1
|
Muli CS, Tarasov SG, Walters KJ. High-throughput assay exploiting disorder-to-order conformational switches: application to the proteasomal Rpn10:E6AP complex. Chem Sci 2024; 15:4041-4053. [PMID: 38487241 PMCID: PMC10935766 DOI: 10.1039/d3sc06370d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Conformational switching is pervasively driven by protein interactions, particularly for intrinsically disordered binding partners. We developed a dually orthogonal fluorescence-based assay to monitor such events, exploiting environmentally sensitive fluorophores. This assay is applied to E3 ligase E6AP, as its AZUL domain induces a disorder-to-order switch in an intrinsically disordered region of the proteasome, the so-named Rpn10 AZUL-binding domain (RAZUL). By testing various fluorophores, we developed an assay appropriate for high-throughput screening of Rpn10:E6AP-disrupting ligands. We found distinct positions in RAZUL for fluorophore labeling with either acrylodan or Atto610, which had disparate spectral responses to E6AP binding. E6AP caused a hypsochromic shift with increased fluorescence of acrylodan-RAZUL while decreasing fluorescence intensity of Atto610-RAZUL. Combining RAZUL labeled with either acrylodan or Atto610 into a common sample achieved robust and orthogonal measurement of the E6AP-induced conformational switch. This approach is generally applicable to disorder-to-order (or vice versa) transitions mediated by molecular interactions.
Collapse
Affiliation(s)
- Christine S Muli
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
| | - Sergey G Tarasov
- Biophysics Resource, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
| |
Collapse
|
2
|
Song B, Wang J, Ren Y, Su Y, Geng X, Yang F, Wang H, Zhang J. Butein inhibits cancer cell growth by rescuing the wild-type thermal stability of mutant p53. Biomed Pharmacother 2023; 163:114773. [PMID: 37156116 DOI: 10.1016/j.biopha.2023.114773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/15/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023] Open
Abstract
p53 is a transcription factor that activates the expression of various genes involved in the maintenance of genomic stability, and more than 50% of cancers harbor inactivating p53 mutations, which are indicative of highly aggressive cancer and poor prognosis. Pharmacological targeting of mutant p53 to restore the wild-type p53 tumor-suppressing function is a promising strategy for cancer therapy. In this study, we identified a small molecule, Butein, that reactivates mutant p53 activity in tumor cells harboring the R175H or R273H mutation. Butein restored wild-type-like conformation and DNA-binding ability in HT29 and SK-BR-3 cells harboring mutant p53-R175H and mutant p53-R273H, respectively. Moreover, Butein enabled the transactivation of p53 target genes and decreased the interactions of Hsp90 with mutant p53-R175H and mutant p53-R273H proteins, while Hsp90 overexpression reversed targeted p53 gene activation. In addition, Butein induced thermal stabilization of wild-type p53, mutant p53-R273H and mutant p53-R175H, as determined via CETSA. From docking study, we further proved that Butein binding to p53 stabilized the DNA-binding loop-sheet-helix motif of mutant p53-R175H and regulated its DNA-binding activity via an allosteric mechanism, conferring wild-type-like the DNA-binding activity of mutant p53. Collectively, the data suggest that Butein is a potential antitumor agent that restores p53 function in cancers harboring mutant p53-R273H or mutant p53-R175H. SIGNIFICANCE: Butein restores the ability of mutant p53 to bind DNA by reversing its transition to the Loop3 (L3) state, endows p53 mutants with thermal stability and re-establishes their transcriptional activity to induce cancer cell death.
Collapse
Affiliation(s)
- Bin Song
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jiajian Wang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yixin Ren
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yongnan Su
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueye Geng
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Yang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jihong Zhang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Province Clinical Research Center for Hematologic Disease, Kunming 650032, China.
| |
Collapse
|
3
|
Abstract
Identifying triple negative breast cancer (TNBC) patients expected to have poor outcomes provides an opportunity to enhance clinical management. We applied an Evolutionary Action Score to functionally characterize TP53 mutations (EAp53) in 96 TNBC patients and observed that EAp53 stratification may identify TP53 mutations associated with worse outcomes. These findings merit further exploration in larger TNBC cohorts and in patients treated with neoadjuvant chemotherapy regimens.
Collapse
|
4
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
5
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient's CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development - even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
6
|
Li Z, Zhang Y, Wang R, Zou K, Zou L. Genetic alterations in anaplastic thyroid carcinoma and targeted therapies. Exp Ther Med 2019; 18:2369-2377. [PMID: 31555347 DOI: 10.3892/etm.2019.7869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Thyroid cancer is the most common type of endocrine malignancy, and its incidence is increasing. Anaplastic thyroid cancer (ATC), referring to undifferentiated subtypes, is considered to be aggressive and associated with poor prognosis. Conventional therapies, including surgery, chemotherapy and radioiodine therapy, have been used for ATC, but these do not provide any significant reduction of the overall mortality rate. The tumorigenesis, development, dedifferentiation and metastasis of ATC are closely associated with the activation of various tyrosine cascades and inactivation of tumor suppressor genes, including B-Raf proto-oncogene, serine/threonine kinaseV600E, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α,tumor protein 53 mutations and telomerase reverse transcriptase mutation. These pathways exert their functions individually or through a complex network. Identification of these mutations may provide a deeper understanding of ATC. A variety of tyrosine kinase inhibitors have been successfully employed for controlling ATC growth in vitro and in xenografts. Certain novel compounds are still in clinical trials. Multi-kinase inhibitors provide a novel approach with great potential. This systematic review determined the prevalence of the major genetic alterations and their inhibitors in ATC.
Collapse
Affiliation(s)
- Zongjuan Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yang Zhang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University Medical College, Yantai, Shandong 264000, P.R. China
| | - Ruonan Wang
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Kun Zou
- Department of Radiation Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lijuan Zou
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
7
|
|
8
|
Babikir HA, Afjei R, Paulmurugan R, Massoud TF. Restoring guardianship of the genome: Anticancer drug strategies to reverse oncogenic mutant p53 misfolding. Cancer Treat Rev 2018; 71:19-31. [DOI: 10.1016/j.ctrv.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023]
|
9
|
The p53 Pathway in Glioblastoma. Cancers (Basel) 2018; 10:cancers10090297. [PMID: 30200436 PMCID: PMC6162501 DOI: 10.3390/cancers10090297] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022] Open
Abstract
The tumor suppressor and transcription factor p53 plays critical roles in tumor prevention by orchestrating a wide variety of cellular responses, including damaged cell apoptosis, maintenance of genomic stability, inhibition of angiogenesis, and regulation of cell metabolism and tumor microenvironment. TP53 is one of the most commonly deregulated genes in cancer. The p53-ARF-MDM2 pathway is deregulated in 84% of glioblastoma (GBM) patients and 94% of GBM cell lines. Deregulated p53 pathway components have been implicated in GBM cell invasion, migration, proliferation, evasion of apoptosis, and cancer cell stemness. These pathway components are also regulated by various microRNAs and long non-coding RNAs. TP53 mutations in GBM are mostly point mutations that lead to a high expression of a gain of function (GOF) oncogenic variants of the p53 protein. These relatively understudied GOF p53 mutants promote GBM malignancy, possibly by acting as transcription factors on a set of genes other than those regulated by wild type p53. Their expression correlates with worse prognosis, highlighting their potential importance as markers and targets for GBM therapy. Understanding mutant p53 functions led to the development of novel approaches to restore p53 activity or promote mutant p53 degradation for future GBM therapies.
Collapse
|
10
|
Chen CH, Dickman KG, Huang CY, Shun CT, Tai HC, Huang KH, Wang SM, Lee YJ, Grollman AP, Pu YS. Recurrence pattern and TP53 mutation in upper urinary tract urothelial carcinoma. Oncotarget 2018; 7:45225-45236. [PMID: 27286260 PMCID: PMC5216718 DOI: 10.18632/oncotarget.9904] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
TP53 mutation patterns are associated with prognosis of various cancers. This study was designed to investigate the association between TP53 mutation patterns and recurrence patterns in upper urinary tract urothelial carcinoma (UTUC) patients. A total of 165 consecutive UTUC patients who underwent nephroureterectomies were enrolled for measuring mutation patterns of TP53 gene from exome 2 to 11. Bladder recurrence, contralateral UTUC recurrence, and metastases were compared among groups by using log-rank test and Cox proportional hazard model. Single base substitution as an A:T to T:A transversion was noted in 55 (33.3%) patients (AT group). Forty-two (25.5%) patients had TP53 mutations with only other than A:T to T:A transversion (NAT group), and 68 patients (41.2%) had wide-type TP53 (WT group). AT group was predominately female (64%, 52%, 29%, respectively), had a higher incidence of end-stage renal disease (24%, 14%, 10%, respectively), and had more high-grade tumors (82%, 74%, 62%, respectively) compared to NAT and WT groups. With adjustment of tumor grade/stages, bladder and contralateral UTUC recurrence-free survival duration was shortest in NAT (p < 0.001) and AT group (p < 0.001), respectively. NAT group had a shorter metastasis-free survival duration than the other two groups combined (p = 0.018). As a result, A:T to T:A transversion increased contralateral UTUC recurrence risk, but other mutations in TP53 raised the hazard of bladder recurrence and metastases. Therefore, TP53 mutation pattern may be a useful biomarker to predict recurrence patterns of UTUC patients.
Collapse
Affiliation(s)
- Chung-Hsin Chen
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Huai-Ching Tai
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuo-Meng Wang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Ju Lee
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Arthur P Grollman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Blocking mutation independent p53 aggregation by emodin modulates autophagic cell death pathway in lung cancer. Int J Biochem Cell Biol 2018; 96:90-95. [PMID: 29355754 DOI: 10.1016/j.biocel.2018.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
Loss of p53 function via mutation is a very common cause of human cancers. Recent studies have provided evidence on presence of self aggregated p53 in cancer cells leading to its altered functions towards cause of cancer. The general notion has been that mutated p53 exposes adhesive sites that promote self aggregation, however a complete mechanistic understanding to this has been lacking. We embarked on the present study towards exploring the differential aggregation pattern in cells expressing mutated TP53 (HaCaT keratinocytes) vs those expressing the wild type copy of the p53 protein (A549 lung cancer cell line). The studies led us to interesting observation that formation of p53 protein aggregates is not always associated with TP53 mutation. The A549 lung cancer cells, having wild type TP53, showed the appearance of p53 protein aggregates, while no protein aggregates were observed in normal HaCaT keratinocytes carrying mutant TP53. We went on to study the effect of blocking protein aggregation by emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) and figured that inhibiting p53 protein aggregation can elevate the level of autophagy in A549 lung cancer cell line while there is no significant effect on autophagy in normal non-cancerous HaCaT cells. Moreover, ATG5 was found to be coaggregated with p53 aggregates which dissociated after emodin treatment, indicating further induction of autophagy in A549 cells only. From these observations, we conclude that the increased level of autophagy might be the mechanism for the removal of p53 protein aggregates which restores p53 function in A549 cells after emodin treatment .This encourages further studies towards deciphering related mechanistic aspects vis-à-vis potential therapeutic strategies against cancer.
Collapse
|
12
|
Zhu S, Chen Z, Wang L, Peng D, Belkhiri A, Lockhart AC, El-Rifai W. A Combination of SAHA and Quinacrine Is Effective in Inducing Cancer Cell Death in Upper Gastrointestinal Cancers. Clin Cancer Res 2018; 24:1905-1916. [PMID: 29386219 DOI: 10.1158/1078-0432.ccr-17-1716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/27/2017] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: We aimed to investigate the therapeutic efficacy of single agent and the combination of quinacrine and suberoylanilide hydroxamic acid (SAHA) in wt- and mut-p53 upper gastrointestinal cancer (UGC) cell models.Experimental Design: ATP-Glo, clonogenic cell survival, Annexin V, comet, DNA double-strand breaks (DSBs), qPCR, and Western blot analysis assays were utilized.Results: Using clonogenic cell survival, ATP-Glo cell viability, Annexin V, and sub-G0 population analysis, we demonstrated that a combination of quinacrine and SAHA significantly decreased colony formation and increased cancer cell death (range, 4-20 fold) in six UGC cell models, as compared with single-agent treatments, irrespective of the p53 status (P < 0.01). The combination of quinacrine and SAHA induced high levels of DSB DNA damage (>20-fold, P < 0.01). Western blot analysis showed activation of caspases-3, 9, and γ-H2AX in all cell models. Of note, although quinacrine treatment induced expression of wt-p53 protein, the combination of quinacrine and SAHA substantially decreased the levels of both wt-P53 and mut-P53. Furthermore, cell models that were resistant to cisplatin (CDDP) or gefitinib treatments were sensitive to this combination. Tumor xenograft data confirmed that a combination of quinacrine and SAHA is more effective than a single-agent treatment in abrogating tumor growth in vivo (P < 0.01).Conclusions: Our novel findings show that the combination of quinacrine and SAHA promotes DNA damage and is effective in inducing cancer cell death, irrespective of p53 status and resistance to CDDP or gefitinib in UGC models. Clin Cancer Res; 24(8); 1905-16. ©2018 AACR.
Collapse
Affiliation(s)
- Shoumin Zhu
- Department of Surgery, University of Miami, Miami, Florida
| | - Zheng Chen
- Department of Surgery, University of Miami, Miami, Florida
| | - Lihong Wang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dunfa Peng
- Department of Surgery, University of Miami, Miami, Florida
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - A Craig Lockhart
- Division of Medical Oncology, University of Miami, Miami, Florida
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.,Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| |
Collapse
|
13
|
Way L, Faktor J, Dvorakova P, Nicholson J, Vojtesek B, Graham D, Ball KL, Hupp T. Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein-protein interactions by the MDM2 ligand nutlin-3. Proteomics 2017; 16:2327-44. [PMID: 27273042 PMCID: PMC5026170 DOI: 10.1002/pmic.201500501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/27/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
Abstract
Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53‐independent MDM2‐drug responsive‐binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin‐3 responsive MDM2‐binding proteins that are perturbed independent of cell density using SWATH‐MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin‐3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin‐3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin‐3 treated cells. Mitotracker confirmed that Nutlin‐3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin‐3 treatment. Proximity ligation identified rearrangements of cellular protein–protein complexes in situ. In response to Nutlin‐3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein–protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein–protein complexes in drug‐treated cells.
Collapse
Affiliation(s)
- Luke Way
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jakub Faktor
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petra Dvorakova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Judith Nicholson
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Borek Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Kathryn L Ball
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ted Hupp
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK. .,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
14
|
Morrone JA, Perez A, MacCallum J, Dill KA. Computed Binding of Peptides to Proteins with MELD-Accelerated Molecular Dynamics. J Chem Theory Comput 2017; 13:870-876. [DOI: 10.1021/acs.jctc.6b00977] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph A. Morrone
- Laufer
Center for Physical and Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Alberto Perez
- Laufer
Center for Physical and Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Justin MacCallum
- Department
of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ken A. Dill
- Laufer
Center for Physical and Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Physics & Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
15
|
Köbel M, Piskorz AM, Lee S, Lui S, LePage C, Marass F, Rosenfeld N, Mes Masson AM, Brenton JD. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2016. [PMID: 27840695 DOI: 10.1002/cjp2.53] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TP53 mutations are ubiquitous in high-grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low-grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged-amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain-of-function (GOF or nonsynonymous), loss-of-function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low-grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%.
Collapse
Affiliation(s)
- Martin Köbel
- Department of Pathology and Laboratory Medicine University of Calgary Calgary AB Canada
| | - Anna M Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre Cambridge CB2 0RE UK
| | - Sandra Lee
- Department of Pathology and Laboratory Medicine University of Calgary Calgary AB Canada
| | - Shuhong Lui
- Department of Pathology and Laboratory Medicine University of Calgary Calgary AB Canada
| | - Cecile LePage
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontrealQCCanada; Institut du cancer de Montréal, MontrealQCCanada
| | - Francesco Marass
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre Cambridge CB2 0RE UK
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre Cambridge CB2 0RE UK
| | - Anne-Marie Mes Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontrealQCCanada; Institut du cancer de Montréal, MontrealQCCanada
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre Cambridge CB2 0RE UK
| |
Collapse
|
16
|
Köbel M, Piskorz AM, Lee S, Lui S, LePage C, Marass F, Rosenfeld N, Mes Masson A, Brenton JD. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma. J Pathol Clin Res 2016; 2:247-258. [PMID: 27840695 PMCID: PMC5091634 DOI: 10.1002/cjp2.53] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022]
Abstract
TP53 mutations are ubiquitous in high-grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low-grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged-amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain-of-function (GOF or nonsynonymous), loss-of-function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low-grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%.
Collapse
Affiliation(s)
- Martin Köbel
- Department of Pathology and Laboratory MedicineUniversity of CalgaryCalgaryABCanada
| | - Anna M Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeCB2 0REUK
| | - Sandra Lee
- Department of Pathology and Laboratory MedicineUniversity of CalgaryCalgaryABCanada
| | - Shuhong Lui
- Department of Pathology and Laboratory MedicineUniversity of CalgaryCalgaryABCanada
| | - Cecile LePage
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontrealQCCanada
- Institut du cancer de Montréal, MontrealQCCanada
| | - Francesco Marass
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeCB2 0REUK
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeCB2 0REUK
| | - Anne‐Marie Mes Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontrealQCCanada
- Institut du cancer de Montréal, MontrealQCCanada
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeCB2 0REUK
| |
Collapse
|
17
|
Xue Z, Wen H, Wang C, Zhai L, Cheng A, Kou X. CPe-III-S Metabolism in Vitro and in Vivo and Molecular Simulation of Its Metabolites Using a p53-R273H Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7095-7103. [PMID: 27584867 DOI: 10.1021/acs.jafc.6b01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It was previously found that CPe-III-S, synthesized according to the chickpea peptide CPe-III (RQSHFANAQP), exhibited an antiproliferative effect. The aim of this study was to investigate the antiproliferative mechanism of CPe-III-S. CPe-III-S was treated by pepsin and trypsin in a simulated gastrointestinal digestion environment as well as in an animal experiment. With HPLC-ESI-MS analysis, three peptide fragments of Ser-His, His-Phe, and Ala-Asn-Ala-Gln were identified. Ser-His was the only common product from both in vitro and in vivo environments. The specific bindings between three peptides and p53-R273H were performed by molecular docking, and the molecular dynamic simulation between Ser-His and p53-R273H revealed the stability of the binding complex. The binding free energy of the complex was -12.56 ± 1.03 kcal/mol with a reliable hydrogen bond between the ligand and Thr284 of p53. Ser-His may restore mutant p53-R273H activity or inhibit its binding with a downstream signal. This metabolite is a potential anticancer factor for suppressing cell proliferation.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Haichao Wen
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Cen Wang
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Lijuan Zhai
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Aiqing Cheng
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| |
Collapse
|
18
|
Katchman BA, Barderas R, Alam R, Chowell D, Field MS, Esserman LJ, Wallstrom G, LaBaer J, Cramer DW, Hollingsworth MA, Anderson KS. Proteomic mapping of p53 immunogenicity in pancreatic, ovarian, and breast cancers. Proteomics Clin Appl 2016; 10:720-31. [PMID: 27121307 PMCID: PMC5553208 DOI: 10.1002/prca.201500096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/29/2016] [Accepted: 04/20/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE Mutations in TP53 induce autoantibody immune responses in a subset of cancer patients, which have been proposed as biomarkers for early detection. Here, we investigate the association of p53-specific autoantibodies with multiple tumor subtypes and determine the association with p53 mutation status and epitope specificity. EXPERIMENTAL DESIGN IgG p53 autoantibodies (p53-AAb), were quantified in 412 serum samples using a programmable ELISA assay from patients with serous ovarian, pancreatic adenocarcinoma, and breast cancer. To determine if patients generated mutation-specific autoantibodies we designed a panel of the most relevant 51 p53 point mutant proteins, to be displayed on custom programmable protein microarrays. To determine the epitope specificity we displayed 12 overlapping tiling fragments and 38 N- and C-terminal deletions spanning the length of the wild-type p53 protein. RESULTS We detected p53-AAb with sensitivities of 58.8% (ovarian), 22% (pancreatic), 32% (triple negative breast cancer), and 10.2% (HER2+ breast cancer) at 94% specificity. Sera with p53-AAb contained broadly reactive autoantibodies to 51 displayed p53 mutant proteins, demonstrating a polyclonal response to common epitopes. All p53-AAb displayed broad polyclonal immune response to both continuous and discontinuous epitopes at the N- and C-terminus as well as the DNA-binding domain. CONCLUSION AND CLINICAL RELEVANCE In this comprehensive analysis, mutations in tumor p53 induce strong, polyclonal autoantibodies with broadly reactive epitope specificity.
Collapse
Affiliation(s)
- Benjamin A. Katchman
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Rodrigo Barderas
- Biochemistry and Molecular Biology I Department, Complutense University, Madrid, Spain
| | - Rizwan Alam
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Diego Chowell
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Matthew S. Field
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Laura J. Esserman
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Garrick Wallstrom
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Daniel W. Cramer
- Department of Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karen S. Anderson
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
19
|
Ferraiuolo M, Di Agostino S, Blandino G, Strano S. Oncogenic Intra-p53 Family Member Interactions in Human Cancers. Front Oncol 2016; 6:77. [PMID: 27066457 PMCID: PMC4814729 DOI: 10.3389/fonc.2016.00077] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
The p53 gene family members p53, p73, and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologs but hold peculiar functional properties. p53, p73, and p63 are tumor suppressor genes that promote differentiation, senescence, and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic “gain of function” activities correlated with the induction of proliferation, invasion, chemoresistance, and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53) with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor, Ets-1, NF-kB and YAP) or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response and DNA double-strand breaks response), enhanced invasion, and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild-type p53 (wt-p53) protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73, and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers.
Collapse
Affiliation(s)
- Maria Ferraiuolo
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy; Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Di Agostino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
20
|
Tournillon AS, López I, Malbert-Colas L, Naski N, Olivares-Illana V, Fåhraeus R. The alternative translated MDMX(p60) isoform regulates MDM2 activity. Cell Cycle 2015; 14:449-58. [PMID: 25659040 PMCID: PMC4615104 DOI: 10.4161/15384101.2014.977081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Isoforms derived from alternative splicing, mRNA translation initiation or promoter usage extend the functional repertoire of the p53, p63 and p73 genes family and of their regulators MDM2 and MDMX. Here we show cap-independent translation of an N-terminal truncated isoform of hMDMX, hMDMXp60, which is initiated at the 7th AUG codon downstream of the initiation site for full length hMDMXFL at position +384. hMDMXp60 lacks the p53 binding motif but retains the RING domain and interacts with hMDM2 and hMDMXFL. hMDMXp60 shows higher affinity for hMDM2, as compared to hMDMXFL. In vitro data reveal a positive cooperative interaction between hMDMXp60 and hMDM2 and in cellulo data show that low levels of hMDMXp60 promote degradation of hMDM2 whereas higher levels stabilize hMDM2 and prevent hMDM2-mediated degradation of hMDMXFL. These results describe a novel alternatively translated hMDMX isoform that exhibits unique regulatory activity toward hMDM2 autoubiquitination. The data illustrate how the N-terminus of hMDMX regulates its C-terminal RING domain and the hMDM2 activity.
Collapse
Affiliation(s)
- Anne-Sophie Tournillon
- a Cibles Thérapeutiques, Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162; Institut de Génétique Moléculaire , Université Paris 7 ; Hôpital St. Louis; Paris , France
| | | | | | | | | | | |
Collapse
|
21
|
Zhang X, Cheng L, Minn K, Madan R, Godwin AK, Shridhar V, Chien J. Targeting of mutant p53-induced FoxM1 with thiostrepton induces cytotoxicity and enhances carboplatin sensitivity in cancer cells. Oncotarget 2015; 5:11365-80. [PMID: 25426548 PMCID: PMC4294351 DOI: 10.18632/oncotarget.2497] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/18/2014] [Indexed: 01/30/2023] Open
Abstract
FoxM1 is an oncogenic Forkhead transcription factor that is overexpressed in ovarian cancer. However, the mechanisms by which FoxM1 is deregulated in ovarian cancer and the extent to which FoxM1 can be targeted in ovarian cancer have not been reported previously. In this study, we showed that MDM2 inhibitor Nutlin-3 upregulated p53 protein and downregulated FoxM1 expression in several cancer cell lines with wild type TP53 but not in cell lines with mutant TP53. FoxM1 downregulation was partially blocked by cycloheximide or actinomycin D, and pulse-chase studies indicate Nutlin-3 enhances FoxM1 mRNA decay. Knockdown of p53 using shRNAs abrogated the FoxM1 downregulation by Nutlin-3, indicating a p53-dependent mechanism. FoxM1 inhibitor, thiostrepton, induces apoptosis in cancer cell lines and enhances sensitivity to cisplatin in these cells. Thiostrepton downregulates FoxM1 expression in several cancer cell lines and enhances sensitivity to carboplatin in vivo. Finally, FoxM1 expression is elevated in nearly all (48/49) ovarian tumors, indicating that thiostrepton target gene is highly expressed in ovarian cancer. In summary, the present study provides novel evidence that both amorphic and neomorphic mutations in TP53 contribute to FoxM1 overexpression and that FoxM1 may be targeted for therapeutic benefits in cancers.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Lihua Cheng
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Kay Minn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Viji Shridhar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Jeremy Chien
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| |
Collapse
|
22
|
Abstract
It has been confirmed through studies using the technique of unbiased sequencing that the TP53 tumour suppressor is the most frequently inactivated gene in cancer. This finding, together with results from earlier studies, provides compelling evidence for the idea that p53 ablation is required for the development and maintenance of tumours. Genetic reconstitution of the function of p53 leads to the suppression of established tumours as shown in mouse models. This strongly supports the notion that p53 reactivation by small molecules could provide an efficient strategy to treat cancer. In this review, we summarize recent advances in the development of small molecules that restore the function of mutant p53 by different mechanisms, including stabilization of its folding by Apr-246, which is currently being tested in a Phase II clinical trial. We discuss several classes of compounds that reactivate wild-type p53, such as Mdm2 inhibitors, which are currently undergoing clinical testing, MdmX inhibitors and molecules targeting factors upstream of Mdm2/X or p53 itself. Finally, we consider the clinical applications of compounds targeting p53 and the p53 pathway.
Collapse
Affiliation(s)
- J Zawacka-Pankau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - G Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
|
24
|
Yi YW, Kang HJ, Kim HJ, Kong Y, Brown ML, Bae I. Targeting mutant p53 by a SIRT1 activator YK-3-237 inhibits the proliferation of triple-negative breast cancer cells. Oncotarget 2014; 4:984-94. [PMID: 23846322 PMCID: PMC3759676 DOI: 10.18632/oncotarget.1070] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many types of mutations in tumor suppressor p53 are oncogenic through gain-of-function. Therefore, targeting mutant p53 (mtp53) is a promising therapeutic approach to fight against many types of cancers. We report here a small molecule compound YK-3-237 that reduces acetylation of mtp53 and exhibits anti-proliferative effects toward triple-negative breast cancer (TNBC) cells carrying mtp53. YK-3-237 activates SIRT1 enzyme activities in vitro and deacetylation of both mtp53 and wild type p53 (WTp53) in a SIRT1-dependent manner. Deacetylation of mtp53 resulted in depletion of mtp53 protein level and up-regulated the expression of WTp53-target genes, PUMA and NOXA. YK-3-237 also induces PARP-dependent apoptotic cell death and arrests the cell cycle at G2/M phase in mtp53 TNBC cells. Taken together, our data suggest that targeting acetylation of mtp53 is a potential target to treat human cancers.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
25
|
Xue JQ, Xia TS, Liang XQ, Zhou W, Cheng L, Shi L, Wang Y, Ding Q. RNA-binding protein RNPC1: acting as a tumor suppressor in breast cancer. BMC Cancer 2014; 14:322. [PMID: 24884756 PMCID: PMC4101826 DOI: 10.1186/1471-2407-14-322] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/29/2014] [Indexed: 02/04/2023] Open
Abstract
Background RNA binding proteins (RBPs) play a fundamental role in posttranscriptional control of gene expression. Different RBPs have oncogenic or tumor-suppressive functions on human cancers. RNPC1 belongs to the RNA recognition motif (RRM) family of RBPs, which could regulate expression of diverse targets by mRNA stability in human cancer cells. Several studies reported that RNPC1 played an important role in cancer, mostly acting as an oncogene or up-regulating in tumors. However, its role in human breast cancer remains unclear. Methods In the present study, we investigated the functional and mechanistic roles of RNPC1 in attenuating invasive signal including reverse epithelial-mesenchymal transition (EMT) to inhibit breast cancer cells aggressiveness in vitro. Moreover, RNPC1 suppress tumorigenicity in vivo. Further, we studied the expression of RNPC1 in breast cancer tissue and adjacent normal breast tissue by quantitative RT-PCR (qRT-PCR) and Western blot. Results We observed that RNPC1 expression was silenced in breast cancer cell lines compared to breast epithelial cells. More important, RNPC1 was frequently silenced in breast cancer tissue compared to adjacent normal breast tissue. Low RNPC1 mRNA expression was associated with higher clinical stages and mutp53, while low level of RNPC1 protein was associated with higher lymph node metastasis, mutp53 and lower progesterone receptor (PR). Functional assays showed ectopic expression of RNPC1 could inhibit breast tumor cell proliferation in vivo and in vitro through inducing cell cycle arrest, and further suppress tumor cell migration and invasion partly through repressing mutant p53 (mutp53) induced EMT. Conclusions Overall, our findings indicated that RNPC1 had a potential function to play a tumor-suppressor role which may be a potential marker in the therapeutic and prognostic of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiang Ding
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
26
|
Muller PAJ, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25:304-17. [PMID: 24651012 PMCID: PMC3970583 DOI: 10.1016/j.ccr.2014.01.021] [Citation(s) in RCA: 1145] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/13/2013] [Accepted: 01/13/2014] [Indexed: 12/11/2022]
Abstract
Many different types of cancer show a high incidence of TP53 mutations, leading to the expression of mutant p53 proteins. There is growing evidence that these mutant p53s have both lost wild-type p53 tumor suppressor activity and gained functions that help to contribute to malignant progression. Understanding the functions of mutant p53 will help in the development of new therapeutic approaches that may be useful in a broad range of cancer types.
Collapse
Affiliation(s)
- Patricia A J Muller
- Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.
| | - Karen H Vousden
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
27
|
Nicholson J, Scherl A, Way L, Blackburn EA, Walkinshaw MD, Ball KL, Hupp TR. A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2. Cell Signal 2014; 26:1243-57. [PMID: 24583282 DOI: 10.1016/j.cellsig.2014.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/24/2022]
Abstract
Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors.
Collapse
Affiliation(s)
- Judith Nicholson
- Edinburgh Cancer Research Centre, Cell Signalling Unit, University of Edinburgh, EH4 2XR, United Kingdom; Department of Radiation Oncology and Biology, University of Oxford, OX3 7DQ, United Kingdom
| | - Alex Scherl
- Proteomics Core Facility, University of Geneva, Switzerland
| | - Luke Way
- Edinburgh Cancer Research Centre, Cell Signalling Unit, University of Edinburgh, EH4 2XR, United Kingdom
| | - Elizabeth A Blackburn
- Edinburgh Centre for Chemical Biology, University of Edinburgh, EH9 3JG, United Kingdom
| | - Malcolm D Walkinshaw
- Edinburgh Centre for Chemical Biology, University of Edinburgh, EH9 3JG, United Kingdom
| | - Kathryn L Ball
- Edinburgh Cancer Research Centre, Cell Signalling Unit, University of Edinburgh, EH4 2XR, United Kingdom
| | - Ted R Hupp
- Edinburgh Cancer Research Centre, Cell Signalling Unit, University of Edinburgh, EH4 2XR, United Kingdom.
| |
Collapse
|
28
|
Abstract
The tumor suppressor p53 plays a central role in anti-tumorigenesis and cancer therapy. It has been described as "the guardian of the genome", because it is essential for conserving genomic stability by preventing mutation, and its mutation and inactivation are highly related to all human cancers. Two important p53 regulators, MDM2 and MDMX, inactivate p53 by directly inhibiting its transcriptional activity and mediating its ubiquitination in a feedback fashion, as their genes are also the transcriptional targets of p53. On account of the importance of the p53-MDM2-MDMX loop in the initiation and development of wild type p53-containing tumors, intensive studies over the past decade have been aiming to identify small molecules or peptides that could specifically target individual protein molecules of this pathway for developing better anti-cancer therapeutics. In this chapter, we review the approaches for screening and discovering efficient and selective MDM2 inhibitors with emphasis on the most advanced synthetic small molecules that interfere with the p53-MDM2 interaction and are currently on Phase I clinical trials. Other therapeutically useful strategies targeting this loop, which potentially improve the prospects of cancer therapy and prevention, will also be discussed briefly.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, Louisiana, LA, 70112, USA
| | | | | |
Collapse
|
29
|
p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2013; 142:99-113. [PMID: 24287312 DOI: 10.1016/j.pharmthera.2013.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
More than thirty years elapsed since a protein, not yet called p53 at the time, was detected to bind SV40 during viral infection. Thousands of papers later, p53 evolved as the main tumor suppressor involved in growth arrest and apoptosis. A lot has been done but the protein has not yet revealed all its secrets. Particularly important is the observation that in totally distinct pathologies where apoptosis is either exacerbated or impaired, p53 appears to play a central role. This is exemplified for Alzheimer's and Parkinson's diseases that represent the two main causes of age-related neurodegenerative affections, where cell death enhancement appears as one of the main etiological paradigms. Conversely, in cancers, about half of the cases are linked to mutations in p53 leading to the impairment of p53-dependent apoptosis. The involvement of p53 in these pathologies has driven a huge amount of studies aimed at designing chemical tools or biological approaches to rescue p53 defects or over-activity. Here, we describe the data linking p53 to neurodegenerative diseases and brain cancers, and we document the various strategies to interfere with p53 dysfunctions in these disorders.
Collapse
|
30
|
Leão M, Gomes S, Soares J, Bessa C, Maciel C, Ciribilli Y, Pereira C, Inga A, Saraiva L. Novel simplified yeast-based assays of regulators of p53-MDMX interaction and p53 transcriptional activity. FEBS J 2013; 280:6498-507. [PMID: 24119020 DOI: 10.1111/febs.12552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/05/2013] [Accepted: 09/25/2013] [Indexed: 11/27/2022]
Abstract
Yeast has proven to be an efficient model system for functional and pharmacological studies of the p53 tumour suppressor protein. In this work, the human p53-MDMX regulatory pathway was reconstituted in yeast. Additionally, by using the known inhibitor of p53-MDMX interaction, SJ-172550, the efficacy of a simplified yeast-based screening assay to search for inhibitors of p53-MDMX interaction is demonstrated for the first time. Moreover, further insights on p53 transcriptional activity in yeast are provided. In particular, it is shown that the reported wild-type (wt) p53-induced yeast growth inhibition and cell cycle arrest is associated with actin depolarization and with an increase of actin mRNA and protein expression levels. The increase of actin protein levels was not observed with the p53 R273H mutant (a loss of function p53 mutation hotspot) and was further intensified with the toxic p53 V122A mutant (reported to exhibit higher transcriptional activity than wt p53 for selected p53 target sequences). Moreover, it is shown that the wt p53-induced actin protein levels are modulated by natural (MDM2 and MDMX) and chemical (pifithrin-α, nutlin-3a and SJ-172550) regulators of p53 activity. Furthermore, wt p53 could stimulate transcription from a minimal promoter containing a fragment of the ACT1 upstream sequence. Thus, ACT1 is proposed as a putative endogenous p53 target gene. This finding may open the way for the development of simpler yeast p53 transactivation assays, not based on artificial reporter constructs, for the analysis of the impact of mutants, cofactors and small molecules on p53 transcriptional activity.
Collapse
Affiliation(s)
- Mariana Leão
- REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Universidade do Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gray TA, Murray E, Nowicki MW, Remnant L, Scherl A, Muller P, Vojtesek B, Hupp TR. Development of a fluorescent monoclonal antibody-based assay to measure the allosteric effects of synthetic peptides on self-oligomerization of AGR2 protein. Protein Sci 2013; 22:1266-78. [PMID: 23780840 DOI: 10.1002/pro.2299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/12/2022]
Abstract
Many regulatory proteins are homo-oligomeric and designing assays that measure self-assembly will provide novel approaches to study protein allostery and screen for novel small molecule modulators of protein interactions. We present an assay to begin to define the biochemical determinants that regulate dimerization of the cancer-associated oncoprotein AGR2. A two site-sandwich microtiter assay ((2S) MTA) was designed using a DyLight800-labeled monoclonal antibody that binds to an epitope in AGR2 to screen for synthetic self-peptides that might regulate dimer stability. Peptides derived from the intrinsically disordered N-terminal region of AGR2 increase in trans oligomer stability as defined using the (2S) MTA assay. A DSS-crosslinking assay that traps the AGR2 dimer through K95-K95 adducts confirmed that Δ45-AGR2 was a more stable dimer using denaturing gel electrophoresis. A titration of wt-AGR2, Δ45-AGR2 (more stable dimer), and monomeric AGR2(E60A) revealed that Δ45-AGR2 was more active in binding to Reptin than either wt-AGR2 or the AGR2(E60A) mutant. Our data have defined a functional role for the AGR2 dimer in the binding to its most well characterized interacting protein, Reptin. The ability to regulate AGR2 oligomerization in trans opens the possibility for developing small molecules that regulate its' biochemical activity as potential cancer therapeutics. The data also highlight the utility of this oligomerization assay to screen chemical libraries for ligands that could regulate AGR2 dimer stability and its' oncogenic potential.
Collapse
Affiliation(s)
- Terry A Gray
- Institute of Genetics and Molecular Medicine, Cell Signaling Unit, University of Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fiannaca A, La Rosa M, Urso A, Rizzo R, Gaglio S. A knowledge-based decision support system in bioinformatics: an application to protein complex extraction. BMC Bioinformatics 2013; 14 Suppl 1:S5. [PMID: 23368995 PMCID: PMC3548703 DOI: 10.1186/1471-2105-14-s1-s5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background We introduce a Knowledge-based Decision Support System (KDSS) in order to face the Protein Complex Extraction issue. Using a Knowledge Base (KB) coding the expertise about the proposed scenario, our KDSS is able to suggest both strategies and tools, according to the features of input dataset. Our system provides a navigable workflow for the current experiment and furthermore it offers support in the configuration and running of every processing component of that workflow. This last feature makes our system a crossover between classical DSS and Workflow Management Systems. Results We briefly present the KDSS' architecture and basic concepts used in the design of the knowledge base and the reasoning component. The system is then tested using a subset of Saccharomyces cerevisiae Protein-Protein interaction dataset. We used this subset because it has been well studied in literature by several research groups in the field of complex extraction: in this way we could easily compare the results obtained through our KDSS with theirs. Our system suggests both a preprocessing and a clustering strategy, and for each of them it proposes and eventually runs suited algorithms. Our system's final results are then composed of a workflow of tasks, that can be reused for other experiments, and the specific numerical results for that particular trial. Conclusions The proposed approach, using the KDSS' knowledge base, provides a novel workflow that gives the best results with regard to the other workflows produced by the system. This workflow and its numeric results have been compared with other approaches about PPI network analysis found in literature, offering similar results.
Collapse
Affiliation(s)
- Antonino Fiannaca
- ICAR-CNR, National Research Council of Italy, Viale delle Scienze Ed, 11, Palermo, 90128, Italy
| | | | | | | | | |
Collapse
|
33
|
Synergistic role between p53 and JWA: prognostic and predictive biomarkers in gastric cancer. PLoS One 2012; 7:e52348. [PMID: 23285001 PMCID: PMC3528747 DOI: 10.1371/journal.pone.0052348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/12/2012] [Indexed: 12/28/2022] Open
Abstract
Expression of p53 appears to be correlated to prognosis in patients with malignancy, but its role in gastric carcinoma has remained controversial. Recently we reported that JWA, an ADP-ribosylation-like factor 6 interacting protein 5 (ARL6ip5), was both prognostic for overall survival and predictive for platinum-based treatment of gastric cancer. In this study, we aimed to investigate p53 expression as a prognostic and predictive marker in resectable gastric cancer, alone and in combination with JWA. Expression of p53 was examined in three large patient cohorts (total n = 1155) of gastric cancer. High expression of p53 was significantly correlated with unfavorable clinicopathologic parameters and decreased overall patient survival. Furthermore, patients with high p53 expression in tumors acquired remarkable survival benefit from adjuvant first-line platinum-based-chemotherapy. The synergy between p53 and JWA in predicting patient outcome was demonstrated, while no significantly elevated predictive value concerning chemotherapy was observed. Thus, p53 expression is a potent prognostic and predictive factor for resectable gastric cancer with adjuvant platinum-based chemotherapy. A combined effect of p53 with JWA as efficient prognostic indicators was found for the first time.
Collapse
|
34
|
Live-cell imaging of p53 interactions using a novel Venus-based bimolecular fluorescence complementation system. Biochem Pharmacol 2012; 85:745-52. [PMID: 23261524 DOI: 10.1016/j.bcp.2012.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/28/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022]
Abstract
p53 plays an important role in regulating a wide variety of cellular processes, such as cell cycle arrest and/or apoptosis. Dysfunction of p53 is frequently associated with several pathologies, such as cancer and neurodegenerative diseases. In recent years substantial progress has been made in developing novel p53-activating molecules. Importantly, modulation of p53 interaction with its main inhibitor, Mdm2, has been highlighted as a promising therapeutic target. In this regard, bimolecular fluorescence complementation (BiFC) analysis, by providing direct visualization of protein interactions in living cells, offers a straightforward method to identify potential modulators of protein interactions. In this study, we developed a simple and robust Venus-based BiFC system to screen for modulators of p53-p53 and p53-Mdm2 interactions in live mammalian cells. We used nutlin-3, a well-known disruptor of p53-Mdm2 interaction, to validate the specificity of the assay. The reduction of BiFC signal mediated by nutlin-3 was correlated with an increase in Puma transactivation, PARP cleavage, and cell death. Finally, this novel BiFC approach was exploited to identify potential modulators of p53-Mdm2 complex formation among a commercially available chemical library of 33 protein phosphatase inhibitors. Our results constitute "proof-of-concept" that this model has strong potential as an alternative to traditional target-based drug discovery strategies. Identification of new modulators of p53-p53 and p53-Mdm2 interactions will be useful to achieve synergistic drug efficacy with currently used anti-tumor therapies.
Collapse
|
35
|
Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A. Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 2012; 7:e51426. [PMID: 23251530 PMCID: PMC3520893 DOI: 10.1371/journal.pone.0051426] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes.
Collapse
Affiliation(s)
- Milena Wiech
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- The Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Maciej B. Olszewski
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- The Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Bartosz Wawrzynow
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Ponnuswamy A, Hupp T, Fåhraeus R. Concepts in MDM2 Signaling: Allosteric Regulation and Feedback Loops. Genes Cancer 2012; 3:291-7. [PMID: 23150762 DOI: 10.1177/1947601912454140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The function and regulation of MDM2 as a component of a p53-dependent negative feedback loop has formed a core paradigm in the p53 field. This concept, now 20 years old, has been solidified by fields of protein science, transgenic technology, and drug discovery in human cancer. However, it has been noted that a simple negative feedback loop between p53 and MDM2 lacks an intrinsic "activating" step that counteracts this inhibition and permits oscillation of the feedback to occur as p53 is switched on and off. More recent work has identified a solution to the missing piece of the picture that counters the negative feedback loop, which is MDM2 itself. Under conditions of genotoxic stress, MDM2 helps to activate p53 by increasing its rate of protein synthesis. This simple observation makes certain aspects of the p53 response more comprehensible such as why MDM2 is upregulated by p53 early on following DNA damage and how phosphorylation of MDM2 at the C-terminal Ser395 by ATM translates into p53 activation. The latter acts by inducing allosteric changes in the RING domain of MDM2 that expose its RNA binding pocket, support p53 synthesis, and suppress its degradation. This allosteric nature of MDM2 in the C-terminus mirrors the allosteric effects of the binding of small molecules to the p53 interacting pocket at the N-terminus of MDM2, which opens the core domain of MDM2 to central domains of p53, which controls p53 ubiquitination. Thus, the highly allosteric nature of MDM2 provides the basis for dynamic protein-protein interactions and protein-RNA interactions through which MDM2's activity is regulated in p53 protein destruction or in p53 protein synthesis. We discuss these mechanisms and how this information can be exploited for drug development programs aimed at activating p53 via targeting MDM2.
Collapse
Affiliation(s)
- Anand Ponnuswamy
- Cibles Therapeutiques, INSERM Unité 940, Institut de Génétique Moléculaire, IUH Hôpital St. Louis, Paris, France ; RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | | |
Collapse
|
37
|
Nicholson J, Neelagandan K, Huart AS, Ball K, Molloy MP, Hupp T. An iTRAQ proteomics screen reveals the effects of the MDM2 binding ligand Nutlin-3 on cellular proteostasis. J Proteome Res 2012; 11:5464-78. [PMID: 23039052 DOI: 10.1021/pr300698d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mouse double minute 2 (MDM2) participates in protein synthesis, folding, and ubiquitin-mediated degradation and is therefore a proteostasic hub protein. The MDM2 interactome contains over 100 proteins, yet stratification of dominant MDM2-interacting proteins has not been achieved. 8-plex iTRAQ (nanoLC-MS/MS) of MCF7 cells treated with the MDM2-binding ligand Nutlin-3 identified the most abundant cellular protein changes over early time points; 1,323 unique proteins were identified including 35 with altered steady-state levels within 2 h of Nutlin-3 treatment, identifying a core group of MDM2 related proteins. Six of these proteins were previously identified MDM2 interactors, and the effects of Nutlin-3 on the MDM2-nucleophosmin interaction (NPM) was further validated. This revealed that Nutlin-3 mediates the in vivo conversion of NPM from an oligomer to a monomer as an MDM2-dependent phenomenon, with Nutlin-3 stimulating MDM2 binding to a peptide motif derived from the oligomerization interface of NPM. These data form the first proteomic screen of Nutlin-3 in cells whereby we (i) identify the most abundant MDM2-interacting proteins whose steady-state levels change early after Nutlin-3 treatment; (ii) identify the first protein apart from p53, nucleophosmin (NPM), whose interaction with MDM2 can be stimulated allosterically by Nutlin-3; and (iii) raise the possibility that Nutlin-3 might act as a general agonist of other MDM2 protein-protein interactions.
Collapse
Affiliation(s)
- Judith Nicholson
- Cell Signalling Unit, p53 Signal Transduction Laboratories, Edinburgh Cancer Research Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The responses to numerous stress signals are important for cellular growth and survival. The p53 tumor-suppressor protein is stabilized under stress conditions and induces transcription of several genes to regulate cell cycle and apoptosis. Regarding p53 protein accumulation, inhibition of proteasomal degradation of p53 protein, which is mainly mediated by Mdm2, has received much attention. Here, we demonstrate that regulation of translation initiation is also crucial for p53 protein accumulation. Furthermore, we report that heterogeneous nuclear ribonucleoprotein (hnRNP) Q binds to the 5'-untranslated region (UTR) of mouse p53 mRNA and regulates translation efficiency of p53 and apoptosis progression. We also suggest that changes in cytosolic hnRNP Q levels contribute to cell cycle-dependent translational differences in p53 mRNA.
Collapse
|
39
|
Exploiting the MDM2-CK1α protein-protein interface to develop novel biologics that induce UBL-kinase-modification and inhibit cell growth. PLoS One 2012; 7:e43391. [PMID: 22916255 PMCID: PMC3423359 DOI: 10.1371/journal.pone.0043391] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 07/19/2012] [Indexed: 01/29/2023] Open
Abstract
Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α) forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2) oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i) ELISA with recombinant MDM2; (ii) cell lysate pull-down towards endogenous MDM2; (iii) MDM2-CK1α complex-based competition ELISA; and (iv) MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i) function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii) be used as a tool to study NEDDylation of CK1α, and (iii) reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross-talk between NEDDylation, protein kinase signalling, and cell survival.
Collapse
|
40
|
Hasmats J, Green H, Solnestam BW, Zajac P, Huss M, Orear C, Validire P, Bjursell M, Lundeberg J. Validation of whole genome amplification for analysis of the p53 tumor suppressor gene in limited amounts of tumor samples. Biochem Biophys Res Commun 2012; 425:379-83. [DOI: 10.1016/j.bbrc.2012.07.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|
41
|
Matés JM, Segura JA, Alonso FJ, Márquez J. Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 2012; 86:1649-65. [PMID: 22811024 DOI: 10.1007/s00204-012-0906-3] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023]
Abstract
The oxygen paradox tells us that oxygen is both necessary for aerobic life and toxic to all life forms. Reactive oxygen species (ROS) touch every biological and medical discipline, especially those involving proliferative status, supporting the idea that active oxygen may be increased in tumor cells. In fact, metabolism of oxygen and the resulting toxic byproducts can cause cancer and death. Efforts to counteract the damage caused by ROS are gaining acceptance as a basis for novel therapeutic approaches, and the field of prevention of cancer is experiencing an upsurge of interest in medically useful antioxidants. Apoptosis is an important means of regulating cell numbers in the developing cell system, but it is so important that it must be controlled. Normal cell death in homeostasis of multicellular organisms is mediated through tightly regulated apoptotic pathways that involve oxidative stress regulation. Defective signaling through these pathways can contribute to both unbalance in apoptosis and development of cancer. Finally, in this review, we discuss new knowledge about recent tools that provide powerful antioxidant strategies, and designing methods to deliver to target cells, in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- José M Matés
- Department of Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, Spain.
| | | | | | | |
Collapse
|
42
|
López I, P Oliveira L, Tucci P, Alvarez-Valín F, A Coudry R, Marín M. Different mutation profiles associated to P53 accumulation in colorectal cancer. Gene 2012; 499:81-7. [PMID: 22373952 DOI: 10.1016/j.gene.2012.02.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 12/24/2022]
Abstract
The tumor suppressor TP53 gene is one of the most frequently mutated in different types of human cancer. Particularly in colorectal cancer (CRC), it is believed that TP53 mutations play a role in the adenoma-carcinoma transition of tumors during pathological process. In order to analyze TP53 expressed alleles in CRC, we examined TP53 mRNA in tumor samples from 101 patients with sporadic CRC. Samples were divided in two groups defined according to whether they exhibit positive or negative P53 protein expression as detected by immunohistochemistry (IHC). The presence of TP53 mutation was a common event in tumors with an overall frequency of 54.5%. By direct sequencing, we report 42 different TP53 sequence changes in 55 CRC patients, being two of them validated polymorphisms. TP53 mutations were more frequent in positive than in negative P53 detection group (p<0.0001), being the precise figures 79.6% and 30.8%, respectively. In addition, the mutation profiles were also different between the two groups of samples; while most of the mutations detected in P53 positive group were missense (38 out of 39), changes in P53 negative detection group include 7 insertions/deletions, 6 missense, 2 nonsense and 1 silent mutation. As previously observed, most mutations were concentrated in regions encoding P53 DNA binding domain (DBD). Codons 175, 248 and 273 together account for 36.7% of point mutations, in agreement with previous observations provided that these codons are considered mutation hotspots. Interestingly, we detected two new deletions and two new insertions. In addition, in three samples we detected two deletions and one insertion that could be explained as putative splicing variants or splicing errors.
Collapse
Affiliation(s)
- Ignacio López
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
43
|
Martinez-Rivera M, Siddik ZH. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53. Biochem Pharmacol 2011; 83:1049-62. [PMID: 22227014 DOI: 10.1016/j.bcp.2011.12.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/02/2011] [Accepted: 12/19/2011] [Indexed: 01/20/2023]
Abstract
Chemotherapy is the bedrock for the clinical management of cancer, and the tumor suppressor p53 has a central role in this therapeutic modality. This protein facilitates favorable antitumor drug response through a variety of key cellular functions, including cell cycle arrest, senescence, and apoptosis. These functions essentially cease once p53 becomes mutated, as occurs in ∼50% of cancers, and some p53 mutants even exhibit gain-of-function effects, which lead to greater drug resistance. However, it is becoming increasingly evident that resistance is also seen in cancers harboring wild-type p53. In this review, we discuss how wild-type p53 is inactivated to render cells resistant to antitumor drugs. This may occur through various mechanisms, including an increase in proteasomal degradation, defects in post-translational modification, and downstream defects in p53 target genes. We also consider evidence that the resistance seen in wild-type p53 cancers can be substantially greater than that seen in mutant p53 cancers, and this poses a far greater challenge for efforts to design strategies that increase drug response in resistant cancers already primed with wild-type p53. Because the mechanisms contributing to this wild-type p53 "gain-of-resistance" phenotype are largely unknown, a concerted research effort is needed to identify the underlying basis for the occurrence of this phenotype and, in parallel, to explore the possibility that the phenotype may be a product of wild-type p53 gain-of-function effects. Such studies are essential to lay the foundation for a rational therapeutic approach in the treatment of resistant wild-type p53 cancers.
Collapse
Affiliation(s)
- Michelle Martinez-Rivera
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, 77030, United States
| | | |
Collapse
|
44
|
Bisso A, Collavin L, Del Sal G. p73 as a pharmaceutical target for cancer therapy. Curr Pharm Des 2011; 17:578-90. [PMID: 21391908 PMCID: PMC3267157 DOI: 10.2174/138161211795222667] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/03/2011] [Indexed: 02/07/2023]
Abstract
About half of all human tumors contain an inactivating mutation of p53, while in the remaining tumors, the p53 pathway is frequently abrogated by alterations of other components of its signaling pathway. In humans, the p53 tumor suppressor is part of a small gene family that includes two other members, p73 and p63, structurally and functionally related to p53. Accumulating evidences indicate that all p53-family proteins function as molecular hubs of a highly interconnected signaling network that coordinates cell proliferation, differentiation and death in response to physiological inputs and oncogenic stress. Therefore, not only the p53-pathway but the entire “p53-family pathway” is a primary target for cancer drug development. In particular, the p53-related protein p73 has a crucial role in determining cellular responses to chemotherapy, and can vicariate p53 functions in triggering cell death after DNA damage in multiple experimental models. The biology and regulation of p73 is complex, since the TP73 gene incorporates both tumor-suppressive and proto-oncogenic functions. However, the p73 gene is rarely mutated in tumors, so appropriate pharmacological manipulation of the p73 pathway is a very promising approach for cancer therapy. Here we provide an overview of the principal mechanism of p73 regulation, and describe several examples of pharmacological tools that can induce p73 accumulation and function by acting on upstream p73 modulators or displacing inhibitory p73 interactors. A better understanding of how the p73 pathway works is mandatory to discover additional players intervening in this pathway and has important implications for the improvement of cancer treatment with the development of new molecules or with the reposition of currently available drugs.
Collapse
Affiliation(s)
- Andrea Bisso
- Laboratorio Nazionale CIB, AREA Science Park, Padriciano 99, Trieste, TS 34149, Italy
| | | | | |
Collapse
|
45
|
Floris M, Moro S. Mimicking Peptides… In Silico. Mol Inform 2011; 31:12-20. [DOI: 10.1002/minf.201100093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 08/05/2011] [Indexed: 02/04/2023]
|
46
|
Zeng T, Gao H, Yu P, He H, Ouyang X, Deng L, Zhang Y. Up-regulation of kin17 is essential for proliferation of breast cancer. PLoS One 2011; 6:e25343. [PMID: 21980430 PMCID: PMC3183049 DOI: 10.1371/journal.pone.0025343] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/01/2011] [Indexed: 12/02/2022] Open
Abstract
Background Kin17 is ubiquitously expressed at low levels in human tissue and participates in DNA replication, DNA repair and cell cycle control. Breast cancer cells are characterized by enabling replicative immortality and accumulated DNA damage. However, whether kin17 contributes to breast carcinogenesis remains unknown. Methodology/Principal Findings In this study, we show for the first time that kin17 is an important molecule related to breast cancer. Our results show that kin17 expression was markedly increased in clinical breast tumors and was associated with tumor grade, Ki-67 expression, p53 mutation status and progesterone receptor expression, which were assessed in a clinicopathologic characteristics review. Knockdown of kin17 inhibited DNA replication and repair, blocked cell cycle progression and inhibited anchorage-independent growth, while increasing sensitivity to chemotherapy in breast cancer cells. Moreover, kin17 silencing decreased EGF-stimulated cell growth. Furthermore, overexpression of kin17 promoted DNA replication and cell proliferation in MCF-10A. Conclusions/Significance Our findings indicate that up-regulation of kin17 is strongly associated with cellular proliferation, DNA replication, DNA damage response and breast cancer development. The increased level of kin17 was not only a consequence of immortalization but also associated with tumorigenesis. Therefore, kin17 could be a novel therapeutic target for inhibiting cell growth in breast cancer.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hongyi Gao
- Department of Pathology, Guangdong Women and Children's Hospital and Health Institute, Guangzhou, People's Republic of China
| | - Pei Yu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Heng He
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoming Ouyang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lijuan Deng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
47
|
Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, Cornelis A, Rozenski J, Zwolinska A, Marine JC, Lambrechts D, Suh YA, Rousseau F, Schymkowitz J. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 2011; 7:285-95. [PMID: 21445056 DOI: 10.1038/nchembio.546] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/10/2011] [Indexed: 12/19/2022]
Abstract
Many p53 missense mutations possess dominant-negative activity and oncogenic gain of function. We report that for structurally destabilized p53 mutants, these effects result from mutant-induced coaggregation of wild-type p53 and its paralogs p63 and p73, thereby also inducing a heat-shock response. Aggregation of mutant p53 resulted from self-assembly of a conserved aggregation-nucleating sequence within the hydrophobic core of the DNA-binding domain, which becomes exposed after mutation. Suppressing the aggregation propensity of this sequence by mutagenesis abrogated gain of function and restored activity of wild-type p53 and its paralogs. In the p53 germline mutation database, tumors carrying aggregation-prone p53 mutations have a significantly lower frequency of wild-type allele loss as compared to tumors harboring nonaggregating mutations, suggesting a difference in clonal selection of aggregating mutants. Overall, our study reveals a novel disease mechanism for mutant p53 gain of function and suggests that, at least in some respects, cancer could be considered an aggregation-associated disease.
Collapse
Affiliation(s)
- Jie Xu
- Switch Laboratory, Flanders Institute for Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bonsor DA, Sundberg EJ. Dissecting protein-protein interactions using directed evolution. Biochemistry 2011; 50:2394-402. [PMID: 21332192 DOI: 10.1021/bi102019c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions are essential for life. They are responsible for most cellular functions and when they go awry often lead to disease. Proteins are inherently complex. They are flexible macromolecules whose constituent amino acid components act in combinatorial and networked ways when they engage one another in binding interactions. It is just this complexity that allows them to conduct such a broad array of biological functions. Despite decades of intense study of the molecular basis of protein-protein interactions, key gaps in our understanding remain, hindering our ability to accurately predict the specificities and affinities of their interactions. Until recently, most protein-protein investigations have been probed experimentally at the single-amino acid level, making them, by definition, incapable of capturing the combinatorial nature of, and networked communications between, the numerous residues within and outside of the protein-protein interface. This aspect of protein-protein interactions, however, is emerging as a major driving force for protein affinity and specificity. Understanding a combinatorial process necessarily requires a combinatorial experimental tool. Much like the organisms in which they reside, proteins naturally evolve over time, through a combinatorial process of mutagenesis and selection, to functionally associate. Elucidating the process by which proteins have evolved may be one of the keys to deciphering the molecular rules that govern their interactions with one another. Directed evolution is a technique performed in the laboratory that mimics natural evolution on a tractable time scale that has been utilized widely to engineer proteins with novel capabilities, including altered binding properties. In this review, we discuss directed evolution as an emerging tool for dissecting protein-protein interactions.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, Massachusetts 02472, United States
| | | |
Collapse
|
49
|
Ghanta KS, Li DQ, Eswaran J, Kumar R. Gene profiling of MTA1 identifies novel gene targets and functions. PLoS One 2011; 6:e17135. [PMID: 21364872 PMCID: PMC3045407 DOI: 10.1371/journal.pone.0017135] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/21/2011] [Indexed: 12/20/2022] Open
Abstract
Background Metastasis-associated protein 1 (MTA1), a master dual co-regulatory protein is found to be an integral part of NuRD (Nucleosome Remodeling and Histone Deacetylation) complex, which has indispensable transcriptional regulatory functions via histone deacetylation and chromatin remodeling. Emerging literature establishes MTA1 to be a valid DNA-damage responsive protein with a significant role in maintaining the optimum DNA-repair activity in mammalian cells exposed to genotoxic stress. This DNA-damage responsive function of MTA1 was reported to be a P53-dependent and independent function. Here, we investigate the influence of P53 on gene regulation function of Mta1 to identify novel gene targets and functions of Mta1. Methods Gene expression analysis was performed on five different mouse embryonic fibroblasts (MEFs) samples (i) the Mta1 wild type, (ii) Mta1 knock out (iii) Mta1 knock out in which Mta1 was reintroduced (iv) P53 knock out (v) P53 knock out in which Mta1 was over expressed using Affymetrix Mouse Exon 1.0 ST arrays. Further Hierarchical Clustering, Gene Ontology analysis with GO terms satisfying corrected p-value<0.1, and the Ingenuity Pathway Analysis were performed. Finally, RT-qPCR was carried out on selective candidate genes. Significance/Conclusion This study represents a complete genome wide screen for possible target genes of a coregulator, Mta1. The comparative gene profiling of Mta1 wild type, Mta1 knockout and Mta1 re-expression in the Mta1 knockout conditions define “bona fide” Mta1 target genes. Further extensive analyses of the data highlights the influence of P53 on Mta1 gene regulation. In the presence of P53 majority of the genes regulated by Mta1 are related to inflammatory and anti-microbial responses whereas in the absence of P53 the predominant target genes are involved in cancer signaling. Thus, the presented data emphasizes the known functions of Mta1 and serves as a rich resource which could help us identify novel Mta1 functions.
Collapse
Affiliation(s)
- Krishna Sumanth Ghanta
- McCormick Genomic and Proteomic Center, The George Washington University Medical Center, Washington, D.C., United States of America
| | - Da-Qiang Li
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D.C., United States of America
| | - Jeyanthy Eswaran
- McCormick Genomic and Proteomic Center, The George Washington University Medical Center, Washington, D.C., United States of America
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D.C., United States of America
- * E-mail:
| | - Rakesh Kumar
- McCormick Genomic and Proteomic Center, The George Washington University Medical Center, Washington, D.C., United States of America
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D.C., United States of America
| |
Collapse
|