1
|
Sazdova I, Hadzi-Petrushev N, Keremidarska-Markova M, Stojchevski R, Sopi R, Shileiko S, Mitrokhin V, Gagov H, Avtanski D, Lubomirov LT, Mladenov M. SIRT-associated attenuation of cellular senescence in vascular wall. Mech Ageing Dev 2024; 220:111943. [PMID: 38762036 DOI: 10.1016/j.mad.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest. SIRT1 has been highlighted for its potential to reduce cellular senescence through modulation of multiple signaling cascades, particularly the endothelial nitric oxide (eNOS)/NO signaling pathway. It also modulates cell cycle through p53 inactivation and suppresses NF-κB mediated expression of adhesive molecules at the vascular level. The study also examines the therapeutic potential of sirtuin modulation in vascular health, identifying SIRT1 and its sirtuin counterparts as potential targets for reducing vascular aging. This study sheds light on the molecular basis of vascular aging and the beneficial effects of sirtuins, paving the way for the development of tailored therapies aimed at enhancing vascular health and prolonging life.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina 10 000, Kosovo
| | - Stanislav Shileiko
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Dimitar Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Lubomir T Lubomirov
- Vascular Biology Research Group (RenEVA), Research Institute, Medical University-Varna, Varna, Bulgaria; Institute of Physiology and Pathophysiology, Faculty of Health - School of Medicine, Biomedical Center for Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia; Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia.
| |
Collapse
|
2
|
Wang M, McGraw KR, Monticone RE, Giordo R, Eid AH, Pintus G. Enhanced vasorin signaling mitigates adverse cardiovascular remodeling. Aging Med (Milton) 2024; 7:414-423. [PMID: 38975316 PMCID: PMC11222745 DOI: 10.1002/agm2.12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Arterial stiffening is a critical risk factor contributing to the exponential rise in age-associated cardiovascular disease incidence. This process involves age-induced arterial proinflammation, collagen deposition, and calcification, which collectively contribute to arterial stiffening. The primary driver of proinflammatory processes leading to collagen deposition in the arterial wall is the transforming growth factor-beta1 (TGF-β1) signaling. Activation of this signaling is pivotal in driving vascular extracellular remodeling, eventually leading to arterial fibrosis and calcification. Interestingly, the glycosylated protein vasorin (VASN) physically interacts with TGF-β1, and functionally restraining its proinflammatory fibrotic signaling in arterial walls and vascular smooth muscle cells (VSMCs). Notably, as age advances, matrix metalloproteinase type II (MMP-2) is activated, which effectively cleaves VASN protein in both arterial walls and VSMCs. This age-associated/MMP-2-mediated decrease in VASN levels exacerbates TGF-β1 activation, amplifying arterial fibrosis and calcification in the arterial wall. Importantly, TGF-β1 is a downstream molecule of the angiotensin II (Ang II) signaling pathway in the arterial wall and VSMCs, which is modulated by VASN. Indeed, chronic administration of Ang II to young rats significantly activates MMP-2 and diminishes the VASN expression to levels comparable to untreated older control rats. This review highlights and discusses the role played by VASN in mitigating fibrosis and calcification by alleviating TGF-β1 activation and signaling in arterial walls and VSMCs. Understanding these molecular physical and functional interactions may pave the way for establishing VASN-based therapeutic strategies to counteract adverse age-associated cardiovascular remodeling, eventually reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Kimberly Raginski McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Roberta Giordo
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| | | |
Collapse
|
3
|
Zhao W, Zhao B, Meng X, Li B, Wang Y, Yu F, Fu C, Yu X, Li X, Dai C, Wang J, Gao H, Cheng M. The regulation of MFG-E8 on the mitophagy in diabetic sarcopenia via the HSPA1L-Parkin pathway and the effect of D-pinitol. J Cachexia Sarcopenia Muscle 2024; 15:934-948. [PMID: 38553831 PMCID: PMC11154748 DOI: 10.1002/jcsm.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Diabetic sarcopenia is a disease-related skeletal muscle disorder that causes progressive symptoms. The complete understanding of its pathogenesis is yet to be unravelled, which makes it difficult to develop effective therapeutic strategies. This study investigates how MFG-E8 affects mitophagy and the protective role of D-pinitol (DP) in diabetic sarcopenia. METHODS In vivo, streptozotocin-induced diabetic SAM-R1 (STZ-R1) and SAM-P8 (STZ-P8) mice (16-week-old) were used, and STZ-P8 mice were administrated of DP (150 mg/kg per day) for 6 weeks. Gastrocnemius muscles were harvested for histological analysis including transmission electron microscopy. Proteins were evaluated via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) assay. In vitro, advanced glycation end products (AGEs) induced diabetic and D-galactose (DG) induced senescent C2C12 models were established and received DP, MFG-E8 plasmid (Mover)/siRNA (MsiRNA), or 3-MA/Torin-1 intervention. Proteins were evaluated by IF and WB assay. Immunoprecipitation (IP) and co-immunoprecipitation (CO-IP) were used for hunting the interacted proteins of MFG-E8. RESULTS In vivo, sarcopenia, mitophagy deficiency, and up-regulated MFG-E8 were confirmed in the STZ-P8 group. DP exerted protective effects on sarcopenia and mitophagy (DP + STZ-P8 vs. STZ-P8; all P < 0.01), such as increased lean mass (8.47 ± 0.81 g vs. 7.08 ± 1.64 g), grip strength (208.62 ± 39.45 g vs. 160.87 ± 26.95 g), rotarod tests (109.7 ± 11.81 s vs. 59.3 ± 20.97 s), muscle cross-sectional area (CSA) (1912.17 ± 535.61 μm2 vs. 1557.19 ± 588.38 μm2), autophagosomes (0.07 ± 0.02 per μm2 vs. 0.02 ± 0.01 per μm2), and cytolysosome (0.07 ± 0.03 per μm2 vs. 0.03 ± 0.01 per μm2). DP down-regulated MFG-E8 in both serum (DP + STZ-P8: 253.19 ± 34.75 pg/mL vs. STZ-P8: 404.69 ± 78.97 pg/mL; P < 0.001) and gastrocnemius muscle (WB assay. DP + STZ-P8: 0.39 ± 0.04 vs. STZ-P8: 0.55 ± 0.08; P < 0.01). DP also up-regulated PINK1, Parkin and LC3B-II/I ratio, and down-regulated P62 in gastrocnemius muscles (all P < 0.01). In vitro, mitophagy deficiency and MFG-E8 up-regulation were confirmed in diabetic and senescent models (all P < 0.05). DP and MsiRNA down-regulated MFG-E8 and P62, and up-regulated PINK1, Parkin and LC3B-II/I ratio to promote mitophagy as Torin-1 does (all P < 0.05). HSPA1L was confirmed as an interacted protein of MFG-E8 in IP and CO-IP assay. Mover down-regulated the expression of Parkin via the HSPA1L-Parkin pathway, leading to mitophagy inhibition. MsiRNA up-regulated the expression of PINK1 via SGK1, FOXO1, and STAT3 phosphorylation pathways, leading to mitophagy stimulation. CONCLUSIONS MFG-E8 is a crucial target protein of DP and plays a distinct role in mitophagy regulation. DP down-regulates the expression of MFG-E8, reduces mitophagy deficiency, and alleviates the symptoms of diabetic sarcopenia, which could be considered a novel therapeutic strategy for diabetic sarcopenia.
Collapse
Affiliation(s)
- Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Bin Zhao
- Postdoctoral Research StationShandong University of Traditional Chinese MedicineJinanChina
| | - Xinyue Meng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Health Management Center (East Area)Qilu Hospital of Shandong UniversityJinanChina
| | - Yajuan Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Xiaoli Li
- Department of PharmacyQilu Hospital of Shandong UniversityJinanChina
| | - Chaochao Dai
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jie Wang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| |
Collapse
|
4
|
Jensen LJ. Functional, Structural and Proteomic Effects of Ageing in Resistance Arteries. Int J Mol Sci 2024; 25:2601. [PMID: 38473847 DOI: 10.3390/ijms25052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The normal ageing process affects resistance arteries, leading to various functional and structural changes. Systolic hypertension is a common occurrence in human ageing, and it is associated with large artery stiffening, heightened pulsatility, small artery remodeling, and damage to critical microvascular structures. Starting from young adulthood, a progressive elevation in the mean arterial pressure is evidenced by clinical and epidemiological data as well as findings from animal models. The myogenic response, a protective mechanism for the microcirculation, may face disruptions during ageing. The dysregulation of calcium entry channels (L-type, T-type, and TRP channels), dysfunction in intracellular calcium storage and extrusion mechanisms, altered expression of potassium channels, and a change in smooth muscle calcium sensitization may contribute to the age-related dysregulation of myogenic tone. Flow-mediated vasodilation, a hallmark of endothelial function, is compromised in ageing. This endothelial dysfunction is related to increased oxidative stress, lower nitric oxide bioavailability, and a low-grade inflammatory response, further exacerbating vascular dysfunction. Resistance artery remodeling in ageing emerges as a hypertrophic response of the vessel wall that is typically observed in conjunction with outward remodeling (in normotension), or as inward hypertrophic remodeling (in hypertension). The remodeling process involves oxidative stress, inflammation, reorganization of actin cytoskeletal components, and extracellular matrix fiber proteins. Reactive oxygen species (ROS) signaling and chronic low-grade inflammation play substantial roles in age-related vascular dysfunction. Due to its role in the regulation of vascular tone and structural proteins, the RhoA/Rho-kinase pathway is an important target in age-related vascular dysfunction and diseases. Understanding the intricate interplay of these factors is crucial for developing targeted interventions to mitigate the consequences of ageing on resistance arteries and enhance the overall vascular health.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
5
|
Moreau KL, Clayton ZS, DuBose LE, Rosenberry R, Seals DR. Effects of regular exercise on vascular function with aging: Does sex matter? Am J Physiol Heart Circ Physiol 2024; 326:H123-H137. [PMID: 37921669 PMCID: PMC11208002 DOI: 10.1152/ajpheart.00392.2023] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Vascular aging, featuring endothelial dysfunction and large elastic artery stiffening, is a major risk factor for the development of age-associated cardiovascular diseases (CVDs). Vascular aging is largely mediated by an excessive production of reactive oxygen species (ROS) and increased inflammation leading to reduced bioavailability of the vasodilatory molecule nitric oxide and remodeling of the arterial wall. Other cellular mechanisms (i.e., mitochondrial dysfunction, impaired stress response, deregulated nutrient sensing, cellular senescence), termed "hallmarks" or "pillars" of aging, may also contribute to vascular aging. Gonadal aging, which largely impacts women but also impacts some men, modulates the vascular aging process. Regular physical activity, including both aerobic and resistance exercise, is a first-line strategy for reducing CVD risk with aging. Although exercise is an effective intervention to counter vascular aging, there is considerable variation in the vascular response to exercise training with aging. Aerobic exercise improves large elastic artery stiffening in both middle-aged/older men and women and enhances endothelial function in middle-aged/older men by reducing oxidative stress and inflammation and preserving nitric oxide bioavailability; however, similar aerobic exercise training improvements are not consistently observed in estrogen-deficient postmenopausal women. Sex differences in adaptations to exercise may be related to gonadal aging and declines in estrogen in women that influence cellular-molecular mechanisms, disconnecting favorable signaling in the vasculature induced by exercise training. The present review will summarize the current state of knowledge on vascular adaptations to regular aerobic and resistance exercise with aging, the underlying mechanisms involved, and the moderating role of biological sex.
Collapse
Affiliation(s)
- Kerrie L Moreau
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, Colorado, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Lyndsey E DuBose
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ryan Rosenberry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
6
|
Yang Y, Zhang P, Zhu X. Effects of crossover point exercise and high-intensity interval training on vascular health in young overweight females. Appl Physiol Nutr Metab 2024; 49:77-86. [PMID: 37611320 DOI: 10.1139/apnm-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
This study investigated the effects of 10 weeks of crossover point (COP) exercise training and high-intensity interval training (HIIT) on cardiovascular risk factors and vascular health in overweight young women. Overweight young women were randomized into HIIT and COP groups. Participants in the HIIT group (n = 10; age = 22 ± 2, body mass index (BMI) = 25.72 ± 0.90) and COP group (n = 10, age = 21 ± 2, BMI = 25.90 ± 1.90) took part in 10 weeks of HIIT and COP exercise training, respectively. Cardiorespiratory fitness, cardiovascular health, and oxidative stress indicators were measured before and after the intervention period. After 10 weeks of exercise intervention, both COP exercise and HIIT led to a significant increase in maximal oxygen uptake (p < 0.001). The systolic blood pressure (p = 0.006), diastolic blood pressure (p = 0.006), and brachial-ankle pulse wave velocity (p = 0.002) were significantly decreased in both COP group and HIIT group, while serum interleukin-6 levels were increased in HIIT and COP groups. The present study shows that a training program at COP could be an effective strategy to protect vascular health.
Collapse
Affiliation(s)
- Yuting Yang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Peizhen Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xiaolan Zhu
- Sport Science College, Beijing Sport University, Beijing, China
| |
Collapse
|
7
|
Shen L, Liu J, Luo A, Wang S. The stromal microenvironment and ovarian aging: mechanisms and therapeutic opportunities. J Ovarian Res 2023; 16:237. [PMID: 38093329 PMCID: PMC10717903 DOI: 10.1186/s13048-023-01300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
For decades, most studies of ovarian aging have focused on its functional units, known as follicles, which include oocytes and granulosa cells. However, in the ovarian stroma, there are a variety of somatic components that bridge the gap between general aging and ovarian senescence. Physiologically, general cell types, microvascular structures, extracellular matrix, and intercellular molecules affect folliculogenesis and corpus luteum physiology alongside the ovarian cycle. As a result of damage caused by age-related metabolite accumulation and external insults, the microenvironment of stromal cells is progressively remodeled, thus inevitably perturbing ovarian physiology. With the established platforms for follicle cryopreservation and in vitro maturation and the development of organoid research, it is desirable to develop strategies to improve the microenvironment of the follicle by targeting the perifollicular environment. In this review, we summarize the role of stromal components in ovarian aging, describing their age-related alterations and associated effects. Moreover, we list some potential techniques that may mitigate ovarian aging based on their effect on the stromal microenvironment.
Collapse
Affiliation(s)
- Lu Shen
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junfeng Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiyue Luo
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Cheng DCY, Climie RE, Shu M, Grieve SM, Kozor R, Figtree GA. Vascular aging and cardiovascular disease: pathophysiology and measurement in the coronary arteries. Front Cardiovasc Med 2023; 10:1206156. [PMID: 38089775 PMCID: PMC10715672 DOI: 10.3389/fcvm.2023.1206156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2024] Open
Abstract
Age is a key risk factor for cardiovascular disease, including atherosclerosis. However, pathophysiological disease processes in the arteries are not an inevitable feature of aging. Large cohort studies with arterial phenotyping along with clinical and demographic data are essential to better understand factors related to the susceptibility or resilience to age-related vascular pathophysiology in humans. This review explores the mechanisms by which vascular structure and function alters with age, and how these changes relate to cardiovascular pathophysiology and disease. Features of vascular aging in the coronary arteries have historically been difficult to quantify pre-mortem due to their size and location. However, non-invasive imaging modalities including CT Coronary Angiogram are now being used to assess coronary vascular age, and further advances in imaging analysis such as the CT Fat Attenuation Index will help provide further measurement of features associated with coronary vascular aging. Currently, markers of vascular aging are not used as therapeutic targets in routine clinical practice, but non-pharmacological interventions including aerobic exercise and low salt diet, as well as anti-hypertensives have been demonstrated to reduce arterial stiffness. Advances in imaging technology, both in acquisition and advanced analysis, as well as harmonisation of measurements for researchers across the globe will be invaluable in understanding what constitutes healthy vascular aging and in identifying features of vascular aging that are associated with coronary artery disease and its adverse outcomes. Assessing such images in large cohorts can facilitate improved definitions of resilient and susceptible phenotypes to vascular aging in the coronary arteries. This is a critical step in identifying further risk factors and biomarkers within these groups and driving forward the development of novel therapies aimed at slowing or stopping age-related vascular changes in the coronary arteries.
Collapse
Affiliation(s)
- Daniel C. Y. Cheng
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Rachel E. Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Matthew Shu
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Stuart M. Grieve
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rebecca Kozor
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Gemma A. Figtree
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
9
|
Ziogos E, Kwapong YA, Weiss RG, Schär M, Brown TT, Bagchi S, Soleimanifard A, Harb T, Piggott DA, Gerstenblith G, Leucker TM, Hays AG. Coronary artery endothelial function and aging in people with HIV and HIV-negative individuals. Am J Physiol Heart Circ Physiol 2023; 325:H1099-H1107. [PMID: 37682238 PMCID: PMC10907030 DOI: 10.1152/ajpheart.00143.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Coronary artery disease (CAD) is a common comorbidity in people with human immunodeficiency virus (HIV) (PWH) and impaired coronary endothelial function (CEF) plays a central role in the pathogenesis of CAD. Age-related impaired CEF among PWH, however, is not well characterized. We investigated the association between CEF and age in males and females with and without HIV using 3-T magnetic resonance imaging (MRI). We measured the changes in coronary cross-sectional area (CSA) and coronary blood flow during isometric handgrip exercise (IHE), an established endothelial-dependent stressor with smaller increases in CSA and coronary blood flow indicative of impaired CEF. We included 106 PWH and 82 individuals without HIV. Differences in demographic and clinical characteristics between PWH and individuals without HIV were explored using Pearson's χ2 test for categorical variables and Welch's t test for continuous variables. Linear regression models were used to examine the association between CEF and age. CEF was significantly lower in PWH as compared with individuals without HIV. Coronary endothelial dysfunction was also present at younger ages in PWH than in the individuals without HIV and there were significant differences in CEF between the PWH and individuals without HIV across age groups. Among the individuals without HIV, the percent changes in CSA were inversely related to age in unadjusted and adjusted models. There was no significant association between CEF and age in PWH. To the best of our knowledge, this is the first study to examine the relationship between age and CEF in PWH, and our results suggest that factors other than age significantly impair CEF in PWH across the life span.NEW & NOTEWORTHY This is the first study to examine the relationship between age and coronary endothelial function (CEF) in people with human immunodeficiency virus (HIV) (PWH). CEF was assessed using magnetic resonance imaging (MRI) in people with and without HIV. Although age and CEF were significantly inversely related in individuals without HIV, there was no association between age and CEF in PWH.
Collapse
Affiliation(s)
- Efthymios Ziogos
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Yaa A Kwapong
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Robert G Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Michael Schär
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Todd T Brown
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Shashwatee Bagchi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Alborz Soleimanifard
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tarek Harb
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Damani A Piggott
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Gary Gerstenblith
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Thorsten M Leucker
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Allison G Hays
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
10
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Lin PK, Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol 2023; 43:1599-1616. [PMID: 37409533 PMCID: PMC10527588 DOI: 10.1161/atvbaha.123.318237] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.
Collapse
Affiliation(s)
- Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
12
|
Zhang L, Wan H, Zhang M, Lu W, Xu F, Dong H. Estrogen receptor subtype mediated anti-inflammation and vasorelaxation via genomic and nongenomic actions in septic mice. Front Endocrinol (Lausanne) 2023; 14:1152634. [PMID: 37265700 PMCID: PMC10230057 DOI: 10.3389/fendo.2023.1152634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Aim Sepsis is a life-threatening disease with high mortality worldwide. Septic females have lower severity and mortality than the males, suggesting estrogen exerts a protective action, but nothing is known about the role of vascular endothelial estrogen receptor subtypes in this process. In the present study, we aimed to study the estrogen receptors on mesenteric arterioles in normal and sepsis mice and to elucidate the underlying mechanisms. Methods Sepsis was induced in mice by intraperitoneal injection of LPS. The changes in the expression and release of the serum and cell supernatant proinflammatory cytokines, including TNF-α, IL-1β and IL-6, were measured by qPCR and ELISA, and the functions of multiple organs were analyzed. The functional activities of mouse mesenteric arterioles were determined by a Mulvany-style wire myograph. The expression of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptor (IP3R) in endothelial cells were examined by Western blot and their functions were characterized by cell Ca2+ imaging. Results Septic female mice had higher survival rate than the male mice, and pretreatment with E2 for 5 days significantly improved the survival rate and inhibited proinflammatory cytokines in septic male mice. E2 ameliorated pulmonary, intestinal, hepatic and renal multiple organ injuries in septic male mice; and ER subtypes inhibited proinflammatory cytokines in endothelial cells via PLC/IP3R/Ca2+ pathway. E2/ER subtypes immediately induced endothelial-derived hyperpolarization (EDH)-mediated vasorelaxation via PLC/IP3R/Ca2+ pathway, which was more impaired in septic male mice. E2/ER subtypes could rescue the impaired acetylcholine (ACh)-induced EDH-mediated vasorelaxation in septic male mice. Conclusions E2 through ER subtypes mediates anti-inflammation and vasorelaxation via genomic and nongenomic actions in sepsis. Mechanistically, activation of endothelial ER subtypes reduces proinflammatory cytokines and induces EDH-mediated vasorelaxation via PLC/IP3R/Ca2+ pathway, leading to amelioration of sepsis-induced organ injury and survival rate.
Collapse
Affiliation(s)
- Luyun Zhang
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hanxing Wan
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mengting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hui Dong
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
13
|
Ajoolabady A, Pratico D, Vinciguerra M, Lip GYH, Franceschi C, Ren J. Inflammaging: mechanisms and role in the cardiac and vasculature. Trends Endocrinol Metab 2023; 34:373-387. [PMID: 37076375 DOI: 10.1016/j.tem.2023.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
Aging triggers a wide range of cellular and molecular aberrations in the body, giving rise to inflammation and associated diseases. In particular, aging is associated with persistent low-grade inflammation even in absence of inflammatory stimuli, a phenomenon commonly referred to as 'inflammaging'. Accumulating evidence has revealed that inflammaging in vascular and cardiac tissues is associated with the emergence of pathological states such as atherosclerosis and hypertension. In this review we survey molecular and pathological mechanisms of inflammaging in vascular and cardiac aging to identify potential targets, natural therapeutic compounds, and other strategies to suppress inflammaging in the heart and vasculature, as well as in associated diseases such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Manlio Vinciguerra
- Liverpool Centre for Cardiovascular Science, Liverpool Johns Moore University, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Claudio Franceschi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Zinatizadeh MR, Zarandi PK, Ghiasi M, Kooshki H, Mohammadi M, Amani J, Rezaei N. Immunosenescence and inflamm-ageing in COVID-19. Ageing Res Rev 2023; 84:101818. [PMID: 36516928 PMCID: PMC9741765 DOI: 10.1016/j.arr.2022.101818] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The destructive effects of coronavirus disease 2019 (COVID-19) on the elderly and people with cardiovascular disease have been proven. New findings shed light on the role of aging pathways on life span and health age. New therapies that focus on aging-related pathways may positively impact the treatment of this acute respiratory infection. Using new therapies that boost the level of the immune system can support the elderly with co-morbidities against the acute form of COVID-19. This article discusses the effect of the aging immune system against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the pathways affecting this severity of infection.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
15
|
Milk Fat Globule Epidermal Growth Factor VIII Fragment Medin in Age-Associated Arterial Adverse Remodeling and Arterial Disease. Cells 2023; 12:cells12020253. [PMID: 36672188 PMCID: PMC9857039 DOI: 10.3390/cells12020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Medin, a small 50-amino acid peptide, is an internal cleaved product from the second discoidin domain of milk fat globule epidermal growth factor VIII (MFG-E8) protein. Medin has been reported as the most common amylogenic protein in the upper part of the arterial system, including aortic, temporal, and cerebral arterial walls in the elderly. Medin has a high affinity to elastic fibers and is closely associated with arterial degenerative inflammation, elastic fiber fragmentation, calcification, and amyloidosis. In vitro, treating with the medin peptide promotes the inflammatory phenotypic shift of both endothelial cells and vascular smooth muscle cells. In vitro, ex vivo, and in vivo studies demonstrate that medin enhances the abundance of reactive oxygen species and reactive nitrogen species produced by both endothelial cells and vascular smooth muscle cells and promotes vascular endothelial dysfunction and arterial stiffening. Immunostaining and immunoblotting analyses of human samples indicate that the levels of medin are increased in the pathogenesis of aortic aneurysm/dissection, temporal arteritis, and cerebrovascular dementia. Thus, medin peptide could be targeted as a biomarker diagnostic tool or as a potential molecular approach to curbing the arterial degenerative inflammatory remodeling that accompanies aging and disease.
Collapse
|
16
|
Peng Z, Tan X, Xie L, Li Z, Zhou S, Li Y. PKR deficiency delays vascular aging via inhibiting GSDMD-mediated endothelial cell hyperactivation. iScience 2022; 26:105909. [PMID: 36691613 PMCID: PMC9860489 DOI: 10.1016/j.isci.2022.105909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/20/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular aging is an independent risk factor for cardiovascular diseases, but the regulatory mechanism is not clearly understood. In this study, we found that endothelial PKR activity is elevated in aging aorta tissues, which is accompanied with increased endothelial cell hyperactivation, IL-1β and HMGB1 release and vascular smooth muscle cell (VSMC) phenotype transforming. Global knockout of PKR exhibits significantly delayed vascular aging compared to wild-type mice at the same age. In vitro, using PKR siRNA or the cell hyperactivation inhibitor glycine or disulfiram can effectively inhibit H2O2 or palmitic acid-induced endothelial cell hyperactivation, IL-1β and HMGB1 release and co-cultured VSMC phenotype transforming. These results demonstrate that endothelial PKR activation induces GSDMD-mediated endothelial cell hyperactivation to release HMGB1 and IL-1β, which promotes the phenotype transforming of VSMC and subsequent accelerates the process of vascular aging. These discoveries will help to explore the new drug target to inhibit vascular aging.
Collapse
Affiliation(s)
- Zhouyangfan Peng
- Department of Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiqing Tan
- Department of General Practice, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Liangpeng Xie
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ze Li
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Sufang Zhou
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yapei Li
- Department of Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China,Corresponding author
| |
Collapse
|
17
|
Dynamic Evolution of Cardiac Function and Glucose and Lipid Metabolism in Ovariectomized Rats and the Intervention Effect of Erxian Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8090868. [PMID: 36573083 PMCID: PMC9789914 DOI: 10.1155/2022/8090868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/23/2022]
Abstract
Aims Abnormal changes in cardiac function have been reported in menopausal women, but there are few clinical studies on this topic. Erxian decoction (EXD) is a classic prescription that is widely used in the treatment of female menopausal diseases. The purpose of this study was to investigate the dynamic evolution of cardiac function and glucose and lipid metabolism in ovariectomized (OVX) rats and the intervention effect of EXD. Materials and Methods The OVX climacteric rat model was established by bilateral ovariectomy. After successful modeling, the rats were randomly divided into four groups: the sham operation (SHAM) group (equal volumes of purified water), OVX group (equal volumes of purified water), estradiol (E2) group (1.8 × 10-4 g/kg), and EXD group (9 g/kg). Each group of rats was treated for 16 weeks. At the 4th, 8th, 12th, and 16th weeks after treatment, the cardiac function of the rats in each group was evaluated by ultrasound. The coaxial method was used to measure blood pressure (BP). Serum endothelin-1 (ET-1) and angiotensin-2 (Ang II) levels were determined by the enzyme-linked immunosorbent assay (ELISA). The strip method was used to measure fasting blood glucose (FBG). The serum total cholesterol (TC) and triglyceride (TG) levels of rats were measured with the oxidase method. Direct methods were used to measure serum high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) levels. At week 16 of dosing, serum E2 levels were determined by E2 radioimmunoassay. The myocardium and uterus of the rats in each group were stained with HE (hematoxylin-eosin). The ultrastructure of the rat myocardium was observed by electron microscopy. Results After the 16th week of treatment, the serum E2 level decreased (P < 0.05), and the uterus was atrophied in OVX rats. The cardiac ejection fraction (EF%) decreased at 4 weeks after treatment, and systolic and diastolic function decreased after 12 weeks. After the 16th week, the EF%, which reflects the "pump" function of the heart, decreased significantly (P < 0.05 or P < 0.01). At the 4th, 8th, 12th, and 16th weeks of treatment, the systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean pressure (MBP) of the rats in the OVX group increased with time (P < 0.05 or P < 0.01). The serum ET-1 and Ang II levels of rats in the OVX group increased (P < 0.05 or P < 0.01). In the OVX group, FBG was increased (P < 0.05 or P < 0.01), and blood lipids, especially LDL-C, were significantly increased (P < 0.05 or P < 0.01). After the 16th week of treatment, the myocardial tissue of OVX rats showed obvious pathological changes. EXD significantly increased serum E2 levels (P < 0.01), decreased ET-1 and Ang II levels (P < 0.01), reduced the cardiac function risk factors BP, FBG, and blood lipids, and significantly improved cardiac function and structural changes in OVX rats (P < 0.05 or P < 0.01). Conclusions EXD can improve abnormal cardiac structure and function in OVX rats.
Collapse
|
18
|
AlGhatrif M, Lakatta EG, Morrell CH, Fegatelli DA, Fiorillo E, Marongiu M, Schlessinger D, Cucca F, Scuteri A. Dilated hypertrophic phenotype of the carotid artery is associated with accelerated age-associated central arterial stiffening. GeroScience 2022; 45:1001-1013. [PMID: 36520341 PMCID: PMC9886763 DOI: 10.1007/s11357-022-00699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
Hypertrophic carotid geometric phenotypes (h-CGP) are predictors of incident cardiovascular disease (CVD). While arterial aging is hypothesized as a contributor to this associated risk, the association of CGPs with chronological age is not clear. In this manuscript we examine whether hypertrophic CGPs represent accelerated biological, rather than chronological, aging by examining their association with carotid-femoral pulse wave velocity (PWV), the hallmark of arterial aging. We analyzed data from 5516 participants of the SardiNIA study with a wide range of age at baseline (20-101 years), and a median follow-up time of 13 years (mean 11.5 years; maximum 17.9 years). Baseline CGPs were defined based on the common carotid lumen diameter, wall thickness, and their ratio. Subject-specific rates of change of PWV, blood pressure parameters, body mass index, glucose, and lipids were estimated using linear mixed effects models. Compared to those with typical(t-) CGP, those with dilated hypertrophy (dh-) CGP had a greater longitudinal increase in PWV; this increase was significantly greater among older individuals and men. The greater PWV longitudinal increase in dh-CGP remained significant after adjusting for baseline values and rates of change of covariates. Dilated hypertrophic CGP is independently associated with accelerated increase in age-associated arterial stiffening over time, with a strong association in men than in women. Future studies are needed to examine if this association mediates the increased risk for CVD observed in individuals with hypertrophic cardiac remodelling and the role of retarding it to reduce this risk. HIGHLIGHTS: • Individuals with dilated hypertrophic geometric phenotypes of the common carotid artery (increased age- and sex-specific wall thickness and lumen diameter) have greater future central arterial stiffening, independently of other determinants of arterial stiffening. • The dilated hypertrophic phenotype group has a greater age-specific arterial dilation, wall thickening, and stiffness (the arterial aging triad). This suggests that this phenotype is a form of accelerated aging that might explain the worse clinic outcomes observed in this group. • Understanding the natural history of the carotid geometric phenotype across the lifespan and the determinants of the deleterious progression towards the dilated hypertrophic phenotype are needed to develop interventions that reduce the adverse clinical outcomes associated with it.
Collapse
Affiliation(s)
- Majd AlGhatrif
- Laboratory of Cardiovascular Sciences, National Institute On Aging Intramural Research Program, NIH, 251 Bayview Blvd, Baltimore, MD, 21224, USA. .,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Edward G. Lakatta
- grid.419475.a0000 0000 9372 4913Laboratory of Cardiovascular Sciences, National Institute On Aging Intramural Research Program, NIH, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Christopher H. Morrell
- grid.419475.a0000 0000 9372 4913Laboratory of Cardiovascular Sciences, National Institute On Aging Intramural Research Program, NIH, 251 Bayview Blvd, Baltimore, MD 21224 USA ,grid.259262.80000 0001 1014 2318Loyola University Maryland, Baltimore, MD USA
| | | | - Edoardo Fiorillo
- grid.5326.20000 0001 1940 4177Istituto Di Ricerca Genetica E Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Lanusei, NU Italy
| | - Michele Marongiu
- grid.5326.20000 0001 1940 4177Istituto Di Ricerca Genetica E Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Lanusei, NU Italy
| | - David Schlessinger
- grid.419475.a0000 0000 9372 4913Laboratory of Genetics, National Institute On Aging Intramural Research Program, NIH, Baltimore, MD USA
| | - Francesco Cucca
- grid.428485.70000 0004 1789 9390Istituto Di Ricerca Genetica E Biomedica (IRGB), Consiglio Nazionale Delel Ricerche (CNR), Cagliari, Italy
| | - Angelo Scuteri
- grid.7763.50000 0004 1755 3242Dipartimento Scienze Mediche E Sanita’ Pubblica, Universita’ Di Cagliari, Cagliari, Italy ,Internal Medicine Unit, Policlinico Universitario Monserrato, AOU Cagliari, Cagliari, Italy
| |
Collapse
|
19
|
Ni L, Liu L, Zhu W, Telljohann R, Zhang J, Monticone RE, McGraw KR, Liu C, Morrell CH, Garrido‐Gil P, Labandeira‐Garcia JL, Lakatta EG, Wang M. Inflammatory Role of Milk Fat Globule-Epidermal Growth Factor VIII in Age-Associated Arterial Remodeling. J Am Heart Assoc 2022; 11:e022574. [PMID: 36000422 PMCID: PMC9496444 DOI: 10.1161/jaha.121.022574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Background Age-associated aortic remodeling includes a marked increase in intimal medial thickness (IMT), associated with signs of inflammation. Although aortic wall milk fat globule-epidermal growth factor VIII (MFG-E8) increases with age, and is associated with aortic inflammation, it is not known whether MFG-E8 is required for the age-associated increase in aortic IMT. Here, we tested whether MFG-E8 is required for the age-associated increase in aortic IMT. Methods and Results To determine the role of MFG-E8 in the age-associated increase of IMT, we compared aortic remodeling in adult (20-week) and aged (96-week) MFG-E8 (-/-) knockout and age matched wild-type (WT) littermate mice. The average aortic IMT increased with age in the WT from 50±10 to 70±20 μm (P<0.0001) but did not significantly increase with age in MFG-E8 knockout mice. Because angiotensin II signaling is implicated as a driver of age-associated increase in IMT, we infused 30-week-old MFG-E8 knockout and age-matched littermate WT mice with angiotensin II or saline via osmotic mini-pumps to determine whether MFG-E8 is required for angiotensin II-induced aortic remodeling. (1) In WT mice, angiotensin II infusion substantially increased IMT, elastic lamina degradation, collagen deposition, and the proliferation of vascular smooth muscle cells; in contrast, these effects were significantly reduced in MFG-E8 KO mice; (2) On a molecular level, angiotensin II treatment significantly increased the activation and expression of matrix metalloproteinase type 2, transforming growth factor beta 1, and its downstream signaling molecule phosphorylated mother against decapentaplegic homolog 2, and collagen type I production in WT mice; however, in the MFG-E8 knockout mice, these molecular effects were significantly reduced; and (3) in WT mice, angiotensin II increased levels of aortic inflammatory markers phosphorylated nuclear factor-kappa beta p65, monocyte chemoattractant protein 1, tumor necrosis factor alpha, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 molecular expression, while in contrast, these inflammatory markers did not change in knockout mice. Conclusions Thus, MFG-E8 is required for both age-associated proinflammatory aortic remodeling and also for the angiotensin II-dependent induction in younger mice of an aortic inflammatory phenotype observed in advanced age. Targeting MFG-E8 would be a novel molecular approach to curb adverse arterial remodeling.
Collapse
Affiliation(s)
- Leng Ni
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
- Department of Vascular Surgery, Peking Union Medical College HospitalPeking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Lijuan Liu
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Wanqu Zhu
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Kimberly R. McGraw
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College HospitalPeking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Pablo Garrido‐Gil
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDISUniversity of Santiago de CompostelaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Jose Luis Labandeira‐Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDISUniversity of Santiago de CompostelaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| |
Collapse
|
20
|
Advanced Maternal Age Impairs Uterine Artery Adaptations to Pregnancy in Rats. Int J Mol Sci 2022; 23:ijms23169191. [PMID: 36012456 PMCID: PMC9409016 DOI: 10.3390/ijms23169191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Advanced maternal age (≥35 years) is associated with pregnancy complications. Aging impairs vascular reactivity and increases vascular stiffness. We hypothesized that uterine artery adaptations to pregnancy are impaired with advanced age. Uterine arteries of nonpregnant and pregnant (gestational day 20) young (4 months) and aged (9 months; ~35 years in humans) Sprague-Dawley rats were isolated. Functional (myogenic tone, n = 6−10/group) and mechanical (circumferential stress-strain, n = 10−24/group) properties were assessed using pressure myography and further assessment of elastin and collagen (histology, n = 4−6/group), and matrix metalloproteinase-2 (MMP-2, zymography, n = 6/group). Aged dams had worse pregnancy outcomes, including smaller litters and fetal weights (both p < 0.0001). Only in arteries of pregnant young dams did higher pressures (>100 mmHg) cause forced vasodilation. Across the whole pressure range (4−160 mmHg), myogenic behavior was enhanced in aged vs. young pregnant dams (p = 0.0010). Circumferential stress and strain increased with pregnancy in young and aged dams (p < 0.0001), but strain remained lower in aged vs. young dams (p < 0.05). Arteries from young nonpregnant rats had greater collagen:elastin ratios than the other groups (p < 0.05). In aged rats only, pregnancy increased MMP-2 active capacity. Altered functional and structural vascular adaptations to pregnancy may impair fetal growth and development with advanced maternal age.
Collapse
|
21
|
Tyrrell DJ, Chen J, Li BY, Wood SC, Rosebury-Smith W, Remmer HA, Jiang L, Zhang M, Salmon M, Ailawadi G, Yang B, Goldstein DR. Aging Alters the Aortic Proteome in Health and Thoracic Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2022; 42:1060-1076. [PMID: 35510553 PMCID: PMC9339483 DOI: 10.1161/atvbaha.122.317643] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Aging enhances most chronic diseases but its impact on human aortic tissue in health and in thoracic aortic aneurysms (TAA) remains unclear. METHODS We employed a human aortic biorepository of healthy specimens (n=17) and those that underwent surgical repair for TAA (n=20). First, we performed proteomics comparing aortas of healthy donors to aneurysmal specimens, in young (ie, <60 years of age) and old (ie, ≥60 years of age) subjects. Second, we measured proteins, via immunoblotting, involved in mitophagy (ie, Parkin) and also mitochondrial-induced inflammatory pathways, specifically TLR (toll-like receptor) 9, STING (stimulator of interferon genes), and IFN (interferon)-β. RESULTS Proteomics revealed that aging transformed the aorta both quantitatively and qualitatively from health to TAA. Whereas young aortas exhibited an enrichment of immunologic processes, older aortas exhibited an enrichment of metabolic processes. Immunoblotting revealed that the expression of Parkin directly correlated to subject age in health but inversely to subject age in TAA. In TAA, but not in health, phosphorylation of STING and the expression of IFN-β was impacted by aging regardless of whether subjects had bicuspid or tricuspid valves. In subjects with bicuspid valves and TAAs, TLR9 expression positively correlated with subject age. Interestingly, whereas phosphorylation of STING was inversely correlated with subject age, IFN-β positively correlated with subject age. CONCLUSIONS Aging transforms the human aortic proteome from health to TAA, leading to a differential regulation of biological processes. Our results suggest that the development of therapies to mitigate vascular diseases including TAA may need to be modified depending on subject age.
Collapse
Affiliation(s)
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, USA,Program on Immunology, University of Michigan, USA
| | - Benjamin Y. Li
- Department of Internal Medicine, University of Michigan, USA
| | - Sherri C. Wood
- Department of Internal Medicine, University of Michigan, USA
| | | | | | - Longtan Jiang
- Department of Cardiac Surgery, University of Michigan, USA
| | - Min Zhang
- Department of Biostatistics, University of Michigan, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, University of Michigan, USA
| | - Gorav Ailawadi
- Department of Cardiac Surgery, University of Michigan, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, USA,Program on Immunology, University of Michigan, USA,Department of Microbiology and Immunology, University of Michigan, USA
| |
Collapse
|
22
|
Espitia-Corredor JA, Boza P, Espinoza-Pérez C, Lillo JM, Rimassa-Taré C, Machuca V, Osorio-Sandoval JM, Vivar R, Bolivar S, Pardo-Jiménez V, Sánchez-Ferrer CF, Peiró C, Díaz-Araya G. Angiotensin II Triggers NLRP3 Inflammasome Activation by a Ca 2+ Signaling-Dependent Pathway in Rat Cardiac Fibroblast Ang-II by a Ca 2+-Dependent Mechanism Triggers NLRP3 Inflammasome in CF. Inflammation 2022; 45:2498-2512. [PMID: 35867264 DOI: 10.1007/s10753-022-01707-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022]
Abstract
Angiotensin II (Ang-II) is a widely studied hypertensive, profibrotic, and pro-inflammatory peptide. In the heart, cardiac fibroblasts (CF) express type 1 angiotensin II receptors (AT1R), Toll-like receptor-4 (TLR4), and the NLRP3 inflammasome complex, which play important roles in pro-inflammatory processes. When activated, the NLRP3 inflammasome triggers proteolytic cleavage of pro-IL-1, resulting in its activation. However, in CF the mechanism by which Ang-II assembles and activates the NLRP3 inflammasome remains not fully known. To elucidate this important point, we stimulated TLR4 receptors in CF and evaluated the signaling pathways by which Ang-II triggers the assembly and activity. In cultured rat CF, pro-IL-1β levels, NLRP3, ASC, and caspase-1 expression levels were determined by Western blot. NLRP3 inflammasome complex assembly was analyzed by immunocytochemistry, whereas by ELISA, we analyzed NLRP3 inflammasome activity and [Formula: see text] release. In CF, Ang-II triggered NLRP3 inflammasome assembly and caspase-1 activity; and in LPS-pretreated CF, Ang-II also triggered [Formula: see text] secretion. These effects were blocked by losartan (AT1R antagonist), U73221 (PLC inhibitor), 2-APB (IP3R antagonist), and BAPTA-AM (Ca2+ chelator) indicating that the AT1R/PLC/IP3R/Ca2+ pathway is involved. Finally, bafilomycin A1 prevented Ang-II-induced [Formula: see text] secretion, indicating that a non-classical protein secretion mechanism is involved. These findings suggest that in CF, Ang-II by a Ca2+-dependent mechanism triggers NLRP3 inflammasome assembly and activation leading to [Formula: see text] secretion through a non-conventional protein secretion mechanism.
Collapse
Affiliation(s)
- Jenaro Antonio Espitia-Corredor
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile.,Faculty of Medicine, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.,PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain.,Faculty of Chemical and Pharmaceutical Sciences, Advanced Center of Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Pía Boza
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Claudio Espinoza-Pérez
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - José Miguel Lillo
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Constanza Rimassa-Taré
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Víctor Machuca
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - José Miguel Osorio-Sandoval
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Raúl Vivar
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Samir Bolivar
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - Viviana Pardo-Jiménez
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Carlos Félix Sánchez-Ferrer
- Faculty of Medicine, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Concepción Peiró
- Faculty of Medicine, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Guillermo Díaz-Araya
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile. .,Faculty of Chemical and Pharmaceutical Sciences, Advanced Center of Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.
| |
Collapse
|
23
|
Vidović T, Ewald CY. Longevity-Promoting Pathways and Transcription Factors Respond to and Control Extracellular Matrix Dynamics During Aging and Disease. FRONTIERS IN AGING 2022; 3:935220. [PMID: 35874275 PMCID: PMC9301135 DOI: 10.3389/fragi.2022.935220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 05/28/2023]
Abstract
Aging is one of the largest risk factors for cancer, type 2 diabetes, osteoarthritis, cardiovascular diseases, and other age-related pathologies. Here, we give a detailed description of the interplay of chronic age-related pathologies with the remodeling of the extracellular matrix during disease development and progression. Longevity-promoting signaling pathways slow or prevent age-related diseases. In particular, we focus on the mTOR signaling pathway, sirtuins, and canonical longevity-promoting transcription factors, such as FOXO, NF-κB, and Nrf2. We extend our analysis using chromatin immunoprecipitation (ChIP) sequencing and transcriptomic data and report that many established and emerging longevity-promoting transcription factors, such as CREB1, FOXO1,3, GATA1,2,3,4, HIF1A, JUN, KLF4, MYC, NFE2L2/Nrf2, RELA/NF-κB, REST, STAT3,5A, and TP53/p53, directly regulate many extracellular matrix genes and remodelers. We propose that modulation of these pathways increases lifespan and protects from age-related diseases in part due to their effects on extracellular matrix remodeling. Therefore, to successfully treat age-related diseases, it is necessary to better understand the connection between extracellular matrix components and longevity pathways.
Collapse
Affiliation(s)
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
24
|
Zota IM, Stătescu C, Sascău RA, Roca M, Anghel L, Maștaleru A, Leon-Constantin MM, Ghiciuc CM, Cozma SR, Dima-Cozma LC, Esanu IM, Mitu F. Acute and Long-Term Consequences of COVID-19 on Arterial Stiffness-A Narrative Review. Life (Basel) 2022; 12:781. [PMID: 35743812 PMCID: PMC9224691 DOI: 10.3390/life12060781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global coronavirus (COVID-19) pandemic. Although initially viewed as an acute respiratory illness, COVID-19 is clearly a complex multisystemic disease with extensive cardiovascular involvement. Emerging evidence shows that the endothelium plays multiple roles in COVID-19 physiopathology, as both a target organ that can be directly infected by SARS-CoV-2 and a mediator in the subsequent inflammatory and thrombotic cascades. Arterial stiffness is an established marker of cardiovascular disease. The scope of this review is to summarize available data on the acute and long-term consequences of COVID-19 on vascular function. COVID-19 causes early vascular aging and arterial stiffness. Fast, noninvasive bedside assessment of arterial stiffness could optimize risk stratification in acute COVID-19, allowing for early escalation of treatment. Vascular physiology remains impaired at least 12 months after infection with SARS-CoV-2, even in otherwise healthy adults. This raises concerns regarding the extent of arterial remodeling in patients with preexisting vascular disease and the potential development of a persistent, chronic COVID-19 vasculopathy. Long-term follow up on larger cohorts is required to investigate the reversibility of COVID-19-induced vascular changes and their associated prognostic implications.
Collapse
Affiliation(s)
- Ioana Mădălina Zota
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Cristian Stătescu
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Radu Andy Sascău
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Mihai Roca
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Larisa Anghel
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Alexandra Maștaleru
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Maria Magdalena Leon-Constantin
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Cristina Mihaela Ghiciuc
- Pharmacology, Clinical Pharmacology and Algeziology, Department of Morpho-Functional Sciences II, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania
| | - Sebastian Romica Cozma
- Department of Surgery (II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania;
| | - Lucia Corina Dima-Cozma
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Irina Mihaela Esanu
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Florin Mitu
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| |
Collapse
|
25
|
Salminen A. Clinical perspectives on the age-related increase of immunosuppressive activity. J Mol Med (Berl) 2022; 100:697-712. [PMID: 35384505 PMCID: PMC8985067 DOI: 10.1007/s00109-022-02193-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
The aging process is associated with a remodeling of the immune system involving chronic low-grade inflammation and a gradual decline in the function of the immune system. These processes are also called inflammaging and immunosenescence. The age-related immune remodeling is associated with many clinical changes, e.g., risk for cancers and chronic infections increases, whereas the efficiency of vaccination and immunotherapy declines with aging. On the other hand, there is convincing evidence that chronic inflammatory states promote the premature aging process. The inflammation associated with aging or chronic inflammatory conditions stimulates a counteracting immunosuppression which protects tissues from excessive inflammatory injuries but promotes immunosenescence. Immunosuppression is a driving force in tumors and chronic infections and it also induces the tolerance to vaccination and immunotherapies. Immunosuppressive cells, e.g., myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and type M2 macrophages, have a crucial role in tumorigenesis and chronic infections as well as in the tolerance to vaccination and immunotherapies. Interestingly, there is substantial evidence that inflammaging is also associated with an increased immunosuppressive activity, e.g., upregulation of immunosuppressive cells and anti-inflammatory cytokines. Given that both the aging and chronic inflammatory states involve the activation of immunosuppression and immunosenescence, this might explain why aging is a risk factor for tumorigenesis and chronic inflammatory states and conversely, chronic inflammatory insults promote the premature aging process in humans.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
26
|
Singh R, Nasci VL, Guthrie G, Ertuglu LA, Butt MK, Kirabo A, Gohar EY. Emerging Roles for G Protein-Coupled Estrogen Receptor 1 in Cardio-Renal Health: Implications for Aging. Biomolecules 2022; 12:412. [PMID: 35327604 PMCID: PMC8946600 DOI: 10.3390/biom12030412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.
Collapse
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Ginger Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Lale A. Ertuglu
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| |
Collapse
|
27
|
Mammoto A, Matus K, Mammoto T. Extracellular Matrix in Aging Aorta. Front Cell Dev Biol 2022; 10:822561. [PMID: 35265616 PMCID: PMC8898904 DOI: 10.3389/fcell.2022.822561] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
The aging population is booming all over the world and arterial aging causes various age-associated pathologies such as cardiovascular diseases (CVDs). The aorta is the largest elastic artery, and transforms pulsatile flow generated by the left ventricle into steady flow to maintain circulation in distal tissues and organs. Age-associated structural and functional changes in the aortic wall such as dilation, tortuousness, stiffening and losing elasticity hamper stable peripheral circulation, lead to tissue and organ dysfunctions in aged people. The extracellular matrix (ECM) is a three-dimensional network of macromolecules produced by resident cells. The composition and organization of key ECM components determine the structure-function relationships of the aorta and therefore maintaining their homeostasis is critical for a healthy performance. Age-associated remodeling of the ECM structural components, including fragmentation of elastic fibers and excessive deposition and crosslinking of collagens, is a hallmark of aging and leads to functional stiffening of the aorta. In this mini review, we discuss age-associated alterations of the ECM in the aortic wall and shed light on how understanding the mechanisms of aortic aging can lead to the development of efficient strategy for aortic pathologies and CVDs.
Collapse
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| | - Kienna Matus
- Department of Pediatrics, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| |
Collapse
|
28
|
Ikemoto‐Uezumi M, Zhou H, Kurosawa T, Yoshimoto Y, Toyoda M, Kanazawa N, Nakazawa T, Morita M, Tsuchida K, Uezumi A. Increased MFG-E8 at neuromuscular junctions is an exacerbating factor for sarcopenia-associated denervation. Aging Cell 2022; 21:e13536. [PMID: 34953020 PMCID: PMC8761010 DOI: 10.1111/acel.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Sarcopenia is an important health problem associated with adverse outcomes. Although the etiology of sarcopenia remains poorly understood, factors apart from muscle fibers, including humoral factors, might be involved. Here, we used cytokine antibody arrays to identify humoral factors involved in sarcopenia and found a significant increase in levels of milk fat globule epidermal growth factor 8 (MFG‐E8) in skeletal muscle of aged mice, compared with young mice. We found that the increase in MFG‐E8 protein at arterial walls and neuromuscular junctions (NMJs) in muscles of aged mice. High levels of MFG‐E8 at NMJs and an age‐related increase in arterial MFG‐E8 have also been identified in human skeletal muscle. In NMJs, MFG‐E8 is localized on the surface of terminal Schwann cells, which are important accessory cells for the maintenance of NMJs. We found that increased MFG‐E8 at NMJs precedes age‐related denervation and is more prominent in sarcopenia‐susceptible fast‐twitch than in sarcopenia‐resistant slow‐twitch muscle. Comparison between fast and slow muscles further revealed that arterial MFG‐E8 can be uncoupled from sarcopenic phenotype. A genetic deficiency in MFG‐E8 attenuated age‐related denervation of NMJs and muscle weakness, providing evidence of a pathogenic role of increased MFG‐E8. Thus, our study revealed a mechanism by which increased MFG‐E8 at NMJs leads to age‐related NMJ degeneration and suggests that targeting MFG‐E8 could be a promising therapeutic approach to prevent sarcopenia.
Collapse
Affiliation(s)
- Madoka Ikemoto‐Uezumi
- Muscle Aging and Regenerative Medicine Tokyo Metropolitan Institute of Gerontology (TMIG) Tokyo Japan
| | - Heying Zhou
- Muscle Aging and Regenerative Medicine Tokyo Metropolitan Institute of Gerontology (TMIG) Tokyo Japan
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine Tokyo Metropolitan Institute of Gerontology (TMIG) Tokyo Japan
- Laboratory of Veterinary Pharmacology Department of Veterinary Medical Sciences Graduate School of Agriculture and Life Sciences Tokyo University Tokyo Japan
| | - Yuki Yoshimoto
- Muscle Aging and Regenerative Medicine Tokyo Metropolitan Institute of Gerontology (TMIG) Tokyo Japan
| | | | - Nobuo Kanazawa
- Department of Surgery Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology Tokyo Japan
| | | | - Mitsuhiro Morita
- Department of Orthopaedic Surgery Fujita Health University Toyoake Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases Institute for Comprehensive Medical Science Fujita Health University Toyoake Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine Tokyo Metropolitan Institute of Gerontology (TMIG) Tokyo Japan
| |
Collapse
|
29
|
Gopcevic KR, Gkaliagkousi E, Nemcsik J, Acet Ö, Bernal-Lopez MR, Bruno RM, Climie RE, Fountoulakis N, Fraenkel E, Lazaridis A, Navickas P, Rochfort KD, Šatrauskienė A, Zupkauskienė J, Terentes-Printzios D. Pathophysiology of Circulating Biomarkers and Relationship With Vascular Aging: A Review of the Literature From VascAgeNet Group on Circulating Biomarkers, European Cooperation in Science and Technology Action 18216. Front Physiol 2021; 12:789690. [PMID: 34970157 PMCID: PMC8712891 DOI: 10.3389/fphys.2021.789690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Impairment of the arteries is a product of sustained exposure to various deleterious factors and progresses with time; a phenomenon inherent to vascular aging. Oxidative stress, inflammation, the accumulation of harmful agents in high cardiovascular risk conditions, changes to the extracellular matrix, and/or alterations of the epigenetic modification of molecules, are all vital pathophysiological processes proven to contribute to vascular aging, and also lead to changes in levels of associated circulating molecules. Many of these molecules are consequently recognized as markers of vascular impairment and accelerated vascular aging in clinical and research settings, however, for these molecules to be classified as biomarkers of vascular aging, further criteria must be met. In this paper, we conducted a scoping literature review identifying thirty of the most important, and eight less important, biomarkers of vascular aging. Herein, we overview a selection of the most important molecules connected with the above-mentioned pathological conditions and study their usefulness as circulating biomarkers of vascular aging.
Collapse
Affiliation(s)
- Kristina R. Gopcevic
- Laboratory for Analytics of Biomolecules, Department of Chemistry in Medicine, Faculty of Medicine, Belgrade, Serbia
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - János Nemcsik
- Department of Family Medicine, Semmelweis University, Budapest, Hungary
- Health Service of ZUGLO, Department of Family Medicine, Budapest, Hungary
| | - Ömür Acet
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus, Turkey
| | - M. Rosa Bernal-Lopez
- Internal Medicine Department, Regional University Hospital of Malaga, Instituto de Investigacion Biomedica de Malaga, University of Malaga, CIBER Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Málaga, Spain
| | - Rosa M. Bruno
- Unversite de Paris, INSERM, U970, Paris Cardiovascular Research Center, Paris, France
| | - Rachel E. Climie
- Unversite de Paris, INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Sports Cardiology Lab, Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nikolaos Fountoulakis
- Faculty of Life Sciences and Medicine, King’s College London - Waterloo Campus, London, United Kingdom
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital and Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petras Navickas
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
| | - Agnė Šatrauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Cardiology and Angiology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Jūratė Zupkauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Zhang L, Liu L, Wang M. Effects of puerarin on chronic inflammation: Focus on the heart, brain, and arteries. Aging Med (Milton) 2021; 4:317-324. [PMID: 34964013 PMCID: PMC8711227 DOI: 10.1002/agm2.12189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022] Open
Abstract
Age-associated increases in physical and mental stress, known as allostatic load, could lead to a chronic low-grade inflammation in the heart, brain, and arteries. This low-grade inflammation potentially contributes to adverse structural and functional remodeling, such as intimal medial thickening, endothelial dysfunction, arterial stiffening, cardiac hypertrophy and ischemia, and cognitive decline. These cellular and tissue remodeling is the fertile soil for the development of age-associated structural and functional disorders in the cardiovascular and cerebrovascular systems in the pathogenesis of obesity, type II diabetes, hypertension, atherosclerosis, heart dysfunction, and cognitive decline. Growing evidence indicates that puerarin, a polyphenol, extracted from Puerara Labota, efficiently alleviates the initiation and progression of obesity, type II diabetes, hypertension, atherosclerosis, cardiac ischemia, cardiac arrythmia, cardiac hypertrophy, ischemic stroke, and cognition decline via suppression of oxidative stress and inflammation. This mini review focuses on recent advances in the effects of puerarin on the oxidative and inflammatory molecular, cellular, tissue events in the heart, brain, and arteries.
Collapse
Affiliation(s)
- Li Zhang
- Department of CardiologyThe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Lisheng Liu
- National Centre for Cardiovascular DiseaseThe Beijing Hypertension League InstituteBeijingChina
| | - Mingyi Wang
- Laboratory of Cardiovascular ScienceIntramural Research ProgramNational Institute on AgingNational Institutes of HealthBRCBaltimoreMarylandUSA
| |
Collapse
|
31
|
Ke S, Wu L, Wang M, Liu D, Shi G, Zhu J, Qian X. Ginsenoside Rb1 attenuates age-associated vascular impairment by modulating the Gas6 pathway. PHARMACEUTICAL BIOLOGY 2021; 59:1369-1377. [PMID: 34629012 PMCID: PMC8510614 DOI: 10.1080/13880209.2021.1986076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Ginsenoside Rb1 (Rb1) exerts many beneficial effects and protects against cardiovascular disease. OBJECTIVE To investigate whether Rb1 could attenuate age-related vascular impairment and identify the mechanism. MATERIALS AND METHODS Female C57BL/6J mice aged 2 and 18 months, randomly assigned to Young, Young + 20 mg/kg Rb1, Old + vehicle, Old + 10 mg/kg Rb1 and Old + 20 mg/kg Rb1 groups, were daily intraperitoneal injected with vehicle or Rb1 for 3 months. The thoracic aorta segments were used to inspect the endothelium-dependent vasorelaxation. Left thoracic aorta tissues were collected for histological or molecular expression analyses, including ageing-related proteins, markers relevant to calcification and fibrosis, and expression of Gas6/Axl. RESULTS We found that in Old + vehicle group, the expression of senescence proteins and cellular adhesion molecules were significantly increased, with worse endothelium-dependent thoracic aorta relaxation (58.35% ± 2.50%) than in Young group (88.84% ± 1.20%). However, Rb1 treatment significantly decreased the expression levels of these proteins and preserved endothelium-dependent relaxation in aged mice. Moreover, Rb1 treatment also reduced calcium deposition, collagen deposition, and the protein expression levels of collagen I and collagen III in aged mice. Furthermore, we found that the downregulation of Gas6 protein expression by 41.72% and mRNA expression by 52.73% in aged mice compared with young mice was abrogated by Rb1 treatment. But there was no significant difference on Axl expression among the groups. CONCLUSIONS Our study confirms that Rb1 could ameliorate vascular injury, suggesting that Rb1 might be a potential anti-ageing related vascular impairment agent.
Collapse
Affiliation(s)
- Shiye Ke
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Lin Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Min Wang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dinghui Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guangyao Shi
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jieming Zhu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
32
|
Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E. SARS-CoV-2, COVID-19 and the Ageing Immune System. NATURE AGING 2021; 1:769-782. [PMID: 34746804 PMCID: PMC8570568 DOI: 10.1038/s43587-021-00114-7] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a global health threat with particular risk for severe disease and death in older adults and in adults with age-related metabolic and cardiovascular disease. Recent advances in the science of ageing have highlighted how ageing pathways control not only lifespan but also healthspan, the healthy years of life. Here, we discuss the ageing immune system and its ability to respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We specifically focus on the intersect of severe COVID-19 and immunosenescence to highlight pathways that may be determinant for the risk of complications and death following infection with SARS-CoV-2. New or adapted therapeutics that target ageing-associated pathways may be important tools to reduce the burden of death and long-term disability caused by this pandemic. Proposed interventions aimed at immunosenescence could enhance immune function not only in the elderly but in susceptible younger individuals as well, ultimately improving complications of severe COVID-19 for all ages.
Collapse
Affiliation(s)
| | - Dina Radenkovic
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Hooke, Health, Longevity Optimisation, London, UK
| | - Anthony J Covarrubias
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
33
|
Santos-Moreno P, Burgos-Angulo G, Martinez-Ceballos MA, Pizano A, Echeverri D, Bautista-Niño PK, Roks AJM, Rojas-Villarraga A. Inflammaging as a link between autoimmunity and cardiovascular disease: the case of rheumatoid arthritis. RMD Open 2021; 7:rmdopen-2020-001470. [PMID: 33468563 PMCID: PMC7817822 DOI: 10.1136/rmdopen-2020-001470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, traditional and non-traditional risk factors for cardiovascular disease have been established. The first group includes age, which constitutes one of the most important factors in the development of chronic diseases. The second group includes inflammation, the pathophysiology of which contributes to an accelerated process of vascular remodelling and atherogenesis in autoimmune diseases. Indeed, the term inflammaging has been used to refer to the inflammatory origin of ageing, explicitly due to the chronic inflammatory process associated with age (in healthy individuals). Taking this into account, it can be inferred that people with autoimmune diseases are likely to have an early acceleration of vascular ageing (vascular stiffness) as evidenced in the alteration of non-invasive cardiovascular tests such as pulse wave velocity. Thus, an association is created between autoimmunity and high morbidity and mortality rates caused by cardiovascular disease in this population group. The beneficial impact of the treatments for rheumatoid arthritis at the cardiovascular level has been reported, opening new opportunities for pharmacotherapy.
Collapse
Affiliation(s)
| | - Gabriel Burgos-Angulo
- Internal Medicine Department, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogota, Cundinamarca, Colombia
| | | | - Alejandro Pizano
- Vascular Function Research Laboratory and Department of Interventional Cardiology, Fundación Cardioinfantil Instituto de Cardiología, Bogota, Cundinamarca, Colombia
| | - Dario Echeverri
- Vascular Function Research Laboratory and Department of Interventional Cardiology, Fundación Cardioinfantil Instituto de Cardiología, Bogota, Cundinamarca, Colombia
| | - Paula K Bautista-Niño
- Research Center, Fundación Cardiovascular de Colombia, Floridablanca, Santander, Colombia
| | - Anton J M Roks
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Center Department of Internal Medicine, Rotterdam, South Holland, The Netherlands
| | - Adriana Rojas-Villarraga
- Research Division, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Cundinamarca, Colombia
| |
Collapse
|
34
|
Kim SH, Monticone RE, McGraw KR, Wang M. Age-associated proinflammatory elastic fiber remodeling in large arteries. Mech Ageing Dev 2021; 196:111490. [PMID: 33839189 PMCID: PMC8154723 DOI: 10.1016/j.mad.2021.111490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Elastic fibers are the main components of the extracellular matrix of the large arterial wall. Elastic fiber remodeling is an intricate process of synthesis and degradation of the core elastin protein and microfibrils accompanied by the assembly and disassembly of accessory proteins. Age-related morphological, structural, and functional proinflammatory remodeling within the elastic fiber has a profound effect upon the integrity, elasticity, calcification, amyloidosis, and stiffness of the large arterial wall. An age-associated increase in arterial stiffness is a major risk factor for the pathogenesis of diseases of the large arteries such as hypertensive and atherosclerotic vasculopathy. This mini review is an update on the key molecular, cellular, functional, and structural mechanisms of elastic fiber proinflammatory remodeling in large arteries with aging. Targeting structural and functional integrity of the elastic fiber may be an effective approach to impede proinflammatory arterial remodeling with advancing age.
Collapse
Affiliation(s)
- Soo Hyuk Kim
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Robert E Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Kimberly R McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
35
|
Wang S, Hu S, Mao Y. The mechanisms of vascular aging. Aging Med (Milton) 2021; 4:153-158. [PMID: 34250433 PMCID: PMC8251869 DOI: 10.1002/agm2.12151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular senescence is one of the hotspots in current research. With global average life expectancy increasing, delaying or reducing aging and age-related diseases has become a pressing issue for improving quality of life. Vascular senescence is an independent risk factor for age-related cardiovascular diseases (CVD) and results in the deterioration of CVD. Nevertheless, the underlying mechanisms of the vascular senescence have not been expressly illustrated. In this review, we attempt to summarize the recent literature in the field and discuss the major mechanisms involved in vascular senescence. We also underline key molecular aspects of aging-associated vascular dysfunction in the attempt to highlight potential innovative therapeutic targets to delay the onset of age-related diseases.
Collapse
Affiliation(s)
- Shan Wang
- Department of Geriatric Medicine The Affiliated Hospital of Qingdao University Qingdao China
| | - Song Hu
- Department of Geriatric Medicine The Affiliated Hospital of Qingdao University Qingdao China
| | - Yongjun Mao
- Department of Geriatric Medicine The Affiliated Hospital of Qingdao University Qingdao China
| |
Collapse
|
36
|
Jones BP, Saso S, Yazbek J, Thum MY, Quiroga I, Ghaem-Maghami S, Smith JR. Uterine Transplantation: Scientific Impact Paper No. 65 April 2021. BJOG 2021; 128:e51-e66. [PMID: 33913235 DOI: 10.1111/1471-0528.16697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A uterine transplant, or womb transplant, provides a potential treatment for women who cannot become pregnant or carry a pregnancy because they do not have a womb, or have a womb that is unable to maintain a pregnancy. This is estimated to affect one in 500 women. Options for those who wish to start a family include adoption and surrogacy, but these are associated with legal, cultural, ethical and religious implications that may not be appropriate for some women and their families. A womb transplant is undertaken when the woman is ready to start a family, and is removed following the completion of their family. Womb transplants have been performed all over the world, with more than 70 procedures carried out so far. At least 23 babies have been born as a result, demonstrating that womb transplants can work. While the procedure offers a different option to adoption and surrogacy, it is associated with significant risks, including multiple major surgeries and the need to take medications that help to dampen the immune system to prevent rejection of the womb. To date there has been a 30% risk of a transplant being unsuccessful. Although the number of transplants to date is still relatively small, the number being performed globally is growing, providing an opportunity to learn from the experience gained so far. This paper looks at the issues that have been encountered, which may arise at each step of the process, and proposes a framework for the future. However, long term follow-up of cases will be essential to draw reliable conclusions about any overall benefits of this procedure.
Collapse
Affiliation(s)
- B P Jones
- Royal College of Obstetricians and Gynaecologists, 10-18 Union Street, London, SE1 1SZ, UK
| | - S Saso
- Royal College of Obstetricians and Gynaecologists, 10-18 Union Street, London, SE1 1SZ, UK
| | - J Yazbek
- Royal College of Obstetricians and Gynaecologists, 10-18 Union Street, London, SE1 1SZ, UK
| | - M-Y Thum
- Royal College of Obstetricians and Gynaecologists, 10-18 Union Street, London, SE1 1SZ, UK
| | - I Quiroga
- Royal College of Obstetricians and Gynaecologists, 10-18 Union Street, London, SE1 1SZ, UK
| | - S Ghaem-Maghami
- Royal College of Obstetricians and Gynaecologists, 10-18 Union Street, London, SE1 1SZ, UK
| | - J R Smith
- Royal College of Obstetricians and Gynaecologists, 10-18 Union Street, London, SE1 1SZ, UK
| | | |
Collapse
|
37
|
AlGhatrif M, Tanaka T, Moore AZ, Bandinelli S, Lakatta EG, Ferrucci L. Age-associated difference in circulating ACE2, the gateway for SARS-COV-2, in humans: results from the InCHIANTI study. GeroScience 2021; 43:619-627. [PMID: 33462706 PMCID: PMC7813532 DOI: 10.1007/s11357-020-00314-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Levels of angiotensin-converting enzyme 2 (ACE2), the gateway for COVID-19 virus into the cells, have been implicated in worse COVID-19 outcomes associated with aging and cardiovascular disease (CVD). Data on age-associated differences in circulating ACE2 levels in humans and the role of CVD and medications is limited. We analyzed data from 967 participants of the InCHIANTI study, a community-dwelling cohort in the Chianti region, Italy. Relative abundance of ACE2 in plasma was assessed using a proteomics platform. CVD diagnoses, use of renin-angiotensin-aldosterone system (RAAS) antagonists: ACEi, ARBs, and aldosterone antagonists, were ascertained. Multiple linear analyses were performed to examine the independent association of ACE2 with age, CVD, and RAAS antagonist use. Age was independently associated with lower log (ACE2) in persons aged ≥ 55 years (STD β = - 0.12, p = 0.0002). ACEi treatment was also independently associated with significantly lower ACE2 levels, and ACE2 was inversely associated with weight, and positively associated with peripheral artery disease (PAD) status. There was a trend toward higher circulating ACE2 levels in hypertensive individuals, but it did not reach statistical significance. In a stratified analysis, the association between log (ACE2) and log (IL-6) was more evidenced in participants with PAD. Circulating ACE2 levels demonstrate curvilinear association with age, with older individuals beyond the sixth decade age having lower levels. ACEi was associated with greater circulating ACE2 levels. Interestingly, ACE2 was elevated in PAD and positively associated with inflammatory markers, suggesting compensatory upregulation in the setting of chronic inflammation. Further studies are needed to comprehensively characterize RAAS components with aging and disease, and assess its prognostic role in predicting COVID-19 outcomes.
Collapse
Affiliation(s)
- Majd AlGhatrif
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
- Longitudinal Study Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Divisions of Cardiology and Hospital Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Toshiko Tanaka
- Longitudinal Study Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ann Zenobia Moore
- Longitudinal Study Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Luigi Ferrucci
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| |
Collapse
|
38
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
39
|
Rodilla E, López-Carmona MD, Cortes X, Cobos-Palacios L, Canales S, Sáez MC, Campos Escudero S, Rubio-Rivas M, Díez Manglano J, Freire Castro SJ, Vázquez Piqueras N, Mateo Sanchis E, Pesqueira Fontan PM, Magallanes Gamboa JO, González García A, Madrid Romero V, Tamargo Chamorro L, González Moraleja J, Villanueva Martínez J, González Noya A, Suárez-Lombraña A, Gracia Gutiérrez A, López Reboiro ML, Ramos Rincón JM, Gómez Huelgas R. Impact of Arterial Stiffness on All-Cause Mortality in Patients Hospitalized With COVID-19 in Spain. Hypertension 2021; 77:856-867. [PMID: 33377393 PMCID: PMC7884247 DOI: 10.1161/hypertensionaha.120.16563] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023]
Abstract
Older age and cardiovascular comorbidities are well-known risk factors for all-cause mortality in patients with coronavirus disease 2019 (COVID-19). Hypertension and age are the 2 principal determinants of arterial stiffness (AS). This study aimed to estimate AS in patients with COVID-19 requiring hospitalization and analyze its association with all-cause in-hospital mortality. This observational, retrospective, multicenter cohort study analyzed 12 170 patients admitted to 150 Spanish centers included in the SEMI-COVID-19 Network. We compared AS, defined as pulse pressure ≥60 mm Hg, and clinical characteristics between survivors and nonsurvivors. Mean age was 67.5 (±16.1) years and 42.5% were women. Overall, 2606 (21.4%) subjects died. Admission systolic blood pressure (BP) <120 and ≥140 mm Hg was a predictor of higher all-cause mortality (23.5% and 22.8%, respectively, P<0.001), compared with systolic BP between 120 and 140 mm Hg (18.6%). The 4379 patients with AS (36.0%) were older and had higher systolic and lower diastolic BP. Multivariate analysis showed that AS and systolic BP <120 mm Hg significantly and independently predicted all-cause in-hospital mortality (adjusted odds ratio [ORadj]: 1.27, P=0.0001; ORadj: 1.48, P=0.0001, respectively) after adjusting for sex (males, ORadj: 1.6, P=0.0001), age tertiles (second and third tertiles, ORadj: 2.0 and 4.7, P=0.0001), Charlson Comorbidity Index (second and third tertiles, ORadj: 4.8 and 8.6, P=0.0001), heart failure, and previous and in-hospital antihypertensive treatment. Our data show that AS and admission systolic BP <120 mm Hg had independent prognostic value for all-cause mortality in patients with COVID-19 requiring hospitalization.
Collapse
Affiliation(s)
- Enrique Rodilla
- From the Internal Medicine Department, Hypertension and Vascular Risk Unit, Sagunto University Hospital, Sagunto (Valencia), Spain (E.R., X.C., S.C., M.C.S.)
- Department of Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain (E.R., X.C., S.C., M.C.S.)
| | - Maria Dolores López-Carmona
- Internal Medicine Department, Regional University Hospital of Málaga, Biomedical Research Institute of Málaga (IBIMA), University of Málaga (UMA), Spain (M.D.L.-C., L.C.-P., R.G.H.)
| | - Xavi Cortes
- From the Internal Medicine Department, Hypertension and Vascular Risk Unit, Sagunto University Hospital, Sagunto (Valencia), Spain (E.R., X.C., S.C., M.C.S.)
- Department of Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain (E.R., X.C., S.C., M.C.S.)
| | - Lidia Cobos-Palacios
- Internal Medicine Department, Regional University Hospital of Málaga, Biomedical Research Institute of Málaga (IBIMA), University of Málaga (UMA), Spain (M.D.L.-C., L.C.-P., R.G.H.)
| | - Sergio Canales
- From the Internal Medicine Department, Hypertension and Vascular Risk Unit, Sagunto University Hospital, Sagunto (Valencia), Spain (E.R., X.C., S.C., M.C.S.)
- Department of Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain (E.R., X.C., S.C., M.C.S.)
| | - Maria Carmen Sáez
- From the Internal Medicine Department, Hypertension and Vascular Risk Unit, Sagunto University Hospital, Sagunto (Valencia), Spain (E.R., X.C., S.C., M.C.S.)
- Department of Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain (E.R., X.C., S.C., M.C.S.)
| | | | - Manuel Rubio-Rivas
- Internal Medicine Department, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat (Barcelona), Spain (M.R.-R.)
| | - Jesus Díez Manglano
- Internal Medicine Department, Royo Villanova Hospital, Zaragoza, Spain (J.D.M.)
| | | | - Nuria Vázquez Piqueras
- Internal Medicine Department, Consorci Sanitari Integral, Moisès Broggi Hospital Sant Joan Despí (Barcelona), Spain (N.V.P.)
| | | | | | | | - Andrés González García
- Internal Medicine Department, Ramón y Cajal University Hospital, Madrid, Spain (A.G.G.)
- Internal Medicine Department, Defensa General Hospital, Zaragoza, Spain (A.G.G.)
| | | | | | | | | | - Amara González Noya
- Internal Medicine Department, Ourense University Hospital Complex, Ourense, Spain (A.G.N.)
| | | | - Anyuli Gracia Gutiérrez
- Internal Medicine Department, Ramón y Cajal University Hospital, Madrid, Spain (A.G.G.)
- Internal Medicine Department, Defensa General Hospital, Zaragoza, Spain (A.G.G.)
| | | | - José Manuel Ramos Rincón
- Department of Clinical Medicine, Miguel Hernandez University of Elche, Alicante, Spain (J.M.R.R.)
| | - Ricardo Gómez Huelgas
- Internal Medicine Department, Regional University Hospital of Málaga, Biomedical Research Institute of Málaga (IBIMA), University of Málaga (UMA), Spain (M.D.L.-C., L.C.-P., R.G.H.)
| |
Collapse
|
40
|
Lee HA, Lim J, Joo HJ, Lee YS, Jung YK, Kim JH, An H, Yim HJ, Jeen YT, Yeon JE, Lim DS, Byun KS, Seo YS. Serum milk fat globule-EGF factor 8 protein as a potential biomarker for metabolic syndrome. Clin Mol Hepatol 2021; 27:463-473. [PMID: 33587839 PMCID: PMC8273636 DOI: 10.3350/cmh.2020.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background/Aims Useful biomarkers for metabolic syndrome have been insufficient. We investigated the performance of serum milk fat globule-EGF factor-8 (MFG-E8), the key mediator of inflammatory pathway, in diagnosis of metabolic syndrome. Methods Subjects aged between 30 and 64 years were prospectively enrolled in the Seoul Metabolic Syndrome cohort. Serum MFG-E8 levels were measured at baseline. Results A total of 556 subjects were included, comprising 279 women (50.2%) and 277 men (49.8%). Metabolic syndrome was diagnosed in 236 subjects (42.4%), and the mean MFG-E8 level of subjects with metabolic syndrome was significantly higher than that of subjects without metabolic syndrome (P<0.001). MFG-E8 level was significantly correlated with all metabolic syndrome components and pulse wave velocity (all P<0.05). Subjects were categorized into two groups according to the best MFG-E8 cut-off value as follows: group 1, MFG-E8 level <4,745.1 pg/mL (n=401, 72.1%); and group 2, MFG-E8 level ≥4,745.1 (n=155, 27.9%). At baseline, metabolic syndrome in group 2 was significantly more prevalent than in group 1 (63.9% vs. 34.2%, P<0.001). During median follow-up of 17 months, metabolic syndrome developed in 122 (38.1%) subjects among 320 subjects without it at baseline. The incidence of metabolic syndrome in group 2 was significantly higher than that in group 1 (55.4% vs. 34.5%, P=0.003). On multivariate analysis, MFG-E8 level ≥4,745.1 pg/mL was an independent predictor for diagnosis and development of metabolic syndrome after adjusting other factors (all P<0.05). Conclusions Serum MFG-E8 level is a potent biomarker for the screening and prediction of metabolic syndrome.
Collapse
Affiliation(s)
- Han Ah Lee
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jihwan Lim
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hyung Joon Joo
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Young-Sun Lee
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Young Kul Jung
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hoon Kim
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hyunggin An
- Department of Biostatistics, Korea University College of Medicine, Seoul, Korea
| | - Hyung Joon Yim
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yoon Tae Jeen
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jong Eun Yeon
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Do-Sun Lim
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kwan Soo Byun
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yeon Seok Seo
- Departments of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Monteonofrio L, Florio MC, AlGhatrif M, Lakatta EG, Capogrossi MC. Aging- and gender-related modulation of RAAS: potential implications in COVID-19 disease. VASCULAR BIOLOGY 2020; 3:R1-R14. [PMID: 33537555 PMCID: PMC7849461 DOI: 10.1530/vb-20-0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is frequently characterized by a marked inflammatory response with severe pneumonia and respiratory failure associated with multiorgan involvement. Some risk factors predispose patients to develop a more severe infection and to an increased mortality; among them, advanced age and male gender have been identified as major and independent risk factors for COVID-19 poor outcome. The renin-angiotensin-aldosterone system (RAAS) is strictly involved in COVID-19 because angiotensin converting enzyme 2 (ACE2) is the host receptor for SARS-CoV-2 and also converts pro-inflammatory angiotensin (Ang) II into anti-inflammatory Ang(1–7). In this review, we have addressed the effect of aging and gender on RAAS with emphasis on ACE2, pro-inflammatory Ang II/Ang II receptor 1 axis and anti-inflammatory Ang(1–7)/Mas receptor axis.
Collapse
Affiliation(s)
- Laura Monteonofrio
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maria Cristina Florio
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Majd AlGhatrif
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Longitudinal Study Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maurizio C Capogrossi
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Ni YQ, Zhan JK, Liu YS. Roles and mechanisms of MFG-E8 in vascular aging-related diseases. Ageing Res Rev 2020; 64:101176. [PMID: 32971257 DOI: 10.1016/j.arr.2020.101176] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
The aging of the vasculature plays a crucial role in the pathological progression of various vascular aging-related diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are essential parts in the inner and medial layers of vessel wall, respectively, the structural and functional alterations of ECs and VSMCs are the major causes of vascular aging. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a multifunctional glycoprotein which exerts a regulatory role in the intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that MFG-E8 is a novel and outstanding modulator for vascular aging via targeting at ECs and VSMCs. In this review, we will summarise the cumulative roles and mechanisms of MFG-E8 in vascular aging and vascular aging-related diseases with special emphasis on the functions of ECs and VSMCs. In addition, we also aim to focus on the promising diagnostic function as a biomarker and the potential therapeutic application of MFG-E8 in vascular aging and the clinical evaluation of vascular aging-related diseases.
Collapse
|
43
|
Ren G, Bhatnagar S, Hahn DJ, Kim JA. Long-chain acyl-CoA synthetase-1 mediates the palmitic acid-induced inflammatory response in human aortic endothelial cells. Am J Physiol Endocrinol Metab 2020; 319:E893-E903. [PMID: 32954825 PMCID: PMC7790120 DOI: 10.1152/ajpendo.00117.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Saturated fatty acid (SFA) induces proinflammatory response through a Toll-like receptor (TLR)-mediated mechanism, which is associated with cardiometabolic diseases such as obesity, insulin resistance, and endothelial dysfunction. Consistent with this notion, TLR2 or TLR4 knockout mice are protected from obesity-induced proinflammatory response and endothelial dysfunction. Although SFA causes endothelial dysfunction through TLR-mediated signaling pathways, the mechanisms underlying SFA-stimulated inflammatory response are not completely understood. To understand the proinflammatory response in vascular endothelial cells in high-lipid conditions, we compared the proinflammatory responses stimulated by palmitic acid (PA) and other canonical TLR agonists [lipopolysaccharide (LPS), Pam3-Cys-Ser-Lys4 (Pam3CSK4), or macrophage-activating lipopeptide-2)] in human aortic endothelial cells. The expression profiles of E-selectin and the signal transduction pathways stimulated by PA were distinct from those stimulated by canonical TLR agonists. Inhibition of long-chain acyl-CoA synthetases (ACSL) by a pharmacological inhibitor or knockdown of ACSL1 blunted the PA-stimulated, but not the LPS- or Pam3CSK4-stimulated proinflammatory responses. Furthermore, triacsin C restored the insulin-stimulated vasodilation, which was impaired by PA. From the results, we concluded that PA stimulates the proinflammatory response in the vascular endothelium through an ACSL1-mediated mechanism, which is distinct from LPS- or Pam3CSK4-stimulated responses. The results suggest that endothelial dysfunction caused by PA may require to undergo intracellular metabolism. This expands the understanding of the mechanisms by which TLRs mediate inflammatory responses in endothelial dysfunction and cardiovascular disease.
Collapse
Affiliation(s)
- Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Alabama
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Alabama
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
- UAB Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama
| | | | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Alabama
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
- UAB Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama
| |
Collapse
|
44
|
Gao P, Gao P, Choi M, Chegireddy K, Slivano OJ, Zhao J, Zhang W, Long X. Transcriptome analysis of mouse aortae reveals multiple novel pathways regulated by aging. Aging (Albany NY) 2020; 12:15603-15623. [PMID: 32805724 PMCID: PMC7467355 DOI: 10.18632/aging.103652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
Abstract
Vascular aging has been documented as a vital process leading to arterial dysfunction and age-related cardiovascular and cerebrovascular diseases. However, our understanding of the molecular underpinnings of age-related phenotypes in the vascular system is incomplete. Here we performed bulk RNA sequencing in young and old mouse aortae to elucidate age-associated changes in the transcriptome. Results showed that the majority of upregulated pathways in aged aortae relate to immune response, including inflammation activation, apoptotic clearance, and phagocytosis. The top downregulated pathway in aged aortae was extracellular matrix organization. Additionally, protein folding control and stress response pathways were downregulated in the aged vessels, with an array of downregulated genes encoding heat shock proteins (HSPs). We also found that circadian core clock genes were differentially expressed in young versus old aortae. Finally, transcriptome analysis combined with protein expression examination and smooth muscle cell (SMC) lineage tracing revealed that SMCs in aged aortae retained the differentiated phenotype, with an insignificant decrease in SMC marker gene expression. Our results therefore unveiled critical pathways regulated by arterial aging in mice, which will provide important insight into strategies to defy vascular aging and age-associated vascular diseases.
Collapse
Affiliation(s)
- Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Pan Gao
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Mihyun Choi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Kavya Chegireddy
- School of Public Health, University at Albany, Albany, NY 12222, USA
| | - Orazio J Slivano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Jinjing Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Wei Zhang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.,Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
45
|
Fung TH, Yang KY, Lui KO. An emerging role of regulatory T-cells in cardiovascular repair and regeneration. Theranostics 2020; 10:8924-8938. [PMID: 32802172 PMCID: PMC7415793 DOI: 10.7150/thno.47118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has demonstrated that immune cells play an important role in the regulation of tissue repair and regeneration. After injury, danger signals released by the damaged tissue trigger the initial pro-inflammatory phase essential for removing pathogens or cellular debris that is later replaced by the anti-inflammatory phase responsible for tissue healing. On the other hand, impaired immune regulation can lead to excessive scarring and fibrosis that could be detrimental for the restoration of organ function. Regulatory T-cells (Treg) have been revealed as the master regulator of the immune system that have both the immune and regenerative functions. In this review, we will summarize their immune role in the induction and maintenance of self-tolerance; as well as their regenerative role in directing tissue specific response for repair and regeneration. The latter is clearly demonstrated when Treg enhance the differentiation of stem or progenitor cells such as satellite cells to replace the damaged skeletal muscle, as well as the proliferation of parenchymal cells including neonatal cardiomyocytes for functional regeneration. Moreover, we will also discuss the reparative and regenerative role of Treg with a particular focus on blood vessels and cardiac tissues. Last but not least, we will describe the ongoing clinical trials with Treg in the treatment of autoimmune diseases that could give clinically relevant insights into the development of Treg therapy targeting tissue repair and regeneration.
Collapse
|
46
|
St. Paul A, Corbett CB, Okune R, Autieri MV. Angiotensin II, Hypercholesterolemia, and Vascular Smooth Muscle Cells: A Perfect Trio for Vascular Pathology. Int J Mol Sci 2020; 21:E4525. [PMID: 32630530 PMCID: PMC7350267 DOI: 10.3390/ijms21124525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the Western and developing world, and the incidence of cardiovascular disease is increasing with the longer lifespan afforded by our modern lifestyle. Vascular diseases including coronary heart disease, high blood pressure, and stroke comprise the majority of cardiovascular diseases, and therefore represent a significant medical and socioeconomic burden on our society. It may not be surprising that these conditions overlap and potentiate each other when we consider the many cellular and molecular similarities between them. These intersecting points are manifested in clinical studies in which lipid lowering therapies reduce blood pressure, and anti-hypertensive medications reduce atherosclerotic plaque. At the molecular level, the vascular smooth muscle cell (VSMC) is the target, integrator, and effector cell of both atherogenic and the major effector protein of the hypertensive signal Angiotensin II (Ang II). Together, these signals can potentiate each other and prime the artery and exacerbate hypertension and atherosclerosis. Therefore, VSMCs are the fulcrum in progression of these diseases and, therefore, understanding the effects of atherogenic stimuli and Ang II on the VSMC is key to understanding and treating atherosclerosis and hypertension. In this review, we will examine studies in which hypertension and atherosclerosis intersect on the VSMC, and illustrate common pathways between these two diseases and vascular aging.
Collapse
Affiliation(s)
| | | | | | - Michael V. Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; (A.S.P.); (C.B.C.); (R.O.)
| |
Collapse
|
47
|
The microRNA-34a-Induced Senescence-Associated Secretory Phenotype (SASP) Favors Vascular Smooth Muscle Cells Calcification. Int J Mol Sci 2020; 21:ijms21124454. [PMID: 32585876 PMCID: PMC7352675 DOI: 10.3390/ijms21124454] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
The senescence of vascular smooth muscle cells (VSMCs), characterized by the acquisition of senescence-associated secretory phenotype (SASP), is relevant for VSMCs osteoblastic differentiation and vascular calcification (VC). MicroRNA-34a (miR-34a) is a driver of such phenomena and could play a role in vascular inflammaging. Herein, we analyzed the relationship between miR-34a and the prototypical SASP component IL6 in in vitro and in vivo models. miR-34a and IL6 levels increased and positively correlated in aortas of 21 months-old male C57BL/6J mice and in human aortic smooth muscle cells (HASMCs) isolated from donors of different age and undergone senescence. Lentiviral overexpression of miR-34a in HASMCs enhanced IL6 secretion. HASMCs senescence and calcification accelerated after exposure to conditioned medium of miR-34a-overexpressing cells. Analysis of miR-34a-induced secretome revealed enhancement of several pro-inflammatory cytokines and chemokines, including IL6, pro-senescent growth factors and matrix-degrading molecules. Moreover, induction of aortas medial calcification and concomitant IL6 expression, with an overdose of vitamin D, was reduced in male C57BL/6J Mir34a-/- mice. Finally, a positive correlation was observed between circulating miR-34a and IL6 in healthy subjects of 20-90 years. Hence, the vascular age-associated miR-34a promotes VSMCs SASP activation and contributes to arterial inflammation and dysfunctions such as VC.
Collapse
|
48
|
Sun ZJ, Hsiao HJ, Cheng HJ, Chou CY, Lu FH, Yang YC, Wu JS, Chang CJ. Relationship between Kidney Stone Disease and Arterial Stiffness in a Taiwanese Population. J Clin Med 2020; 9:jcm9061693. [PMID: 32498283 PMCID: PMC7355902 DOI: 10.3390/jcm9061693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/28/2022] Open
Abstract
Previous studies examining the association between kidney stone disease (KSD) and arterial stiffness have been limited. Both age and gender have been found to have an impact on KSD, but their influence on the relationship between KSD and increased arterial stiffness is unclear. This study included 6694 subjects from October 2006 to August 2009. The diagnosis of kidney stone was based on the results of ultrasonographic examination. Increased arterial stiffness was defined as right-sided brachial-ankle pulse wave velocity (baPWV) ≥ 14 m/s. Associations between KSD and increased arterial stiffness were analyzed using multiple logistic regression models. KSD was positively related to increased arterial stiffness in both male and female groups (males: odds ratio [OR], 1.306; 95% confidence interval [CI], 1.035–1.649; females: OR, 1.585; 95% CI, 1.038–2.419) after adjusting for confounding factors. Subgroup analysis by age group (<50 and ≥50 years) showed a significant positive relationship only in the groups ≥ 50 years for both genders (males: OR, 1.546; 95% CI, 1.111–2.151; females: OR, 1.783; 95% CI, 1.042–3.054), but not in the groups < 50 years. In conclusion, KSD is associated with a higher risk of increased arterial stiffness in individuals aged ≥ 50 years, but not in those aged < 50 years for both genders.
Collapse
Affiliation(s)
- Zih-Jie Sun
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
- Department of Family Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, No.345, Zhuangjing Rd., Douliu City, Yunlin 64043, Taiwan
| | - Hsuan-Jung Hsiao
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
| | - Hsiang-Ju Cheng
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
| | - Chieh-Ying Chou
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
| | - Feng-Hwa Lu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
| | - Yi-Ching Yang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
| | - Jin-Shang Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
- Department of Family Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, No.345, Zhuangjing Rd., Douliu City, Yunlin 64043, Taiwan
- Correspondence: (J.-S.W.); (C.-J.C.); Tel.: +886-6-2353535 (J.-S.W.)
| | - Chih-Jen Chang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, No.539, Zhongxiao Rd., East Dist., Chiayi 60002, Taiwan
- Correspondence: (J.-S.W.); (C.-J.C.); Tel.: +886-6-2353535 (J.-S.W.)
| |
Collapse
|
49
|
Unveiling the Role of Inflammation and Oxidative Stress on Age-Related Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1954398. [PMID: 32454933 PMCID: PMC7232723 DOI: 10.1155/2020/1954398] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/12/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
The global population above 60 years has been growing exponentially in the last decades, which is accompanied by an increase in the prevalence of age-related chronic diseases, highlighting cardiovascular diseases (CVDs), such as hypertension, atherosclerosis, and heart failure. Aging is the main risk factor for these diseases. Such susceptibility to disease is explained, at least in part, by the increase of oxidative stress, in which it damages cellular components such as proteins, DNA, and lipids. In addition, the chronic inflammatory process in aging “inflammaging” also contributes to cell damage, creating a stressful environment which drives to the development of CVDs. Taken together, it is possible to identify the molecular connection between oxidative stress and the inflammatory process, especially by the crosstalk between the transcription factors Nrf-2 and NF-κB which are mediated by redox signalling and are involved in aging. Therapies that control this process are key targets in the prevention/combat of age-related CVDs. In this review, we show the basics of inflammation and oxidative stress, including the crosstalk between them, and the implications on age-related CVDs.
Collapse
|
50
|
张 艺, 盛 帅, 梁 庆, 张 莉. [Olmesartan inhibits age-associated migration and invasion of human aortic vascular smooth muscle cells by upregulating miR-3133 axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:499-505. [PMID: 32895132 PMCID: PMC7225100 DOI: 10.12122/j.issn.1673-4254.2020.04.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/08/2022]
Abstract
OBJECTIVE To explore the effects of olmesartan on age-associated migration and invasion capacities and microRNA (miRAN) axis in human aortic vascular smooth muscle cells (HA-VSMCs). METHODS Cultured HA-VSMCs were divided into control group, bleomycin-mediated senescence (BLM) group and bleomycin + olmesartan treatment group. Wound-healing assay and Boyden chambers invasion assay were used to assess the changes in migration and invasion of the cells, gelatin zymography was used to analyze matrix metalloproteinase-2 (MMP-2) activation in the cells. The differentially expressed miRNAs were identified by miRNA microarray assay and validated by quantitative real-time PCR. MiR-3133 inhibitor was used to examine the effects of molecular manipulation of olmesartan on age-associated migration and invasion and MMP-2 activation in the cells. RESULTS Compared with those of the control group, the percentage of the repopulated cells and the number of cells crossing the basement membrane increased significantly in BLM group [(78.43±12.76)% vs (42.47±7.22)%, P < 0.05; 33.33±5.51 vs 13.00±4.36, P < 0.05]. A significant increase of MMP-2 activation was found in BLM group as compared with the control group (1.66 ± 0.27 vs 0.87 ± 0.13, P < 0.05). Olmesartan significantly inhibited BLM-induced enhancement of cell migration and invasion and MMP-2 secretion in the cells. MiR-3133 was significantly downregulated in BLM group and upregulated in olmesartan group. Transfection with miR-3133 inhibitor significantly reversed the effects of olmesartan on age-associated migration and invasion of the cells [(85.87±7.39)% vs (49.77±3.05)%; 34.67±2.31 vs 20.00±4.58, P < 0.05] and MMP-2 activation in the cells (1.76±0.19 vs 0.94±0.10, P < 0.05). CONCLUSIONS Olmesartan inhibits the migration and invasion of ageassociated HA-VSMCs probably by upregulating of the miR-3133 axis.
Collapse
Affiliation(s)
- 艺 张
- />广东药科大学附属第一医院心血管内科,广东 广州 510080Department of Cardiology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 帅 盛
- />广东药科大学附属第一医院心血管内科,广东 广州 510080Department of Cardiology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 庆阳 梁
- />广东药科大学附属第一医院心血管内科,广东 广州 510080Department of Cardiology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 莉 张
- />广东药科大学附属第一医院心血管内科,广东 广州 510080Department of Cardiology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|