1
|
Tomar MS, Mohit, Kumar A, Shrivastava A. Circadian immunometabolism: A future insight for targeted therapy in cancer. Sleep Med Rev 2025; 80:102031. [PMID: 39603026 DOI: 10.1016/j.smrv.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Circadian rhythms send messages to regulate the sleep-wake cycle in living beings, which, regulate various biological activities. It is well known that altered sleep-wake cycles affect host metabolism and significantly deregulate the host immunity. The dysregulation of circadian-related genes is critical for various malignancies. One of the hallmarks of cancer is altered metabolism, the effects of which spill into surrounding microenvironments. Here, we review the emerging literature linking the circadian immunometabolic axis to cancer. Small metabolites are the products of various metabolic pathways, that are usually perturbed in cancer. Genes that regulate circadian rhythms also regulate host metabolism and control metabolite content in the tumor microenvironment. Immune cell infiltration into the tumor site is critical to perform anticancer functions, and altered metabolite content affects their trafficking to the tumor site. A compromised immune response in the tumor microenvironment aids cancer cell proliferation and immune evasion, resulting in metastases. The role of circadian rhythms in these processes is largely overlooked and demands renewed attention in the search for targets against cancer growth and spread. The precision medicine approach requires targeting the circadian immune metabolism in cancer.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohit
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India; Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India.
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
2
|
Hsu YC, Kuo CY, Chien MN, Jhuang JY, Huang SY, Chang SC, Cheng SP. Overexpression of NR1D1 Portends Disease Recurrence in Thyroid Cancer. J Clin Endocrinol Metab 2025; 110:991-1002. [PMID: 39359072 DOI: 10.1210/clinem/dgae687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/11/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
CONTEXT Dysregulation of circadian rhythms has been linked to cancer susceptibility. Thyroid cancer cells demonstrate altered circadian oscillations in endogenous clock transcripts. OBJECTIVE Our previous research identified NR1D1, a component of the circadian clock, as one of the recurrence-associated genes in papillary thyroid cancer. The objective of this study was to investigate the expression pattern of NR1D1 in thyroid cancer and explore its prognostic and translational implications. METHODS We assessed NR1D1 expression using immunohistochemical analysis and examined its correlation with clinicopathological parameters. In vitro and in vivo experiments were performed to elucidate the oncogenic roles of NR1D1 and potential mechanisms. RESULTS Nuclear NR1D1 expression was present in thyroid follicular epithelial-derived cancers, whereas normal thyroid tissue and benign nodular goiter showed no detectable NR1D1 immunoreactivity. Patients with high expression of NR1D1 had more advanced disease stages, extrathyroidal extension, lymphovascular invasion, and shorter recurrence-free survival compared to those with low levels of NR1D1. Through gain- and loss-of-function studies, we demonstrated that NR1D1 modulation affected the growth of organoids, resistance to anoikis, and the invasive and migratory capacity of thyroid cancer cells. The invasion-promoting effect of NR1D1 was regulated by the β-catenin/ZEB1 axis. Moreover, the overexpression of NR1D1 accelerated xenograft growth and lung metastasis in vivo. CONCLUSION NR1D1 is overexpressed in malignant thyroid tumors and has prognostic significance. Our findings suggest therapeutic potential in targeting NR1D1 for thyroid cancer.
Collapse
MESH Headings
- Humans
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/diagnosis
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Female
- Animals
- Male
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Mice
- Middle Aged
- Prognosis
- Gene Expression Regulation, Neoplastic
- Adult
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Cell Line, Tumor
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
- Center for Astronautical Physics and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City 252005, Taiwan
| | - Ming-Nan Chien
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City 252005, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Jie-Yang Jhuang
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City 252005, Taiwan
- Department of Pathology, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Shih-Yuan Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Shao-Chiang Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City 252005, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252005, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
3
|
Wang J, Shao F, Yu QX, Ye L, Wusiman D, Wu R, Tuo Z, Wang Z, Li D, Cho WC, Wei W, Feng D. The Common Hallmarks and Interconnected Pathways of Aging, Circadian Rhythms, and Cancer: Implications for Therapeutic Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0612. [PMID: 40046513 PMCID: PMC11880593 DOI: 10.34133/research.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/17/2025]
Abstract
The intricate relationship between cancer, circadian rhythms, and aging is increasingly recognized as a critical factor in understanding the mechanisms underlying tumorigenesis and cancer progression. Aging is a well-established primary risk factor for cancer, while disruptions in circadian rhythms are intricately associated with the tumorigenesis and progression of various tumors. Moreover, aging itself disrupts circadian rhythms, leading to physiological changes that may accelerate cancer development. Despite these connections, the specific interplay between these processes and their collective impact on cancer remains inadequately explored in the literature. In this review, we systematically explore the physiological mechanisms of circadian rhythms and their influence on cancer development. We discuss how core circadian genes impact tumor risk and prognosis, highlighting the shared hallmarks of cancer and aging such as genomic instability, cellular senescence, and chronic inflammation. Furthermore, we examine the interplay between circadian rhythms and aging, focusing on how this crosstalk contributes to tumorigenesis, tumor proliferation, and apoptosis, as well as the impact on cellular metabolism and genomic stability. By elucidating the common pathways linking aging, circadian rhythms, and cancer, this review provides new insights into the pathophysiology of cancer and identifies potential therapeutic strategies. We propose that targeting the circadian regulation of cancer hallmarks could pave the way for novel treatments, including chronotherapy and antiaging interventions, which may offer important benefits in the clinical management of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Fanglin Shao
- Department of Rehabilitation,
The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qing Xin Yu
- Department of Pathology,
Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
- Department of Pathology,
Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Luxia Ye
- Department of Public Research Platform,
Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA,
Army Medical University, Chongqing, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - William C. Cho
- Department of Clinical Oncology,
Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
- Division of Surgery and Interventional Science,
University College London, London W1W 7TS, UK
| |
Collapse
|
4
|
Bieuville M, Dujon A, Raven N, Ujvari B, Pujol P, Eslami‐S Z, Alix Panabières C, Capp J, Thomas F. When Do Tumours Develop? Neoplastic Processes Across Different Timescales: Age, Season and Round the Circadian Clock. Evol Appl 2024; 17:e70024. [PMID: 39444444 PMCID: PMC11496201 DOI: 10.1111/eva.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
While it is recognised that most, if not all, multicellular organisms harbour neoplastic processes within their bodies, the timing of when these undesirable cell proliferations are most likely to occur and progress throughout the organism's lifetime remains only partially documented. Due to the different mechanisms implicated in tumourigenesis, it is highly unlikely that this probability remains constant at all times and stages of life. In this article, we summarise what is known about this variation, considering the roles of age, season and circadian rhythm. While most studies requiring that level of detail be done on humans, we also review available evidence in other animal species. For each of these timescales, we identify mechanisms or biological functions shaping the variation. When possible, we show that evolutionary processes likely played a role, either directly to regulate the cancer risk or indirectly through trade-offs. We find that neoplastic risk varies with age in a more complex way than predicted by early epidemiological models: rather than resulting from mutations alone, tumour development is dictated by tissue- and age-specific processes. Similarly, the seasonal cycle can be associated with risk variation in some species with life-history events such as sexual competition or mating being timed according to the season. Lastly, we show that the circadian cycle influences tumourigenesis in physiological, pathological and therapeutic contexts. We also highlight two biological functions at the core of these variations across our three timescales: immunity and metabolism. Finally, we show that our understanding of the entanglement between tumourigenic processes and biological cycles is constrained by the limited number of species for which we have extensive data. Improving our knowledge of the periods of vulnerability to the onset and/or progression of (malignant) tumours is a key issue that deserves further investigation, as it is key to successful cancer prevention strategies.
Collapse
Affiliation(s)
- Margaux Bieuville
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Institute of Organismic and Molecular Evolution (iomE)Johannes Gutenberg‐UniversitätMainzGermany
- Institute for Quantitative and Computational Biosciences (IQCB)Johannes Gutenberg‐UniversitätMainzGermany
| | - Antoine M. Dujon
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Nynke Raven
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Beata Ujvari
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Pascal Pujol
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Oncogenetic DepartmentUniversity Medical Centre of MontpellierMontpellierFrance
| | - Zahra Eslami‐S
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH)University Medical Centre of MontpellierMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Catherine Alix Panabières
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH)University Medical Centre of MontpellierMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Jean‐Pascal Capp
- Toulouse Biotechnology InstituteUniversity of Toulouse, INSA, CNRS, INRAEToulouseFrance
| | - Frédéric Thomas
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
| |
Collapse
|
5
|
Fellows RC, Chun SK, Larson N, Fortin BM, Mahieu AL, Song WA, Seldin MM, Pannunzio NR, Masri S. Disruption of the intestinal clock drives dysbiosis and impaired barrier function in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1458. [PMID: 39331712 PMCID: PMC11430476 DOI: 10.1126/sciadv.ado1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Diet is a robust entrainment cue that regulates diurnal rhythms of the gut microbiome. We and others have shown that disruption of the circadian clock drives the progression of colorectal cancer (CRC). While certain bacterial species have been suggested to play driver roles in CRC, it is unknown whether the intestinal clock impinges on the microbiome to accelerate CRC pathogenesis. To address this, genetic disruption of the circadian clock, in an Apc-driven mouse model of CRC, was used to define the impact on the gut microbiome. When clock disruption is combined with CRC, metagenomic sequencing identified dysregulation of many bacterial genera including Bacteroides, Helicobacter, and Megasphaera. We identify functional changes to microbial pathways including dysregulated nucleic acid, amino acid, and carbohydrate metabolism, as well as disruption of intestinal barrier function. Our findings suggest that clock disruption impinges on microbiota composition and intestinal permeability that may contribute to CRC pathogenesis.
Collapse
Affiliation(s)
- Rachel C. Fellows
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Natalie Larson
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Li DD, Zhou T, Gao J, Wu GL, Yang GR. Circadian rhythms and breast cancer: from molecular level to therapeutic advancements. J Cancer Res Clin Oncol 2024; 150:419. [PMID: 39266868 PMCID: PMC11393214 DOI: 10.1007/s00432-024-05917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Circadian rhythms, the endogenous biological clocks that govern physiological processes, have emerged as pivotal regulators in the development and progression of breast cancer. This comprehensive review delves into the intricate interplay between circadian disruption and breast tumorigenesis from multifaceted perspectives, encompassing biological rhythms, circadian gene regulation, tumor microenvironment dynamics, and genetic polymorphisms. METHODS AND RESULTS Epidemiological evidence underscores the profound impact of external factors, such as night shift work, jet lag, dietary patterns, and exercise routines, on breast cancer risk and progression through the perturbation of circadian homeostasis. The review elucidates the distinct roles of key circadian genes, including CLOCK, BMAL1, PER, and CRY, in breast cancer biology, highlighting their therapeutic potential as molecular targets. Additionally, it investigates how circadian rhythm dysregulation shapes the tumor microenvironment, fostering epithelial-mesenchymal transition, chronic inflammation, and immunosuppression, thereby promoting tumor progression and metastasis. Furthermore, the review sheds light on the association between circadian gene polymorphisms and breast cancer susceptibility, paving the way for personalized risk assessment and tailored treatment strategies. CONCLUSIONS Importantly, it explores innovative therapeutic modalities that harness circadian rhythms, including chronotherapy, melatonin administration, and traditional Chinese medicine interventions. Overall, this comprehensive review emphasizes the critical role of circadian rhythms in the pathogenesis of breast cancer and highlights the promising prospects for the development of circadian rhythm-based interventions to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Dou-Dou Li
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Gao
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guan-Lin Wu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Guang-Rui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
7
|
Mukherji A, Jühling F, Simanjuntak Y, Crouchet E, Del Zompo F, Teraoka Y, Haller A, Baltzinger P, Paritala S, Rasha F, Fujiwara N, Gadenne C, Slovic N, Oudot MA, Durand SC, Ponsolles C, Schuster C, Zhuang X, Holmes J, Yeh ML, Abe-Chayama H, Heikenwälder M, Sangiovanni A, Iavarone M, Colombo M, Foung SKH, McKeating JA, Davidson I, Yu ML, Chung RT, Hoshida Y, Chayama K, Lupberger J, Baumert TF. An atlas of the human liver diurnal transcriptome and its perturbation by hepatitis C virus infection. Nat Commun 2024; 15:7486. [PMID: 39209804 PMCID: PMC11362569 DOI: 10.1038/s41467-024-51698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic liver disease and cancer are global health challenges. The role of the circadian clock as a regulator of liver physiology and disease is well established in rodents, however, the identity and epigenetic regulation of rhythmically expressed genes in human disease is less well studied. Here we unravel the rhythmic transcriptome and epigenome of human hepatocytes using male human liver chimeric mice. We identify a large number of rhythmically expressed protein coding genes in human hepatocytes of male chimeric mice, which includes key transcription factors, chromatin modifiers, and critical enzymes. We show that hepatitis C virus (HCV) infection, a major cause of liver disease and cancer, perturbs the transcriptome by altering the rhythmicity of the expression of more than 1000 genes, and affects the epigenome, leading to an activation of critical pathways mediating metabolic alterations, fibrosis, and cancer. HCV-perturbed rhythmic pathways remain dysregulated in patients with advanced liver disease. Collectively, these data support a role for virus-induced perturbation of the hepatic rhythmic transcriptome and pathways in cancer development and may provide opportunities for cancer prevention and biomarkers to predict HCC risk.
Collapse
Affiliation(s)
- Atish Mukherji
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Frank Jühling
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Yogy Simanjuntak
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Emilie Crouchet
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Fabio Del Zompo
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Yuji Teraoka
- Department of Gastroenterology, National Hospital Organization Kure Medical Center, Hiroshima, Japan
| | - Alexandre Haller
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/University of Strasbourg, Illkirch, France
| | - Philippe Baltzinger
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/University of Strasbourg, Illkirch, France
| | - Soumith Paritala
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fahmida Rasha
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naoto Fujiwara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cloé Gadenne
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Nevena Slovic
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Marine A Oudot
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Sarah C Durand
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Clara Ponsolles
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Catherine Schuster
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rowland Hill St, London, NW3 2PP, UK
| | - Jacinta Holmes
- University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hiromi Abe-Chayama
- Center for Medical Specialist Graduate Education and Research, Hiroshima University, Hiroshima, Japan
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- M3 Research Center, Tübingen, Germany and Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies, " Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Angelo Sangiovanni
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Iavarone
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/University of Strasbourg, Illkirch, France
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Raymond T Chung
- Gastrointestinal Division, Hepatology and Liver Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yujin Hoshida
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kazuaki Chayama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Hiroshima Institute of Life Sciences, Hiroshima, Japan
| | - Joachim Lupberger
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France.
| | - Thomas F Baumert
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France.
- Gastroenterology and Hepatology Service, Strasbourg University Hospitals, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
- IHU, Strasbourg, France.
| |
Collapse
|
8
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
9
|
Kendzerska T, Murray BJ, Colelli DR, Dela Cruz GR, Gershon AS, Povitz M, Talarico R, Boulos MI. The relationship between the morningness-eveningness questionnaire and incident cancer: A historical clinical cohort study. Sleep Med 2024; 117:139-145. [PMID: 38537521 DOI: 10.1016/j.sleep.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE We conducted a retrospective cohort study to explore the relationship between chronotype measured by the total Morningness-Eveningness Questionnaire (MEQ) score and incident cancer. METHODS We used clinical and provincial health administrative data on consecutive adults who underwent a Level 1 Polysomnography (PSG) and completed the MEQ between 2010 and 2015 in an academic hospital (Ontario, Canada) and were cancer-free at baseline. Cancer status was derived from the Ontario Cancer Registry. Individuals were followed until death or March 31, 2020. We used multivariable Cox cause-specific regressions to address the research objective. RESULTS Of 3,004 individuals, 1,781 were analyzed: a median age of 54 years (IQR: 40-64) and 838 (47.1%) men. The median total MEQ score was 63 (IQR: 55-69); 61 (3.4%) were classified as evening (≤41), 536 (30.1%) as intermediate (42-58), and 1,184 (66.5%) as morning chronotypes (≥59). Over a median of 7 years (IQR: 5-8), 120 (6.7%) developed cancer. A U-shape relationship was found between the total MEQ score and an increased hazard of incident cancer, controlling for PSG measures of sleep apnea severity and sleep architecture, demographics, and comorbidities. Compared to the median of 63.0, a total MEQ score greater or less than the median was associated with an increased hazard of incident cancer, with the largest effect for those with a total score ≥76 (e.g., HR of a MEQ total score of 78 vs. 63: 2.01, 95% CI: 1.09-3.71). CONCLUSION The U-shaped curve may reflect deviations from a standard circadian tendency, which may stress biological systems and influence malignancy risk.
Collapse
Affiliation(s)
- Tetyana Kendzerska
- Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada; ICES, Ottawa, Toronto, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| | - Brian J Murray
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Sleep Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David R Colelli
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Gio R Dela Cruz
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Andrea S Gershon
- ICES, Ottawa, Toronto, Ontario, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Division of Respirology, Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Marcus Povitz
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, Ontario, Canada
| | | | - Mark I Boulos
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Sleep Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Fang G, Chen Q, Li J, Lian X, Shi D. The Diurnal Transcriptome Reveals the Reprogramming of Lung Adenocarcinoma Cells Under a Time-Restricted Feeding-Mimicking Regimen. J Nutr 2024; 154:354-368. [PMID: 38065409 DOI: 10.1016/j.tjnut.2023.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND The processes of tumor growth and circadian rhythm are intimately intertwined; thus, rewiring circadian metabolism by time-restricted feeding (TRF) may contribute to delaying carcinogenesis. However, research on the effect of a TRF cellular regimen on cancer is lacking. OBJECTIVE Investigate the circadian signatures of TRF in lung cancer in vitro. METHODS We first developed a cellular paradigm mimicking in vivo TRF and collected cells for transcriptome analysis. We further confirmed the effect on tumor cells upon 6-h TRF-mimicking (6-h TRFM) by real-time PCR, Lumicycle experiments, CCK-8, and flow cytometry assays. RESULTS We found that A549 lung adenocarcinoma cells treated with 6-h TRFM conditions displayed robust diurnal rhythms of transcriptomes, as well as modulation of the core clock genes relative to other different cellular regimens used in this study, including the fasting-mimicking conditions (ie, short-term starvation) and the serum-free regime. Notably, pathway analysis of oscillating genes exclusively in 6-h TRFM showed that some circadian genes were enriched in tumor-related pathways, such as the oxytocin signaling pathway, HIF-1 signaling pathway, and pentose and glucuronate interconversions. Moreover, in line with the circadian pathway enrichment results, 6-h TRFM robustly inhibited cell proliferation and induced cell apoptosis and cell cycle arrest in lung adenocarcinoma A549 cells, lung adenocarcinoma H460 cells, esophageal carcinoma Eca-109 cells, and breast adenocarcinoma MCF-7 cells. CONCLUSIONS Our findings provide the first in vitro mimicking medium for TRF intervention and indicate that 6-h TRFM is sufficient to reprogram the circadian signatures of lung adenocarcinoma cells and inhibit the progression of multiple tumors.
Collapse
Affiliation(s)
- Gaofeng Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qianyao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Jianling Li
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xuemei Lian
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China.
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China; Research Center for Environment and Population Health, School of Public Health, Chongqing Medical University, Chongqing, P.R. China.
| |
Collapse
|
11
|
Lai H, Xiang X, Long X, Chen Z, Liu Y, Huang X. Multi-omics and single-cell sequencing analyses reveal the potential significance of circadian pathways in cancer therapy. Expert Rev Mol Diagn 2024; 24:107-121. [PMID: 38288973 DOI: 10.1080/14737159.2023.2296668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/24/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Circadian rhythm disturbance is an independent risk factor for cancer. However, few studies have been reported on circadian rhythm related genes (CRGs) in cancer, so it is important to further explore the impact of CRGs in pan-cancer. RESEARCH DESIGN AND METHODS The Cancer Genome Atlas database was used to collect cancer-related data such as copy number variation, single nucleotide variants, methylation, and survival differences. Immunohistochemistry (IHC) was used to verify the expression of circadian rhythm hub genes. The circadian pathway scores (CRS) were calculated using single-sample gene enrichment analysis. TIMER and GEPIA databases were used for immune-cell integration and assessment. Single-cell sequencing data was used to evaluate the abundance of CRS in tumor microenvironment cells. RESULTS In this study, we found that the expression of circadian pathway varies between tumors. CSNK1E was significantly up-regulated in most tumors and CRY2 was significantly down-regulated in most tumors. The protein interaction network suggested CRY2 as the core gene and IHC verified its significant low expression in KIRC. In addition, CRGs were found to be protective factors in most tumors and have the potential to act as specific immune markers in different tumors. CRS was significantly lower in abundance in most tumors. CRS was significantly associated with overall survival in tumor patients and associated with the expression of many immune cells in the tumor immune microenvironment. CRS is significantly associated with tumor mutational burden and microsatellite instability scores in most tumors and may serve as a potential immunotherapeutic marker. CONCLUSIONS The circadian rhythm pathway may be a breakthrough point in regulating the tumor microenvironment meanwhile a suitable immunotherapy method in the future.
Collapse
Affiliation(s)
- Hao Lai
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoyun Xiang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xingqing Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zuyuan Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Yanling Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| |
Collapse
|
12
|
Ruan GT, Wei YP, Ge YZ, Liu LS, Zhou ZY, Siddiqi SM, He QQ, Li SQ, Xu JF, Song Y, Zhang Q, Zhang X, Yang M, Chen P, Sun Y, Wang XB, Wang BY, Shi HP. Poor sleep quality association with higher lung cancer risk: a nested case-control study. PeerJ 2023; 11:e16540. [PMID: 38111660 PMCID: PMC10726752 DOI: 10.7717/peerj.16540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Background Little is known about the relationship between sleep quality and lung cancer incidence. Thus, this study was conducted to investigate the potential connection between sleep quality and lung cancer incidence. Methods We performed and selected a nested case-control study that included 150 lung cancer cases and 150 matched controls based on the Lianyungang cohort. Univariate and multivariate logistic regression was utilized to investigate the connection between potential risk factors and lung cancer incidence risk. Results In this study, the average age of participants was 66.5 ± 9.1 years, with 58.7% being male, and 52.7% reportedly experiencing sleep quality problems. The results of multivariate logistic regression showed that poor sleep quality was connected to an increased lung cancer incidence risk (P = 0.033, odds ratio = 1.83, 95% confidence interval = [1.05-3.19]) compared with those with good sleep quality. The stratified analyses showed a significantly positive connection between poor sleep quality (vs. good sleep quality) and cancer risk in smokers (vs. non-smoker, P for interaction = 0.085). The combined effect analysis indicated that smokers with poor sleep quality suffered from a 2.79-fold increase in cancer incidence rates when compared with non-smokers with good sleep quality. Conclusions Poor sleep quality was positively connected to an increased lung cancer incidence risk. In addition, among those individuals with poor sleep quality, smoking increased the lung cancer incidence risk.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ya-Ping Wei
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi-Zhong Ge
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Li-Shun Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Zi-Yi Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | | | - Qiang-Qiang He
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Shu-Qun Li
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Jia-Feng Xu
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Yun Song
- AUSA Research Institute, Shenzhen AUSA Pharmed Co Ltd, Shenzhen, China
- Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Qi Zhang
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xi Zhang
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ming Yang
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ping Chen
- Inspection and Testing Center, Key Laboratory of Cancer FSMP for State Market Regulation, Shenzhen, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yong Sun
- The First People’s Hospital of Lianyungang City, the First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xiao-Bin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA
| | - Bin-Yan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, China
- Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Han-Ping Shi
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Huang L, Liang W, Cai W, Peng H. Circadian rhythm-associated lncRNA RP11-414H17.5 as a key therapeutic target in osteosarcoma affects the tumor immune microenvironment and enhances malignancy. J Orthop Surg Res 2023; 18:947. [PMID: 38071320 PMCID: PMC10710728 DOI: 10.1186/s13018-023-04442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND It has previously been proven that circadian rhythm disruption is associated with the incidence and deterioration of several tumors, which potentially leads to increased tumor susceptibility and a worse prognosis for tumor-bearing patients. However, their potential role in osteosarcoma has yet to be sufficiently investigated. METHODS Transcriptomic and clinical data of 84 osteosarcoma samples and 70 normal bone tissue samples were obtained from the TARGET and GTEx databases, circadian rhythm-related genes were obtained from Genecards, and circadian rhythm-related lncRNAs (CRLs) were obtained by Pearson correlation analysis, differential expression analysis, and protein-protein interaction (PPI) analysis. COX regression and LASSO regression were performed on the CRLs in order to construct a circadian rhythm-related prognostic prediction signature (CRPS). CRPS reliability was verified by Kaplan-Meier (KM), principal component analysis (PCA), nomogram, and receiver operating characteristic (ROC) curve. CRPS effects on the immune microenvironment of osteosarcoma were explored by enrichment analysis and immune infiltration analysis, and the effect of critical gene RP11-414H17.5 on osteosarcoma was experimentally verified. RESULT CRPS consisting of three CRLs was constructed and its area under the curve (AUC) values predicted that osteosarcoma prognosis reached 0.892 in the training group and 0.843 in the test group, with a p value of < 0.05 for the KM curve and stable performance across different clinical subgroups. PCA analysis found that CRPS could significantly distinguish between different risk subgroups, and exhibited excellent performance in the prediction of the immune microenvironment. The experiment verified that RP11-414H17.5 can promote metastasis and inhibit apoptosis of osteosarcoma cells. CONCLUSION The study revealed that circadian rhythm plays a crucial role in osteosarcoma progression and identified the impact of the key gene RP11-414H17.5 on osteosarcoma, which provides novel insights into osteosarcoma diagnosis and therapy.
Collapse
Affiliation(s)
- Liangkun Huang
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wanting Liang
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, 310058, China
| | - Wenxiang Cai
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hao Peng
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
14
|
Yang Y, Tang X, Lin Z, Zheng T, Zhang S, Liu T, Yang X. An integrative evaluation of circadian gene TIMELESS as a pan-cancer immunological and predictive biomarker. Eur J Med Res 2023; 28:563. [PMID: 38053143 DOI: 10.1186/s40001-023-01519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The gene TIMELESS, which is involved in the circadian clock and the cell cycle, has recently been linked to various human cancers. Nevertheless, the association between TIMELESS expression and the prognosis of individuals afflicted with pan-cancer remains largely unknown. OBJECTIVES The present study aims to exhaustively scrutinize the expression patterns, functional attributes, prognostic implications, and immunological contributions of TIMELESS across diverse types of human cancer. METHODS The expression of TIMELESS in normal and malignant tissues was examined, as well as their clinicopathologic and survival data. The characteristics of genetic alteration and molecular subtypes of cancers were also investigated. In addition, the relationship of TIMELESS with immune infiltration, tumor mutation burden (TMB), microsatellite instability (MSI), and drug sensitivity was illustrated. Immunohistochemistry (IHC) was used to validate the expression of TIMELESS in clinical patients with several types of cancer. RESULTS In contrast to the matching normal controls, most tumor types were found to often overexpress TIMELESS. Abnormal expression of TIMELESS was significantly related to more advanced tumor stage and poorer prognosis of breast cancer, as well as infiltrating immune cells such as cancer-associated fibroblast infiltration in various tumors. Multiple cancer types exhibited abnormal expression of TIMELESS, which was also highly correlated with MSI and TMB. More crucially, TIMELESS showed promise in predicting the effectiveness of immunotherapy and medication sensitivity in cancer therapy. Moreover, cell cycle, DNA replication, circadian rhythm, and mismatch repair were involved in the functional mechanisms of TIMELESS on carcinogenesis. Furthermore, immunohistochemical results manifested that the TIMELESS expression was abnormal in some cancers. CONCLUSIONS This study provides new insights into the link between the circadian gene TIMELESS and the development of various malignant tumors. The findings suggest that TIMELESS could be a prospective prognostic and immunological biomarker for pan-cancer.
Collapse
Affiliation(s)
- Yaocheng Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 136 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou First People's Hospital, Chenzhou, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 136 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Tao Zheng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 136 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 136 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xiaolun Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 136 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
15
|
Zhu H, Chen J, Wen Z, Li J, Yu Q, Liao W, Luo X. The role of circadian clock genes in colorectal carcinoma: Novel insights into regulatory mechanism and implications in clinical therapy. Life Sci 2023; 333:122145. [PMID: 37797685 DOI: 10.1016/j.lfs.2023.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Colorectal cancer (CRC) is a lethal malignancy with limited treatment strategies. Accumulating evidence indicates that CRC tumorigenesis, progression and metastasis are intimately associated with circadian clock, an inherent 24-h cycle oscillation of biochemical, physiological functions in almost every eukaryote. In the present review, we summarize the altered expression level of circadian genes in CRC and the prognosis associated with gene abundance switch. We illustrate the function and potential mechanisms of circadian genes in CRC pathogenesis and progression. Moreover, circadian based-therapeutic strategies including chronotherapy, therapeutics targeting potential circadian components, and melatonin treatment in CRC are also highlighted.
Collapse
Affiliation(s)
- Haodong Zhu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Jiawei Chen
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Jinfei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Qinyang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Weihua Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, PR China.
| |
Collapse
|
16
|
Zhou M, Tamburini IJ, Van C, Molendijk J, Nguyen CM, Chang IYY, Johnson C, Velez LM, Cheon Y, Yeo RX, Bae H, Le J, Larson N, Pulido R, Filho C, Jang C, Marazzi I, Justice JN, Pannunzio N, Hevener A, Sparks LM, Kershaw EE, Nicholas D, Parker B, Masri S, Seldin M. Leveraging inter-individual transcriptional correlation structure to infer discrete signaling mechanisms across metabolic tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540142. [PMID: 37214953 PMCID: PMC10197628 DOI: 10.1101/2023.05.10.540142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Abstract/IntroductionInter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Beginning with the discovery of insulin over a century ago, characterization of molecules responsible for signal between tissues has required careful and elegant experimentation where these observations have been integral to deciphering physiology and disease. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. For example, physiologic dissection of the actions of soluble proteins such as proprotein convertase subtilisin/kexin type 9 (PCSK9) and glucagon-like peptide 1 (GLP1) have yielded among the most promising therapeutics to treat cardiovascular disease and obesity, respectively1–4. A major obstacle in the characterization of such soluble factors is that defining their tissues and pathways of action requires extensive experimental testing in cells and animal models. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by “brute-force” surveys of all genes within RNA-sequencing measures across tissues within a population5–9. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or HFHS diet. Variation of genes such asFGF21, ADIPOQ, GCGandIL6showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liverPCSK9) as well as genes encoding enzymes producing metabolites (adiposePNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource asGene-DerivedCorrelationsAcrossTissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways and network architectures across metabolic organs.
Collapse
Affiliation(s)
- Mingqi Zhou
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Ian J. Tamburini
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Cassandra Van
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Jeffrey Molendijk
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Christy M Nguyen
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | | | - Casey Johnson
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Leandro M. Velez
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Youngseo Cheon
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Reichelle X. Yeo
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Hosung Bae
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Johnny Le
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Natalie Larson
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Ron Pulido
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Carlos Filho
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Jamie N. Justice
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Los Angeles, CA, USA
| | - Nicholas Pannunzio
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Andrea Hevener
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Iris Cantor-UCLA Women’s Health Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lauren M. Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Erin E. Kershaw
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dequina Nicholas
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin Parker
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Selma Masri
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
| |
Collapse
|
17
|
Kaneko H, Kaitsuka T, Tomizawa K. Artificial induction of circadian rhythm by combining exogenous BMAL1 expression and polycomb repressive complex 2 inhibition in human induced pluripotent stem cells. Cell Mol Life Sci 2023; 80:200. [PMID: 37421441 PMCID: PMC11072008 DOI: 10.1007/s00018-023-04847-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Understanding the physiology of human-induced pluripotent stem cells (iPSCs) is necessary for directed differentiation, mimicking embryonic development, and regenerative medicine applications. Pluripotent stem cells (PSCs) exhibit unique abilities such as self-renewal and pluripotency, but they lack some functions that are associated with normal somatic cells. One such function is the circadian oscillation of clock genes; however, whether or not PSCs demonstrate this capability remains unclear. In this study, the reason why circadian rhythm does not oscillate in human iPSCs was examined. This phenomenon may be due to the transcriptional repression of clock genes resulting from the hypermethylation of histone H3 at lysine 27 (H3K27), or it may be due to the low levels of brain and muscle ARNT-like 1 (BMAL1) protein. Therefore, BMAL1-overexpressing cells were generated and pre-treated with GSK126, an inhibitor of enhancer of zest homologue 2 (EZH2), which is a methyltransferase of H3K27 and a component of polycomb repressive complex 2. Consequently, a significant circadian rhythm following endogenous BMAL1, period 2 (PER2), and other clock gene expression was induced by these two factors, suggesting a candidate mechanism for the lack of rhythmicity of clock gene expression in iPSCs.
Collapse
Affiliation(s)
- Hitomi Kaneko
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Taku Kaitsuka
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Enokizu 137-1, Okawa, Fukuoka, 831-8501, Japan.
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
18
|
Fortin BM, Mahieu AL, Fellows RC, Pannunzio NR, Masri S. Circadian clocks in health and disease: Dissecting the roles of the biological pacemaker in cancer. F1000Res 2023; 12:116. [PMID: 39282509 PMCID: PMC11399774 DOI: 10.12688/f1000research.128716.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/19/2024] Open
Abstract
In modern society, there is a growing population affected by circadian clock disruption through night shift work, artificial light-at-night exposure, and erratic eating patterns. Concurrently, the rate of cancer incidence in individuals under the age of 50 is increasing at an alarming rate, and though the precise risk factors remain undefined, the potential links between circadian clock deregulation and young-onset cancers is compelling. To explore the complex biological functions of the clock, this review will first provide a framework for the mammalian circadian clock in regulating critical cellular processes including cell cycle control, DNA damage response, DNA repair, and immunity under conditions of physiological homeostasis. Additionally, this review will deconvolute the role of the circadian clock in cancer, citing divergent evidence suggesting tissue-specific roles of the biological pacemaker in cancer types such as breast, lung, colorectal, and hepatocellular carcinoma. Recent evidence has emerged regarding the role of the clock in the intestinal epithelium, as well as new insights into how genetic and environmental disruption of the clock is linked with colorectal cancer, and the molecular underpinnings of these findings will be discussed. To place these findings within a context and framework that can be applied towards human health, a focus on how the circadian clock can be leveraged for cancer prevention and chronomedicine-based therapies will be outlined.
Collapse
Affiliation(s)
- Bridget M. Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Rachel C. Fellows
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
- Department of Medicine, University of California, Irvine, Irvine, California, 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| |
Collapse
|
19
|
de Assis LVM, Demir M, Oster H. The role of the circadian clock in the development, progression, and treatment of non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2023; 237:e13915. [PMID: 36599410 DOI: 10.1111/apha.13915] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The circadian clock comprises a cellular endogenous timing system coordinating the alignment of physiological processes with geophysical time. Disruption of circadian rhythms has been associated with several metabolic diseases. In this review, we focus on liver as a major metabolic tissue and one of the most well-studied organs with regard to circadian regulation. We summarize current knowledge about the role of local and systemic clocks and rhythms in regulating biological functions of the liver. We discuss how the disruption of circadian rhythms influences the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). We also critically evaluate whether NAFLD/NASH may in turn result in chronodisruption. The last chapter focuses on potential roles of the clock system in prevention and treatment of NAFLD/NASH and the interaction of current NASH drug candidates with liver circadian rhythms and clocks. It becomes increasingly clear that paying attention to circadian timing may open new avenues for the optimization of NAFLD/NASH therapies and provide interesting targets for prevention and treatment of these increasingly prevalent disorders.
Collapse
Affiliation(s)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Fan XL, Song Y, Qin DX, Lin PY. Regulatory Effects of Clock and Bmal1 on Circadian Rhythmic TLR Expression. Int Rev Immunol 2023; 42:101-112. [PMID: 34544330 DOI: 10.1080/08830185.2021.1931170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Circadian locomotor output cycles kaput (Clock) and brain and muscle ARNT-like 1 (Bmal1) are two core circadian clock genes. They form a heterodimer that can bind to the E-box element in the promoters of Period circadian protein (Per) and Cryptochrome (Cry) genes, thereby inducing the rhythmic expression of circadian clock control genes. Toll-like receptors (TLRs) are type I transmembrane proteins belonging to the pattern recognition receptor (PRR) family. They can recognize a variety of pathogens and play an important role in innate immunity and adaptive immune responses. Recent studies have found that the circadian clock is closely associated with the immune system. TLRs have a certain correlation with the circadian rhythms; Bmal1 seems to be the central mediator connecting the circadian clock and the immune system. Research on Bmal1 and TLRs has made some progress, but the specific relationship between TLRs and Bmal1 remains unclear. Understanding the relationship between TLRs and Clock/Bmal1 genes is increasingly important for basic research and clinical treatment.
Collapse
Affiliation(s)
- Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Dong-Xu Qin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Pei-Yao Lin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
21
|
Cunningham PS, Kitchen GB, Jackson C, Papachristos S, Springthorpe T, van Dellen D, Gibbs J, Felton TW, Wilson AJ, Bannard-Smith J, Rutter MK, House T, Dark P, Augustine T, Akman OE, Hazel AL, Blaikley JF. ClinCirc identifies alterations of the circadian peripheral oscillator in critical care patients. J Clin Invest 2023; 133:e162775. [PMID: 36538377 PMCID: PMC9927929 DOI: 10.1172/jci162775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundAssessing circadian rhythmicity from infrequently sampled data is challenging; however, these types of data are often encountered when measuring circadian transcripts in hospitalized patients.MethodsWe present ClinCirc. This method combines 2 existing mathematical methods (Lomb-Scargle periodogram and cosinor) sequentially and is designed to measure circadian oscillations from infrequently sampled clinical data. The accuracy of this method was compared against 9 other methods using simulated and frequently sampled biological data. ClinCirc was then evaluated in 13 intensive care unit (ICU) patients as well as in a separate cohort of 29 kidney-transplant recipients. Finally, the consequences of circadian alterations were investigated in a retrospective cohort of 726 kidney-transplant recipients.ResultsClinCirc had comparable performance to existing methods for analyzing simulated data or clock transcript expression of healthy volunteers. It had improved accuracy compared with the cosinor method in evaluating circadian parameters in PER2:luc cell lines. In ICU patients, it was the only method investigated to suggest that loss of circadian oscillations in the peripheral oscillator was associated with inflammation, a feature widely reported in animal models. Additionally, ClinCirc was able to detect other circadian alterations, including a phase shift following kidney transplantation that was associated with the administration of glucocorticoids. This phase shift could explain why a significant complication of kidney transplantation (delayed graft dysfunction) oscillates according to the time of day kidney transplantation is performed.ConclusionClinCirc analysis of the peripheral oscillator reveals important clinical associations in hospitalized patients.FundingUK Research and Innovation (UKRI), National Institute of Health Research (NIHR), Engineering and Physical Sciences Research Council (EPSRC), National Institute on Academic Anaesthesia (NIAA), Asthma+Lung UK, Kidneys for Life.
Collapse
Affiliation(s)
- Peter S. Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Gareth B. Kitchen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Callum Jackson
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Stavros Papachristos
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Thomas Springthorpe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David van Dellen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Julie Gibbs
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Timothy W. Felton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Wythenshawe Hospital, MFT, Manchester, United Kingdom
| | - Anthony J. Wilson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Jonathan Bannard-Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Martin K. Rutter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Thomas House
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Paul Dark
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Northern Care Alliance NHS Foundation Trust (Salford Care Organisation), Salford, United Kingdom
| | - Titus Augustine
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Ozgur E. Akman
- School of Mathematics, University of Exeter, Exeter, United Kingdom
| | - Andrew L. Hazel
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - John F. Blaikley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Wythenshawe Hospital, MFT, Manchester, United Kingdom
| |
Collapse
|
22
|
Banerjee S, Ray S. Circadian medicine for aging attenuation and sleep disorders: Prospects and challenges. Prog Neurobiol 2023; 220:102387. [PMID: 36526042 DOI: 10.1016/j.pneurobio.2022.102387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Aging causes progressive deterioration of daily rhythms in behavioral and metabolic processes and disruption in the regular sleep-wake cycle. Circadian disruption is directly related to diverse age-induced health abnormalities. Rising evidence from various organisms shows that core clock gene mutations cause premature aging, reduced lifespan, and sleeping irregularities. Improving the clock functions and correcting its disruption by pharmacological interventions or time-regulated feeding patterns could be a novel avenue for effective clinical management of aging and sleep disorders. To this end, many drugs for sleep disorders and anti-aging compounds interact with the core clock machinery and alter the circadian output. Evaluation of dosing time-dependency and circadian regulation of drug metabolism for therapeutic improvement of the existing drugs is another fundamental facet of chronomedicine. Multiple studies have demonstrated dose-dependent manipulation of the circadian period and phase-shifting by pharmacologically active compounds. The chronobiology research field is gradually moving towards the development of novel therapeutic strategies based on targeting the molecular clock or dosing time-oriented medications. However, such translational research ventures would require more experimental evidence from studies on humans. This review discusses the impact of circadian rhythms on aging and sleep, emphasizing the potentiality of circadian medicine in aging attenuation and sleep disorders.
Collapse
Affiliation(s)
- Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Alexandrou AT, Duan Y, Xu S, Tepper C, Fan M, Tang J, Berg J, Basheer W, Valicenti T, Wilson PF, Coleman MA, Vaughan AT, Fu L, Grdina DJ, Murley J, Wang A, Woloschak G, Li JJ. PERIOD 2 regulates low-dose radioprotection via PER2/pGSK3β/β-catenin/Per2 loop. iScience 2022; 25:105546. [PMID: 36465103 PMCID: PMC9708791 DOI: 10.1016/j.isci.2022.105546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
During evolution, humans are acclimatized to the stresses of natural radiation and circadian rhythmicity. Radiosensitivity of mammalian cells varies in the circadian period and adaptive radioprotection can be induced by pre-exposure to low-level radiation (LDR). It is unclear, however, if clock proteins participate in signaling LDR radioprotection. Herein, we demonstrate that radiosensitivity is increased in mice with the deficient Period 2 gene (Per2def) due to impaired DNA repair and mitochondrial function in progenitor bone marrow hematopoietic stem cells and monocytes. Per2 induction and radioprotection are also identified in LDR-treated Per2wt mouse cells and in human skin (HK18) and breast (MCF-10A) epithelial cells. LDR-boosted PER2 interacts with pGSK3β(S9) which activates β-catenin and the LEF/TCF mediated gene transcription including Per2 and genes involved in DNA repair and mitochondrial functions. This study demonstrates that PER2 plays an active role in LDR adaptive radioprotection via PER2/pGSK3β/β-catenin/Per2 loop, a potential target for protecting normal cells from radiation injury.
Collapse
Affiliation(s)
- Aris T. Alexandrou
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
- Department of Natural and Quantitative Sciences, Holy Cross College, Notre Dame, IN 46556, USA
| | - Yixin Duan
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Shanxiu Xu
- Department of Surgery, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Clifford Tepper
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Ming Fan
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Jason Tang
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Jonathan Berg
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Wassim Basheer
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Tyler Valicenti
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Paul F. Wilson
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Matthew A. Coleman
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Andrew T. Vaughan
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Loning Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David J. Grdina
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jefferey Murley
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Gayle Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60637, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
- NCI-designated Comprehensive Cancer Center, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| |
Collapse
|
24
|
Characteristic of Ultrastructure of Mice B16 Melanoma Cells under the Influence of Different Lighting Regimes. Clocks Sleep 2022; 4:745-760. [PMID: 36547107 PMCID: PMC9777458 DOI: 10.3390/clockssleep4040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythms of physiological processes, constantly being in a state of dynamic equilibrium and plastically associated with changes in environmental conditions, are the basis of homeostasis of an organism of human and other mammals. Violation of circadian rhythms due to significant disturbances in parameters of main environmental effectors (desynchronosis) leads to the development of pathological conditions and a more severe course of preexisting pathologies. We conducted the study of the ultrastructure of cells of mice transplantable malignant melanoma B16 under the condition of normal (fixed) lighting regime and under the influence of constant lighting. Results of the study show that melanoma B16 under fixed light regime represents a characteristic picture of this tumor-predominantly intact tissue with safe junctions of large, functionally active cells with highly irregular nuclei, developed organelles and a relatively low content of melanin. The picture of the B16 melanoma tissue structure and the ultrastructure of its cells under the action of constant lighting stand in marked contrast to the group with fixed light: under these conditions the tumor exhibits accelerated growth, a significant number of cells in the state of apoptosis and necrosis, ultrastructural signs of degradation of the structure and functions, and signs of embryonization of cells with the background of adaptation to oxygen deficiency.
Collapse
|
25
|
Pre-Diagnosis Sleep Status and Survival after a Diagnosis of Ovarian Cancer: A Prospective Cohort Study. J Clin Med 2022; 11:jcm11236914. [PMID: 36498489 PMCID: PMC9741188 DOI: 10.3390/jcm11236914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: To explore if pre-diagnosis sleep status is associated with overall survival (OS) of ovarian cancer (OC). Methods: This is a prospective cohort study of 853 OC patients newly diagnosed between 2015 and 2020. Sleep status was measured by the Pittsburgh Sleep Quality Index (PSQI). Vital status of patients was obtained through active follow-up and linkage to medical records and cancer registry. The Cox proportional hazards regression model was utilized to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for aforementioned associations. Results: During the follow-up period (median: 37.57 months, interquartile: 25.00 to 50.17 months), 123 (18.39%) OC patients died. The HR (95%CI) for OS of OC was 2.13 (1.42−3.18) for sleeping after 22:00, compared with sleeping before 22:00; 2.43 (1.64−3.62) for poor sleep quality, compared to good sleep quality; 2.26 (1.37−3.72) for late bed-early rise and 1.93 (1.09−3.42) for late bed-late rise, compared with early bed-early rise; 0.40 (0.24−0.67) for night sleep duration of ≥7.5 h/day, compared with 7−7.5 h/day; 0.53 (0.29−0.98) for total sleep duration of ≥8 h/day, compared with 7.5−8 h/day. Further, the interaction effects were significant between residual lesions and wake-up time, night bedtime, sleep pattern, and between total sleep duration and menopausal status, parity. Additionally, there was a significant curvilinear association between PSQI score and OS (p nonlinear <0.05). Conclusions: Pre-diagnosis longer total and night sleep duration were associated with better OS, whereas later sleeping time, poor sleep quality, and bad sleep patterns were associated with poor OS among OC survivors.
Collapse
|
26
|
Areshidze DA, Kozlova MA, Makartseva LA, Chernov IA, Sinelnikov MY, Kirillov YA. Influence of constant lightning on liver health: an experimental study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83686-83697. [PMID: 35771326 DOI: 10.1007/s11356-022-21655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Light pollution has become a serious problem in many urbanized areas of the world. The impact of prolonged exposure to light and consequent disruption of natural circadian rhythms has significant health implications. The current study was undertaken to evaluate the effect of prolonged exposure to light, simulating urban light pollution, on liver health. In order to evaluate the effect of prolonged exposure to light, we examined the morphofunctional state, immunohistochemical and micromorphometric parameters of rat liver in normal conditions and following prolonged lighting exposure. Our results show that nocturnal light disruption triggers a cell death in the liver within 3 weeks (necrosis and apoptosis of hepatocytes) and stimulates a change in normal cellular karyometric parameters. At the same time, intracellular regeneration takes place within the organ, which manifests through hepatocyte hypertrophy. Under the influence of constant illumination, the circadian rhythms (CRs) of the size of hepatocytes and their nuclei are restructured, and the rhythm of the nuclear-cytoplasmic ratio is destroyed. The destruction of the CR of expression of p53 and Ki-67 also occurs against the background of the rearrangement of the daily rhythmicity of Per2 and Bmal1. The revealed changes in the morphofunctional state of the liver under the influence of light pollution indicate that a violation of normal illumination regimes is a potent factor leading to significant structural changes in the liver.
Collapse
Affiliation(s)
- David A Areshidze
- A.P. Avtsyn Research Institute of Human Morphology, Moscow, Russian Federation
| | - Maria A Kozlova
- A.P. Avtsyn Research Institute of Human Morphology, Moscow, Russian Federation
| | | | - Igor A Chernov
- Tyumen State Medical University, Tyumen, Russian Federation
| | - Mikhail Y Sinelnikov
- A.P. Avtsyn Research Institute of Human Morphology, Moscow, Russian Federation.
- Sechenov University, Moscow, Russian Federation.
| | - Yuri A Kirillov
- A.P. Avtsyn Research Institute of Human Morphology, Moscow, Russian Federation
| |
Collapse
|
27
|
Verlande A, Chun SK, Song WA, Oettler D, Knot HJ, Masri S. Exogenous detection of 13C-glucose metabolism in tumor and diet-induced obesity models. Front Physiol 2022; 13:1023614. [PMID: 36277179 PMCID: PMC9581140 DOI: 10.3389/fphys.2022.1023614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic rewiring is a hallmark feature prevalent in cancer cells as well as insulin resistance (IR) associated with diet-induced obesity (DIO). For instance, tumor metabolism shifts towards an enhanced glycolytic state even under aerobic conditions. In contrast, DIO triggers lipid-induced IR by impairing insulin signaling and reducing insulin-stimulated glucose uptake. Based on physiological differences in systemic metabolism, we used a breath analysis approach to discriminate between different pathological states using glucose oxidation as a readout. We assessed glucose utilization in lung cancer-induced cachexia and DIO mouse models using a U-13C glucose tracer and stable isotope sensors integrated into an indirect calorimetry system. Our data showed increased 13CO2 expired by tumor-bearing (TB) mice and a reduction in exhaled 13CO2 in the DIO model. Taken together, our findings illustrate high glucose uptake and consumption in TB animals and decreased glucose uptake and oxidation in obese mice with an IR phenotype. Our work has important translational implications for the utility of stable isotopes in breath-based detection of glucose homeostasis in models of lung cancer progression and DIO.
Collapse
Affiliation(s)
- Amandine Verlande
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Wei A. Song
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | | | - Harm J. Knot
- TSE Systems Inc., Chesterfield, MO, United States
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
28
|
Morphofunctional State and Circadian Rhythms of the Liver of Female Rats under the Influence of Chronic Alcohol Intoxication and Constant Lighting. Int J Mol Sci 2022; 23:ijms231810744. [PMID: 36142658 PMCID: PMC9502101 DOI: 10.3390/ijms231810744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
A separate and combined effect of constant illumination and chronic alcohol intoxication (CAI) on diurnal dynamics of micromorphometric parameters of hepatocytes in female Wistar rats and p53, Ki-67, PER2, BMAL1, and ADH5 expression in these cells were studied. The increase in apoptotic activity and proliferation in all animals under the action of chronodestructors is shown. All experimental animals showed a decrease in BMAL1 expression and increase in PER2 expression; ADH5 is overexpressed under the influence of ethanol. Circadian rhythms (CRs) of BMAL1, PER2, p53, and Ki-67 expression persist in all groups, except combined action of chronodestructors, and ADH5 CRs persist in all groups—thus, these rhythms in females are quite stable. CRs of the hepatocyte nuclei area are preserved in all the studied groups, although they undergo a significant shift. At the same time, the CRs of the hepatocyte area are destroyed under the action of light, both independently and in combination with CAI, and the CR of the nuclear-cytoplasmic ratio (NCR) is destroyed by exposure to CAI. It can be assumed that CRs of the hepatocyte area are significantly affected by dark deprivation and NCR rhythm is sensitive to ethanol consumption, while the stability of studied genes’ expression rhythms at separate influences of studied chronodestructors is maintained by yet unknown adaptation mechanisms. It is necessary to note that, according to our previous studies of male rats, rat females show significantly greater stability of the studied CRs.
Collapse
|
29
|
Chun SK, Fortin BM, Fellows RC, Habowski AN, Verlande A, Song WA, Mahieu AL, Lefebvre AEYT, Sterrenberg JN, Velez LM, Digman MA, Edwards RA, Pannunzio NR, Seldin MM, Waterman ML, Masri S. Disruption of the circadian clock drives Apc loss of heterozygosity to accelerate colorectal cancer. SCIENCE ADVANCES 2022; 8:eabo2389. [PMID: 35947664 PMCID: PMC9365282 DOI: 10.1126/sciadv.abo2389] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/23/2022] [Indexed: 05/12/2023]
Abstract
An alarming rise in young onset colorectal cancer (CRC) has been reported; however, the underlying molecular mechanism remains undefined. Suspected risk factors of young onset CRC include environmental aspects, such as lifestyle and dietary factors, which are known to affect the circadian clock. We find that both genetic disruption and environmental disruption of the circadian clock accelerate Apc-driven CRC pathogenesis in vivo. Using an intestinal organoid model, we demonstrate that clock disruption promotes transformation by driving Apc loss of heterozygosity, which hyperactivates Wnt signaling. This up-regulates c-Myc, a known Wnt target, which drives heightened glycolytic metabolism. Using patient-derived organoids, we show that circadian rhythms are lost in human tumors. Last, we identify that variance between core clock and Wnt pathway genes significantly predicts the survival of patients with CRC. Overall, our findings demonstrate a previously unidentified mechanistic link between clock disruption and CRC, which has important implications for young onset cancer prevention.
Collapse
Affiliation(s)
- Sung Kook Chun
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rachel C. Fellows
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Amber N. Habowski
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Amandine Verlande
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | - Leandro M. Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Michelle A. Digman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Marcus M. Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
30
|
Common Ground between Biological Rhythms and Forensics. BIOLOGY 2022; 11:biology11071071. [PMID: 36101448 PMCID: PMC9312156 DOI: 10.3390/biology11071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Biological clocks regulate the timing of numerous body functions in adaption to daily repeating cycles in the environment, such as the sleep–wake phases that are trained by the cycling changes of night and day light. The identification of a deceased victim is a critical component in a forensic investigation, but it can be significantly hampered by the condition of the dead body and the lack of personal records and documents. This review links current knowledge on the molecular mechanisms of biological rhythms to forensically relevant aspects, including the time period since death, cause of death, the use of insects for forensics, sex and age of a person, ethnic background and development. Putting these findings in context demonstrates how the analysis of molecular clock analysis could be used as tool for future personal identification in forensic investigations. Abstract Biological clocks set the timing for a large number of essential processes in the living human organism. After death, scientific evidence is required in forensic investigations in order to collect as much information as possible on the death circumstances and personal identifiers of the deceased victim. We summarize the associations between the molecular mechanisms of biological rhythms and forensically relevant aspects, including post-mortem interval and cause of death, entomological findings, sex, age, ethnicity and development. Given their importance during lifetime, biological rhythms could be potential tools to draw conclusions on the death circumstances and the identity of a deceased person by mechanistic investigations of the different biological clocks in a forensic context. This review puts the known effects of biological rhythms on the functions of the human organism in context with potential applications in forensic fields of interest, such as personal identification, entomology as well as the determination of the post-mortem interval and cause of death.
Collapse
|
31
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
32
|
Bevinakoppamath S, Ramachandra SC, Yadav AK, Basavaraj V, Vishwanath P, Prashant A. Understanding the Emerging Link Between Circadian Rhythm, Nrf2 Pathway, and Breast Cancer to Overcome Drug Resistance. Front Pharmacol 2022; 12:719631. [PMID: 35126099 PMCID: PMC8807567 DOI: 10.3389/fphar.2021.719631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The levels of different molecules in the cell are rhythmically cycled by the molecular clock present at the cellular level. The circadian rhythm is closely linked to the metabolic processes in the cells by an underlying mechanism whose intricacies need to be thoroughly investigated. Nevertheless, Nrf2 has been identified as an essential bridge between the circadian clock and cellular metabolism and is activated by the by-product of cellular metabolism like hydrogen peroxide. Once activated it binds to the specific DNA segments and increases the transcription of several genes that play a crucial role in the normal functioning of the cell. The central clock located in the suprachiasmatic nucleus of the anterior hypothalamus synchronizes the timekeeping in the peripheral tissues by integrating the light-dark input from the environment. Several studies have demonstrated the role of circadian rhythm as an effective tumor suppressor. Tumor development is triggered by the stimulation or disruption of signaling pathways at the cellular level as a result of the interaction between cells and environmental stimuli. Oxidative stress is one such external stimulus that disturbs the prooxidant/antioxidant equilibrium due to the loss of control over signaling pathways which destroy the bio-molecules. Altered Nrf2 expression and impaired redox balance are associated with various cancers suggesting that Nrf2 targeting may be used as a novel therapeutic approach for treating cancers. On the other hand, Nrf2 has also been shown to enhance the resistance of cancer cells to chemotherapeutic agents. We believe that maximum efficacy with minimum side effects for any particular therapy can be achieved if the treatment strategy regulates the circadian rhythm. In this review, we discuss the various molecular mechanisms interlinking the circadian rhythm with the Nrf2 pathway and contributing to breast cancer pathogenesis, we also talk about how these two pathways work in close association with the cell cycle which is another oscillatory system, and whether this interplay can be exploited to overcome drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shobha Chikkavaddaragudi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Anshu Kumar Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
- Special Interest Group-Human Genomics and Rare Disorders, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Akila Prashant,
| |
Collapse
|
33
|
Junior RP, Sonehara NM, Jardim-Perassi BV, Pal A, Asad Y, Almeida Chuffa LG, Chammas R, Raynaud FI, Zuccari DAPC. Presence of human breast cancer xenograft changes the diurnal profile of amino acids in mice. Sci Rep 2022; 12:1008. [PMID: 35046467 PMCID: PMC8770691 DOI: 10.1038/s41598-022-04994-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
Human xenografts are extremely useful models to study the biology of human cancers and the effects of novel potential therapies. Deregulation of metabolism, including changes in amino acids (AAs), is a common characteristic of many human neoplasms. Plasma AAs undergo daily variations, driven by circadian endogenous and exogenous factors. We compared AAs concentration in triple negative breast cancer MDA-MB-231 cells and MCF10A non-tumorigenic immortalized breast epithelial cells. We also measured plasma AAs in mice bearing xenograft MDA-MB-231 and compared their levels with non-tumor-bearing control animals over 24 h. In vitro studies revealed that most of AAs were significantly different in MDA-MB-231 cells when compared with MCF10A. Plasma concentrations of 15 AAs were higher in cancer cells, two were lower and four were observed to shift across 24 h. In the in vivo setting, analysis showed that 12 out of 20 AAs varied significantly between tumor-bearing and non-tumor bearing mice. Noticeably, these metabolites peaked in the dark phase in non-tumor bearing mice, which corresponds to the active time of these animals. Conversely, in tumor-bearing mice, the peak time occurred during the light phase. In the early period of the light phase, these AAs were significantly higher in tumor-bearing animals, yet significantly lower in the middle of the light phase when compared with controls. This pilot study highlights the importance of well controlled experiments in studies involving plasma AAs in human breast cancer xenografts, in addition to emphasizing the need for more precise examination of exometabolomic changes using multiple time points.
Collapse
Affiliation(s)
- Rubens Paula Junior
- Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, Brazil.
| | | | | | - Akos Pal
- The Institute of Cancer Research, London, UK
| | - Yasmin Asad
- The Institute of Cancer Research, London, UK
| | | | - Roger Chammas
- Instituto Do Câncer Do Estado de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
34
|
Zhou J, Wang J, Zhang X, Tang Q. New Insights Into Cancer Chronotherapies. Front Pharmacol 2021; 12:741295. [PMID: 34966277 PMCID: PMC8710512 DOI: 10.3389/fphar.2021.741295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023] Open
Abstract
Circadian clocks participate in the coordination of various metabolic and biological activities to maintain homeostasis. Disturbances in the circadian rhythm and cancers are closely related. Circadian clock genes are differentially expressed in many tumors, and accelerate the development and progression of tumors. In addition, tumor tissues exert varying biological activities compared to normal tissues due to resetting of altered rhythms. Thus, chronotherapeutics used for cancer treatment should exploit the timing of circadian rhythms to achieve higher efficacy and mild toxicity. Due to interpatient differences in circadian functions, our findings advocate an individualized precision approach to chronotherapy. Herein, we review the specific association between circadian clocks and cancers. In addition, we focus on chronotherapies in cancers and personalized biomarkers for the development of precision chronotherapy. The understanding of circadian clocks in cancer will provide a rationale for more effective clinical treatment of tumors.
Collapse
Affiliation(s)
- Jingxuan Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiechen Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaozhao Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
35
|
Circadian clock and cell cycle: Cancer and chronotherapy. Acta Histochem 2021; 123:151816. [PMID: 34800857 DOI: 10.1016/j.acthis.2021.151816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
The circadian clock is an endogenous timing system that ensures that various physiological processes have nearly 24 h circadian rhythms, including cell metabolism, division, apoptosis, and tumor production. In addition, results from animal models and molecular studies underscore emerging links between the cell cycle and the circadian clock. Mutations in the core genes of the circadian clock' can disrupt the cell cycle, which in turn increases the possibility of tumors. At present, tumor chronotherapy, which relies on a circadian clock mechanism, is developing rapidly for optimizing the time of drug administration in tumor treatment to improve drug efficacy and safety. However, the relationship between the circadian clock and the cell cycle is extremely complicated. This review summarizes the possible connection between the circadian clock and the cell cycle. In addition, the review provides evidence of the influence of the circadian clock on senescence and cancer.
Collapse
|
36
|
Kozlova MA, Kirillov YA, Makartseva LA, Chernov I, Areshidze DA. Morphofunctional State and Circadian Rhythms of the Liver under the Influence of Chronic Alcohol Intoxication and Constant Lighting. Int J Mol Sci 2021; 22:ijms222313007. [PMID: 34884810 PMCID: PMC8657715 DOI: 10.3390/ijms222313007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023] Open
Abstract
A study of the influence of chronic alcohol intoxication, constant illumination and their combined effects on the morphofunctional state of the rat liver and the circadian rhythms (CR) of the studied parameters of the organism was carried out. It was found that both alcohol and constant illumination caused significant changes in the structure of the liver, as well as in the circadian rhythmicity of micromorphometric parameters of hepatocytes, ALT, and total and direct bilirubin rhythms; however, the combined effects of ethanol and constant illumination had the most significant effect on the studied parameters of the organism. These two factors caused disturbances in the circadian rhythms of the micromorphometric parameters of hepatocytes, disruption of the circadian rhythms of total protein, albumin, AST, ALT, and direct and total bilirubin, as well as disturbances in the expression and rhythmicity of the studied clock genes against a background of the development of an inflammatory process in the liver.
Collapse
Affiliation(s)
- Maria A. Kozlova
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Yuri A. Kirillov
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Lyudmila A. Makartseva
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Igor Chernov
- Department of Pathological Anatomy, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - David A. Areshidze
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
- Experimental Tumor Chemotherapy Group, Center for Screening and Preclinical Testing, Institute of Problems of Chemical Physics of the Russian Academy of Science, 142432 Chernogolovka, Russia
- Correspondence: ; Tel.: +7-909-643-37-56
| |
Collapse
|
37
|
Wang X, Li Y, Fu J, Zhou K, Wang T. ARNTL2 is a Prognostic Biomarker and Correlates with Immune Cell Infiltration in Triple-Negative Breast Cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1425-1440. [PMID: 34785930 PMCID: PMC8591114 DOI: 10.2147/pgpm.s331431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is associated with poor prognosis. The aberrant expression of circadian genes contributes to the origin and progression of breast cancer. The present study was designed to explore the potential function and prognosis value of circadian genes in TNBC. Methods The transcriptome data of circadian genes were downloaded from The Cancer Genomic Atlas (TCGA), GSE25066 and GSE31448 datasets. The differential expressed circadian genes between non-TNBC and TNBC patients were analysed by Wilcoxon test. Univariate and multivariate Cox regression analyses were employed to identify the prognostic circadian genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were performed to study the biological functions of ARNTL2. The composition of 22 immune cells in the tumour samples was estimated with CIBERSORT algorithm. The correlations between ARNTL2 expression and tumour-infiltrating immune cells were evaluated by Spearman correlation coefficient. Results A total of 8 circadian genes were found to be differentially expressed between non-TNBC and TNBC, but only ARNTL2 has prognostic value. Multivariate Cox analysis identified that ARNTL2 was an independent prognosis factor for overall survival and relapse-free survival in TNBC patients. Functionally, ARNTL2 was mainly involved in immune response processes such as positive regulation of cytokine production, regulation of innate immune response, and cellular responses to molecules of bacterial origin. High expression of ARNTL2 was positively correlated with activated CD4 memory T cells, activated mast cells, and neutrophil infiltration and the expression of markers of neutrophils (ITGAM), dendritic cells (HLA-DRA, HLA-DPA1, ITGAM), Th1 (IL1B, STAT1), Th2 (IL13), Th17 (STAT3) and mast cells (TPSB2, TPSAB1). Conclusion ARNTL2 may be linked with the functional modulation of the tumour immune microenvironment and serve as a potential biomarker for predicting the prognosis of TNBC patients.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Li
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jianchang Fu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
38
|
Lee JM, Kim H, Baek SH. Unraveling the physiological roles of retinoic acid receptor-related orphan receptor α. Exp Mol Med 2021; 53:1278-1286. [PMID: 34588606 PMCID: PMC8492739 DOI: 10.1038/s12276-021-00679-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Retinoic acid receptor-related orphan receptor-α (RORα) is a member of the orphan nuclear receptor family and functions as a transcriptional activator in response to circadian changes. Circadian rhythms are complex cellular mechanisms regulating diverse metabolic, inflammatory, and tumorigenic gene expression pathways that govern cyclic cellular physiology. Disruption of circadian regulators, including RORα, plays a critical role in tumorigenesis and facilitates the development of inflammatory hallmarks. Although RORα contributes to overall fitness among anticancer, anti-inflammatory, lipid homeostasis, and circadian clock mechanisms, the molecular mechanisms underlying the mode of transcriptional regulation by RORα remain unclear. Nonetheless, RORα has important implications for pharmacological prevention of cancer, inflammation, and metabolic diseases, and understanding context-dependent RORα regulation will provide an innovative approach for unraveling the functional link between cancer metabolism and rhythm changes.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea. .,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
39
|
He J, Jiao X, Sun X, Huang Y, Xu P, Xue Y, Fu T, Liu J, Li Z. Short-Term High Fructose Intake Impairs Diurnal Oscillations in the Murine Cornea. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34415987 PMCID: PMC8383902 DOI: 10.1167/iovs.62.10.22] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Endogenous and exogenous stressors, including nutritional challenges, may alter circadian rhythms in the cornea. This study aimed to determine the effects of high fructose intake (HFI) on circadian homeostasis in murine cornea. Methods Corneas of male C57BL/6J mice subjected to 10 days of HFI (15% fructose in drinking water) were collected at 3-hour intervals over a 24-hour circadian cycle. Total extracted RNA was subjected to high-throughput RNA sequencing. Rhythmic transcriptional data were analyzed to determine the phase, rhythmicity, unique signature, metabolic pathways, and cell signaling pathways of transcripts with temporally coordinated expression. Corneas of HFI mice were collected for whole-mounted techniques after immunofluorescent staining to quantify mitotic cell number in the epithelium and trafficking of neutrophils and γδ-T cells to the limbal region over a circadian cycle. Results HFI significantly reprogrammed the circadian transcriptomic profiles of the normal cornea and reorganized unique temporal and clustering enrichment pathways, but did not affect core-clock machinery. HFI altered the distribution pattern and number of corneal epithelial mitotic cells and enhanced recruitment of neutrophils and γδ-T cell immune cells to the limbus across a circadian cycle. Cell cycle, immune function, metabolic processes, and neuronal-related transcription and associated pathways were altered in the corneas of HFI mice. Conclusions HFI significantly reprograms diurnal oscillations in the cornea based on temporal and spatial distributions of epithelial mitosis, immune cell trafficking, and cell signaling pathways. Our findings reveal novel molecular targets for treating pathologic alterations in the cornea after HFI.
Collapse
Affiliation(s)
- Jingxin He
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinwei Jiao
- Department of Pathophysiology, Jinan University Medical School, Guangzhou, China
| | - Xin Sun
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yijia Huang
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pengyang Xu
- Department of Pathophysiology, Jinan University Medical School, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Wagner PM, Prucca CG, Caputto BL, Guido ME. Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
Affiliation(s)
- Paula M. Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - César G. Prucca
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Beatriz L. Caputto
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mario E. Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
41
|
Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
|
42
|
Verlande A, Chun SK, Goodson MO, Fortin BM, Bae H, Jang C, Masri S. Glucagon regulates the stability of REV-ERBα to modulate hepatic glucose production in a model of lung cancer-associated cachexia. SCIENCE ADVANCES 2021; 7:eabf3885. [PMID: 34172439 PMCID: PMC8232919 DOI: 10.1126/sciadv.abf3885] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/13/2021] [Indexed: 05/14/2023]
Abstract
Lung adenocarcinoma is associated with cachexia, which manifests as an inflammatory response that causes wasting of adipose tissue and skeletal muscle. We previously reported that lung tumor-bearing (TB) mice exhibit alterations in inflammatory and hormonal signaling that deregulate circadian pathways governing glucose and lipid metabolism in the liver. Here, we define the molecular mechanism of how de novo glucose production in the liver is enhanced in a model of lung adenocarcinoma. We found that elevation of serum glucagon levels stimulates cyclic adenosine monophosphate production and activates hepatic protein kinase A (PKA) signaling in TB mice. In turn, we found that PKA targets and destabilizes the circadian protein REV-ERBα, a negative transcriptional regulator of gluconeogenic genes, resulting in heightened de novo glucose production. Together, we identified that glucagon-activated PKA signaling regulates REV-ERBα stability to control hepatic glucose production in a model of lung cancer-associated cachexia.
Collapse
Affiliation(s)
- Amandine Verlande
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Maggie O Goodson
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Bridget M Fortin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Hosung Bae
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA.
| |
Collapse
|
43
|
Suppression of DLBCL Progression by the E3 Ligase Trim35 Is Mediated by CLOCK Degradation and NK Cell Infiltration. J Immunol Res 2021; 2021:9995869. [PMID: 34124276 PMCID: PMC8166485 DOI: 10.1155/2021/9995869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
The majority of diffuse large B-cell lymphoma (DLBCL) patients develop relapsed or refractory disease after standard ruxolitinib, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemotherapy, which is partly related to a dysregulated tumor immune microenvironment. However, how the infiltration of immune cells is appropriately regulated is poorly understood. Herein, we show that the E3 ubiquitin ligase Trim35 is expressed at low levels in human DLBCL tissues. We also show that overexpression of Trim35 suppresses DLBCL cell proliferation and correlates with inferior survival in DLBCL patients. Our mechanistic study shows that Trim35 functions as an E3 ligase to mediate the ubiquitination and degradation of CLOCK, a key regulator of circadian rhythmicity. High expression of Trim35 correlates with NK cell infiltration in DLBCL, partly due to the degradation of CLOCK. Consistently, patients with high expression of CLOCK show poor overall survival. Overall, these findings suggest that Trim35 suppresses the progression of DLBCL by modulating the tumor immune microenvironment, indicating that it may be a promising diagnostic and prognostic biomarker in DLBCL.
Collapse
|
44
|
Horváthová J, Moravčík R, Matúšková M, Šišovský V, Boháč A, Zeman M. Inhibition of Glycolysis Suppresses Cell Proliferation and Tumor Progression In Vivo: Perspectives for Chronotherapy. Int J Mol Sci 2021; 22:ijms22094390. [PMID: 33922320 PMCID: PMC8122821 DOI: 10.3390/ijms22094390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
A high rate of glycolysis is considered a hallmark of tumor progression and is caused by overexpression of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). Therefore, we analyzed the possibility of inhibiting tumor and endothelial cell metabolism through the inhibition of PFKFB3 by a small molecule, (E)-1-(pyridin-4-yl)-3-(quinolin-2-yl)prop-2-en-1-one (PFK15), as a promising therapy. The effects of PFK15 on cell proliferation and apoptosis were analyzed on human umbilical vein endothelial cells (HUVEC) and the human colorectal adenocarcinoma cell line DLD1 through cytotoxicity and proliferation assays, flow cytometry, and western blotting. The results showed that PFK15 inhibited the proliferation of both cell types and induced apoptosis with decreasing the Bcl-2/Bax ratio. On the basis of the results obtained from in vitro experiments, we performed a study on immunodeficient mice implanted with DLD1 cells. We found a reduced tumor mass after morning PFK15 treatment but not after evening treatment, suggesting circadian control of underlying processes. The reduction in tumor size was related to decreased expression of Ki-67, a marker of cell proliferation. We conclude that inhibition of glycolysis can represent a promising therapeutic strategy for cancer treatment and its efficiency is circadian dependent.
Collapse
Affiliation(s)
- Jana Horváthová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (R.M.); (M.Z.)
- Correspondence:
| | - Roman Moravčík
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (R.M.); (M.Z.)
| | - Miroslava Matúšková
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Vladimír Šišovský
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, University Hospital Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Andrej Boháč
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (R.M.); (M.Z.)
| |
Collapse
|
45
|
Wang Z, Su G, Dai Z, Meng M, Zhang H, Fan F, Liu Z, Zhang L, Weygant N, He F, Fang N, Zhang L, Cheng Q. Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif 2021; 54:e12988. [PMID: 33442944 PMCID: PMC7941241 DOI: 10.1111/cpr.12988] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Circadian rhythm controls complicated physiological activities in organisms. Circadian clock genes have been related to tumour progression, but its role in glioma is unknown. Therefore, we explored the relationship between dysregulated circadian clock genes and glioma progression. MATERIALS AND METHODS Samples were divided into different groups based on circadian clock gene expression in training dataset (n = 672) and we verified the results in other four validating datasets (n = 1570). The GO and GSEA enrichment analysis were conducted to explore potential mechanism of how circadian clock genes affected glioma progression. The single-cell RNA-Seq analysis was conducted to verified previous results. The immune landscape was evaluated by the ssGSEA and CIBERSORT algorithm. Cell proliferation and viability were confirmed by the CCK8 assay, colony-forming assay and flow cytometry. RESULTS The cluster and risk model based on circadian clock gene expression can predict survival outcome. Samples were scoring by the least absolute shrinkage and selection operator regression analysis, and high scoring tumour was associated with worse survival outcome. Samples in high-risk group manifested higher activation of immune pathway and cell cycle. Tumour immune landscape suggested high-risk tumour infiltrated more immunocytes and more sensitivity to immunotherapy. Interfering TIMELESS expression affected circadian clock gene expression, inhibited tumour cell proliferation and arrested cell cycle at the G0/G1 phase. CONCLUSIONS Dysregulated circadian clock gene expression can affect glioma progression by affecting tumour immune landscape and cell cycle. The risk model can predict glioma survival outcome, and this model can also be applied to pan-cancer.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Guanhua Su
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
- Clinic Medicine of 5‐year ProgramXiangya School of MedicineCentral South UniversityChangshaChina
| | - Ziyu Dai
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Ming Meng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Fan Fan
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Zhengzheng Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Longbo Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurosurgeryYale School of MedicineNew HavenCTUSA
| | - Nathaniel Weygant
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine in GeriatricsFujian University of Traditional Chinese MedicineFujianChina
| | - Fengqiong He
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya HospitalCentral South UniversityChangshaChina
| | - Ning Fang
- Department of GastroenterologyThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Liyang Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersChangshaChina
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
46
|
Patel SA, Kondratov RV. Clock at the Core of Cancer Development. BIOLOGY 2021; 10:150. [PMID: 33672910 PMCID: PMC7918730 DOI: 10.3390/biology10020150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/29/2022]
Abstract
To synchronize various biological processes with the day and night cycle, most organisms have developed circadian clocks. This evolutionarily conserved system is important in the temporal regulation of behavior, physiology and metabolism. Multiple pathological changes associated with circadian disruption support the importance of the clocks in mammals. Emerging links have revealed interplay between circadian clocks and signaling networks in cancer. Understanding the cross-talk between the circadian clock and tumorigenesis is imperative for its prevention, management and development of effective treatment options. In this review, we summarize the role of the circadian clock in regulation of one important metabolic pathway, insulin/IGF1/PI3K/mTOR signaling, and how dysregulation of this metabolic pathway could lead to uncontrolled cancer cell proliferation and growth. Targeting the circadian clock and rhythms either with recently discovered pharmaceutical agents or through environmental cues is a new direction in cancer chronotherapy. Combining the circadian approach with traditional methods, such as radiation, chemotherapy or the recently developed, immunotherapy, may improve tumor response, while simultaneously minimizing the adverse effects commonly associated with cancer therapies.
Collapse
Affiliation(s)
- Sonal A. Patel
- Fusion Pharmaceuticals Inc., Hamilton, ON L8P 0A6, Canada;
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Roman V. Kondratov
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
47
|
Alamoudi AA. Why do cancer cells break from host circadian rhythm? Insights from unicellular organisms. Bioessays 2021; 43:e2000205. [PMID: 33533033 DOI: 10.1002/bies.202000205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
It is not clear why cancer cells choose to disrupt their circadian clock rhythms, and whether such disruption governs a selective fitness and a survival advantage. In this review, I focus on understanding the impacts of clock gene disruption on a simpler model, such as the unicellular cyanobacterium, in order to explain how cancer cells may alter the circadian rhythm to reprogram their metabolism based on their needs and status. It appears to be that the activation of the oxidative pentose phosphate pathway (OPPP) and production of NADPH, the preferred molecule for detoxification of reactive oxygen species, is a critical process for night survival in unicellular organisms. The circadian clock acts as a gatekeeper that controls how the organism will utilize its sugar, shifting sugar influx between glycolysis and OPPP. The circadian clock can thus act as a gatekeeper between an anabolic, proliferative mode and a homeostatic, survival mode.
Collapse
Affiliation(s)
- Aliaa A Alamoudi
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Stem Cell Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Cortés-Hernández LE, Eslami-S Z, Dujon AM, Giraudeau M, Ujvari B, Thomas F, Alix-Panabières C. Do malignant cells sleep at night? Genome Biol 2020; 21:276. [PMID: 33183336 PMCID: PMC7659113 DOI: 10.1186/s13059-020-02179-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Biological rhythms regulate the biology of most, if not all living creatures, from whole organisms to their constitutive cells, their microbiota, and also parasites. Here, we present the hypothesis that internal and external ecological variations induced by biological cycles also influence or are exploited by cancer cells, especially by circulating tumor cells, the key players in the metastatic cascade. We then discuss the possible clinical implications of the effect of biological cycles on cancer progression, and how they could be exploited to improve and standardize methods used in the liquid biopsy field.
Collapse
Affiliation(s)
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Antoine M Dujon
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Mathieu Giraudeau
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Frédéric Thomas
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France.
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
- Institut Universitaire de Recherche Clinique (IURC), 641, avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
| |
Collapse
|
49
|
Jayapalan JJ, Subramanian P, Kani A, Hiji J, Najjar SG, Abdul-Rahman PS, Hashim OH. Hesperidin modulates the rhythmic proteomic profiling in Drosophila melanogaster under oxidative stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21738. [PMID: 32924199 DOI: 10.1002/arch.21738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The circadian clock regulates vital aspects of physiology including protein synthesis and oxidative stress response. In this investigation, we performed a proteome-wide scrutiny of rhythmic protein accrual in Drosophila melanogaster on exposure to rotenone, rotenone + hesperidin and hesperidin in D. melanogaster. Total protein from fly samples collected at 6 h intervals over the 24 h period was subjected to two-dimensional gel electrophoresis and mass spectrometry. Bioinformatics tool, Protein ANalysis THrough Evolutionary Relationships classification system was used to the determine the biological processes of the proteins of altered abundance. Conspicuous variations in the proteome (151 proteins) of the flies exposed to oxidative stress (by rotenone treatment) and after alleviating oxidative stress (by hesperidin treatment) were observed during the 24 h cycle. Significantly altered levels of abundance of a wide variety of proteins under oxidative stress (rotenone treatment) and under alleviation of oxidative stress (rotenone + hesperidin treatment) and hesperidin (alone) treatment were observed. These proteins are involved in metabolism, muscle activity, heat shock response, redox homeostasis, protein synthesis/folding/degradation, development, ion-channel/cellular transport, and gustatory and olfactory function of the flies. Our data indicates that numerous cellular processes are involved in the temporal regulation of proteins and widespread modulations happen under rotenone treatment and, action of hesperidin could also be seen on these categories of proteins.
Collapse
Affiliation(s)
- Jaime J Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Akshaya Kani
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Jumriah Hiji
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sara G Najjar
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Puteri S Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn H Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 502] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Peter Ernst Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|