1
|
Marques-da-Silva D, Lagoa R. Rafting on the Evidence for Lipid Raft-like Domains as Hubs Triggering Environmental Toxicants' Cellular Effects. Molecules 2023; 28:6598. [PMID: 37764374 PMCID: PMC10536579 DOI: 10.3390/molecules28186598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The plasma membrane lipid rafts are cholesterol- and sphingolipid-enriched domains that allow regularly distributed, sub-micro-sized structures englobing proteins to compartmentalize cellular processes. These membrane domains can be highly heterogeneous and dynamic, functioning as signal transduction platforms that amplify the local concentrations and signaling of individual components. Moreover, they participate in cell signaling routes that are known to be important targets of environmental toxicants affecting cell redox status and calcium homeostasis, immune regulation, and hormonal functions. In this work, the evidence that plasma membrane raft-like domains operate as hubs for toxicants' cellular actions is discussed, and suggestions for future research are provided. Several studies address the insertion of pesticides and other organic pollutants into membranes, their accumulation in lipid rafts, or lipid rafts' disruption by polychlorinated biphenyls (PCBs), benzo[a]pyrene (B[a]P), and even metals/metalloids. In hepatocytes, macrophages, or neurons, B[a]P, airborne particulate matter, and other toxicants caused rafts' protein and lipid remodeling, oxidative changes, or amyloidogenesis. Different studies investigated the role of the invaginated lipid rafts present in endothelial cells in mediating the vascular inflammatory effects of PCBs. Furthermore, in vitro and in vivo data strongly implicate raft-localized NADPH oxidases, the aryl hydrocarbon receptor, caveolin-1, and protein kinases in the toxic mechanisms of occupational and environmental chemicals.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
2
|
Romdhani I, De Marco G, Cappello T, Ibala S, Zitouni N, Boughattas I, Banni M. Impact of environmental microplastics alone and mixed with benzo[a]pyrene on cellular and molecular responses of Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128952. [PMID: 35472537 DOI: 10.1016/j.jhazmat.2022.128952] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The hazard of microplastic (MP) pollution in marine environments is a current concern. However, the effects of environmental microplastics combined with other pollutants are still poorly investigated. Herein, impact of ecologically relevant concentrations of environmental MP alone (50 µg/L) or combined with B[a]P (1 µg/L) was assessed in mussel Mytilus galloprovincialis after a short-term exposure (1 and 3 days) to environmental MP collected from a north-Mediterranean beach. Raman Microspectroscopy (RMS) revealed bioaccumulation in mussel hemolymph of MP, characterized by polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyethylene vinyl acetate (PEVA) and high-density polyethylene (HDPE), with abundance of MP sized 1.22-0.45 µm. An increase of B[a]P was detected in mussels after 3-day exposure, particularly when mixed with MP. Both contaminants induced cytotoxic and genotoxic effects on hemocytes as determined by lysosomal membrane stability (LMS), micronuclei frequency (FMN), and DNA fragmentation rate by terminal dUTP nick-end labeling (TUNEL). About apoptosis/DNA repair processes, P53 and DNA-ligase increased at 1-day exposure in all conditions, whereas after 3 days increase of bax, Cas-3 and P53 and decrease of Bcl-2 and DNA-ligase were revealed, suggesting a shift towards a cell apoptotic event in exposed mussels. Overall, this study provides new insights on the risk of MP for the marine ecosystem, their ability to accumulate xenobiotics and transfer them to marine biota, with potential adverse repercussion on their health status.
Collapse
Affiliation(s)
- Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy.
| | - Samira Ibala
- Faculty of Medicine of Sousse, University of Sousse, Tunisia
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| |
Collapse
|
3
|
Imran M, Chalmel F, Sergent O, Evrard B, Le Mentec H, Legrand A, Dupont A, Bescher M, Bucher S, Fromenty B, Huc L, Sparfel L, Lagadic-Gossmann D, Podechard N. Transcriptomic analysis in zebrafish larvae identifies iron-dependent mitochondrial dysfunction as a possible key event of NAFLD progression induced by benzo[a]pyrene/ethanol co-exposure. Cell Biol Toxicol 2022:10.1007/s10565-022-09706-4. [PMID: 35412187 DOI: 10.1007/s10565-022-09706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/28/2022] [Indexed: 11/02/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered. In this context, we used high-fat diet fed zebrafish model, in which we previously observed progression of steatosis to a steatohepatitis-like state following a 7-day-co-exposure to 43 mM ethanol and 25 nM B[a]P. Transcriptomic analysis highlighted the potent role of mitochondrial dysfunction, alterations in heme and iron homeostasis, involvement of aryl hydrocarbon receptor (AhR) signaling, and oxidative stress. Most of these mRNA dysregulations were validated by RT-qPCR. Moreover, similar changes were observed using a human in vitro hepatocyte model, HepaRG cells. The mitochondria structural and functional alterations were confirmed by transmission electronic microscopy and Seahorse technology, respectively. Involvement of AhR signaling was evidenced by using in vivo an AhR antagonist, CH223191, and in vitro in AhR-knock-out HepaRG cells. Furthermore, as co-exposure was found to increase the levels of both heme and hemin, we investigated if mitochondrial iron could induce oxidative stress. We found that mitochondrial labile iron content was raised in toxicant-exposed larvae. This increase was prevented by the iron chelator, deferoxamine, which also inhibited liver co-exposure toxicity. Overall, these results suggest that the increase in mitochondrial iron content induced by B[a]P/ethanol co-exposure causes mitochondrial dysfunction that contributes to the pathological progression of NAFLD.
Collapse
Affiliation(s)
- Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,Iqra University, Karachi, Pakistan
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Hélène Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Antoine Legrand
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Aurélien Dupont
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000, Rennes, France
| | - Maëlle Bescher
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Simon Bucher
- Univ Rennes, Inserm, Inrae, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S 13 1241, and UMR_A 1341, 35000, Rennes, France
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inrae, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S 13 1241, and UMR_A 1341, 35000, Rennes, France
| | - Laurence Huc
- Université de Toulouse, Inrae, ENVT, INP-Purpan, UPS, Toxalim (Research Centre in Food Toxicology), 31027, Toulouse, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
4
|
Líbalová H, Závodná T, Vrbová K, Sikorová J, Vojtíšek-Lom M, Beránek V, Pechout M, Kléma J, Ciganek M, Machala M, Neča J, Rössner P, Topinka J. Transcription profiles in BEAS-2B cells exposed to organic extracts from particulate emissions produced by a port-fuel injection vehicle, fueled with conventional fossil gasoline and gasoline-ethanol blend. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503414. [PMID: 34798934 DOI: 10.1016/j.mrgentox.2021.503414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Emissions from road traffic are among the major contributors to air pollution worldwide and represent a serious environmental health risk. Although traffic-related pollution has been most commonly associated with diesel engines, increasing evidence suggests that gasoline engines also produce a considerable amount of potentially hazardous particulate matter (PM). The primary objective of this study was to compare the intrinsic toxic properties of the organic components of PM, generated by a conventional gasoline engine fueled with neat gasoline (E0), or gasoline-ethanol blend (15 % ethanol, v/v, E15). Our results showed that while E15 has produced, compared to gasoline and per kg of fuel, comparable particle mass (μg PM/kg fuel) and slightly more particles by number, the organic extract from the particulate matter produced by E15 contained a larger amount of harmful polycyclic aromatic hydrocarbons (PAHs), as determined by the chemical analysis. To examine the toxicity, we monitored genome-wide gene expression changes in human lung BEAS-2B cells, exposed for 4 h and 24 h to a subtoxic dose of each PM extract. After 4 h exposure, numerous dysregulated genes and processes such as oxidative stress, lipid and steroid metabolism, PPARα signaling and immune response, were found to be common for both extract treatments. On the other hand, 24 h exposure resulted in more distinctive gene expression patterns. Although we identified several common modulated processes indicating the metabolism of PAHs and activation of aryl hydrocarbon receptor (AhR), E15 specifically dysregulated a variety of other genes and pathways related to cancer promotion and progression. Overall, our findings suggest that the ethanol addition to gasoline changed the intrinsic properties of PM emissions and increased the PAH content in PM organic extract, thus contributing to a more extensive toxic response particularly after 24 h exposure in BEAS-2B cells.
Collapse
Affiliation(s)
- Helena Líbalová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Kristýna Vrbová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jitka Sikorová
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Michal Vojtíšek-Lom
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | - Vít Beránek
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences, Kamycka 127, 165 21, Prague, Czech Republic.
| | - Jiří Kléma
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo namesti 13, 121 35, Prague, Czech Republic.
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Pavel Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
5
|
van Meteren N, Lagadic-Gossmann D, Podechard N, Gobart D, Gallais I, Chevanne M, Collin A, Burel A, Dupont A, Rault L, Chevance S, Gauffre F, Le Ferrec E, Sergent O. Extracellular vesicles released by polycyclic aromatic hydrocarbons-treated hepatocytes trigger oxidative stress in recipient hepatocytes by delivering iron. Free Radic Biol Med 2020; 160:246-262. [PMID: 32791186 DOI: 10.1016/j.freeradbiomed.2020.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
A growing body of evidences indicate the major role of extracellular vesicles (EVs) as players of cell communication in the pathogenesis of liver diseases. EVs are membrane-enclosed vesicles released by cells into the extracellular environment. Oxidative stress is also a key component of liver disease pathogenesis, but no role for hepatocyte-derived EVs has yet been described in the development of this process. Recently, some polycyclic aromatic hydrocarbons (PAHs), widespread environmental contaminants, were demonstrated to induce EV release from hepatocytes. They are also well-known to trigger oxidative stress leading to cell death. Therefore, the aim of this work was to investigate the involvement of EVs derived from PAHs-treated hepatocytes (PAH-EVs) in possible oxidative damages of healthy recipient hepatocytes, using both WIF-B9 and primary rat hepatocytes. We first showed that the release of EVs from PAHs -treated hepatocytes depended on oxidative stress. PAH-EVs were enriched in proteins related to oxidative stress such as NADPH oxidase and ferritin. They were also demonstrated to contain more iron. PAH-EVs could then induce oxidative stress in recipient hepatocytes, thereby leading to apoptosis. Mitochondria and lysosomes of recipient hepatocytes exhibited significant structural alterations. All those damages were dependent on internalization of EVs that reached lysosomes with their cargoes. Lysosomes thus appeared as critical organelles for EVs to induce apoptosis. In addition, pro-oxidant components of PAH-EVs, e.g. NADPH oxidase and iron, were revealed to be necessary for this cell death.
Collapse
Affiliation(s)
- Nettie van Meteren
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Dimitri Gobart
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Aurore Collin
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit, UMS 3480, US_S 018, F-35000, Rennes, France
| | - Aurélien Dupont
- Univ Rennes, Biosit, UMS 3480, US_S 018, F-35000, Rennes, France
| | | | - Soizic Chevance
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
6
|
Le Goff M, Delbrut A, Quinton M, Pradelles R, Bescher M, Burel A, Schoefs B, Sergent O, Lagadic-Gossmann D, Le Ferrec E, Ulmann L. Protective Action of Ostreococcus tauri and Phaeodactylum tricornutum Extracts towards Benzo[a]Pyrene-Induced Cytotoxicity in Endothelial Cells. Mar Drugs 2019; 18:E3. [PMID: 31861403 PMCID: PMC7024323 DOI: 10.3390/md18010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
Marine microalgae are known to be a source of bioactive molecules of interest to human health, such as n-3 polyunsaturated fatty acids (n-3 PUFAs) and carotenoids. The fact that some of these natural compounds are known to exhibit anti-inflammatory, antioxidant, anti-proliferative, and apoptosis-inducing effects, demonstrates their potential use in preventing cancers and cardiovascular diseases (CVDs). Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH), is an ubiquitous environmental pollutant known to contribute to the development or aggravation of human diseases, such as cancer, CVDs, and immune dysfunction. Most of these deleterious effects are related to the activation of the polycyclic aromatic hydrocarbon receptor (AhR). In this context, two ethanolic microalgal extracts with concentrations of 0.1 to 5 µg/mL are tested, Ostreoccoccus tauri (OT) and Phaeodactylum tricornutum (PT), in order to evaluate and compare their potential effects towards B[a]P-induced toxicity in endothelial HMEC-1 cells. Our results indicate that the OT extract can influence the toxicity of B[a]P. Indeed, apoptosis and the production of extracellular vesicles were decreased, likely through the reduction of the expression of CYP1A1, a B[a]P bioactivation enzyme. Furthermore, the B[a]P-induced expression of the inflammatory cytokines IL-8 and IL1-β was reduced. The PT extract only inhibited the expression of the B[a]P-induced cytokine IL-8 expression. The OT extract therefore seems to be a good candidate for counteracting the B[a]P toxicity.
Collapse
Affiliation(s)
- Manon Le Goff
- EA 2160 Mer Molécules Santé—MIMMA, IUML FR-3473 CNRS, Le Mans Université, F-53020 Laval, France; (M.L.G.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (M.B.); (O.S.); (D.L.-G.)
| | - Antoine Delbrut
- Microphyt, 713 Route de Mudaison, 34630 Baillargues, France; (A.D.); (M.Q.); (R.P.)
| | - Marie Quinton
- Microphyt, 713 Route de Mudaison, 34630 Baillargues, France; (A.D.); (M.Q.); (R.P.)
| | - Rémi Pradelles
- Microphyt, 713 Route de Mudaison, 34630 Baillargues, France; (A.D.); (M.Q.); (R.P.)
| | - Maelle Bescher
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (M.B.); (O.S.); (D.L.-G.)
| | - Agnès Burel
- Univ Rennes, Biosit–UMS 3480, US_S 018, F-35000 Rennes, France; (A.B.)
| | - Benoît Schoefs
- EA 2160 Mer Molécules Santé—MIMMA, IUML FR-3473 CNRS, Le Mans Université, F-72000 Le Mans, France; (B.S.)
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (M.B.); (O.S.); (D.L.-G.)
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (M.B.); (O.S.); (D.L.-G.)
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (M.B.); (O.S.); (D.L.-G.)
| | - Lionel Ulmann
- EA 2160 Mer Molécules Santé—MIMMA, IUML FR-3473 CNRS, Le Mans Université, F-53020 Laval, France; (M.L.G.)
| |
Collapse
|
7
|
Le Goff M, Lagadic-Gossmann D, Latour R, Podechard N, Grova N, Gauffre F, Chevance S, Burel A, Appenzeller BMR, Ulmann L, Sergent O, Le Ferrec E. PAHs increase the production of extracellular vesicles both in vitro in endothelial cells and in vivo in urines from rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113171. [PMID: 31539851 DOI: 10.1016/j.envpol.2019.113171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Environmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects. Extracellular vesicles (EVs), including small extracellular vesicles (S-EVs or exosomes) and large extracellular vesicles (L-EVs or microvesicles), are delivery systems for multimolecular messages related to the nature and status of the originating cells. Because they are produced by all cells and detected within body fluids, EV releases could act as cell responses and thereby serve as biomarkers. To test whether EVs can serve as biomarkers of PAHs exposure, we evaluate the effects of these pollutants on EV production using an in vitro approach (human endothelial cell line, HMEC-1) and an in vivo approach (urine samples from PAHs-exposed rats). Our study indicates that, i) PAH exposure increases in vitro the EV production by endothelial cells and in vivo the release of EVs in urine, and that the stimulating effects of PAHs concern both S-EVs and L-EVs; ii) PAH exposure and more particularly exposure to B[a]P, can influence the composition of exosomes produced by endothelial cells; iii) the aryl hydrocarbon receptor, a cytosolic receptor associated to most deleterious effects of PAHs, would be involved in the PAH effects on the release of S-EVs, but not L-EVs. These results suggest that EVs may have utility for monitoring exposure to PAHs, and more particularly to B[a]P, considered as reference PAH, and to detect the related early cellular response prior to end-organ damages.
Collapse
Affiliation(s)
- Manon Le Goff
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France; EA 2160 Mer Molécules Santé - MIMMA, IUML FR-3473 CNRS, Le Mans Université, Laval, F-53020, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Remi Latour
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg; Calbinotox, Faculty of Science and Technology-Lorraine University, Campus Aiguillettes, B.P. 70239, F-54506, Vandoeuvre-lès-Nancy, France
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR_6226, F-35000, Rennes, France
| | - Soizic Chevance
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR_6226, F-35000, Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000, Rennes, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, 1 A-B Thomas Edisson, Luxembourg
| | - Lionel Ulmann
- EA 2160 Mer Molécules Santé - MIMMA, IUML FR-3473 CNRS, Le Mans Université, Laval, F-53020, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
8
|
van Meteren N, Lagadic-Gossmann D, Chevanne M, Gallais I, Gobart D, Burel A, Bucher S, Grova N, Fromenty B, Appenzeller BMR, Chevance S, Gauffre F, Le Ferrec E, Sergent O. Polycyclic aromatic hydrocarbons can trigger hepatocyte release of extracellular vesicles by various mechanisms of action depending on their affinity for the aryl hydrocarbon receptor. Toxicol Sci 2019; 171:443-462. [PMID: 31368503 DOI: 10.1093/toxsci/kfz157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed nanostructures released by cells into the extracellular environment. As major actors of physiological intercellular communication, they have been shown to be pathogenic mediators of several liver diseases. EVs also appear to be potential actors of drug-induced liver injury, but nothing is known concerning environmental pollutants. We aimed to study the impact of polycyclic aromatic hydrocarbons (PAHs), major contaminants, on hepatocyte-derived EV production, with a special focus on hepatocyte death. Three PAHs were selected, based on their presence in food and their affinity for the aryl hydrocarbon receptor (AhR): benzo(a)pyrene (BP), dibenzo(a,h)anthracene (DBA), and pyrene (PYR). Treatment of primary rat and WIF-B9 hepatocytes by all three PAHs increased the release of EVs, mainly comprised of exosomes, in parallel with modifying exosome protein marker expression and inducing apoptosis. Moreover, PAH treatment of rodents for three months also led to increased EV levels in plasma. The EV release involved CYP metabolism and the activation of the transcription factor, the AhR, for BP and DBA and another transcription factor, the constitutive androstane receptor (CAR), for PYR. Furthermore, all PAHs increased cholesterol levels in EVs but only BP and DBA were able to reduce the cholesterol content of total cell membranes. All cholesterol changes very likely participated in the increase in EV release and cell death. Finally, we studied changes in cell membrane fluidity caused by BP and DBA due to cholesterol depletion. Our data showed increased cell membrane fluidity, which contributed to hepatocyte EV release and cell death.
Collapse
Affiliation(s)
- Nettie van Meteren
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Dimitri Gobart
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000 Rennes, France
| | - Simon Bucher
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S1241, UMR_A 1341, F-35000 Rennes, France
| | - Nathalie Grova
- Department of Infection and Immunity, Luxembourg Institute of Health, Immune Endocrine Epigenetics Research Group, L-4354 Esch-sur-Alzette, Luxembourg
- Calbinotox, Faculty of Science and Technology, Lorraine University, F-54506 Vandoeuvre-les-Nancy, France
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S1241, UMR_A 1341, F-35000 Rennes, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Soizic Chevance
- Univ Rennes, CNRS, ISCR (Institut des sciences chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR (Institut des sciences chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
9
|
Lagadic-Gossmann D, Hardonnière K, Mograbi B, Sergent O, Huc L. Disturbances in H + dynamics during environmental carcinogenesis. Biochimie 2019; 163:171-183. [PMID: 31228544 DOI: 10.1016/j.biochi.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.
Collapse
Affiliation(s)
- Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Kévin Hardonnière
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, 2. Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
10
|
Sakthivel R, Sheeja Malar D, Archunan G, Pandima Devi K. Phytol ameliorated benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice via inhibition of oxidative stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2019; 34:355-363. [PMID: 30520250 DOI: 10.1002/tox.22690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
In the present study, the modulatory effect of phytol against benzo(a)pyrene [B(a)P] induced lung carcinogenesis was investigated in Swiss albino mice. During the experimental period, phytol treatment showed no adverse toxic effect and mortality to the experimental animals. Lung tumor was observed in B(a)P treated group and also in animals post-treated with low concentration (50 mg/kg) of phytol. No neoplastic changes were observed in the lung tissue of the animals treated with the maximum dose of phytol (100 mg/kg). An elevated level of antioxidant enzymes combined with macromolecular damage (lipid peroxidation, protein carbonyl content) was observed upon B(a)P treatment whereas, phytol restored the level of antioxidant enzymes which were comparable to the vehicle control group. Moreover, administration of B(a)P induced apoptosis, as observed by the highest expression of Bax, caspase-3, and caspase-9 proteins in lung tissue of B(a)P alone treated animals. However, phytol treatment reduced the expression of Bax, caspase-3, and caspase-9 protein and maintained the constant expression of anti-apoptotic protein Bcl-2. These observations positively reveal that phytol regulates the antioxidant enzymes and thereby protects the cells against B(a)P induced carcinogenesis without showing any adverse toxic effect to the animals.
Collapse
Affiliation(s)
- Ravi Sakthivel
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, Tamil Nadu, India
| | - Dicson Sheeja Malar
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, Tamil Nadu, India
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, Tamil Nadu, India
| |
Collapse
|
11
|
Imran M, Sergent O, Tête A, Gallais I, Chevanne M, Lagadic-Gossmann D, Podechard N. Membrane Remodeling as a Key Player of the Hepatotoxicity Induced by Co-Exposure to Benzo[a]pyrene and Ethanol of Obese Zebrafish Larvae. Biomolecules 2018; 8:biom8020026. [PMID: 29757947 PMCID: PMC6023014 DOI: 10.3390/biom8020026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
The rise in prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes an important public health concern worldwide. Including obesity, numerous risk factors of NAFLD such as benzo[a]pyrene (B[a]P) and ethanol have been identified as modifying the physicochemical properties of the plasma membrane in vitro thus causing membrane remodeling—changes in membrane fluidity and lipid-raft characteristics. In this study, the possible involvement of membrane remodeling in the in vivo progression of steatosis to a steatohepatitis-like state upon co-exposure to B[a]P and ethanol was tested in obese zebrafish larvae. Larvae bearing steatosis as the result of a high-fat diet were exposed to ethanol and/or B[a]P for seven days at low concentrations coherent with human exposure in order to elicit hepatotoxicity. In this condition, the toxicant co-exposure raised global membrane order with higher lipid-raft clustering in the plasma membrane of liver cells, as evaluated by staining with the fluoroprobe di-4-ANEPPDHQ. Involvement of this membrane’s remodeling was finally explored by using the lipid-raft disruptor pravastatin that counteracted the effects of toxicant co-exposure both on membrane remodeling and toxicity. Overall, it can be concluded that B[a]P/ethanol co-exposure can induce in vivo hepatotoxicity via membrane remodeling which could be considered as a good target mechanism for developing combination therapy to deal with steatohepatitis.
Collapse
Affiliation(s)
- Muhammad Imran
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Odile Sergent
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Arnaud Tête
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Isabelle Gallais
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Martine Chevanne
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| |
Collapse
|
12
|
Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells. Toxicol In Vitro 2018; 48:329-341. [PMID: 29432896 DOI: 10.1016/j.tiv.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/15/2023]
Abstract
Modern vehicles equipped with Gasoline Direct Injection (GDI) engine have emerged as an important source of particulate emissions potentially harmful to human health. We collected and characterized gasoline exhaust particles (GEPs) produced by neat gasoline fuel (E0) and its blends with 15% ethanol (E15), 25% n-butanol (n-But25) and 25% isobutanol (i-But25). To study the toxic effects of organic compounds extracted from GEPs, we analyzed gene expression profiles in human lung BEAS-2B cells. Despite the lowest GEP mass, n-But25 extract contained the highest concentration of polycyclic aromatic hydrocarbons (PAHs), while i-But25 extract the lowest. Gene expression analysis identified activation of the DNA damage response and other subsequent events (cell cycle arrest, modulation of extracellular matrix, cell adhesion, inhibition of cholesterol biosynthesis) following 4 h exposure to all GEP extracts. The i-But25 extract induced the most distinctive gene expression pattern particularly after 24 h exposure. Whereas E0, E15 and n-But25 extract treatments resulted in persistent stress signaling including DNA damage response, MAPK signaling, oxidative stress, metabolism of PAHs or pro-inflammatory response, i-But25 induced changes related to the metabolism of the cellular nutrients required for cell recovery. Our results indicate that i-But25 extract possessed the weakest genotoxic potency possibly due to the low PAH content.
Collapse
|
13
|
Shi Q, Fijten RR, Spina D, Riffo Vasquez Y, Arlt VM, Godschalk RW, Van Schooten FJ. Altered gene expression profiles in the lungs of benzo[a]pyrene-exposed mice in the presence of lipopolysaccharide-induced pulmonary inflammation. Toxicol Appl Pharmacol 2017; 336:8-19. [PMID: 28987381 PMCID: PMC5703654 DOI: 10.1016/j.taap.2017.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Patients with inflammatory lung diseases are often additionally exposed to polycyclic aromatic hydrocarbons like B[a]P and B[a]P-induced alterations in gene expression in these patients may contribute to the development of lung cancer. Mice were intra-nasally treated with lipopolysaccharide (LPS, 20μg/mouse) to induce pulmonary inflammation and subsequently exposed to B[a]P (0.5mg/mouse) by intratracheal instillation. Gene expression changes were analyzed in mouse lungs by RNA microarrays. Analysis of genes that are known to be involved in the cellular response to B[a]P indicated that LPS significantly inhibited gene expression of various enzymes linked to B[a]P metabolism, which was confirmed by phenotypic analyses of enzyme activity. Ultimately, these changes resulted in higher levels of B[a]P-DNA adducts in the lungs of mice exposed to B[a]P with prior LPS treatment compared to the lungs of mice exposed to B[a]P alone. Using principle component analysis (PCA), we found that of all the genes that were significantly altered in their expression, those that were able to separate the different exposure conditions were predominantly related to immune-response. Moreover, an overall analysis of differentially expressed genes indicated that cell-cell adhesion and cell-cell communication was inhibited in lungs of mice that received both B[a]P and LPS. Our results indicate that pulmonary inflammation increased the genotoxicity of B[a]P via inhibition of both phase I and II metabolism. Therefore, inflammation could be a critical contributor to B[a]P-induced carcinogenesis in humans.
Collapse
Affiliation(s)
- Q Shi
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - R R Fijten
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - D Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Y Riffo Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - V M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental & Health, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - R W Godschalk
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| | - F J Van Schooten
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
14
|
Scherma ME, Madzzuduli G, Silva RA, Garay MI, Repossi G, Brunotto M, Pasqualini ME. The effects of ω-6 and ω-3 fatty-acids on early stages of mice DMBA submandibular glands tumorigenesis. Prostaglandins Leukot Essent Fatty Acids 2017; 125:48-55. [PMID: 28987722 DOI: 10.1016/j.plefa.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 01/28/2023]
Abstract
The aim of this work was: to assess the impact of diets enriched in polyunsaturated fatty acids ω-3 and ω-6 families on the lipid profile of cell membrane and their effect on cycle regulation and apoptosis, evaluated by TP53 and Ki-67 expression in 9,10-dimethyl-1,2-benzanthracene (DMBA) induced tumor development in submandibular glands (SMG) in murine models. To generate tumorigenic changes, SMG mice in the experimental group were injected with 50μl of 0.5% of DMBA. Both control (no DMBA) and experimental groups of BALB/c mice were fed with: chia oil (ChO), rich in ω-3 fatty acid; corn oil (CO), rich in ω-6/ω-3 fatty acid; and safflower (SO) oil, rich in ω-6fatty acid. Results demonstrate novel differential effects of ω-3 and ω-6 PUFAs on the regulation of early tumorigenesis events in murine SMG injected with DMBA. This knowledge may help to develop chemoprotective treatments, therapeutic agents and health promotion and prevention activities in humans.
Collapse
Affiliation(s)
- M E Scherma
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina
| | - G Madzzuduli
- Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina
| | - R A Silva
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - M I Garay
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina
| | - G Repossi
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina
| | - M Brunotto
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina
| | - M E Pasqualini
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina.
| |
Collapse
|
15
|
Hardonnière K, Huc L, Sergent O, Holme JA, Lagadic-Gossmann D. Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Semin Cancer Biol 2017; 43:49-65. [PMID: 28088583 DOI: 10.1016/j.semcancer.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.
Collapse
Affiliation(s)
- Kévin Hardonnière
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Laurence Huc
- INRA UMR 1331 ToxAlim (Research Center in Food Toxicology), University of Toulouse ENVT, INP, UPS, 180 Chemin de Tournefeuille, F-31027, France
| | - Odile Sergent
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Jørn A Holme
- Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dominique Lagadic-Gossmann
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France.
| |
Collapse
|
16
|
Podechard N, Chevanne M, Fernier M, Tête A, Collin A, Cassio D, Kah O, Lagadic-Gossmann D, Sergent O. Zebrafish larva as a reliable model for in vivo assessment of membrane remodeling involvement in the hepatotoxicity of chemical agents. J Appl Toxicol 2016; 37:732-746. [PMID: 27896850 DOI: 10.1002/jat.3421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022]
Abstract
The easy-to-use in vivo model, zebrafish larva, is being increasingly used to screen chemical-induced hepatotoxicity, with a good predictivity for various mechanisms of liver injury. However, nothing is known about its applicability in exploring the mechanism called membrane remodeling, depicted as changes in membrane fluidity or lipid raft properties. The aim of this study was, therefore, to substantiate the zebrafish larva as a suitable in vivo model in this context. Ethanol was chosen as a prototype toxicant because it is largely described, both in hepatocyte cultures and in rodents, as capable of inducing a membrane remodeling leading to hepatocyte death and liver injury. The zebrafish larva model was demonstrated to be fully relevant as membrane remodeling was maintained even after a 1-week exposure without any adaptation as usually reported in rodents and hepatocyte cultures. It was also proven to exhibit a high sensitivity as it discriminated various levels of cytotoxicity depending on the extent of changes in membrane remodeling. In this context, its sensitivity appeared higher than that of WIF-B9 hepatic cells, which is suited for analyzing this kind of hepatotoxicity. Finally, the protection afforded by a membrane stabilizer, ursodeoxycholic acid (UDCA), or by a lipid raft disrupter, pravastatin, definitely validated zebrafish larva as a reliable model to quickly assess membrane remodeling involvement in chemical-induced hepatotoxicity. In conclusion, this model, compatible with a high throughput screening, might be adapted to seek hepatotoxicants via membrane remodeling, and also drugs targeting membrane features to propose new preventive or therapeutic strategies in chemical-induced liver diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Normand Podechard
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Martine Chevanne
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Morgane Fernier
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Arnaud Tête
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Aurore Collin
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Doris Cassio
- Inserm, UMR-S 757; Orsay, France; Université Paris-Sud, Orsay, France
| | - Olivier Kah
- Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France.,UMR Inserm 1085, IRSET, Université de Rennes 1, bâtiment 9, 35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Odile Sergent
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| |
Collapse
|
17
|
The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival. Sci Rep 2016; 6:30776. [PMID: 27488617 PMCID: PMC4973274 DOI: 10.1038/srep30776] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na+/H+ exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration).
Collapse
|
18
|
Clark RS, Pellom ST, Booker B, Ramesh A, Zhang T, Shanker A, Maguire M, Juarez PD, Patricia MJ, Langston MA, Lichtveld MY, Hood DB. Validation of research trajectory 1 of an Exposome framework: Exposure to benzo(a)pyrene confers enhanced susceptibility to bacterial infection. ENVIRONMENTAL RESEARCH 2016; 146:173-184. [PMID: 26765097 PMCID: PMC5523512 DOI: 10.1016/j.envres.2015.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
The exposome provides a framework for understanding elucidation of an uncharacterized molecular mechanism conferring enhanced susceptibility of macrophage membranes to bacterial infection after exposure to the environmental contaminant benzo(a)pyrene, [B(a)P]. The fundamental requirement in activation of macrophage effector functions is the binding of immunoglobulins to Fc receptors. FcγRIIa (CD32a), a member of the Fc family of immunoreceptors with low affinity for immunoglobulin G, has been reported to bind preferentially to IgG within lipid rafts. Previous research suggested that exposure to B(a)P suppressed macrophage effector functions but the molecular mechanisms remain elusive. The goal of this study was to elucidate the mechanism(s) of B(a)P-exposure induced suppression of macrophage function by examining the resultant effects of exposure-induced insult on CD32-lipid raft interactions in the regulation of IgG binding to CD32. The results demonstrate that exposure of macrophages to B(a)P alters lipid raft integrity by decreasing membrane cholesterol 25% while increasing CD32 into non-lipid raft fractions. This robust diminution in membrane cholesterol and 30% exclusion of CD32 from lipid rafts causes a significant reduction in CD32-mediated IgG binding to suppress essential macrophage effector functions. Such exposures across the lifespan would have the potential to induce immunosuppressive endophenotypes in vulnerable populations.
Collapse
Affiliation(s)
- Ryan S Clark
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Samuel T Pellom
- Department of Microbiology, Meharry Medical College, Nashville, TN 37208, USA; Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Burthia Booker
- Department of Microbiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Aramandla Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Tongwen Zhang
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Mark Maguire
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Paul D Juarez
- Department of Family and Preventive Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | | | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Maureen Y Lichtveld
- Department of Global Environmental Health Sciences, School of Public Health & Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Darryl B Hood
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
New in vitro biomarkers to detect toxicity in human placental cells: The example of benzo[A]pyrene. Toxicol In Vitro 2016; 32:76-85. [DOI: 10.1016/j.tiv.2015.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 11/18/2022]
|
20
|
Corsetto PA, Ferrara G, Buratta S, Urbanelli L, Montorfano G, Gambelunghe A, Chiaradia E, Magini A, Roderi P, Colombo I, Rizzo AM, Emiliani C. Changes in Lipid Composition During Manganese-Induced Apoptosis in PC12 Cells. Neurochem Res 2015; 41:258-69. [DOI: 10.1007/s11064-015-1785-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 02/01/2023]
|
21
|
Benzo[a]pyrene-induced nitric oxide production acts as a survival signal targeting mitochondrial membrane potential. Toxicol In Vitro 2015; 29:1597-608. [DOI: 10.1016/j.tiv.2015.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 01/08/2023]
|
22
|
Ali R, Trump S, Lehmann I, Hanke T. Live cell imaging of the intracellular compartmentalization of the contaminate benzo[a]pyrene. JOURNAL OF BIOPHOTONICS 2015; 8:361-371. [PMID: 24700684 DOI: 10.1002/jbio.201300170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/23/2013] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
This study investigates the cellular response of murine hepatoma cells to the polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) using two-photon and confocal laser scanning microscopy. The intracellular distribution of B[a]P and the B[a]P/AhR complex was visualized time- and concentration-dependent for up to 48 h of exposure. B[a]P was predominantly found in lipid droplets, endoplasmic reticulum and lysosomes, where B[a]P is collected and forms large aggregates. Changes in mitochondrial membrane potential and bleb formation due to high B[a]P concentrations were observed. The imaging data presented in this study provide new insights into the systemic cellular regulation following B[a]P exposure.
Collapse
Affiliation(s)
- Rizwan Ali
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Budapester Str. 27, 01069 Dresden, Germany.
| | - Saskia Trump
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Irina Lehmann
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Thomas Hanke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Budapester Str. 27, 01069 Dresden, Germany
| |
Collapse
|
23
|
Wang X, Zhang J, Huang Q, Alamdar A, Tian M, Liu L, Shen H. Serum metabolomics analysis reveals impaired lipid metabolism in rats after oral exposure to benzo(a)pyrene. MOLECULAR BIOSYSTEMS 2015; 11:753-9. [DOI: 10.1039/c4mb00565a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A metabolomics study was conducted to unveil the metabolic profiling of rats exposed to benzo(a)pyrene, and twelve differentiated metabolites were identified.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- P. R. China
| | - Jie Zhang
- Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- P. R. China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- P. R. China
| | - Ambreen Alamdar
- Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- P. R. China
| | - Meiping Tian
- Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- P. R. China
| | - Liangpo Liu
- Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- P. R. China
| | - Heqing Shen
- Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- P. R. China
| |
Collapse
|
24
|
Collin A, Hardonnière K, Chevanne M, Vuillemin J, Podechard N, Burel A, Dimanche-Boitrel MT, Lagadic-Gossmann D, Sergent O. Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is responsible for enhanced oxidative stress and cell death in primary rat hepatocytes. Free Radic Biol Med 2014; 72:11-22. [PMID: 24681337 DOI: 10.1016/j.freeradbiomed.2014.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Several epidemiologic studies have shown an interactive effect of heavy smoking and heavy alcohol drinking on the development of hepatocellular carcinoma. It has also been recently described that chronic hepatocyte death can trigger excessive compensatory proliferation resulting later in the formation of tumors in mouse liver. As we previously demonstrated that both benzo[a]pyrene (B[a]P), an environmental agent found in cigarette smoke, and ethanol possess similar targets, especially oxidative stress, to trigger death of liver cells, we decided to study here the cellular and molecular mechanisms of the effects of B[a]P/ethanol coexposure on cell death. After an 18-h incubation with 100nM B[a]P, primary rat hepatocytes were supplemented with 50mM ethanol for 5 or 8h. B[a]P/ethanol coexposure led to a greater apoptotic cell death that could be linked to an increase in lipid peroxidation. Plasma membrane remodeling, as depicted by membrane fluidity elevation and physicochemical alterations in lipid rafts, appeared to play a key role, because both toxicants acted with specific complementary effects. Membrane remodeling was shown to induce an accumulation of lysosomes leading to an important increase in low-molecular-weight iron cellular content. Finally, ethanol metabolism, but not that of B[a]P, by providing reactive oxygen species, induced the ultimate toxic process. Indeed, in lysosomes, ethanol promoted the Fenton reaction, lipid peroxidation, and membrane permeabilization, thereby triggering cell death. To conclude, B[a]P exposure, by depleting hepatocyte membrane cholesterol content, would constitute a favorable ground for a later toxic insult such as ethanol intoxication. Membrane stabilization of both plasma membrane and lysosomes might be a potential target for further investigation considering cytoprotective strategies.
Collapse
Affiliation(s)
- Aurore Collin
- UMR INSERM 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, and 35043 Rennes Cédex, France; Biosit UMS3080, Université de Rennes 1, 35043 Rennes Cédex, France
| | - Kevin Hardonnière
- UMR INSERM 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, and 35043 Rennes Cédex, France; Biosit UMS3080, Université de Rennes 1, 35043 Rennes Cédex, France
| | - Martine Chevanne
- UMR INSERM 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, and 35043 Rennes Cédex, France; Biosit UMS3080, Université de Rennes 1, 35043 Rennes Cédex, France
| | - Julie Vuillemin
- UMR INSERM 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, and 35043 Rennes Cédex, France; Biosit UMS3080, Université de Rennes 1, 35043 Rennes Cédex, France
| | - Normand Podechard
- UMR INSERM 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, and 35043 Rennes Cédex, France; Biosit UMS3080, Université de Rennes 1, 35043 Rennes Cédex, France
| | - Agnès Burel
- Biosit UMS3080, Université de Rennes 1, 35043 Rennes Cédex, France
| | - Marie-Thérèse Dimanche-Boitrel
- UMR INSERM 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, and 35043 Rennes Cédex, France; Biosit UMS3080, Université de Rennes 1, 35043 Rennes Cédex, France
| | - Dominique Lagadic-Gossmann
- UMR INSERM 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, and 35043 Rennes Cédex, France; Biosit UMS3080, Université de Rennes 1, 35043 Rennes Cédex, France.
| | - Odile Sergent
- UMR INSERM 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, and 35043 Rennes Cédex, France; Biosit UMS3080, Université de Rennes 1, 35043 Rennes Cédex, France.
| |
Collapse
|
25
|
Dendelé B, Tekpli X, Hardonnière K, Holme JA, Debure L, Catheline D, Arlt VM, Nagy E, Phillips DH, Ovrebø S, Mollerup S, Poët M, Chevanne M, Rioux V, Dimanche-Boitrel MT, Sergent O, Lagadic-Gossmann D. Protective action of n-3 fatty acids on benzo[a]pyrene-induced apoptosis through the plasma membrane remodeling-dependent NHE1 pathway. Chem Biol Interact 2014; 207:41-51. [PMID: 24246761 DOI: 10.1016/j.cbi.2013.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 10/10/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022]
Abstract
Plasma membrane is an early target of polycyclic aromatic hydrocarbons (PAH). We previously showed that the PAH prototype, benzo[a]pyrene (B[a]P), triggers apoptosis via DNA damage-induced p53 activation (genotoxic pathway) and via remodeling of the membrane cholesterol-rich microdomains called lipid rafts, leading to changes in pH homeostasis (non-genotoxic pathway). As omega-3 (n-3) fatty acids can affect membrane composition and function or hamper in vivo PAH genotoxicity, we hypothesized that addition of physiologically relevant levels of polyunsaturated n-3 fatty acids (PUFAs) might interfere with B[a]P-induced toxicity. The effects of two major PUFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), were tested on B[a]P cytotoxicity in the liver epithelial cell line F258. Both PUFAs reduced B[a]P-induced apoptosis. Surprisingly, pre-treatment with DHA increased the formation of reactive B[a]P metabolites, resulting in higher levels of B[a]P-DNA adducts. EPA had no apparent effect on B[a]P metabolism or related DNA damage. EPA and DHA prevented B[a]P-induced apoptotic alkalinization by affecting Na(+)/H(+) exchanger 1 activity. Thus, the inhibitory effects of omega-3 fatty acids on B[a]P-induced apoptosis involve a non-genotoxic pathway associated with plasma membrane remodeling. Our results suggest that dietary omega-3 fatty acids may have marked effects on the biological consequences of PAH exposure.
Collapse
Affiliation(s)
- Béatrice Dendelé
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France; Université de Rennes 1, SFR Biosit, Rennes, France
| | | | - Kévin Hardonnière
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France; Université de Rennes 1, SFR Biosit, Rennes, France
| | - Jørn A Holme
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Laure Debure
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France; Université de Rennes 1, SFR Biosit, Rennes, France
| | - Daniel Catheline
- Laboratoire de Biochimie, INRA, Agrocampus Rennes, Rennes, France
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment & Health, King's College London, London, UK
| | - Eszter Nagy
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment & Health, King's College London, London, UK
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment & Health, King's College London, London, UK
| | - Steinar Ovrebø
- Section for Toxicology, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, N-0033 Oslo, Norway
| | - Steen Mollerup
- Section for Toxicology, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, N-0033 Oslo, Norway
| | - Mallory Poët
- Université de Nice Sophia Antipolis, CNRS UMR 6097, Faculté des Sciences, Nice, France
| | - Martine Chevanne
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France; Université de Rennes 1, SFR Biosit, Rennes, France
| | - Vincent Rioux
- Laboratoire de Biochimie, INRA, Agrocampus Rennes, Rennes, France
| | - Marie-Thérèse Dimanche-Boitrel
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France; Université de Rennes 1, SFR Biosit, Rennes, France
| | - Odile Sergent
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France; Université de Rennes 1, SFR Biosit, Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France; Université de Rennes 1, SFR Biosit, Rennes, France.
| |
Collapse
|
26
|
Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D. Role for membrane remodeling in cell death: Implication for health and disease. Toxicology 2013; 304:141-57. [DOI: 10.1016/j.tox.2012.12.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/29/2012] [Accepted: 12/20/2012] [Indexed: 12/31/2022]
|
27
|
Bratberg M, Olsvik PA, Edvardsen RB, Brekken HK, Vadla R, Meier S. Effects of oil pollution and persistent organic pollutants (POPs) on glycerophospholipids in liver and brain of male Atlantic cod (Gadus morhua). CHEMOSPHERE 2013; 90:2157-2171. [PMID: 23266412 DOI: 10.1016/j.chemosphere.2012.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/12/2012] [Accepted: 11/16/2012] [Indexed: 06/01/2023]
Abstract
Fish in the North Sea are exposed to relatively high levels of halogenated compounds in addition to the pollutants released by oil production activities. In this study male Atlantic cod (Gadus morhua) were orally exposed to environmental realistic levels (low and high) of weathered crude oil and/or a mixture of POPs for 4weeks. Lipid composition in brain and in liver extracts were analysed in order to assess the effects of the various pollutants on membrane lipid composition and fatty acid profiles. Transcriptional effects in the liver were studied by microarray and quantitative real-time RT-PCR. Chemical analyses confirmed uptake of polychlorinated biphenyls (PCBs) and chlorinated pesticides, polybrominated diphenyl ethers (PBDEs) and perfluorooctanesulfonate (PFOS) in the liver and excretion of metabolites of polyaromatic hydrocarbons (PAHs) in the bile. Treatment with POPs and/or crude oil did not induce significant changes in lipid composition in cod liver. Only a few minor changes were observed in the fatty acid profile of the brain and the lipid classes in the liver. The hypothesis that pollution from oil or POPs at environmental realistic levels alters the lipid composition in marine fish was therefore not confirmed in this study. However, the transcriptional data suggest that the fish were affected by the treatment at the mRNA level. This study suggests that a combination of oil and POPs induce the CYP1a detoxification system and gives an increase in the metabolism and clearing rate of PAHs and POPs, but with no effects on membrane lipids in male Atlantic cod.
Collapse
|
28
|
Tapanainen M, Jalava PI, Mäki-Paakkanen J, Hakulinen P, Lamberg H, Ruusunen J, Tissari J, Jokiniemi J, Hirvonen MR. Efficiency of log wood combustion affects the toxicological and chemical properties of emission particles. Inhal Toxicol 2012; 24:343-55. [DOI: 10.3109/08958378.2012.671858] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Health and cellular impacts of air pollutants: from cytoprotection to cytotoxicity. Biochem Res Int 2012; 2012:493894. [PMID: 22550588 PMCID: PMC3328890 DOI: 10.1155/2012/493894] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022] Open
Abstract
Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.
Collapse
|
30
|
Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages. Toxicol Appl Pharmacol 2012; 261:74-87. [PMID: 22483798 DOI: 10.1016/j.taap.2012.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 12/11/2022]
Abstract
The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte-macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1 beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B.
Collapse
|
31
|
Jiang Y, Rao K, Yang G, Chen X, Wang Q, Liu A, Zheng H, Yuan J. Benzo(a)pyrene induces p73 mRNA expression and necrosis in human lung adenocarcinoma H1299 cells. ENVIRONMENTAL TOXICOLOGY 2012; 27:202-210. [PMID: 20862736 DOI: 10.1002/tox.20631] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/01/2010] [Accepted: 06/06/2010] [Indexed: 05/29/2023]
Abstract
p53 can mediate DNA damage-induced apoptosis in various cell lines treated with Benzo(a)pyrene (BaP). However, the potential role of p73, one of the p53 family members, in BaP-induced apoptotic cell death remains to be determined. In this study, normal fetal lung fibroblasts (MRC-5) and human lung adenocarcinoma cells (H1299, p53-null) were treated with BaP at concentrations of 8, 16, 32, 64, and 128 μM for 4 and 12 h. The oxidative stress status, extent of DNA damage, expression of p53, p73, mdm2, bcl-2, and bax at the mRNA and protein levels, and the percentages of apoptosis and/or necrosis were assessed. In the two BaP-treated cell lines, we observed increased malondialdehyde (MDA) formation and decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity at 4 h after the treatment; furthermore, at the time points of 4 and 12 h, we observed extremely high levels of DNA damage. In addition, at 4 h after the treatment, BaP had induced necrosis in MRC-5 and H1299 cells, but it had inhibited apoptosis in MRC-5 cells (P < 0.01 for all). Furthermore, in BaP-treated H1299 cells, only the p73 mRNA level was up-regulated. The results suggested that BaP-induced DNA damage could trigger a shift from apoptotic cell death toward necrotic cell death and that necrotic cell death is independent of p53 and p73 in these cell lines. Future studies are needed to investigate the time course of changes in the type of BaP-induced cell death in more cell lines.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dendelé B, Tekpli X, Sergent O, Dimanche-Boitrel MT, Holme JA, Huc L, Lagadic-Gossmann D. Identification of the couple GSK3α/c-Myc as a new regulator of hexokinase II in benzo[a]pyrene-induced apoptosis. Toxicol In Vitro 2011; 26:94-101. [PMID: 22100782 DOI: 10.1016/j.tiv.2011.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/06/2011] [Accepted: 11/03/2011] [Indexed: 01/26/2023]
Abstract
The early apoptotic events induced by environmental pollutants with carcinogenic properties are poorly understood. Here, we focus on the early cytotoxic effects of benzo[a]pyrene (B[a]P). In F258 rat hepatic epithelial cells, B[a]P induces intrinsic apoptosis via a mitochondrial dysfunction characterized by the release of hexokinase II (HKII) from the mitochondria. Cancer cells often have an anomalous cell energy metabolism; since HKII dysfunction regulates B[a]P-induced apoptosis in F258 cells, but may also alter cell energy metabolism, HKII release from the mitochondria may represent an important B[a]P-related carcinogenic issue. Thus in the present study, we aimed at deciphering the mechanisms underlying HKII dysfunction upon B[a]P exposure. We show that while glycogen synthase kinase 3 beta (GSK3β) regulated the expression of HKII at the transcriptional level, glycogen synthase kinase 3 alpha (GSK3α) was involved in B[a]P-induced apoptosis via a decrease in c-Myc expression. The reduced level of c-Myc caused the relocation of HKII from the mitochondria to the cytosol, thereby being involved in the formation of reactive oxygen species and apoptosis. In conclusion, we show that the couple GSK3α/c-Myc plays a key role in B[a]P-induced early apoptotic cell signaling via HKII dysfunction.
Collapse
Affiliation(s)
- Béatrice Dendelé
- EA SeRAIC, Equipe labellisée Ligue contre le Cancer, IRSET, Université de Rennes 1, IFR 140, Rennes, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Carvalho RN, Bopp SK, Lettieri T. Transcriptomics responses in marine diatom Thalassiosira pseudonana exposed to the polycyclic aromatic hydrocarbon benzo[a]pyrene. PLoS One 2011; 6:e26985. [PMID: 22073232 PMCID: PMC3207822 DOI: 10.1371/journal.pone.0026985] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/07/2011] [Indexed: 01/06/2023] Open
Abstract
Diatoms are unicellular, photosynthetic, eukaryotic algae with a ubiquitous distribution in water environments and they play an important role in the carbon cycle. Molecular or morphological changes in these species under ecological stress conditions are expected to serve as early indicators of toxicity and can point to a global impact on the entire ecosystem. Thalassiosira pseudonana, a marine diatom and the first with a fully sequenced genome has been selected as an aquatic model organism for ecotoxicological studies using molecular tools. A customized DNA microarray containing probes for the available gene sequences has been developed and tested to analyze the effects of a common pollutant, benzo(a)pyrene (BaP), at a sub-lethal concentration. This approach in diatoms has helped to elucidate pathway/metabolic processes involved in the mode of action of this pollutant, including lipid metabolism, silicon metabolism and stress response. A dose-response of BaP on diatoms has been made and the effect of this compound on the expression of selected genes was assessed by quantitative real time-PCR. Up-regulation of the long-chain acyl-CoA synthetase and the anti-apoptotic transmembrane Bax inhibitor, as well as down-regulation of silicon transporter 1 and a heat shock factor was confirmed at lower concentrations of BaP, but not the heat-shock protein 20. The study has allowed the identification of molecular biomarkers to BaP to be later on integrated into environmental monitoring for water quality assessment.
Collapse
Affiliation(s)
- Raquel N. Carvalho
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
| | - Stephanie K. Bopp
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
| | - Teresa Lettieri
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
- * E-mail:
| |
Collapse
|
34
|
Hrubá E, Vondráček J, Líbalová H, Topinka J, Bryja V, Souček K, Machala M. Gene expression changes in human prostate carcinoma cells exposed to genotoxic and nongenotoxic aryl hydrocarbon receptor ligands. Toxicol Lett 2011; 206:178-88. [DOI: 10.1016/j.toxlet.2011.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 01/28/2023]
|
35
|
Podechard N, Tekpli X, Catheline D, Holme J, Rioux V, Legrand P, Rialland M, Fardel O, Lagadic-Gossmann D, Lecureur V. Mechanisms involved in lipid accumulation and apoptosis induced by 1-nitropyrene in Hepa1c1c7 cells. Toxicol Lett 2011; 206:289-99. [DOI: 10.1016/j.toxlet.2011.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/09/2023]
|
36
|
Jiang Y, Zhou X, Chen X, Yang G, Wang Q, Rao K, Xiong W, Yuan J. Benzo(a)pyrene-induced mitochondrial dysfunction and cell death in p53-null Hep3B cells. Mutat Res 2011; 726:75-83. [PMID: 21911080 DOI: 10.1016/j.mrgentox.2011.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/20/2011] [Accepted: 08/26/2011] [Indexed: 11/26/2022]
Abstract
Benzo(a)pyrene (BaP) has been shown to induce apoptosis and necrosis in various cell types. However, the effect of BaP on mitochondria function and p73, and their possible roles in BaP-induced cell death have not been well studied. This study focused on mitochondria-mediated cell death and the occurrence of p73 protein accumulation in BaP-treated human hepatoma Hep3B (p53-null) cells. We found that BaP (8, 16, 32 and 64μM) induced early necrosis at 12h and delayed apoptosis at 24h. BaP dramatically induced ethoxyresorufin-O-deethylase activity and led to significant increase in oxidative stress at early time points (6 and 12h). Necrotic cell death was concurrent with loss of mitochondrial membrane potential, decrease in the ATP level and activities of Na(+)/K(+)-ATPase and Ca(2+)/Mg(2+)-ATPase. However, these changes were reversed in the process of apoptosis. In addition, after BaP treatment, c-Jun N-terminal kinase (JNK) and Bax were activated during apoptosis and no change in p73 protein level was observed. These results revealed that the cells with mitochondria dysfunction and ATP depletion underwent necrosis at early time point and apoptosis afterward when they recovered from mitochondrial dysfunction and ATP depletion. Activation of JNK and Bax possibly contributed to BaP-induced apoptosis.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gualtieri M, Ovrevik J, Mollerup S, Asare N, Longhin E, Dahlman HJ, Camatini M, Holme JA. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization. Mutat Res 2011; 713:18-31. [PMID: 21645525 DOI: 10.1016/j.mrfmmm.2011.05.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 05/13/2011] [Accepted: 05/20/2011] [Indexed: 05/22/2023]
Abstract
Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in "classical" apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.
Collapse
Affiliation(s)
- Maurizio Gualtieri
- Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Oya E, Ovrevik J, Arlt VM, Nagy E, Phillips DH, Holme JA. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis. Mutagenesis 2011; 26:697-708. [PMID: 21715570 DOI: 10.1093/mutage/ger035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are mutagenic and carcinogenic environmental pollutants found in diesel exhaust and on urban air pollution particles. In the present study, human bronchial epithelial BEAS-2B cells were exposed to 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA). DNA damage responses were compared to those observed after exposure to 1-nitropyrene (1-NP) and benzo[a]pyrene (B[a]P). Examination by microscopy revealed that 3-NBA was the most potent toxic compound while weaker responses were observed with 1-NP and B[a]P. Most interestingly, 2-NBA did not induce cell death or any other stress-related responses. 3-NBA induced a typical apoptotic cell death judged by nuclear condensation and little plasma membrane damage as well as cleavage of caspase 3 and poly-(ADP-ribose) polymerase (PARP). Exposure to 3-NBA resulted in an accumulation of cells in S-phase, and further analysis by Western blotting, immunocytochemistry and flow cytometry revealed that 3-NBA induced a DNA damage response characterized by phosphorylation of ATM (ataxia-telangiectasia mutated), checkpoint kinase (Chk) 2/Chk1, H2AX and p53. The p53 inhibitor pifithrin-α inhibited 3-NBA-induced apoptosis while small effects were seen using pifithrin-μ, suggesting that 3-NBA-induced cell death is a result of transcriptional activation of p53. In conclusion, 3-NBA is a potent inducer of apoptosis, which seemed to be triggered by the DNA damage response. Furthermore, a change of the nitro-group to the second position (i.e. 2-NBA) dramatically changed the cellular reactivity of the compound.
Collapse
Affiliation(s)
- Elisabeth Oya
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | | | | | | | | | | |
Collapse
|