1
|
Wang Y, Yang Y, Chen Y, Zhou Y, Zhang S, Zhu W, Zhang X, Zhu J. Qing'e Pill rectifies bone homeostasis imbalance in diabetic osteoporosis via the AGE/RAGE pathway: A network pharmacology analysis and multi-omics validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119816. [PMID: 40245968 DOI: 10.1016/j.jep.2025.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic osteoporosis (DOP), a metabolic disorder arising from diabetes mellitus, results in a hyperglycemic state that impairs bone microstructure, strength, and quality, thereby increasing the risk of fractures and complicating treatment and rehabilitation. Qing'e Pill(QEP), first recorded in the Song Dynasty's Heji Ju Fang, is renowned as an effective formula for tonifying the kidneys and strengthening bones. Its potential therapeutic mechanisms for treating DOP remain to be explored. AIM OF THE STUDY This study aimed to elucidate the therapeutic mechanism of QEP, a Chinese herbal medicine compound, in the treatment of DOP by integrating network pharmacology and laboratory analyses. MATERIALS AND METHODS Gene targets associated with DOP were identified utilizing gene databases (GeneCards, TTD, OMIM). The active ingredients of QEP were characterized via HPLC analysis. The therapeutic potential of QEP was assessed in a rat model of DOP by monitoring blood glucose levels, employing Micro-CT imaging, and conducting histological staining. In vitro experiments were performed to confirm QEP's ability to promote bone formation. Additionally, its angiogenic potential was evaluated using scratch, migration, and tube formation assays. RESULTS QEP was observed to stimulate osteogenesis and angiogenesis in vitro, modulate the AGE/RAGE signaling pathway, and foster anti-inflammatory osteogenesis. Micro-CT analysis demonstrated significant enhancements in bone density and microstructure following QEP treatment. CONCLUSION QEP enhance osteogenesis and angiogenesis via the AGE/RAGE signaling pathway, offering anti-inflammatory, hypoglycemic, and anti-osteoporotic effects. These results support the potential clinical application of QEP in managing diabetic osteoporosis.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yao Yang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuan Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yanling Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Siming Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Junchen Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China.
| |
Collapse
|
2
|
Zhang Y, Chen G, Wang W, Yang D, Zhu D, Jing Y. Association of Glucagon-like peptide-1 receptor agonists use with fracture risk in type 2 diabetes: A meta-analysis of randomized controlled trials. Bone 2025; 192:117338. [PMID: 39603373 DOI: 10.1016/j.bone.2024.117338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with an increased risk of osteoporosis (OP) and fractures. PURPOSE The aim of this study was to analyze the available evidence on the effect of GLP-1 RAs on fracture risk in patients with type 2 diabetes. METHODS A systematic search based on PubMed, Embase and Web of Science databases was performed to collect relevant literature published until May 2024 on the application of GLP-1 RAs in T2DM patients. Data were extracted from each study for comparative analysis, and meta-analysis was performed using R software to calculate relative risk (RR) and 95 % confidence intervals (CI) for dichotomous variables. Two subgroup analyses were also performed. RESULTS A total of 44 randomized controlled trials (RCTs) involving 47,823 patients were analyzed. There were 292 incident fracture cases (138 in GLP-1 RAs group and 154 in control group). The pooled RR for fractures in patients treated with GLP-1RAs compared with those treated with placebo or other anti-diabetic drugs was 0.77 (95 % CI: 0.61-0.96). Subgroup analyses showed that the beneficial effect was dependent on the period of treatment with GLP-1 RAs, only treated for >78 weeks were effective in reducing the risk of fractures in patients with T2DM (RR 0.77; 95 % CI: 0.61-0.96). Furthermore, subgroup analyses showed that liraglutide treatment was associated with a significant reduction in fracture risk (RR 0.42; 95 % CI: 0.21-0.85). However, other GLP-1 RAs did not present benefits over other anti-diabetic drug treatments. CONCLUSION GLP-1 RAs could reduce the risk of fracture in T2DM patients, and the beneficial effect was interrelated to the period of treatment. Liraglutide could significantly reduce the risk of fracture in T2DM patients compared to placebo and other anti-diabetic drugs. Due to the limited nature of contemporary research, further studies are needed to develop a clear clinical consensus.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Guanhua Chen
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Weimin Wang
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China; Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Donghui Yang
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China; Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dalong Zhu
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China; Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yali Jing
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
3
|
Wang R, He X, Su S, Bai J, Liu H, Zhou F. Methacrylated silk fibroin based composite hydrogel with ROS-scavenging and osteogenic ability to orchestrate diabetic bone regeneration. Int J Biol Macromol 2025; 294:138945. [PMID: 39706404 DOI: 10.1016/j.ijbiomac.2024.138945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The repair of diabetic bone defects is still filled with enormous challenges. Excessive reactive oxygen species (ROS) are regenerated in diabetic bone defect sites which is harmful to bone regeneration. Therefore, it's to a good strategy to scavenge the excess ROS to provide a friendly environment for diabetic bone defects repair. Herein, a novel composite hydrogel with ROS-scavenging and osteogenic ability is constructed. This methacrylated silk fibroin based composite hydrogel is capable of releasing tannin acid and inorganic ion, which can reduce oxidative stress, restore homeostasis and enhance osteogenesis. In vitro results indicated that the composite hydrogel could promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under oxidative stress condition. Furthermore, in vivo results suggested that it can significantly promote bone regeneration in diabetic bone defects. In conclusion, this study provides critical insight into the biological mechanism and potential therapy for diabetic bone regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xi He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Haifeng Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
4
|
Baumann S, Sewing L, Traechslin C, Verhagen-Kamerbeek W, Grize L, Kraenzlin M, Meier C. Serum Pentosidine in Relation to Obesity in Patients with Type 2 Diabetes and Healthy Controls. Calcif Tissue Int 2025; 116:25. [PMID: 39777548 PMCID: PMC11706925 DOI: 10.1007/s00223-024-01338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Pentosidine (PEN), a surrogate marker of advanced glycation end-product formation, reflects increased non-enzymatic cross-linking in bone collagen, which is thought to be an important determinant of bone fragility in type 2 diabetes mellitus (T2DM). We aimed to investigate serum concentrations of PEN in patients with T2DM and controls without T2DM and to examine its relationship with bone parameters and metabolic state such as glycaemic control, insulin resistance and body weight. In a cross-sectional study-design, data from postmenopausal women and men with T2DM (n = 110) and controls without T2DM (n = 111) were evaluated. Serum PEN was measured using an ELISA-based assay (CSB-E09415h, Cusabio). In addition, biochemical markers of glucose metabolism and bone turnover markers were measured. Bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry. After adjustment for age, gender and body mass index (BMI), serum PEN was significantly higher in patients with T2DM compared to controls (p = 0.02) and most prominently in women with T2DM (p = 0.09). We found a strong association of serum PEN concentrations with BMI in the entire study population (R = 0.43, p < 0.001) as well as in patients with T2DM (R = 0.28, p < 0.01). While bone turnover markers were significantly decreased, and BMD increased in patients with T2DM, only weak or no associations were observed between these skeletal surrogate markers and serum PEN. We conclude that serum PEN is strongly associated with BMI with highest levels in obese women with T2DM. Adjustment for patient's weight is needed when evaluating serum PEN levels in patients with T2DM.Clinical Trial Information: NCT02551315.
Collapse
Affiliation(s)
- Sandra Baumann
- Division of Endocrinology and Diabetes, Spital Emmental, Burgdorf, Switzerland
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland
| | - Lilian Sewing
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland
| | - Cyril Traechslin
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland
| | - Wilma Verhagen-Kamerbeek
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland
| | - Leticia Grize
- Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | | | - Christian Meier
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland.
- Endocrine Clinic and Laboratory, Basel, Switzerland.
| |
Collapse
|
5
|
de Oliveira FM, Leal RMC, Comim FV, Premaor MO. The use of the FRAX® tool and its adjustments in women living with diabetes: a cohort study in primary care in Brazil. Arch Osteoporos 2024; 20:6. [PMID: 39738980 DOI: 10.1007/s11657-024-01489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
The FRAX® algorithm showed good accuracy in women living with DM followed in primary care. There were no differences between the ROC curve with and without adjustments for major and hip fractures. The FRAX® 10-year and FRAX® AR were better calibrated in this population. PURPOSE An increased risk of fractures in people living with diabetes has been described. Screening instruments to calculate this risk have been proposed, including the FRAX® algorithm. Some studies suggest that minor modifications to this instrument can improve its performance. These modifications work well in other countries, but we do not know if they work in Brazil. The objective of our study was to evaluate the performance of the FRAX® algorithm with and without adjustments for women living with DM (WLDM) in primary care in Brazil. METHODS A cohort study that included post-menopausal women attending primary care in Santa Maria, Brazil, was conducted from 2013 to 2018. The risk for major and hip fractures was calculated using the FRAX® tool. The FRAX® risk was calculated: (1) without adjustments (unadjusted FRAX®); (2) increasing the entered age by 10 years in individuals with DM (FRAX® 10 years); and (3) inserting the diagnosis of DM as rheumatoid arthritis (FRAX® AR). RESULTS The accuracy for major fracture was 0.948 (unadjusted FRAX®), 0.947 (FRAX® 10 years), and 0.946 (FRAX® AR). For hip fractures, the accuracies were 0.989 (unadjusted FRAX®), 0.988 (FRAX® 10 years), and 0.988 (FRAX® AR). Furthermore, there were no differences between the area under the ROC curve with and without adjustments for major and hip fractures. Conversely, the FRAX® 10 years and the FRAX® AR were better calibrated, presenting a lower Chi-square. CONCLUSION The FRAX® algorithm showed good accuracy in WLDM followed in primary care. The FRAX® 10 years and FRAX® AR were better calibrated in this population.
Collapse
Affiliation(s)
- Fernando Meireles de Oliveira
- Pós-Graduação Em Ciências da Saúde Do Adulto, Medical School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabio Vasconcellos Comim
- Department of Clinical Medicine Pós-Graduação Em Ciências da Saúde Do Adulto, Medical School, Federal University of Minas Gerais, Avenida Professor Alfredo Balena, 190 - sala 246, Belo Horizonte, MG, Brazil
| | - Melissa Orlandin Premaor
- Pós-Graduação Em Ciências da Saúde Do Adulto, Medical School, Federal University of Minas Gerais, Belo Horizonte, Brazil.
- Department of Clinical Medicine Pós-Graduação Em Ciências da Saúde Do Adulto, Medical School, Federal University of Minas Gerais, Avenida Professor Alfredo Balena, 190 - sala 246, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Saadati S, Jansons P, Scott D, de Courten M, Mousa A, Feehan J, Mesinovic J, de Courten B. The Effect of Carnosine Supplementation on Musculoskeletal Health in Adults with Prediabetes and Type 2 Diabetes: A Secondary Analysis of a Randomized Controlled Trial. Nutrients 2024; 16:4328. [PMID: 39770949 PMCID: PMC11677094 DOI: 10.3390/nu16244328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes (T2D) is associated with an increased risk of adverse musculoskeletal outcomes likely due to heightened chronic inflammation, oxidative stress, and advanced glycation end-products (AGE). Carnosine has been shown to have anti-inflammatory, anti-oxidative, and anti-AGE properties. However, no clinical trials have examined the impact of carnosine on musculoskeletal health in adults with prediabetes or T2D. METHODS In a randomized, double-blind clinical trial, 49 participants with prediabetes or T2D and without existing musculoskeletal conditions were assigned to receive either 2 g/day carnosine or matching placebo for 14 weeks. Whole-body dual-energy X-ray absorptiometry (DXA) was used to assess body composition, and peripheral quantitative computed tomography (pQCT) was used to assess bone health at the distal and proximal tibia. RESULTS Forty-three participants completed this study. Carnosine supplementation had no effect on change in hand grip strength (HGS) or upper-limb relative strength (HGS/lean mass) versus placebo. Change in appendicular lean mass, percentage of body fat, visceral fat area, proximal tibial cortical volumetric bone mineral density (vBMD), distal tibial trabecular vBMD, and stress-strain index did not differ with carnosine compared to placebo. Fourteen weeks of carnosine supplementation did not improve muscle strength, body composition, or bone health in adults with prediabetes or T2D. CONCLUSIONS Carnosine supplementation may not be an effective approach for improving musculoskeletal health in adults with prediabetes and T2D without musculoskeletal conditions. However, appropriately powered trials with longer duration are warranted to confirm our findings. The trial was registered at clinicaltrials.gov (NCT02917928).
Collapse
Affiliation(s)
- Saeede Saadati
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (A.M.)
| | - Paul Jansons
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (P.J.); (D.S.); (J.M.)
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (P.J.); (D.S.); (J.M.)
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - Maximilian de Courten
- Australian Health Policy Collaboration, Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 8001, Australia;
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (A.M.)
| | - Jack Feehan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (P.J.); (D.S.); (J.M.)
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (P.J.); (D.S.); (J.M.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
7
|
Jiang Y, Gao R, Ying Q, Li X, Dai Y, Song A, Liu H, Hasegawa T, Li M. Eldecalcitol ameliorates diabetic osteoporosis and glucolipid metabolic disorder by promoting Treg cell differentiation through SOCE. Cell Mol Life Sci 2024; 81:423. [PMID: 39367914 PMCID: PMC11456014 DOI: 10.1007/s00018-024-05453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Active vitamin D, known for its role in promoting osteoporosis, has immunomodulatory effects according to the latest evidence. Eldecalcitol (ED-71) is a representative of the third-generation novel active vitamin D analogs, and its specific immunological mechanisms in ameliorating diabetic osteoporosis remain unclear. We herein evaluated the therapeutic effects of ED-71 in the context of type 2 diabetes mellitus (T2DM), delving into its underlying mechanisms. In a T2DM mouse model, ED-71 attenuated bone loss and marrow adiposity. Simultaneously, it rectified imbalanced glucose homeostasis and dyslipidemia, ameliorated pancreatic β-cell damage and hepatic glycolipid metabolism disorder. Subsequently, in mice injected with the Treg cell-depleting agent CD25, we observed that the beneficial effects of ED-71 mentioned earlier were partially contingent on the Treg subsets ratio. Mechanistically, ED-71 promoted the differentiation of CD4+ T cells into Treg subsets, facilitating Ca2+ influx and the expression of ORAI1 and STIM1, pivotal proteins in store-operated Ca2+ entry (SOCE). The SOCE inhibitor, 2-APB, partially attenuated the positive effects of ED-71 observed in the above results. Overall, ED-71 regulates SOCE-mediated Treg cell differentiation, accomplishing the dual purpose of simultaneously ameliorating diabetic osteoporosis and glucolipid metabolic disorders, showcasing its potential in osteoimmunity therapy and interventions for diseases involving SOCE.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Calcium/metabolism
- Cell Differentiation/drug effects
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/complications
- Glycolipids/pharmacology
- Glycolipids/therapeutic use
- Mice, Inbred C57BL
- ORAI1 Protein/metabolism
- Osteoporosis/drug therapy
- Osteoporosis/metabolism
- Osteoporosis/pathology
- Stromal Interaction Molecule 1/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/immunology
- Vitamin D/analogs & derivatives
- Vitamin D/pharmacology
- Vitamin D/therapeutic use
Collapse
Affiliation(s)
- Yujun Jiang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Ruihan Gao
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Qiaohui Ying
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Xiaolin Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Yaling Dai
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Aimei Song
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| |
Collapse
|
8
|
Voziyan P, Brown KL, Uppuganti S, Leser M, Rose KL, Nyman JS. A map of glycation and glycoxidation sites in collagen I of human cortical bone: Effects of sex and type 2 diabetes. Bone 2024; 187:117209. [PMID: 39047900 PMCID: PMC11875209 DOI: 10.1016/j.bone.2024.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Complications of diabetes is a major health problem affecting multiple organs including bone, where the chronic disease increases the risk of fragility fractures. One hypothesis suggests a pathogenic role for hyperglycemia-induced modification of proteins, a.k.a. advanced glycation end products (AGEs), resulting in structural and functional damage to bone extracellular matrix (ECM). Evidence supporting this hypothesis has been limited by the lack of comprehensive information about the location of AGEs that accumulate in vivo at specific sites within the proteins of bone ECM. Analyzing extracts from cortical bone of cadaveric femurs by liquid chromatography tandem mass spectrometry, we generated a quantitative AGE map of human collagen I for male and female adult donors with and without diabetes. The map describes the chemical nature, sequence position, and levels of four major physiological AGEs, e.g. carboxymethyllysine, and an AGE precursor fructosyllysine within the collagen I triple-helical region. The important features of the map are: 1) high map reproducibility in the individual bone extracts, i.e. 20 male and 20 female donors; 2) localization of modifications to distinct clusters: 10 clusters containing 34 AGE sites in male donors and 9 clusters containing 28 sites in female donors; 3) significant increases in modification levels in diabetes at multiple sites: 26 out of 34 sites in males and in 17 out of 28 sites in females; and 4) generally higher modification levels in male vs. female donors. Moreover, the AGE levels at multiple individual sites correlated with total bone pentosidine levels in male but not in female donors. Molecular dynamics simulations and molecular modeling predicted significant impact of modifications on solvent exposure, charge distribution, and hydrophobicity of the triple helix as well as disruptions to the structure of collagen I fibril. In summary, the AGE map of collagen I revealed diabetes-induced, sex-specific non-enzymatic modifications at distinct triple helical sites that can disrupt collagen structure, thus proposing a specific mechanism of AGE contribution to diabetic complications in human bone.
Collapse
Affiliation(s)
- Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | - Kyle L Brown
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Micheal Leser
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
9
|
Chen Z, Wang Y, Zhang G, Zheng J, Tian L, Song Y, Liu X. Role of LRP5/6/GSK-3β/β-catenin in the differences in exenatide- and insulin-promoted T2D osteogenesis and osteomodulation. Br J Pharmacol 2024; 181:3556-3575. [PMID: 38804080 DOI: 10.1111/bph.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Insulin and exenatide are two hypoglycaemic agents that exhibit different osteogenic effects. This study compared the differences between exenatide and insulin in osseointegration in a rat model of Type 2 diabetes (T2D) and explored the mechanisms promoting osteogenesis in this model of T2D. EXPERIMENTAL APPROACH In vivo, micro-CT was used to detect differences in the peri-implant bone microstructure in vivo. Histology, dual-fluorescent labelling, immunofluorescence and immunohistochemistry were used to detect differences in tissue, cell and protein expression around the implants. In vitro, RT-PCR and western blotting were used to measure the expression of osteogenesis- and Wnt signalling-related genes and proteins in bone marrow mesenchymal stromal cells (BMSCs) from rats with T2D (TBMSCs) after PBS, insulin and exenatide treatment. RT-PCR was used to detect the expression of Wnt bypass cascade reactions under Wnt inactivation. KEY RESULTS Micro-CT and section staining showed exenatide extensively promoted peri-implant osseointegration. Both in vivo and in vitro experiments showed exenatide substantially increased the expression of osteogenesis-related and activated the LRP5/6/GSK-3β/β-catenin-related Wnt pathway. Furthermore, exenatide suppressed expression of Bmpr1a to inhibit lipogenesis and promoted expression of Btrc to suppress inflammation. CONCLUSION AND IMPLICATIONS Compared to insulin, exenatide significantly improved osteogenesis in T2D rats and TBMSCs. In addition to its dependence on LRP5/6/GSK-3β/β-catenin signalling for osteogenic differentiation, exenatide-mediated osteomodulation also involves inhibition of inflammation and adipogenesis by BMPR1A and β-TrCP, respectively.
Collapse
Affiliation(s)
- Zijun Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yuxi Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Guanhua Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Jian Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Lei Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yingliang Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Xiangdong Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| |
Collapse
|
10
|
Badr S, Cotten A, Lombardo D, Ruschke S, Karampinos DC, Ramdane N, Genin M, Paccou J. Bone Marrow Adiposity Alterations in Postmenopausal Women With Type 2 Diabetes Are Site-Specific. J Endocr Soc 2024; 8:bvae161. [PMID: 39381685 PMCID: PMC11458911 DOI: 10.1210/jendso/bvae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 10/10/2024] Open
Abstract
Context Bone marrow adiposity (BMAT) alterations in patients with type 2 diabetes mellitus (T2DM) may contribute to adverse bone effects. Objective Characterization of BMAT content and composition in patients with well-controlled T2DM. Methods This cross-sectional study included 2 groups of postmenopausal women: one with T2DM and the other without. The proton density fat fraction (PDFF) of the lumbar spine and proximal femur, comprising the femoral head, neck, and diaphysis, was assessed using chemical shift-based water-fat separation imaging (WFI). Magnetic resonance imaging with spectroscopy (1H-MRS) was performed in a subgroup of participants to confirm the PDFF measurements and determine the apparent lipid unsaturation level (aLUL) at the L3 vertebrae and femoral neck. The association of imaging-based PDFFs and aLUL between diabetes groups was investigated by adjusting for confounding factors using a linear mixed model. Results Among 199 participants, patients with T2DM (n = 29) were significantly heavier (P < .001) and had a higher bone mineral density (BMD) (P < .001 for all sites) than nondiabetic patients (n = 170). When PDFFs were compared after adjusting for age, body mass index (BMI), and BMD, the femoral head WFI-based PDFF was lower in patients with T2DM (mean [standard error] 88.0% [0.7] vs 90.6% [0.3], P < .001). Moreover, the aLUL at the L3 vertebrae was lower in patients with T2DM (n = 16) than in without (n = 97) (mean [standard error] 3.9% [0.1] vs 4.3% [0.1], P = .02). Conclusion The content and composition of BMAT are modified in postmenopausal women with T2DM and these changes occur at specific sites.
Collapse
Affiliation(s)
- Sammy Badr
- Department of Radiology and Musculoskeletal Imaging, University Lille, CHU Lille, MABlab ULR 4490, F-59000 Lille, France
| | - Anne Cotten
- Department of Radiology and Musculoskeletal Imaging, University Lille, CHU Lille, MABlab ULR 4490, F-59000 Lille, France
| | | | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany
| | - Nassima Ramdane
- Department of Biostatistics, CHU Lille, F-59000 Lille, France
| | - Michael Genin
- ULR 2694—METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, University Lille, CHU Lille, F-59000 Lille, France
| | - Julien Paccou
- Department of Rheumatology, University Lille, CHU Lille, MABlab ULR 4490, F-59000 Lille, France
| |
Collapse
|
11
|
Tan J, Chen Z, Xu Z, Huang Y, Qin L, Long Y, Wu J, Yang H, Chen X, Yi W, Hang R, Guan M, Wang H, Gao A, Yang D. Small intestine submucosa decorated 3D printed scaffold accelerated diabetic bone regeneration by ameliorating the microenvironment. J Mater Chem B 2024; 12:9375-9389. [PMID: 39189426 DOI: 10.1039/d4tb00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The 3D printed scaffolds constructed from polymers have shown significant potential in the field of bone defect regeneration. However, the efficacy of these scaffolds can be markedly reduced in certain pathological conditions like diabetes, where an altered inflammatory microenvironment and diminished small blood vessels complicate the integration of these polymers with the host tissue. In this study, the bioactivity of a 3D-printed poly(lactide-co-glycolide) (PLGA) scaffold is enhanced through the integration of hydroxyapatite (HA), icariin (ICA), and small intestine submucosa (SIS), a form of decellularized extracellular matrix (dECM). The decoration of SIS on the 3D-printed PLGA/HA/ICA scaffold not only improves the mechanical and degradative performance, but also extends the release of ICA from the scaffold. Both in vitro and in vivo studies demonstrate that this functionalized scaffold mitigates the persistent inflammatory conditions characteristic of diabetic bone defects through inducing macrophages towards the M2 phenotype. Additionally, the scaffold promotes angiogenesis by enhancing the migration and tube formation of vascular cells. Furthermore, the synergistic effects of ICA and SIS with the HA scaffolds contribute to the superior osteogenic induction capabilities. This functionalization approach holds significant promise in advancing the treatment of bone defects within the diabetic population, paving a step forward in the application of polymer-based 3D printing technologies in regenerative medicine.
Collapse
Affiliation(s)
- Jie Tan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
- Orthopaedic department, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Zecai Chen
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Zhen Xu
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Yafang Huang
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Lei Qin
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Yufeng Long
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Jiayi Wu
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Hantao Yang
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Xuandu Chen
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Weihong Yi
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Dazhi Yang
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
12
|
Zheng M, Xu J, Feng Z. Association between nonalcoholic fatty liver disease and bone mineral density: Mendelian randomization and mediation analysis. Bone Rep 2024; 22:101785. [PMID: 39220175 PMCID: PMC11363625 DOI: 10.1016/j.bonr.2024.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024] Open
Abstract
Background Observational studies have reported significant association between non-alcoholic fatty liver disease (NAFLD) and bone mineral density (BMD), a critical indicator of bone health. We aimed to investigate whether NAFLD is a cause for changes in BMD. Methods We selected 29 independent SNPs as instrumental variables for NAFLD. A range of Mendelian randomization (MR) methods, namely the inverse variance-weighted (IVW) method, weighted-median, weighted-mode, and MR-Egger regression, were utilized to determine the causal effects of NAFLD on BMD. Two-step MR analysis was conducted to determine the mediating effect of fasting glucose, insulin, glycosylated hemoglobin, low-density cholesterol, and body-mass index on the association between NAFLD and BMD. False-discovery-rate (FDR) was used to correct for multiple testing bias. Results The IVW-method indicated a significantly inverse association between genetically predicted NAFLD and total body BMD (β = -0.04, 95 % CI -0.07 to -0.02, FDR = 0.010). Notably, the relationship was more pronounced in participants over 60 years of age (β = -0.06, 95 % CI -0.11 to -0.02, FDR = 0.030). Inverse associations were observed in other subpopulations and in site-specific BMD, though they were not statistically significant after correcting for multiple testing. We observed a significantly positive association between NAFLD and the risk of osteoporosis. Consistency in results was observed across multiple MR methods and in the repeated analysis. Fasting glucose, insulin, and glycosylated hemoglobin mediated 25.4 % (95 % CI 17.6-31.5 %), 18.9 % (12.0-24.9 %), and 27.9 % (19.9-36.7 %) of the effect of NAFLD on BMD, respectively. Conclusion Our findings underscore a probable causal negative link between NAFLD and BMD, indicating that NAFLD might detrimentally affect bone health, especially in older individuals.
Collapse
Affiliation(s)
- Minzhe Zheng
- Department of Orthopedics, the Affiliated Lihuili Hospital, Ningbo University, Ningbo City, China
| | - Junxiang Xu
- Department of Orthopedics, the Affiliated Lihuili Hospital, Ningbo University, Ningbo City, China
| | - Zongxian Feng
- Department of Orthopedics, the Affiliated Lihuili Hospital, Ningbo University, Ningbo City, China
| |
Collapse
|
13
|
Tan J, Chen Z, Xu Z, Huang Y, Qin L, Long Y, Wu J, Luo W, Liu X, Yi W, Wang H, Yang D. A 3D-printed scaffold composed of Alg/HA/SIS for the treatment of diabetic bone defects. J Orthop Translat 2024; 48:25-38. [PMID: 39087140 PMCID: PMC11287068 DOI: 10.1016/j.jot.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Background Diabetic bone healing remains a great challenge due to its pathological features including biochemical disturbance, excessive inflammation, and reduced blood vessel formation. In previous studies, small intestine submucosa (SIS) has been demonstrated for its immunomodulatory and angiogenic properties, which are necessary to diabetic bone healing. However, the noticeable drawbacks of SIS such as fast degradation rate, slow gelling time, and weak mechanical property seriously impede the 3D printing of SIS for bone repair. Method In this study, we developed a novel kind of 3D-printed scaffold composed of alginate, nano-hydroxyapatite, and SIS. The morphological characterization, biocompatibility, and in vitro biological effects of the scaffolds were evaluated, and an established diabetic rat model was used for testing the in vivo biological effect of the scaffold after implantation. Results The in vitro and in vivo results show that the addition of SIS can tune the immunomodulatory properties and angiogenic and osteogenic performances of 3D-printed scaffold, where the macrophages polarization of M2 phenotype, migration and tube formation of HUVECs, as well as osteogenic expression of ALP, are all improved, which bode well with the functional requirements for treating diabetic bone nonunion. Furthermore, the incorporation of alginate substantially improves the printability of composites with tunable degradation properties, thereby broadening the application prospect of SIS-based materials in the field of tissue engineering. Conclusion The fabricated 3D-printed Alg/HA/SIS scaffold provides desirable immunomodulatory effect, as well as good osteogenic and angiogenic performances in vitro and in vivo, which properties are well-suited with the requirement for treating diabetic bone defects. Translational potential of this article The incorporation of SIS and alginate acid not only provides good printability of the newly fabricated 3D-printed Alg/HA/SIS scaffold, but also improves its immunoregulatory and angiogenic properties, which suits well with the requirement for treating diabetic bone disease and opens up new horizons for the development of implants associating diabetic bone healings.
Collapse
Affiliation(s)
- Jie Tan
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Orthopaedic Department, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Zecai Chen
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
| | - Zhen Xu
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
| | - Yafang Huang
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
- Orthopaedic Department, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Lei Qin
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
| | - Yufeng Long
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
| | - Jiayi Wu
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
| | - Wanrong Luo
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
| | - Xuchao Liu
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
| | - Weihong Yi
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dazhi Yang
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China
| |
Collapse
|
14
|
Pan R, Li Y. The association of weight-adjusted waist index with the risk of osteoporosis in patients with type 2 diabetes: a cross-sectional study. J Orthop Surg Res 2024; 19:518. [PMID: 39210413 PMCID: PMC11360797 DOI: 10.1186/s13018-024-04991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The relationship between obesity and type 2 diabetes with bone health has always been a topic of debate. The weight-adjusted waist index has become a commonly used indicator for assessing central obesity, fat, and muscle mass. However, currently there is no research reporting the association between weight-adjusted waist index and risk of osteoporosis in populations of type 2 diabetes. Therefore, this study aims to provide new information on the association between weight-adjusted waist index and risk of osteoporosis in type 2 diabetes. METHODS This cross-sectional study involved 963 patients with type 2 diabetes who were admitted to the Department of Endocrinology of Cangzhou Central Hospital. Multivariate logistic regression models were used to assess the association between weight-adjusted waist index and osteoporosis. The potential nonlinear association was evaluated. The effects of interaction between subgroups were assessed using the likelihood ratio test. RESULTS Weight-adjusted waist index was positively associated with the risk of osteoporosis, regardless of traditional confounding factors. For each 1 unit increased in weight-adjusted waist index, the risk of osteoporosis increased by 67%. Furthermore, there was a nonlinear relationship between weight-adjusted waist index and osteoporosis. The subgroup analysis did not reveal any significant interactions. CONCLUSIONS Our study indicated a positive association between weight-adjusted waist index and the risk of osteoporosis in adult Chinese type 2 diabetes patients, and this relationship was nonlinear.
Collapse
Affiliation(s)
- Runzhou Pan
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
15
|
Sheu A, White CP, Center JR. Bone metabolism in diabetes: a clinician's guide to understanding the bone-glucose interplay. Diabetologia 2024; 67:1493-1506. [PMID: 38761257 PMCID: PMC11343884 DOI: 10.1007/s00125-024-06172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 05/20/2024]
Abstract
Skeletal fragility is an increasingly recognised, but poorly understood, complication of both type 1 and type 2 diabetes. Fracture risk varies according to skeletal site and diabetes-related characteristics. Post-fracture outcomes, including mortality risk, are worse in those with diabetes, placing these people at significant risk. Each fracture therefore represents a sentinel event that warrants targeted management. However, diabetes is a very heterogeneous condition with complex interactions between multiple co-existing, and highly correlated, factors that preclude a clear assessment of the independent clinical markers and pathophysiological drivers for diabetic osteopathy. Additionally, fracture risk calculators and routinely used clinical bone measurements generally underestimate fracture risk in people with diabetes. In the absence of dedicated prospective studies including detailed bone and metabolic characteristics, optimal management centres around selecting treatments that minimise skeletal and metabolic harm. This review summarises the clinical landscape of diabetic osteopathy and outlines the interplay between metabolic and skeletal health. The underlying pathophysiology of skeletal fragility in diabetes and a rationale for considering a diabetes-based paradigm in assessing and managing diabetic bone disease will be discussed.
Collapse
Affiliation(s)
- Angela Sheu
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, Australia.
- Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia.
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia.
| | - Christopher P White
- Clinical School, Prince of Wales Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia
- Department of Endocrinology and Metabolism, Prince of Wales Hospital, Sydney, Australia
| | - Jacqueline R Center
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, Australia
- Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
16
|
Pan R, Wang R, Zhang Y, Ji H, Liang X, Zhao Y. The association of waist circumference with bone mineral density and risk of osteoporosis in US adult: National health and nutrition examination survey. Bone 2024; 185:117134. [PMID: 38821388 DOI: 10.1016/j.bone.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
PURPOSE Obesity and osteoporosis (OP) are receiving increasing attention. Waist circumference (WC) is an effective indicator for assessing central obesity. Currently, there is controversy regarding the relationship between WC and bone mineral density (BMD), as well as OP. Therefore, our study aims to utilize data from the National Health and Nutrition Examination Survey (NHANES) to evaluate the relationship between WC and BMD, as well as OP, in US adults. METHODS This cross-sectional study included subjects aged ≥18 years from the NHANES 1999-2018. Multivariate linear regression models were performed to investigate the association between WC and BMD. Multivariate logistic regression models were employed to assess the relationship between WC and OP. Restricted cubic spline curves were used to assess potential nonlinear association between WC and BMD, OP. Subgroup analysis and sensitivity analysis were performed to assess the robustness of the results. RESULTS Finally, 11,165 participants (non-OP, n = 10,465; OP, n = 700) were included in the final analysis. The results showed that WC was positively associated with total femur (TF), femoral neck (FN), and lumbar spine (LS) BMD, and might be a protective factor for OP, independent of traditional confounding factors. For each 1 cm increased in WC, TF BMD, FN BMD and LS BMD increased by 0.004 g/cm2, 0.003 g/cm2 and 0.003 g/cm2, respectively, and the risk of OP decreased by 3.1 %. Furthermore, there was a non-linear relationship between WC and BMD, OP. The association remained robust in sensitivity and subgroup analyses. CONCLUSION In US adults, there is a positive association between WC and BMD, and WC may be a protective factor for the risk of OP. The association between WC and BMD as well as OP exhibits a non-linear relationship.
Collapse
Affiliation(s)
- Runzhou Pan
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China.
| | - Rongrong Wang
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yan Zhang
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Hong Ji
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Xue Liang
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yongcai Zhao
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| |
Collapse
|
17
|
Yang Q, Wang X, Liu Y, Liu J, Zhu D. Metabolic factors are not the direct mediators of the association between type 2 diabetes and osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1404747. [PMID: 39119008 PMCID: PMC11306037 DOI: 10.3389/fendo.2024.1404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Objective The causal relationship between type 2 diabetes mellitus (T2DM) and osteoporosis (OS) remains unclear. This study aims to investigate the causal relationship and explore the potential metabolic mechanism and its mediating role. Methods We conducted a comprehensive study, gathering data on 490,089 T2DM patients from the genome-wide association study (GWAS) database and selecting OS data from FinnGen and MRC-IEU sources, including 212,778 and 463,010 patients, respectively, for causal analysis. Simultaneously, we explored the potential roles of three obesity traits and 30 metabolic and inflammation-related mediating variables in the causal relationship. Results There is a strong causal relationship between T2DM and OS. The data from our two different database sources appeared in the same direction, but after correcting for body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR), the direction became the same. T2DM may increase the risk of OS [odds ratio (OR) > 1.5, p < 0.001]. Steiger's test results show that there is no reverse causality. No risk factors related to glycolipid metabolism, amino acid metabolism, and inflammation were found to mediate the causal relationship. Conclusion This study's findings indicate a robust causal relationship between T2DM and OS, influenced by relevant factors such as BMI. Our results shed light on the pathogenesis of OS and underscore the importance for clinicians to treat metabolic disorders to prevent osteoporosis.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xinyu Wang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Yanwei Liu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jing Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dong Zhu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Xu C, Wang Z, Liu Y, Duan K, Guan J. Delivery of miR-15b-5p via magnetic nanoparticle-enhanced bone marrow mesenchymal stem cell-derived extracellular vesicles mitigates diabetic osteoporosis by targeting GFAP. Cell Biol Toxicol 2024; 40:52. [PMID: 38967699 PMCID: PMC11226493 DOI: 10.1007/s10565-024-09877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
Diabetic osteoporosis (DO) presents significant clinical challenges. This study aimed to investigate the potential of magnetic nanoparticle-enhanced extracellular vesicles (GMNPE-EVs) derived from bone marrow mesenchymal stem cells (BMSCs) to deliver miR-15b-5p, thereby targeting and downregulating glial fibrillary acidic protein (GFAP) expression in rat DO models. Data was sourced from DO-related RNA-seq datasets combined with GEO and GeneCards databases. Rat primary BMSCs, bone marrow-derived macrophages (BMMs), and osteoclasts were isolated and cultured. EVs were separated, and GMNPE targeting EVs were synthesized. Bioinformatic analysis revealed a high GFAP expression in DO-related RNA-seq and GSE26168 datasets for disease models. Experimental results confirmed elevated GFAP in rat DO bone tissues, promoting osteoclast differentiation. miR-15b-5p was identified as a GFAP inhibitor, but was significantly downregulated in DO and enriched in BMSC-derived EVs. In vitro experiments showed that GMNPE-EVs could transfer miR-15b-5p to osteoclasts, downregulating GFAP and inhibiting osteoclast differentiation. In vivo tests confirmed the therapeutic potential of this approach in alleviating rat DO. Collectively, GMNPE-EVs can effectively deliver miR-15b-5p to osteoclasts, downregulating GFAP expression, and hence, offering a therapeutic strategy for rat DO.
Collapse
Affiliation(s)
- Chen Xu
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu, 233030, China
| | - Zhaodong Wang
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yajun Liu
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu, 233030, China
| | - Keyou Duan
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu, 233030, China
| | - Jianzhong Guan
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China.
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu, 233030, China.
| |
Collapse
|
19
|
Kupai K, Kang HL, Pósa A, Csonka Á, Várkonyi T, Valkusz Z. Bone Loss in Diabetes Mellitus: Diaporosis. Int J Mol Sci 2024; 25:7269. [PMID: 39000376 PMCID: PMC11242219 DOI: 10.3390/ijms25137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The objective of this review is to examine the connection between osteoporosis and diabetes, compare the underlying causes of osteoporosis in various forms of diabetes, and suggest optimal methods for diagnosing and assessing fracture risk in diabetic patients. This narrative review discusses the key factors contributing to the heightened risk of fractures in individuals with diabetes, as well as the shared elements impacting the treatment of both diabetes mellitus and osteoporosis. Understanding the close link between diabetes and a heightened risk of fractures is crucial in effectively managing both conditions. There are several review articles of meta-analysis regarding diaporosis. Nevertheless, no review articles showed collected and well-organized medications of antidiabetics and made for inconvenient reading for those who were interested in details of drug mechanisms. In this article, we presented collected and comprehensive charts of every antidiabetic medication which was linked to fracture risk and indicated plausible descriptions according to research articles.
Collapse
Affiliation(s)
- Krisztina Kupai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Hsu Lin Kang
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Anikó Pósa
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, 6725 Szeged, Hungary;
| | - Tamás Várkonyi
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
| | - Zsuzsanna Valkusz
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
| |
Collapse
|
20
|
Forner P, Sheu A. Bone Health in Patients With Type 2 Diabetes. J Endocr Soc 2024; 8:bvae112. [PMID: 38887632 PMCID: PMC11181004 DOI: 10.1210/jendso/bvae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Indexed: 06/20/2024] Open
Abstract
The association between type 2 diabetes mellitus (T2DM) and skeletal fragility is complex, with effects on bone at the cellular, molecular, and biomechanical levels. As a result, people with T2DM, compared to those without, are at increased risk of fracture, despite often having preserved bone mineral density (BMD) on dual-energy x-ray absorptiometry (DXA). Maladaptive skeletal loading and changes in bone architecture (particularly cortical porosity and low cortical volumes, the hallmark of diabetic osteopathy) are not apparent on routine DXA. Alternative imaging modalities, including quantitative computed tomography and trabecular bone score, allow for noninvasive visualization of cortical and trabecular compartments and may be useful in identifying those at risk for fractures. Current fracture risk calculators underestimate fracture risk in T2DM, partly due to their reliance on BMD. As a result, individuals with T2DM, who are at high risk of fracture, may be overlooked for commencement of osteoporosis therapy. Rather, management of skeletal health in T2DM should include consideration of treatment initiation at lower BMD thresholds, the use of adjusted fracture risk calculators, and consideration of metabolic and nonskeletal risk factors. Antidiabetic medications have differing effects on the skeleton and treatment choice should consider the bone impacts in those at risk for fracture. T2DM poses a unique challenge when it comes to assessing bone health and fracture risk. This article discusses the clinical burden and presentation of skeletal disease in T2DM. Two clinical cases are presented to illustrate a clinical approach in assessing and managing fracture risk in these patients.
Collapse
Affiliation(s)
- Patrice Forner
- Clinical School, Faculty of Medicine, St Vincent's Hospital, University of New South Wales Sydney, Sydney, NSW 2010, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Angela Sheu
- Clinical School, Faculty of Medicine, St Vincent's Hospital, University of New South Wales Sydney, Sydney, NSW 2010, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, NSW 2010, Australia
- Skeletal Diseases Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2035, Australia
| |
Collapse
|
21
|
Li J, Zhou X, Wen J, Liu S, Fan X. Establishment and validation of a nomogram clinical prediction model for osteoporosis in senile patients with type 2 diabetes mellitus. Sci Rep 2024; 14:5343. [PMID: 38438532 PMCID: PMC10912110 DOI: 10.1038/s41598-024-56127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
This study aimed to develop a predictive nomogram model to estimate the odds of osteoporosis (OP) in elderly patients with type 2 diabetes mellitus (T2DM) and validate its prediction efficiency. The hospitalized elderly patients with T2DM from the Affiliated Hospital of North Sichuan Medical University between July 2022 and March 2023 were included in this study. We sorted them into the model group and the validation group with a ratio of 7:3 randomly. The selection operator regression (LASSO) algorithm was utilized to select the optimal matching factors, which were then included in a multifactorial forward stepwise logistic regression to determine independent influencing factors and develop a nomogram. The discrimination, accuracy, and clinical efficacy of the nomogram model were analyzed utilizing the receiver operating characteristic (ROC) curve, calibration curve, and clinical decision curve analysis (DCA). A total of 379 study participants were included in this study. Gender (OR = 8.801, 95% CI 4.695-16.499), Geriatric Nutritional Risk Index (GNRI) < 98 (OR = 4.698, 95% CI 2.416-9.135), serum calcium (Ca) (OR = 0.023, 95% CI 0.003-0.154), glycated hemoglobin (HbA1c) (OR = 1.181, 95% CI 1.055-1.322), duration of diabetes (OR = 1.076, 95% CI 1.034-1.119), and serum creatinine (SCr) (OR = 0.984, 95% CI 0.975-0.993) were identified as independent influencing factors for DOP occurrence in the elderly. The area under the curve (AUC) of the nomogram model was 0.844 (95% CI 0.797-0.89) in the modeling group and 0.878 (95% CI 0.814-0.942) in the validation group. The nomogram clinical prediction model was well generalized and had moderate predictive value (AUC > 0.7), better calibration, and better clinical benefit. The nomogram model established in this study has good discrimination and accuracy, allowing for intuitive and individualized analysis of the risk of DOP occurrence in elderly individuals. It can identify high-risk populations and facilitate the development of effective preventive measures.
Collapse
Affiliation(s)
- Jing Li
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaolong Zhou
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Wen
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Shiping Liu
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Xingfu Fan
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| |
Collapse
|
22
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
23
|
Li J, Wang Y, Ullah A, Zhang R, Sun Y, Li J, Kou G. Network Pharmacology and Molecular Modeling Techniques in Unraveling the Underlying Mechanism of Citri Reticulatae Pericarpium aganist Type 2 Diabetic Osteoporosis. Nutrients 2024; 16:220. [PMID: 38257113 PMCID: PMC10819846 DOI: 10.3390/nu16020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Type 2 diabetic osteoporosis (T2DOP) is a common complication in diabetic patients that seriously affects their health and quality of life. The pathogenesis of T2DOP is complex, and there are no targeted governance means in modern medicine. Citri Reticulatae Pericarpium (CRP) is a traditional Chinese medicine that has a long history and has been used in the treatment of osteoporosis diseases. However, the molecular mechanism for the CRP treatment of T2DOP is not clear. Therefore, this study aimed to explore the underlying mechanisms of CRP for the treatment of T2DOP by using network pharmacology and molecular modeling techniques. By retrieving multiple databases, we obtained 5 bioactive compounds and 63 common targets of bioactive compounds with T2DOP, and identified AKT 1, TP 53, JUN, BCL 2, MAPK 1, NFKB 1, and ESR 1 as the core targets of their PPI network. Enrichment analysis revealed that these targets were mainly enriched in the estrogen signaling pathway, TNF signaling pathway, and AGE-RAGE signaling pathway in diabetics, which were mainly related to oxidative stress and hormonal regulation. Molecular docking and molecular dynamics simulations have shown the excellent binding effect of the bioactive compounds of CRP and the core targets. These findings reveal that CRP may ameliorate T2DOP through multiple multicomponent and multitarget pathways.
Collapse
Affiliation(s)
- Jiangtao Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Wang
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiyang Zhang
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuge Sun
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjie Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Sun X, Xu X, Yue X, Wang T, Wang Z, Zhang C, Wang J. Nanozymes With Osteochondral Regenerative Effects: An Overview of Mechanisms and Recent Applications. Adv Healthc Mater 2024; 13:e2301924. [PMID: 37633309 DOI: 10.1002/adhm.202301924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/14/2023] [Indexed: 08/28/2023]
Abstract
With the discovery of the intrinsic enzyme-like activity of metal oxides, nanozymes garner significant attention due to their superior characteristics, such as low cost, high stability, multi-enzyme activity, and facile preparation. Notably, in the field of biomedicine, nanozymes primarily focus on disease detection, antibacterial properties, antitumor effects, and treatment of inflammatory conditions. However, the potential for application in regenerative medicine, which primarily addresses wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment, is garnering interest as well. This review introduces nanozymes as an innovative strategy within the realm of bone regenerative medicine. The primary focus of this approach lies in the facilitation of osteochondral regeneration through the modulation of the pathological microenvironment. The catalytic mechanisms of four types of representative nanozymes are first discussed. The pathological microenvironment inhibiting osteochondral regeneration, followed by summarizing the therapy mechanism of nanozymes to osteochondral regeneration barriers is introduced. Further, the therapeutic potential of nanozymes for bone diseases is included. To improve the therapeutic efficiency of nanozymes and facilitate their clinical translation, future potential applications in osteochondral diseases are also discussed and some significant challenges addressed.
Collapse
Affiliation(s)
- Xueheng Sun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Xiang Xu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Zhaofei Wang
- Department of Orthopaedic Surgery, Shanghai ZhongYe Hospital, Genertec Universal Medical Group, Shanghai, 200941, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
- Institute of Translational Medicine, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinwu Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| |
Collapse
|
25
|
Trandafir AI, Sima OC, Gheorghe AM, Ciuche A, Cucu AP, Nistor C, Carsote M. Trabecular Bone Score (TBS) in Individuals with Type 2 Diabetes Mellitus: An Updated Review. J Clin Med 2023; 12:7399. [PMID: 38068450 PMCID: PMC10707110 DOI: 10.3390/jcm12237399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2025] Open
Abstract
Bone fragility is a complication of type 2 diabetes mellitus (T2DM) that has been identified in recent decades. Trabecular bone score (TBS) appears to be more accurate than bone mineral density (BMD) in diabetic bone disease, particularly in menopausal women with T2DM, to independently capture the fracture risk. Our purpose was to provide the most recent overview on TBS-associated clinical data in T2DM. The core of this narrative review is based on original studies (PubMed-indexed journals, full-length, English articles). The sample-based analysis (n = 11, N = 4653) confirmed the use of TBS in T2DM particularly in females (females/males ratio of 1.9), with ages varying between 35 and 91 (mean 65.34) years. With concern to the study design, apart from the transversal studies, two others were prospective, while another two were case-control. These early-post-pandemic data included studies of various sample sizes, such as: males and females (N of 245, 361, 511, and 2294), only women (N of 80, 96, 104, 243, 493, and 887), and only men (N = 169). Overall, this 21-month study on published data confirmed the prior profile of BMD-TBS in T2DM, while the issue of whether checking the fracture risk is mandatory in adults with uncontrolled T2DM remains to be proven or whether, on the other hand, a reduced TBS might function as a surrogate marker of complicated/uncontrolled T2DM. The interventional approach with bisphosphonates for treating T2DM-associated osteoporosis remains a standard one (n = 2). One control study on 4 mg zoledronic acid showed after 1 year a statistically significant increase of lumbar BMD in both diabetic and non-diabetic groups (+3.6%, p = 0.01 and +6.2%, p = 0.01, respectively). Further studies will pinpoint additive benefits on glucose status of anti-osteoporotic drugs or will confirm if certain glucose-lowering regimes are supplementarily beneficial for fracture risk reduction. The novelty of this literature research: these insights showed once again that the patients with T2DM often have a lower TBS than those without diabetes or with normal glucose levels. Therefore, the decline in TBS may reflect an early stage of bone health impairment in T2DM. The novelty of the TBS as a handy, non-invasive method that proved to be an index of bone microarchitecture confirms its practicality as an easily applicable tool for assessing bone fragility in T2DM.
Collapse
Affiliation(s)
- Alexandra-Ioana Trandafir
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Oana-Claudia Sima
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Ana-Maria Gheorghe
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Adrian Ciuche
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Anca-Pati Cucu
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Claudiu Nistor
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Clinical Endocrinology V, C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
| |
Collapse
|
26
|
Sheu A, Blank RD, Tran T, Bliuc D, Greenfield JR, White CP, Center JR. Associations of Type 2 Diabetes, Body Composition, and Insulin Resistance with Bone Parameters: The Dubbo Osteoporosis Epidemiology Study. JBMR Plus 2023; 7:e10780. [PMID: 37701154 PMCID: PMC10494511 DOI: 10.1002/jbm4.10780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 09/14/2023] Open
Abstract
Type 2 diabetes (T2D) may be associated with increased risk of fractures, despite preserved bone mineral density (BMD). Obesity and insulin resistance (IR) may have separate effects on bone turnover and bone strength, which contribute to skeletal fragility. We characterized and assessed the relative associations of obesity, body composition, IR, and T2D on bone turnover markers (BTMs), BMD, and advanced hip analysis (AHA). In this cross-sectional analysis of Dubbo Osteoporosis Epidemiology Study, 525 (61.3% women) participants were grouped according to T2D, IR (homeostasis model assessment insulin resistance [HOMA-IR] ≥2.5), and BMI (≥25 kg/m2): insulin-sensitive lean (IS-L), insulin-sensitive overweight/obese (IS-O), insulin-resistant (IR), and T2D. BMD, AHA, and body composition, including visceral adipose tissue (VAT) (on dual-energy x-ray absorptiometry scan) and fasting BTMs, were assessed. Analyses performed using Bayesian model averaging and principal component analysis. T2D was associated with low BTMs (by 26%-30% [95% confidence interval [CI] 11%-46%] in women, 35% [95% CI 18%-48%] in men compared to IS-L), which persisted after adjustment for VAT. BTMs were similar among IR/IS-O/IS-L. BMD was similar among T2D/IR/IS-O; BMD was low only in IS-L. All groups were similar after adjustment for BMI. Similarly, AHA components were lowest in IS-L (attenuated following adjustment). On multivariate analysis, T2D was independently associated with BTMs. IR was also associated with C-terminal telopeptide of type 1 collagen in men. Age and body size were the strongest independent contributors to BMD and AHA. VAT was inversely associated with section modulus, cross-sectional area, cross-sectional moment of inertia in women, and hip axis length in men. Low bone turnover is associated with T2D and IR (in men), while BMD and hip strength/geometry are predominantly associated with body size. VAT, indicative of dysglycemia, is also associated with impaired bone geometry. Establishing the role of BTMs and AHA fracture risk may improve skeletal assessment in T2D people. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Angela Sheu
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchSydneyNSWAustralia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Clinical Campus, Faculty of Medicine and HealthUNSW SydneySydneyNSWAustralia
- Department of Endocrinology and DiabetesSt Vincent's HospitalSydneyNSWAustralia
| | - Robert D. Blank
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchSydneyNSWAustralia
| | - Thach Tran
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchSydneyNSWAustralia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Clinical Campus, Faculty of Medicine and HealthUNSW SydneySydneyNSWAustralia
| | - Dana Bliuc
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchSydneyNSWAustralia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Clinical Campus, Faculty of Medicine and HealthUNSW SydneySydneyNSWAustralia
| | - Jerry R. Greenfield
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchSydneyNSWAustralia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Clinical Campus, Faculty of Medicine and HealthUNSW SydneySydneyNSWAustralia
- Department of Endocrinology and DiabetesSt Vincent's HospitalSydneyNSWAustralia
| | - Christopher P. White
- School of Clinical Medicine, Prince of Wales Clinical Campus, Faculty of Medicine and HealthUNSW SydneySydneyNSWAustralia
- Department of Endocrinology and MetabolismPrince of Wales HospitalSydneyNSWAustralia
| | - Jacqueline R. Center
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchSydneyNSWAustralia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Clinical Campus, Faculty of Medicine and HealthUNSW SydneySydneyNSWAustralia
- Department of Endocrinology and DiabetesSt Vincent's HospitalSydneyNSWAustralia
| |
Collapse
|
27
|
Zhou J, Liu S, Bi S, Kong W, Qian R, Xie X, Zeng M, Jiang X, Liao Z, Shuai M, Liu W, Cheng L, Wu M. The RAGE signaling in osteoporosis. Biomed Pharmacother 2023; 165:115044. [PMID: 37354815 DOI: 10.1016/j.biopha.2023.115044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Osteoporosis (OP), characterized by an imbalance of bone remodeling between formation and resorption, has become a health issue worldwide. The receptor for advanced glycation end product (RAGE), a transmembrane protein in the immunoglobin family, has multiple ligands and has been involved in many chronic diseases, such as diabetes and OP. Increasing evidence shows that activation of the RAGE signaling negatively affects bone remodeling. Ligands, such as advanced glycation end products (AGEs), S100, β-amyloid (Aβ), and high mobility group box 1 (HMGB1), have been well documented that they may negatively regulate the proliferation and differentiation of osteoblasts and positively stimulate osteoclastogenesis by activating the expression of RAGE. In this review, we comprehensively discuss the structure of RAGE and its biological functions in the pathogenesis of OP. The research findings suggest that RAGE signaling has become a potential target for the therapeutic management of OP.
Collapse
Affiliation(s)
- Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Rui Qian
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Ming Zeng
- Department of Orthopedics, Ruijin Traditional Chinese Medicine Hospital, Ruijin 342500, China
| | - Xiaowei Jiang
- Department of Joint Surgery, Ningdu County People's Hospital, Ningdu 342800, China
| | - Zhibin Liao
- Department of Joint Surgery, Ningdu County People's Hospital, Ningdu 342800, China
| | - Ming Shuai
- Department of Orthopedics, Chongyi County People's Hospital, Chongyi 341300, China
| | - Wei Liu
- Department of Orthopedics, Ningdu County Traditional Chinese Medicine Hospital, Ningdu 342800, China
| | - Long Cheng
- Department of Orthopedics, Ningdu County Traditional Chinese Medicine Hospital, Ningdu 342800, China
| | - Moujian Wu
- Department of Orthopedics, Xingguo County Traditional Chinese Medicine Hospital, Xingguo 342400, China
| |
Collapse
|
28
|
Shi T, Liu T, Kou Y, Rong X, Meng L, Cui Y, Gao R, Hu S, Li M. The Synergistic Effect of Zuogui Pill and Eldecalcitol on Improving Bone Mass and Osteogenesis in Type 2 Diabetic Osteoporosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1414. [PMID: 37629706 PMCID: PMC10456904 DOI: 10.3390/medicina59081414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Background and Objectives: The incidence of diabetic osteoporosis, an important complication of diabetes mellitus, is increasing gradually. This study investigated the combined effect of the Zuogui pill (ZGP) and eldecalcitol (ED-71), a novel vitamin D analog, on type 2 diabetic osteoporosis (T2DOP) and explored their action mechanism. Materials and Methods: Blood glucose levels were routinely monitored in db/db mice while inducing T2DOP. We used hematoxylin and eosin staining, Masson staining, micro-computed tomography, and serum biochemical analysis to evaluate changes in the bone mass and blood calcium and phosphate levels of mice. Immunohistochemical staining was performed to assess the osteoblast and osteoclast statuses. The MC3T3-E1 cell line was cultured in vitro under a high glucose concentration and induced to undergo osteogenic differentiation. Quantitative real-time polymerase chain reaction, Western blot, immunofluorescence, ALP, and alizarin red staining were carried out to detect osteogenic differentiation and PI3K-AKT signaling pathway activity. Results: ZGP and ED-71 led to a dramatic decrease in blood glucose levels and an increase in bone mass in the db/db mice. The effect was strongest when both were used together. ZGP combined with ED-71 promoted osteoblast activity and inhibited osteoclast activity in the trabecular bone region. The in vitro results revealed that ZGP and ED-71 synergistically promoted osteogenic differentiation and activated the PI3K-AKT signaling pathway. The PI3K inhibitor LY294002 or AKT inhibitor ARQ092 altered the synergistic action of both on osteogenic differentiation. Conclusions: The combined use of ZGP and ED-71 reduced blood glucose levels in diabetic mice and promoted osteogenic differentiation through the PI3K-AKT signaling pathway, resulting in improved bone mass. Our study suggests that the abovementioned combination constitutes an effective treatment for T2DOP.
Collapse
Affiliation(s)
- Tuo Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Ting Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Xing Rong
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Lingxiao Meng
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Yajun Cui
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Ruihan Gao
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; (T.L.); (Y.K.); (X.R.); (L.M.); (Y.C.); (R.G.)
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 251600, China
| |
Collapse
|
29
|
Sgarro GA, Grilli L, Valenzano AA, Moscatelli F, Monacis D, Toto G, De Maria A, Messina G, Polito R. The Role of BIA Analysis in Osteoporosis Risk Development: Hierarchical Clustering Approach. Diagnostics (Basel) 2023; 13:2292. [PMID: 37443685 DOI: 10.3390/diagnostics13132292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a common musculoskeletal disorder among the elderly and a chronic condition which, like many other chronic conditions, requires long-term clinical management. It is caused by many factors, including lifestyle and obesity. Bioelectrical impedance analysis (BIA) is a method to estimate body composition based on a weak electric current flow through the body. The measured voltage is used to calculate body bioelectrical impedance, divided into resistance and reactance, which can be used to estimate body parameters such as total body water (TBW), fat-free mass (FFM), fat mass (FM), and muscle mass (MM). This study aims to find the tendency of osteoporosis in obese subjects, presenting a method based on hierarchical clustering, which, using BIA parameters, can group patients who show homogeneous characteristics. Grouping similar patients into clusters can be helpful in the field of medicine to identify disorders, pathologies, or more generally, characteristics of significant importance. Another added value of the clustering process is the possibility to define cluster prototypes, i.e., imaginary patients who represent models of "states", which can be used together with clustering results to identify subjects with similar characteristics in a classification context. The results show that hierarchical clustering is a method that can be used to provide the detection of states and, consequently, supply a more personalized medicine approach. In addition, this method allowed us to elect BIA as a potential prognostic and diagnostic instrument in osteoporosis risk development.
Collapse
Affiliation(s)
- Giacinto Angelo Sgarro
- Department of Economics, Management and Territory (DEMeT) and Grant Office, University of Foggia, 71121 Foggia, Italy
| | - Luca Grilli
- Department of Economics, Management and Territory (DEMeT) and Grant Office, University of Foggia, 71121 Foggia, Italy
| | - Anna Antonia Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Domenico Monacis
- Department of Humanities, Letters, Cultural Heritage, Educational Sciences, University of Foggia, 71100 Foggia, Italy
| | - Giusi Toto
- Department of Humanities, Letters, Cultural Heritage, Educational Sciences, University of Foggia, 71100 Foggia, Italy
| | - Antonella De Maria
- Section of Human Physiology and Unit of Dietetics and Sports Medicine, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
30
|
Icariin Treatment Rescues Diabetes Induced Bone Loss via Scavenging ROS and Activating Primary Cilia/Gli2/Osteocalcin Signaling Pathway. Cells 2022; 11:cells11244091. [PMID: 36552853 PMCID: PMC9777100 DOI: 10.3390/cells11244091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes-associated bone complications lead to fragile bone mechanical strength and osteoporosis, aggravating the disease burden of patients. Advanced evidence shows that chronic hyperglycemia and metabolic intermediates, such as inflammatory factor, reactive oxygen species (ROS), and advanced glycation end products (AGEs), are regarded as dominant hazardous factors of bone complications, whereas the pathophysiological mechanisms are complex and controversial. By establishing a diabetic Sprague-Dawley (SD) rat model and diabetic bone loss cell model in vitro, we confirmed that diabetes impaired primary cilia and led to bone loss, while adding Icariin (ICA) could relieve the inhibitions. Mechanistically, ICA could scavenge ROS to maintain the mitochondrial and primary cilia homeostasis of osteoblasts. Intact primary cilia acted as anchoring and modifying sites of Gli2, thereby activating the primary cilia/Gli2/osteocalcin signaling pathway to promote osteoblast differentiation. All results suggest that ICA has potential as a therapeutic drug targeting bone loss induced by diabetes.
Collapse
|