope with host cell membrane. Time course experiments show that griffithsin inhibits MERS-CoV infection at the binding step. In conclusion, we identify griffithsin as a potent inhibitor of MERS-CoV infection at the entry step. We analyze the anti-MERS-CoV potential of the lectin griffithsin. Griffithsin inhibits MERS-CoV infection at the entry step. Griffithsin inhibits binding of MERS-CoV to the cell surface potentially by interacting with spike protein glycans.
Collapse
|
40
|
Vamvaka E, Arcalis E, Ramessar K, Evans A, O'Keefe BR, Shattock RJ, Medina V, Stöger E, Christou P, Capell T. Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1427-37. [PMID: 26800650 PMCID: PMC4865440 DOI: 10.1111/pbi.12507] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/21/2015] [Accepted: 11/06/2015] [Indexed: 05/17/2023]
Abstract
Protein microbicides containing neutralizing antibodies and antiviral lectins may help to reduce the rate of infection with human immunodeficiency virus (HIV) if it is possible to manufacture the components in large quantities at a cost affordable in HIV-endemic regions such as sub-Saharan Africa. We expressed the antiviral lectin griffithsin (GRFT), which shows potent neutralizing activity against HIV, in the endosperm of transgenic rice plants (Oryza sativa), to determine whether rice can be used to produce inexpensive GRFT as a microbicide ingredient. The yield of (OS) GRFT in the best-performing plants was 223 μg/g dry seed weight. We also established a one-step purification protocol, achieving a recovery of 74% and a purity of 80%, which potentially could be developed into a larger-scale process to facilitate inexpensive downstream processing. (OS) GRFT bound to HIV glycans with similar efficiency to GRFT produced in Escherichia coli. Whole-cell assays using purified (OS) GRFT and infectivity assays using crude extracts of transgenic rice endosperm confirmed that both crude and pure (OS) GRFT showed potent activity against HIV and the crude extracts were not toxic towards human cell lines, suggesting they could be administered as a microbicide with only minimal processing. A freedom-to-operate analysis confirmed that GRFT produced in rice is suitable for commercial development, and an economic evaluation suggested that 1.8 kg/ha of pure GRFT could be produced from rice seeds. Our data therefore indicate that rice could be developed as an inexpensive production platform for GRFT as a microbicide component.
Collapse
Affiliation(s)
- Evangelia Vamvaka
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Elsa Arcalis
- Department for Applied Genetics and Cell Biology, Molecular Plant Physiology and Crop Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Koreen Ramessar
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Abbey Evans
- Department of Medicine, Imperial College London, Norfolk Place, London, UK
| | - Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Frederick, MD, USA
| | - Robin J Shattock
- Department of Medicine, Imperial College London, Norfolk Place, London, UK
| | - Vicente Medina
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Eva Stöger
- Department for Applied Genetics and Cell Biology, Molecular Plant Physiology and Crop Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| |
Collapse
|
41
|
Jia N, Liu N, Cheng W, Jiang YL, Sun H, Chen LL, Peng J, Zhang Y, Ding YH, Zhang ZH, Wang X, Cai G, Wang J, Dong MQ, Zhang Z, Wu H, Wang HW, Chen Y, Zhou CZ. Structural basis for receptor recognition and pore formation of a zebrafish aerolysin-like protein. EMBO Rep 2015; 17:235-48. [PMID: 26711430 DOI: 10.15252/embr.201540851] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022] Open
Abstract
Various aerolysin-like pore-forming proteins have been identified from bacteria to vertebrates. However, the mechanism of receptor recognition and/or pore formation of the eukaryotic members remains unknown. Here, we present the first crystal and electron microscopy structures of a vertebrate aerolysin-like protein from Danio rerio, termed Dln1, before and after pore formation. Each subunit of Dln1 dimer comprises a β-prism lectin module followed by an aerolysin module. Specific binding of the lectin module toward high-mannose glycans triggers drastic conformational changes of the aerolysin module in a pH-dependent manner, ultimately resulting in the formation of a membrane-bound octameric pore. Structural analyses combined with computational simulations and biochemical assays suggest a pore-forming process with an activation mechanism distinct from the previously characterized bacterial members. Moreover, Dln1 and its homologs are ubiquitously distributed in bony fishes and lamprey, suggesting a novel fish-specific defense molecule.
Collapse
Affiliation(s)
- Ning Jia
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wang Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lan-Lan Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Junhui Peng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yonghui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yue-He Ding
- National Institute of Biological Sciences, Beijing, China
| | - Zhi-Hui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuejuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Gang Cai
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hui Wu
- Departments of Microbiology and Pediatric Dentistry, Schools of Dentistry and Medicine University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
42
|
Sato Y. [Structure and Function of a Novel Class of High Mannose-binding Proteins with Anti-viral or Anti-tumor Activity]. YAKUGAKU ZASSHI 2015; 135:1281-9. [PMID: 26521877 DOI: 10.1248/yakushi.15-00217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recently discovered high mannose (HM)-binding lectin family in lower organisms such as bacteria, cyanobacteria, and marine algae represents a novel class of anti-viral or anti-tumor compounds. This lectin family shows unique carbohydrate binding properties with exclusive high specificity for HM glycans with core trisaccharide comprising Manα(1-3)Manα(1-6)Man at the D2 arm. At low nanomolar levels, these lectins exhibit potent antiviral activity against HIV and influenza viruses through the recognition of HM glycans on virus spike glycoproteins. In addition, some of these lectins, such as bacterial PFL, show cytotoxicity for various cancer cells at low micromolar levels. Cell surface molecules to which PFL bound were identified as integrin alpha 2 and epidermal growth factor receptor (EGFR) by peptide mass finger printing with MALDI-TOF MS. Upon PFL binding, these molecules were rapidly internalized to cytoplasm. EGFR was time dependently degraded in the presence of PFL, and this process was largely responsible for autophagy. Furthermore, PFL sensitizes cancer cells to the EGFR kinase inhibitor, gefitinib. In vivo experiments showed that intratumoral injection of PFL significantly inhibited the growth of tumors in nude mice. PFL-mediated down regulation of integrin/EGFR ultimately contributed to the inhibition of tumor growth both in vitro and in vivo. Thus, the novel anti-cancer mechanism of PFL suggests that this lectin is potentially useful as an anti-cancer drug or as an adjuvant for other drugs. This class of proteins will likely have beneficial impact as a tool for biochemical and biomedical research because of its unique carbohydrate specificity and various biological activities.
Collapse
Affiliation(s)
- Yuichiro Sato
- Department of Medical Pharmacy, Faculty of Pharmacy, Yasuda Women's University
| |
Collapse
|
43
|
Fuqua JL, Hamorsky K, Khalsa G, Matoba N, Palmer KE. Bulk production of the antiviral lectin griffithsin. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1160-8. [PMID: 26176205 PMCID: PMC5016770 DOI: 10.1111/pbi.12433] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 05/13/2023]
Abstract
Application of plant-based protein expression systems for bulk production of recombinant protein pharmaceuticals is building momentum. There are considerable regulatory challenges to consider in commercialization of plant-made pharmaceuticals (PMPs), some of which are inherent to plant-production systems and others that are common with other production systems, but are new to PMPs because of the youth of the industry. In this review, we discuss our recent and ongoing experience with bulk production of the HIV microbicide candidate, griffithsin (GRFT), utilizing plant-based transient protein expression, with specific focus on areas relevant to commercial manufacturing of bulk GRFT active pharmaceutical ingredient (API). Analytical programs have been developed for the qualification and monitoring of both the expression vector system and the API detailing our experience and plans for each. Monitoring postpurification protein modifications are discussed in relation to stability and safety programs. Expression, processing and analytics programs are associated with increased manufacturing costs in current good manufacturing practice (cGMP) production because of the required qualification testing. The impact of these costs on the overall cost of goods is particularly relevant to GRFT manufacturing because GRFT, as an HIV microbicide, is most needed in populations at high risk for HIV exposure in resource-poor countries. Consequently, GRFT for microbicide applications is a very cost-sensitive recombinant PMP. We have therefore emphasized maintaining a low cost of goods. We provide a review of the literature on the economics of PMPs with various expression systems and how they may impact production costs and complexity.
Collapse
Affiliation(s)
- Joshua L Fuqua
- Owensboro Cancer Research Program, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Krystal Hamorsky
- Owensboro Cancer Research Program, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Nobuyuki Matoba
- Owensboro Cancer Research Program, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kenneth E Palmer
- Owensboro Cancer Research Program, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
44
|
Griffithsin and Carrageenan Combination To Target Herpes Simplex Virus 2 and Human Papillomavirus. Antimicrob Agents Chemother 2015; 59:7290-8. [PMID: 26369967 PMCID: PMC4649164 DOI: 10.1128/aac.01816-15] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022] Open
Abstract
Extensive preclinical evaluation of griffithsin (GRFT) has identified this lectin to be a promising broad-spectrum microbicide. We set out to explore the antiviral properties of a GRFT and carrageenan (CG) combination product against herpes simplex virus 2 (HSV-2) and human papillomavirus (HPV) as well as determine the mechanism of action (MOA) of GRFT against both viruses. We performed the experiments in different cell lines, using time-of-addition and temperature dependence experiments to differentiate inhibition of viral attachment from entry and viral receptor internalization. Surface plasmon resonance (SPR) was used to assess GRFT binding to viral glycoproteins, and immunoprecipitation and immunohistochemistry were used to identify the specific glycoprotein involved. We determined the antiviral activity of GRFT against HSV-2 to be a 50% effective concentration (EC50) of 230 nM and provide the first evidence that GRFT has moderate anti-HPV activity (EC50 = 0.429 to 1.39 μM). GRFT blocks the entry of HSV-2 and HPV into target cells but not the adsorption of HSV-2 and HPV onto target cells. The results of the SPR, immunoprecipitation, and immunohistochemistry analyses of HSV-2 combined suggest that GRFT may block viral entry by binding to HSV-2 glycoprotein D. Cell-based assays suggest anti-HPV activity through α6 integrin internalization. The GRFT-CG combination product but not GRFT or CG alone reduced HSV-2 vaginal infection in mice when given an hour before challenge (P = 0.0352). While GRFT significantly protected mice against vaginal HPV infection when dosed during and after HPV16 pseudovirus challenge (P < 0.026), greater CG-mediated protection was afforded by the GRFT-CG combination for up to 8 h (P < 0.0022). These findings support the development of the GRFT-CG combination as a broad-spectrum microbicide.
Collapse
|
45
|
Sato Y, Morimoto K, Kubo T, Sakaguchi T, Nishizono A, Hirayama M, Hori K. Entry Inhibition of Influenza Viruses with High Mannose Binding Lectin ESA-2 from the Red Alga Eucheuma serra through the Recognition of Viral Hemagglutinin. Mar Drugs 2015; 13:3454-65. [PMID: 26035023 PMCID: PMC4483639 DOI: 10.3390/md13063454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 11/16/2022] Open
Abstract
Lectin sensitivity of the recent pandemic influenza A virus (H1N1-2009) was screened for 12 lectins with various carbohydrate specificity by a neutral red dye uptake assay with MDCK cells. Among them, a high mannose (HM)-binding anti-HIV lectin, ESA-2 from the red alga Eucheuma serra, showed the highest inhibition against infection with an EC50 of 12.4 nM. Moreover, ESA-2 exhibited a wide range of antiviral spectrum against various influenza strains with EC50s of pico molar to low nanomolar levels. Besides ESA-2, HM-binding plant lectin ConA, fucose-binding lectins such as fungal AOL from Aspergillus oryzae and AAL from Aleuria aurantia were active against H1N1-2009, but the potency of inhibition was of less magnitude compared with ESA-2. Direct interaction between ESA-2 and a viral envelope glycoprotein, hemagglutinin (HA), was demonstrated by ELISA assay. This interaction was effectively suppressed by glycoproteins bearing HM-glycans, indicating that ESA-2 binds to the HA of influenza virus through HM-glycans. Upon treatment with ESA-2, no viral antigens were detected in the host cells, indicating that ESA-2 inhibited the initial steps of virus entry into the cells. ESA-2 would thus be useful as a novel microbicide to prevent penetration of viruses such as HIV and influenza viruses to the host cells.
Collapse
Affiliation(s)
- Yuichiro Sato
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-Ku, Hiroshima 731-0153, Japan.
| | - Kinjiro Morimoto
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-Ku, Hiroshima 731-0153, Japan.
| | - Takanori Kubo
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-Ku, Hiroshima 731-0153, Japan.
| | - Takemasa Sakaguchi
- Department of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan.
| | - Akira Nishizono
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan.
| | - Makoto Hirayama
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan.
| | - Kanji Hori
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
46
|
Lusvarghi S, Ghirlando R, Wong CH, Bewley CA. Glycopeptide Mimetics Recapitulate High-Mannose-Type Oligosaccharide Binding and Function. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Lusvarghi S, Ghirlando R, Wong CH, Bewley CA. Glycopeptide mimetics recapitulate high-mannose-type oligosaccharide binding and function. Angew Chem Int Ed Engl 2015; 54:5603-8. [PMID: 25776945 DOI: 10.1002/anie.201500157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 11/09/2022]
Abstract
High-mannose-type glycans (HMTGs) decorating viral spike proteins are targets for virus neutralization. For carbohydrate-binding proteins, multivalency is important for high avidity binding and potent inhibition. To define the chemical determinants controlling multivalent interactions we designed glycopeptide HMTG mimetics with systematically varied mannose valency and spacing. Using the potent antiviral lectin griffithsin (GRFT) as a model, we identified by NMR spectroscopy, SPR, analytical ultracentrifugation, and microcalorimetry glycopeptides that fully recapitulate the specificity and kinetics of binding to Man9 GlcNAc2 Asn and a synthetic nonamannoside. We find that mannose spacing and valency dictate whether glycopeptides engage GRFT in a face-to-face or an intermolecular binding mode. Surprisingly, although face-to-face interactions are of higher affinity, intermolecular interactions are longer lived. These findings yield key insights into mechanisms involved in glycan-mediated viral inhibition.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892 (USA)
| | | | | | | |
Collapse
|
48
|
Fuqua JL, Wanga V, Palmer KE. Improving the large scale purification of the HIV microbicide, griffithsin. BMC Biotechnol 2015; 15:12. [PMID: 25887919 PMCID: PMC4349730 DOI: 10.1186/s12896-015-0120-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Griffithsin is a broad spectrum antiviral lectin that inhibits viral entry and maturation processes through binding clusters of oligomannose glycans on viral envelope glycoproteins. An efficient, scaleable manufacturing process for griffithsin active pharmaceutical ingredient (API) is essential for particularly cost-sensitive products such as griffithsin -based topical microbicides for HIV-1 prevention in resource poor settings. Our previously published purification method used ceramic filtration followed by two chromatography steps, resulting in a protein recovery of 30%. Our objective was to develop a scalable purification method for griffithsin expressed in Nicotiana benthamiana plants that would increase yield, reduce production costs, and simplify manufacturing techniques. Considering the future need to transfer griffithsin manufacturing technology to resource poor areas, we chose to focus modifying the purification process, paying particular attention to introducing simple, low-cost, and scalable procedures such as use of temperature, pH, ion concentration, and filtration to enhance product recovery. RESULTS We achieved >99% pure griffithsin API by generating the initial green juice extract in pH 4 buffer, heating the extract to 55°C, incubating overnight with a bentonite MgCl2 mixture, and final purification with Capto™ multimodal chromatography. Griffithsin extracted with this protocol maintains activity comparable to griffithsin purified by the previously published method and we are able to recover a substantially higher yield: 88 ± 5% of griffithsin from the initial extract. The method was scaled to produce gram quantities of griffithsin with high yields, low endotoxin levels, and low purification costs maintained. CONCLUSIONS The methodology developed to purify griffithsin introduces and develops multiple tools for purification of recombinant proteins from plants at an industrial scale. These tools allow for robust cost-effective production and purification of griffithsin. The methodology can be readily scaled to the bench top or industry and process components can be used for purification of additional proteins based on biophysical characteristics.
Collapse
Affiliation(s)
- Joshua L Fuqua
- Owensboro Cancer Research Program, 1020 Breckenridge St., Suite 201, Owensboro, KY, 42303, USA.
- University of Louisville School of Medicine, James Graham Brown Cancer Center, 529 S Jackson Street, Louisville, KY, 40202, USA.
| | - Valentine Wanga
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, USA.
| | - Kenneth E Palmer
- Owensboro Cancer Research Program, 1020 Breckenridge St., Suite 201, Owensboro, KY, 42303, USA.
- University of Louisville School of Medicine, James Graham Brown Cancer Center, 529 S Jackson Street, Louisville, KY, 40202, USA.
| |
Collapse
|
49
|
Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep 2015; 32:29-48. [PMID: 25315648 DOI: 10.1039/c4np00085d] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to April 2014. The development of drugs with broad-spectrum antiviral activities is a long pursued goal in drug discovery. It has been shown that blocking co-opted host-factors abrogates the replication of many viruses, yet the development of such host-targeting drugs has been met with scepticism mainly due to toxicity issues and poor translation to in vivo models. With the advent of new and more powerful screening assays and prediction tools, the idea of a drug that can efficiently treat a wide range of viral infections by blocking specific host functions has re-bloomed. Here we critically review the state-of-the-art in broad-spectrum antiviral drug discovery. We discuss putative targets and treatment strategies, with particular focus on natural products as promising starting points for antiviral lead development.
Collapse
Affiliation(s)
- J P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
50
|
Moulaei T, Alexandre KB, Shenoy SR, Meyerson JR, Krumpe LR, Constantine B, Wilson J, Buckheit RW, McMahon JB, Subramaniam S, Wlodawer A, O'Keefe BR. Griffithsin tandemers: flexible and potent lectin inhibitors of the human immunodeficiency virus. Retrovirology 2015; 12:6. [PMID: 25613831 PMCID: PMC4419512 DOI: 10.1186/s12977-014-0127-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 12/14/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The lectin griffithsin (GRFT) is a potent antiviral agent capable of prevention and treatment of infections caused by a number of enveloped viruses and is currently under development as an anti-HIV microbicide. In addition to its broad antiviral activity, GRFT is stable at high temperature and at a broad pH range, displays little toxicity and immunogenicity, and is amenable to large-scale manufacturing. Native GRFT is a domain-swapped homodimer that binds to viral envelope glycoproteins and has displayed mid-picomolar activity in cell-based anti-HIV assays. Previously, we have engineered and analyzed several monomeric forms of this lectin (mGRFT) with anti-HIV EC50 values ranging up to 323 nM. Based on our previous analysis of mGRFT, we hypothesized that the orientation and spacing of the carbohydrate binding domains GRFT were key to its antiviral activity. RESULTS Here we present data on engineered tandem repeats of mGRFT (mGRFT tandemers) with antiviral activity at concentrations as low as one picomolar in whole-cell anti-HIV assays. mGRFT tandemers were analyzed thermodynamically, both individually and in complex with HIV-1 gp120. We also demonstrate by dynamic light scattering and cryo-electron microscopy that mGRFT tandemers do not aggregate HIV virions. This establishes that, although the intra-virion crosslinking of HIV envelope glycoproteins is likely integral to their activity, the antiviral activity of these lectins is not due to virus aggregation caused by inter-virion crosslinking. CONCLUSIONS The engineered tandemer constructs of mGRFT may provide novel and powerful agents for prevention of infection by HIV and other enveloped viruses.
Collapse
Affiliation(s)
- Tinoush Moulaei
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
| | - Kabamba B Alexandre
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | - Shilpa R Shenoy
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA.
| | - Joel R Meyerson
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Lauren Rh Krumpe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA.
| | - Brian Constantine
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | - Jennifer Wilson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | | | - James B McMahon
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | - Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| |
Collapse
|