1
|
Dong YW, Qu HX, Wang YQ, Qi JJ, Wei HK, Sun BX, Sun H, Liang S. Oleanolic acid improves the in vitro developmental competence of early porcine embryos by reducing oxidative stress and ameliorating mitochondrial function. Anim Biosci 2025; 38:431-443. [PMID: 39210793 PMCID: PMC11917446 DOI: 10.5713/ab.24.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Oleanolic acid (OA) is a pentacyclic triterpenoid with antioxidant activity that can be an effective scavenger of free radicals in cells. This study was designed to investigate the effects of OA on porcine early embryo developmental competence in vitro and its possible mechanisms of action. METHODS In the present study, parthenogenetically activated porcine embryos were used as models to assess the effects of OA on the in vitro developmental capacity of early porcine embryos in vitro. Zygotic genome activation, mitochondrial function, oxidative stress, cell proliferation and apoptosis in early porcine embryos were examined after supplementing the culture medium with 5 μM OA. RESULTS The results showed that 5 μM OA supplementation not only significantly increased the blastocyst diameter in early embryos on day 6 but also increased the total cell number of blastocysts. Furthermore, OA supplementation increased the blastocyst proliferation rate and decreased blastocyst apoptosis. Moreover, OA supplementation significantly increased the proportion of embryos that developed to the 4-cell stage after 48 h of in vitro culture and upregulated the expression of genes associated with zygotic genome activation (DPPA2 and ZSCAN4). Notably, OA alleviated oxidative stress by reducing the intracellular levels of reactive oxygen species and increasing the intracellular levels of reduced glutathione at the 4-cell stage and increased the activities of superoxide dismutase and catalase. Concurrently, OA significantly increased the mitochondrial membrane potential and intracellular adenosine 5'-triphosphate content. CONCLUSION These results suggest that OA promotes the in vitro developmental competence of parthenogenetically activated porcine embryos by reducing oxidative stress and improving mitochondrial function during in vitro culture and that OA may contribute to the efficiency of in vitro embryo production.
Collapse
Affiliation(s)
- Yan-Wei Dong
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun130062, China
| | - He-Xuan Qu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun130062, China
| | - Yan-Qiu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun130062, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun130062, China
| | - Hua-Kai Wei
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun130062, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun130062, China
| | - Hao Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun130062, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun130062, China
| |
Collapse
|
2
|
Carrasqueira J, Bernardino S, Bernardino R, Afonso C. Marine-Derived Polysaccharides and Their Potential Health Benefits in Nutraceutical Applications. Mar Drugs 2025; 23:60. [PMID: 39997184 PMCID: PMC11857343 DOI: 10.3390/md23020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Marine-derived polysaccharides have sparked immense interest in the nutraceutical industry as they possess a wide range of bioactivities which are highlighted in this review. These include antioxidants, anti-inflammatory, anti-cancer, gut microbiota regulator, anti-diabetic, and anti-obesity. Algae, marine invertebrates, vertebrates, and microorganisms are the main sources of marine polysaccharides, such as alginate, fucoidan, laminarin, carrageenan, chitosan, glycosaminoglycans, and exopolysaccharides. The structure and functional groups of these compounds influence their bioactive properties. Moreover, the functional properties of polysaccharides, such as gelling, thickening, and stabilising capabilities, are also crucial in product development, where they can serve as gluten substitutes in bakery goods and stabilisers in icings, sauces, and yoghurts. The potential of commercial products under development, such as marine polysaccharide supplements, is discussed, along with already commercialised products in the nutraceutical market. This review emphasises the enormous potential of marine-derived polysaccharides as bioactive compounds with health benefits and commercial value.
Collapse
Affiliation(s)
- Joana Carrasqueira
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| | - Susana Bernardino
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| | - Raul Bernardino
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Clélia Afonso
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| |
Collapse
|
3
|
Jawad A, Oh D, Choi H, Kim M, Ham J, Oh BC, Lee J, Hyun SH. Myo-inositol improves developmental competence and reduces oxidative stress in porcine parthenogenetic embryos. Front Vet Sci 2024; 11:1475329. [PMID: 39735584 PMCID: PMC11672211 DOI: 10.3389/fvets.2024.1475329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/21/2024] [Indexed: 12/31/2024] Open
Abstract
Objective Myo-inositol (Myo-Ins), the most abundant form of inositol, is an antioxidant and plays a crucial role in the development and reproduction of mammals and humans. However, information elucidating the role of Myo-Ins in porcine embryonic development after parthenogenetic activation (PA) is still lacking. Therefore, we investigated the effect of Myo-Ins on porcine embryos and its underlying mechanisms. Methods In this study, various concentrations of Myo-Ins (0, 5, 10, and 20 mM) were added to the porcine zygotic medium (PZM3) during the in vitro culture (IVC) of porcine embryos. Several characteristics were evaluated, including cleavage rate, blastocyst formation rate, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels in 4-5 cell stage embryos, total cell number, apoptotic rate in blastocysts, mitochondrial membrane potential (MMP), mitochondrial quantity, mitochondrial stress in the blastocysts, and gene expression for antioxidant and mitochondrial function markers. Additionally, the immunofluorescence of HO-1 was assessed. Results The results showed that Myo-Ins at concentrations of 10 and 20 mM significantly increased the blastocyst formation rate compared to the control group. Embryos supplemented with 20 mM Myo-Ins exhibited higher GSH levels and lower ROS levels than those in the control group. Myo-Ins supplementation also decreased the rate of apoptosis and the apoptotic index in the treatment groups. Additionally, embryos supplemented with 20 mM Myo-Ins showed increased mitochondrial membrane potential (MMP), greater mitochondrial quantity, and reduced oxidative stress in the mitochondria. Interestingly, the expression levels of genes related to mitochondrial function and the nuclear erythroid factor 2-related factor (NRF2) pathway were elevated in the Myo-Ins treated groups. Furthermore, immunofluorescence results indicated that 20 mM Myo-Ins significantly increased HO-1 expression in blastocysts compared to the control group. Conclusion In conclusion, 20 mM Myo-Ins supplementation enhanced blastocyst development and improved mitochondrial function by regulating apoptosis, reducing oxidative stress, and activating the NRF2 pathway.
Collapse
Affiliation(s)
- Ali Jawad
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Jaehyung Ham
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Byoung Chol Oh
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joohyeong Lee
- Department of Companion Animal Industry, College of Healthcare and Biotechnology, Semyung University, Jecheon, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea
- Chungbuk National University Hospital, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Sarkar P, Bandyopadhyay TK, Gopikrishna K, Nath Tiwari O, Bhunia B, Muthuraj M. Algal carbohydrates: Sources, biosynthetic pathway, production, and applications. BIORESOURCE TECHNOLOGY 2024; 413:131489. [PMID: 39278363 DOI: 10.1016/j.biortech.2024.131489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Algae play a significant role in the global carbon cycle by utilizing photosynthesis to efficiently convert solar energy and atmospheric carbon dioxide into various chemical compounds, notably carbohydrates, pigments, lipids, and released oxygen, making them a unique sustainable cellular factory. Algae mostly consist of carbohydrates, which include a broad variety of structures that contribute to their distinct physical and chemical properties such as degree of polymerization, side chain, branching, degree of sulfation, hydrogen bond etc., these features play a crucial role in regulating many biological activity, nutritional and pharmaceutical properties. Algal carbohydrates have not received enough attention in spite of their distinctive structural traits linked to certain biological and physicochemical properties. Nevertheless, it is anticipated that there will be a significant increase in the near future due to increasing demand, sustainable source, biofuel generation and their bioactivity. This is facilitated by the abundance of easily accessible information on the structural data and distinctive characteristics of these biopolymers. This review delves into the different types of saccharides such as agar, alginate, fucoidan, carrageenan, ulvan, EPS and glucans synthesized by various macroalgal and microalgal systems, which include intracellular, extracellular and cell wall saccharides. Their structure, biosynthetic pathway, sources, production strategies and their applications in various field such as nutraceuticals, pharmaceuticals, biomedicine, food and feed, cosmetics, and bioenergy are also elaborately discussed. Algal polysaccharide has huge a scope for exploitation in future due to their application in food and pharmaceutical industry and it can become a huge source of capital and income.
Collapse
Affiliation(s)
- Pradip Sarkar
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India
| | | | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, Government of India, New Delhi 110 016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
5
|
Zhang Z, Zhao W, Wang Z, Pan Y, Wang Q, Zhang Z. Integration of ssGWAS and ROH analyses for uncovering genetic variants associated with reproduction traits in Large White pigs. Anim Genet 2024; 55:714-724. [PMID: 39129705 DOI: 10.1111/age.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 05/26/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
The low heritability of reproduction traits such as total number born (TNB), number born alive (NBA) and adjusted litter weight until 21 days at weaning (ALW) poses a challenge for genetic improvement. In this study, we aimed to identify genetic variants that influence these traits and evaluate the accuracy of genomic selection (GS) using these variants as genomic features. We performed single-step genome-wide association studies (ssGWAS) on 17 823 Large White (LW) pigs, of which 2770 were genotyped by 50K single nucleotide polymorphism (SNP) chips. Additionally, we analyzed runs of homozygosity (ROH) in the population and tested their effects on the traits. The genomic feature best linear unbiased prediction (GFBLUP) was then carried out in an independent population of 350 LW pigs using identified trait-related SNP subsets as genomic features. As a result, our findings identified five, one and four SNP windows that explaining more than 1% of genetic variance for ALW, TNB, and NBA, respectively and discovered 358 hotspots and nine ROH islands. The ROH SSC1:21814570-27186456 and SSC11:7220366-14276394 were found to be significantly associated with ALW and NBA, respectively. We assessed the genomic estimated breeding value accuracy through 20 replicates of five-fold cross-validation. Our findings demonstrate that GFBLUP, incorporating SNPs located in effective ROH (p-value < 0.05) as genomic features, might enhance GS accuracy for ALW compared with GBLUP. Additionally, using SNPs explaining more than 0.1% of the genetic variance in ssGWAS for NBA as genomic features might improve the GS accuracy, too. However, it is important to note that the incorporation of inappropriate genomic features can significantly reduce GS accuracy. In conclusion, our findings provide valuable insights into the genetic mechanisms of reproductive traits in pigs and suggest that the ssGWAS and ROH have the potential to enhance the accuracy of GS for reproductive traits in LW pigs.
Collapse
Affiliation(s)
- Zhenyang Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co. Ltd, Hefei, China
| | - Zhen Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Pramanik S, Singh A, Abualsoud BM, Deepak A, Nainwal P, Sargsyan AS, Bellucci S. From algae to advancements: laminarin in biomedicine. RSC Adv 2024; 14:3209-3231. [PMID: 38249671 PMCID: PMC10797329 DOI: 10.1039/d3ra08161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Laminarin, a complicated polysaccharide originating from brown algae, has emerged as a compelling candidate in the domain of biomedical research. This enigmatic molecule, composed of glucose units associated with both β-1,3 and β-1,6 glycosidic bonds, possesses an array of remarkable characteristics that render it auspicious for multifaceted biomedical applications. This review investigates the comprehensive potential of laminarin in the biomedical domain, emphasizing its remarkable biocompatibility, low cytotoxicity, and cell proliferation support. Laminarin's immunomodulatory attributes position it as an encouraging contender in immunotherapy and the development of vaccines. Moreover, its anti-inflammatory and antioxidant characteristics provide a promising avenue for combatting conditions associated with oxidative stress. In particular, laminarin excels as a drug delivery vehicle owing to its exceptional encapsulation capabilities emerging from its porous framework. Integrating pH and redox responsiveness in laminarin-based drug delivery systems is poised to redefine targeted therapies. Laminarin substantially contributes to tissue engineering by improving adhesion, migration of cells, and deposition of extracellular matrix. This augmentation magnifies the regenerative capability of tissue-engineered constructs, substantiated by the advancement of laminarin-based wound dressings and tissue scaffolds, marking considerable progress in the domain of wound healing and tissue regeneration. While laminarin exhibits substantial potential in biomedical applications, it remains in the initial phases of exploration. Comprehensive preclinical and clinical research is warranted to verify its effectiveness and safety across various applications. In essence, laminarin, a marine marvel, has the capability to remodel biomedical research, offering inventive solutions to complex difficulties.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University Rohtak 124021 India
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University Amman 19328 Jordan
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University Dehradun 248001 India
| | - Armen S Sargsyan
- Scientific and Production Center "Armbiotechnology" NAS RA 14 Gyurjyan Str. Yerevan 0056 Armenia
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
7
|
Krishna Perumal P, Huang CY, Chen CW, Anisha GS, Singhania RR, Dong CD, Patel AK. Advances in oligosaccharides production from brown seaweeds: extraction, characterization, antimetabolic syndrome, and other potential applications. Bioengineered 2023; 14:2252659. [PMID: 37726874 PMCID: PMC10512857 DOI: 10.1080/21655979.2023.2252659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 09/21/2023] Open
Abstract
Brown seaweeds are a promising source of bioactive substances, particularly oligosaccharides. This group has recently gained considerable attention due to its diverse cell wall composition, structure, and wide-spectrum bioactivities. This review article provides a comprehensive update on advances in oligosaccharides (OSs) production from brown seaweeds and their potential health applications. It focuses on advances in feedstock pretreatment, extraction, characterization, and purification prior to OS use for potential health applications. Brown seaweed oligosaccharides (BSOSs) are extracted using various methods. Among these, enzymatic hydrolysis is the most preferred, with high specificity, mild reaction conditions, and low energy consumption. However, the enzyme selection and hydrolysis conditions need to be optimized for desirable yield and oligosaccharides composition. Characterization of oligosaccharides is essential to determine their structure and properties related to bioactivities and to predict their most suitable application. This is well covered in this review. Analytical techniques such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and nuclear magnetic resonance (NMR) spectroscopy are commonly applied to analyze oligosaccharides. BSOSs exhibit a range of biological properties, mainly antimicrobial, anti-inflammatory, and prebiotic properties among others. Importantly, BSOSs have been linked to possible health advantages, including metabolic syndrome management. Metabolic syndrome is a cluster of conditions, such as obesity, hypertension, and dyslipidemia, which increase the risk of cardiovascular disease and type 2 diabetes. Furthermore, oligosaccharides have potential applications in the food and pharmaceutical industries. Future research should focus on improving industrial-scale oligosaccharide extraction and purification, as well as researching their potential utility in the treatment of various health disorders.[Figure: see text].
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Sustainable Environment Research Center, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, India
| | - Cheng-Di Dong
- Sustainable Environment Research Center, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Krishna Perumal P, Dong CD, Chauhan AS, Anisha GS, Kadri MS, Chen CW, Singhania RR, Patel AK. Advances in oligosaccharides production from algal sources and potential applications. Biotechnol Adv 2023; 67:108195. [PMID: 37315876 DOI: 10.1016/j.biotechadv.2023.108195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
In recent years, algal-derived glycans and oligosaccharides have become increasingly important in health applications due to higher bioactivities than plant-derived oligosaccharides. The marine organisms have complex, and highly branched glycans and more reactive groups to elicit greater bioactivities. However, complex and large molecules have limited use in broad commercial applications due to dissolution limitations. In comparison to these, oligosaccharides show better solubility and retain their bioactivities, hence, offering better applications opportunity. Accordingly, efforts are being made to develop a cost-effective method for enzymatic extraction of oligosaccharides from algal polysaccharides and algal biomass. Yet detailed structural characterization of algal-derived glycans is required to produce and characterize the potential biomolecules for improved bioactivity and commercial applications. Some macroalgae and microalgae are being evaluated as in vivo biofactories for efficient clinical trials, which could be very helpful in understanding the therapeutic responses. This review discusses the recent advancements in the production of oligosaccharides from microalgae. It also discusses the bottlenecks of the oligosaccharides research, technological limitations, and probable solutions to these problems. Furthermore, it presents the emerging bioactivities of algal oligosaccharides and their promising potential for possible biotherapeutic application.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804201, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
9
|
Maslinic Acid Supplementation during the In Vitro Culture Period Ameliorates Early Embryonic Development of Porcine Embryos by Regulating Oxidative Stress. Animals (Basel) 2023; 13:ani13061041. [PMID: 36978582 PMCID: PMC10044061 DOI: 10.3390/ani13061041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
As a pentacyclic triterpene, MA exhibits effective free radical scavenging capabilities. The purpose of this study was to explore the effects of MA on porcine early-stage embryonic development, oxidation resistance and mitochondrial function. Our results showed that 1 μM was the optimal concentration of MA, which resulted in dramatically increased blastocyst formation rates and improvement of blastocyst quality of in vitro-derived embryos from parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). Further analysis indicated that MA supplementation not only significantly decreased the abundance of intracellular reactive oxygen species (ROS) and dramatically increased the abundance of intracellular reductive glutathione (GSH) in porcine early-stage embryos, but also clearly attenuated mitochondrial dysfunction and inhibited apoptosis. Moreover, Western blotting showed that MA supplementation upregulated OCT4 (p < 0.01), SOD1 (p < 0.0001) and CAT (p < 0.05) protein expression in porcine early-stage embryos. Collectively, our data reveal that MA supplementation exerts helpful effects on porcine early embryo development competence via regulation of oxidative stress (OS) and amelioration of mitochondrial function and that MA may be useful for increasing the in vitro production (IVP) efficiency of porcine early-stage embryos.
Collapse
|
10
|
Joo YE, Jeong PS, Lee S, Jeon SB, Gwon MA, Kim MJ, Kang HG, Song BS, Kim SU, Cho SK, Sim BW. Anethole improves the developmental competence of porcine embryos by reducing oxidative stress via the sonic hedgehog signaling pathway. J Anim Sci Biotechnol 2023; 14:32. [PMID: 36814325 PMCID: PMC9945695 DOI: 10.1186/s40104-022-00824-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/11/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Anethole (AN) is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals. However, no study has examined the effect of AN on porcine embryonic development. Therefore, we investigated the effect of AN on the development of porcine embryos and the underlying mechanism. RESULTS We cultured porcine in vitro-fertilized embryos in medium with AN (0, 0.3, 0.5, and 1 mg/mL) for 6 d. AN at 0.5 mg/mL significantly increased the blastocyst formation rate, trophectoderm cell number, and cellular survival rate compared to the control. AN-supplemented embryos exhibited significantly lower reactive oxygen species levels and higher glutathione levels than the control. Moreover, AN significantly improved the quantity of mitochondria and mitochondrial membrane potential, and increased the lipid droplet, fatty acid, and ATP levels. Interestingly, the levels of proteins and genes related to the sonic hedgehog (SHH) signaling pathway were significantly increased by AN. CONCLUSIONS These results revealed that AN improved the developmental competence of porcine preimplantation embryos by activating SHH signaling against oxidative stress and could be used for large-scale production of high-quality porcine embryos.
Collapse
Affiliation(s)
- Ye Eun Joo
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.262229.f0000 0001 0719 8572Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Pil-Soo Jeong
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Sanghoon Lee
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.254230.20000 0001 0722 6377Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Se-Been Jeon
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.262229.f0000 0001 0719 8572Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min-Ah Gwon
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.412077.70000 0001 0744 1296Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Min Ju Kim
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.262229.f0000 0001 0719 8572Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Hyo-Gu Kang
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.254230.20000 0001 0722 6377Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Bong-Seok Song
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Sun-Uk Kim
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.412786.e0000 0004 1791 8264Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Seong-Keun Cho
- Department of Animal Science, College of Natural Resources and Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea.
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.
| |
Collapse
|
11
|
Wang CR, Ji HW, He SY, Liu RP, Wang XQ, Wang J, Huang CM, Xu YN, Li YH, Kim NH. Chrysoeriol Improves In Vitro Porcine Embryo Development by Reducing Oxidative Stress and Autophagy. Vet Sci 2023; 10:vetsci10020143. [PMID: 36851447 PMCID: PMC9958645 DOI: 10.3390/vetsci10020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Chrysoeriol (CHE) is a flavonoid substance that exists in many plants. It has various physiological and pharmacological effects, including anti-inflammatory, antioxidant, anti-tumor, and protective activity, especially for the cardiovascular system and liver. Among common livestock embryos, porcine embryos are often considered high-quality objects for studying the antioxidant mechanisms of oocytes. Because porcine embryos contain high levels of lipids, they are more vulnerable to external stimuli, which affect development. Our study explored the influence of CHE supplementation on oxidative stress in porcine oocytes and its possible mechanisms. Different concentrations of CHE (0, 0.1, 1, and 3 µM) were supplemented in the in vitro culture medium of the porcine oocytes. The results showed that supplementation with 1 µM CHE significantly increased the blastocyst rate and total cell number of embryos in vitro. After finding the beneficial effects of CHE, we measured reactive oxygen species (ROS), glutathione (GSH), and mitochondrial membrane potential (MMP) when the oocytes reached the 4-cell stage of development and determined the levels of apoptosis, cell proliferation, and autophagy at the blastocyst stage of development. The expression levels of some related genes were preliminarily detected by qRT-PCR. The results showed that the apoptosis of blastocysts in the CHE-treated culture also decreased compared with the untreated culture. Furthermore, CHE downregulated intracellular ROS and increased GSH in the embryos. CHE was also shown to improve the activity of mitochondria and inhibit the occurrence of autophagy. In addition, antioxidant-related genes (SOD1, SOD2, and CAT) and cell pluripotency-related genes (SOX2, OCT4, and NANOG) were upregulated. At the same time, apoptosis-related (Caspase 3) and autophagy-related (LC3B) genes showed a downward trend after supplementation with CHE. These results indicate that CHE improved the development of porcine embryos in vitro by reducing oxidative stress and autophagy levels.
Collapse
|
12
|
WANG J, JIN QG, LIU RP, WANG XQ, LI YH, KIM NH, XU YN. Dihydromyricetin supplementation during in vitro culture improves porcine oocyte developmental competence by regulating oxidative stress. J Reprod Dev 2023; 69:10-17. [PMID: 36403957 PMCID: PMC9939282 DOI: 10.1262/jrd.2022-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dihydromyricetin (DHM), a dihydroflavonoid compound, exhibits a variety of biological activities, including antitumor activity. However, the effects of DHM on mammalian reproductive processes, especially during early embryonic development, remain unclear. In this study, we added DHM to porcine zygotic medium to explore the influence and underlying mechanisms of DHM on the developmental competence of parthenogenetically activated porcine embryos. Supplementation with 5 μM DHM during in vitro culture (IVC) significantly improved blastocyst formation rate and increased the total number of cells in porcine embryos. Further, DHM supplementation also improved glutathione levels and mitochondrial membrane potential; reduced natural reactive oxygen species levels in blastomeres and apoptosis rate; upregulated Nanog, Oct4, SOD1, SOD2, Sirt1, and Bcl2 expression; and downregulated Beclin1, ATG12, and Bax expression. Collectively, DHM supplementation regulated oxidative stress during IVC and could act as a potential antioxidant during in vitro porcine oocytes maturation.
Collapse
Affiliation(s)
- Jing WANG
- College of Agriculture, Yanbian University, Yanji 133000, China,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Qing-Guo JIN
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Rong-Ping LIU
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Xin-Qin WANG
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Ying-Hua LI
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Nam-Hyung KIM
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Yong-Nan XU
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| |
Collapse
|
13
|
Karuppusamy S, Rajauria G, Fitzpatrick S, Lyons H, McMahon H, Curtin J, Tiwari BK, O’Donnell C. Biological Properties and Health-Promoting Functions of Laminarin: A Comprehensive Review of Preclinical and Clinical Studies. Mar Drugs 2022; 20:772. [PMID: 36547919 PMCID: PMC9780867 DOI: 10.3390/md20120772] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Marine algal species comprise of a large portion of polysaccharides which have shown multifunctional properties and health benefits for treating and preventing human diseases. Laminarin, or β-glucan, a storage polysaccharide from brown algae, has been reported to have potential pharmacological properties such as antioxidant, anti-tumor, anti-coagulant, anticancer, immunomodulatory, anti-obesity, anti-diabetic, anti-inflammatory, wound healing, and neuroprotective potential. It has been widely investigated as a functional material in biomedical applications as it is biodegradable, biocompatible, and is low toxic substances. The reported preclinical and clinical studies demonstrate the potential of laminarin as natural alternative agents in biomedical and industrial applications such as nutraceuticals, pharmaceuticals, functional food, drug development/delivery, and cosmeceuticals. This review summarizes the biological activities of laminarin, including mechanisms of action, impacts on human health, and reported health benefits. Additionally, this review also provides an overview of recent advances and identifies gaps and opportunities for further research in this field. It further emphasizes the molecular characteristics and biological activities of laminarin in both preclinical and clinical settings for the prevention of the diseases and as potential therapeutic interventions.
Collapse
Affiliation(s)
- Shanmugapriya Karuppusamy
- School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Gaurav Rajauria
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, V92 CX88 Tralee, Ireland
| | | | - Henry Lyons
- Nutramara Ltd., Beechgrove House Strand Street, V92 FH0K Tralee, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, V92 CX88 Tralee, Ireland
| | - James Curtin
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D01 K822 Dublin, Ireland
| | - Brijesh K. Tiwari
- Teagasc Food Research Centre, Department of Food Chemistry and Technology, Ashtown, D15 KN3K Dublin, Ireland
| | - Colm O’Donnell
- School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
14
|
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci 2022; 9:vetsci9080439. [PMID: 36006354 PMCID: PMC9415395 DOI: 10.3390/vetsci9080439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro embryo production (IVEP) technique is widely used in the field of reproductive biology. In vitro maturation (IVM) is the first and most critical step of IVEP, during which, the oocyte is matured in an artificial maturation medium under strict laboratory conditions. Despite all of the progress in the field of IVEP, the quality of in vitro matured oocytes remains inferior to that of those matured in vivo. The accumulation of substantial amounts of reactive oxygen species (ROS) within oocytes during IVM has been regarded as one of the main factors altering oocyte quality. One of the most promising approaches to overcome ROS accumulation within oocytes is the supplementation of oocyte IVM medium with antioxidants. In this article, we discuss recent advancements depicting the adverse effects of ROS on mammalian oocytes. We also discuss the potential use of antioxidants and their effect on both oocyte quality and IVM rate.
Collapse
Affiliation(s)
- Shimaa I. Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam El-Sheikh Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Abdelmonem Montaser Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samy M. Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
15
|
Liu RP, Wang XQ, Wang J, Dan L, Li YH, Jiang H, Xu YN, Kim NH. Oroxin A reduces oxidative stress, apoptosis, and autophagy and improves the developmental competence of porcine embryos in vitro. Reprod Domest Anim 2022; 57:1255-1266. [PMID: 35780288 DOI: 10.1111/rda.14200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Oroxin A (OA) is a flavonoid isolated from Oroxylum indicum (L.) Kurz that has various biological activities, including antioxidant activities. This study aimed to examine the viability of using OA in an in vitro culture (IVC) medium for its antioxidant effects and related molecular mechanisms on porcine blastocyst development. In this study, we investigated the effects of OA on early porcine embryo development via terminal deoxynucleotidyl transferase dUTP nick-end labeling, 5-ethynyl-2'-deoxyuridine labeling, quantitative reverse transcription PCR, and immunocytochemistry. Embryos cultured in the IVC medium supplemented with 2.5 μM of OA had an increased blastocyst formation rate, total cell number, and proliferation capacity, along with a low apoptosis rate. OA supplementation decreased reactive oxygen species levels, while increasing glutathione levels. OA-treated embryos exhibited an improved intracellular mitochondrial membrane potential and reduced autophagy. Moreover, levels of pluripotency- and antioxidant-related genes were upregulated, whereas those of apoptosis- and autophagy-related genes were downregulated by OA addition. In conclusion, OA improves preimplantation embryonic development by reducing oxidative stress and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Rong-Ping Liu
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Xin-Qin Wang
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Jing Wang
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Luo Dan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Ying-Hua Li
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Yong-Nan Xu
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Nam-Hyung Kim
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| |
Collapse
|
16
|
Schisanhenol improves early porcine embryo development by regulating the phosphorylation level of MAPK. Theriogenology 2021; 175:34-43. [PMID: 34481228 DOI: 10.1016/j.theriogenology.2021.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
Schisanhenol (SAL), a biphenyl cyclooctene-type lignin compound which can be extracted and isolated from many plants of the Schisandra family, exhibits a variety of biological activities including anti chronic cough, night sweating, thirst, diabetes, and obesity. However, its effects on the female reproductive system are unclear. Previous studies showed that SAL had potential antioxidant activity in heart, liver, and brain. Therefore, we hypothesized that SAL could improve porcine early development by reducing oxidative stress. The purpose of this study was to investigate the effects of SAL on preimplantation porcine embryos and the potential mechanisms. In this study, we analyzed the effects of SAL on embryo quality, reactive oxygen species (ROS) accumulation, mitochondrial function, cell proliferation and apoptosis, and the activation of MAPK pathway. The results showed that 10 μM SAL significantly increased the blastocyst formation rate, proliferation ability, and mitochondrial activity while reducing ROS accumulation and apoptosis level. During this process, the phosphorylation levels of ERK1/2, JNK1/2/3, and p38 were decreased. In summary, 10 μM SAL improves porcine preimplantation embryo development by reducing ROS accumulation.
Collapse
|
17
|
Qi JJ, Li XX, Zhang Y, Diao YF, Hu WY, Wang DL, Jiang H, Zhang JB, Sun BX, Liang S. Supplementation with asiatic acid during in vitro maturation improves porcine oocyte developmental competence by regulating oxidative stress. Theriogenology 2021; 172:169-177. [PMID: 34174755 DOI: 10.1016/j.theriogenology.2021.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/08/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Asiatic acid is a natural triterpene found in Centella asiatica that acts as an effective free radical scavenger. Our previous research showed that asiatic acid delayed porcine oocyte ageing in vitro and improved preimplantation embryo development competence in vitro; however, the protective effects of asiatic acid against oxidative stress in porcine oocyte maturation are still unclear. Here, we investigated the effects of asiatic acid on porcine oocyte in vitro maturation (IVM) and subsequent embryonic development competence after parthenogenetic activation (PA) and in vitro fertilization (IVF). The results of the present research showed that 10 μM asiatic acid supplementation did not affect the expansion of cumulus cells or polar body extrusion of porcine oocytes, while asiatic acid application significantly increased the subsequent blastocyst formation rate and quality of porcine PA and IVF embryos. Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that induces oxidative stress in porcine oocytes. As expected, asiatic acid supplementation not only decreased intracellular ROS levels but also attenuated H2O2-induced intracellular ROS generation. Further analysis revealed that asiatic acid supplementation enhanced intracellular glutathione production, mitochondrial membrane potential, and ATP generation at the end of IVM. In summary, our results reveal that asiatic acid supplementation exerts beneficial effects on porcine oocytes by regulating oxidative stress during the IVM process and could act as a potential antioxidant in porcine oocytes matured in vitro production systems.
Collapse
Affiliation(s)
- Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiao-Xia Li
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China; Jilin Province Key Laboratory of Preventive Veterinary Medicine, Jilin Agriculture Science and Technology University, Jilin, China
| | - Yan Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China; Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Yun-Fei Diao
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China; Jilin Province Key Laboratory of Preventive Veterinary Medicine, Jilin Agriculture Science and Technology University, Jilin, China
| | - Wei-Yi Hu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Da-Li Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Jiang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|
18
|
Xiang DC, Jia BY, Fu XW, Guo JX, Hong QH, Quan GB, Wu GQ. Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes. Theriogenology 2021; 167:13-23. [PMID: 33743504 DOI: 10.1016/j.theriogenology.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/16/2022]
Abstract
As one of the most powerful natural antioxidants, astaxanthin (Ax) has begun to be applied to the field of reproductive biology. Here we used porcine oocyte as a model to explore how Ax improves the oocyte potential during in vitro maturation (IVM), and we also investigated the cytoprotective effects of Ax on the vitrified oocytes. Ax supplementation (final concentration of 2.5 μM) was subjected for immature oocytes during vitrification and subsequent IVM; fresh oocytes were also matured in vitro in the presence or absence of 2.5 μM Ax. Our results showed that Ax significantly increased the survival rate of vitrified oocytes, and promoted the blastocyst yield of both fresh and vitrified oocytes after parthenogenetic activation and somatic cell nuclear transfer. The oocytes treated with Ax displayed significantly lower reactive oxygen species generation and higher glutathione level. Vitrification of oocytes had no impact on caspase-3, cathepsin B and autophagic activities; Ax significantly decreased the cathepsin B activity in both fresh and vitrified oocytes. Moreover, the relative fluorescence intensity of lysosomes was significantly increased in vitrified oocytes, which was recovered by Ax treatment. The mitochondrial activity did not differ between fresh and vitrified oocytes, and was significantly enhanced in Ax-treated oocytes. Furthermore, Ax significantly restored the decreased expression of BMP15, ZAR1, POU5F1, GPX4 and LAMP2 genes in vitrified oocytes. Both fresh and vitrified oocytes treated with Ax showed significantly higher mRNA levels of GDF9, POU5F1, SOD2, NRF2 and ATG5. Taken together, this study provides new perspectives in understanding the mechanisms by which Ax improves the developmental competence of both fresh and vitrified porcine oocytes.
Collapse
Affiliation(s)
- De-Cai Xiang
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Bao-Yu Jia
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xiang-Wei Fu
- College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Jian-Xiong Guo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Qiong-Hua Hong
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Guo-Bo Quan
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China.
| | - Guo-Quan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China.
| |
Collapse
|
19
|
Gao W, Jin Y, Hao J, Huang S, Wang D, Quan F, Ren W, Zhang J, Zhang M, Yu X. Procyanidin B1 promotes in vitro maturation of pig oocytes by reducing oxidative stress. Mol Reprod Dev 2020; 88:55-66. [PMID: 33241626 PMCID: PMC7894521 DOI: 10.1002/mrd.23440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Oxidative stress negatively affects the in vitro maturation (IVM) of oocytes. Procyanidin B1 (PB1) is a natural polyphenolic compound that has antioxidant properties. In this study, we investigated the effect of PB1 supplementation during IVM of porcine oocytes. Treatment with 100 μM PB1 significantly increased the MII oocytes rate (p <0.05), the parthenogenetic (PA) blastocyst rate (p <0.01) and the total cell number in the PA blastocyst (p < 0.01) which were cultured in regular in vitro culture (IVC) medium. The PA blastocyst rate of regular MII oocytes activated and cultured in IVC medium supplemented with 100 and 150 μM PB1 significantly increased compared with control (p < 0.01 and p < 0.05). We also evaluated the reactive oxygen species (ROS) levels, mitochondrial membrane potential (Δψm) levels, glutathione (GSH) levels, and apoptotic levels in MII oocytes and cumulus cells following 100 μM PB1 treatment. The results showed that the PB1 supplementation decreased ROS production and apoptotic levels. In addition, PB1 was found to increase Δψm levels and GSH levels. In conclusion, PB1 inhibited apoptosis of oocytes and cumulus cells by reducing oxidative stress. Moreover, PB1 improved the quality of oocytes and promoted PA embryo development. Taken together, our results suggest that PB1 is a promising antioxidant additive for IVM of oocytes.
Collapse
Affiliation(s)
- Wei Gao
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Yongxun Jin
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Jindong Hao
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Siyi Huang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Dongxu Wang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Fushi Quan
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Wenzhi Ren
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Mingjun Zhang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Xianfeng Yu
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| |
Collapse
|
20
|
Peng YX, Chen CZ, Luo D, Yu WJ, Li SP, Xiao Y, Yuan B, Liang S, Yao XR, Kim NH, Jiang H, Zhang JB. Carnosic acid improves porcine early embryonic development by inhibiting the accumulation of reactive oxygen species. J Reprod Dev 2020; 66:555-562. [PMID: 33055461 PMCID: PMC7768177 DOI: 10.1262/jrd.2020-086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carnosic acid (CA), a natural catechol rosin diterpene, is used as an additive in animal feeds and human foods. However, the effects of CA on mammalian reproductive processes, especially early embryonic development, are unclear. In this study, we added CA to parthenogenetically activated porcine embryos in an in vitro culture medium to explore the influence of CA on apoptosis, proliferation, blastocyst formation, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial membrane potential, and embryonic development-related gene expression. The results showed that supplementation with 10 μM CA during in vitro culture significantly improved the cleavage rates, blastocyst formation rates, hatching rates, and total numbers of cells of parthenogenetically activated porcine embryos compared with no supplementation. More importantly, supplementation with CA also improved GSH levels and mitochondrial membrane potential, reduced natural ROS levels in blastomeres, upregulated Nanog, Sox2, Gata4, Cox2, Itga5, and Rictor expression, and downregulated Birc5 and Caspase3 expression. These results suggest that CA can improve early porcine embryonic development by regulating oxidative stress. This study elucidates the effects of CA on early embryonic development and their potential mechanisms, and provides new applications for improving the quality of in vitro-developed embryos.
Collapse
Affiliation(s)
- Yan-Xia Peng
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Cheng-Zhen Chen
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Dan Luo
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Wen-Jie Yu
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Sheng-Peng Li
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Yue Xiao
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Bao Yuan
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Shuang Liang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Xue-Rui Yao
- Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China.,Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Hao Jiang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China.,Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Jia-Bao Zhang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| |
Collapse
|
21
|
In vitro Production of Porcine Embryos: Current Status and Possibilities – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This paper presents the current possibilities, state of knowledge and prospects of in vitro production (IVP) of pig embryos, which consists of in vitro oocyte maturation, in vitro fertilization and in vitro embryo culture. In pigs, oocyte maturation is one of the most important stages in the embryo IVP process. It determines the oocyte’s fertilization ability as well as its embryonic development. Through many research studies of the proper selection of oocytes and appropriate maturation medium composition (especially the addition of various supplements), the in vitro maturation of pig oocytes has been significantly improved. Recent studies have demonstrated that modifications of the diluents and in vitro fertilization media can reduce polyspermy. Furthermore, several adjustments of the porcine culture media with the addition of some supplements have enhanced the embryo quality and developmental competence. These updates show the progress of IVP in pigs that has been achieved; however, many problems remain unsolved.
Collapse
|
22
|
Zargarzadeh M, Amaral AJR, Custódio CA, Mano JF. Biomedical applications of laminarin. Carbohydr Polym 2019; 232:115774. [PMID: 31952585 DOI: 10.1016/j.carbpol.2019.115774] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
The ocean is par excellence a fertile territory of biodiversity on our planet. Marine-derived polysaccharides have been applied as functional materials in biomedicine due to their attractive bioactive properties, safety, high availability and low-cost production. Laminarin (or laminaran), a low molecular weight β-glucan storage polysaccharide present in brown algae, can be (bio-) chemically modified to enhance its biological activity and employed in cancer therapies, drug/gene delivery, tissue engineering, antioxidant and anti-inflammatory functions. This review provides a brief overview on laminarin characteristics, modification strategies and highlights its pivotal biomedical applications.
Collapse
Affiliation(s)
- Mehrzad Zargarzadeh
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adérito J R Amaral
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Catarina A Custódio
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
23
|
Luo D, Zhang JB, Peng YX, Liu JB, Han DX, Wang Y, Zhang Z, Yuan B, Gao Y, Chen CZ, Jiang H. Imperatorin improves in vitro porcine embryo development by reducing oxidative stress and autophagy. Theriogenology 2019; 146:145-151. [PMID: 31831188 DOI: 10.1016/j.theriogenology.2019.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/04/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022]
Abstract
Imperatorin (IMP), a furanocoumarin derivative with many biological properties and pharmacological activities, is widely used as an antibacterial, anti-inflammatory, antiviral, anticancer, cardiovascular and neuroprotective agent. The purpose of this study was to explore the effects of IMP on early embryo development in pigs as well as the potential mechanisms. Our results showed that IMP can enhance the developmental competence of porcine early embryos. Supplementation of in vitro culture medium with 40 μM IMP significantly increased the blastocyst rate and total cell number. At the same time, apoptosis of blastocysts was also significantly decreased in the supplemented group compared with the control group, in accordance with the subsequent results of FAS and CASP3 gene expression analysis. Furthermore, IMP attenuated intracellular reactive oxygen species (ROS) generation, increased fluorescein diacetate (FDA) and glutathione (GSH) levels. Importantly, IMP not only improved the activity of mitochondria but also inhibited the occurrence of autophagy. In addition, pluripotency-related genes (OCT4, NANOG, and SOX2) and a growth and metabolism regulatory gene (mTOR) were upregulated after IMP supplementation on Day 7. These results demonstrate that IMP exerts a beneficial effect on preimplantation embryo development by reducing oxidative stress and autophagy.
Collapse
Affiliation(s)
- Dan Luo
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Jia-Bao Zhang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yan-Xia Peng
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Jian-Bo Liu
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Dong-Xu Han
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Ying Wang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Zhe Zhang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Cheng-Zhen Chen
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
24
|
Qi JJ, Li XX, Diao YF, Liu PL, Wang DL, Bai CY, Yuan B, Liang S, Sun BX. Asiatic acid supplementation during the in vitro culture period improves early embryonic development of porcine embryos produced by parthenogenetic activation, somatic cell nuclear transfer and in vitro fertilization. Theriogenology 2019; 142:26-33. [PMID: 31574397 DOI: 10.1016/j.theriogenology.2019.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Asiatic acid is a pentacyclic triterpene enriched in the medicinal herb Centella asiatica, and it has been suggested to possess free radical scavenging and anti-apoptotic properties. The purpose of the current study was to explore the effects of asiatic acid on porcine early-stage embryonic development and the potential mechanisms for any observed effects. The results showed that 10 μM asiatic acid supplementation during the in vitro culture period dramatically improved developmental competence in porcine embryos derived from parthenogenetic activation (PA), somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF). Further analysis revealed that asiatic acid attenuated H2O2-induced intracellular reactive oxygen species (ROS) generation. Notably, asiatic acid not only enhanced intracellular GSH levels but also attenuated mitochondrial dysfunction. Gene expression analysis revealed that asiatic acid upregulated expression of the antioxidant-related gene Sod-1 and the blastocyst formation related gene Cox-2, while downregulating expression of the apoptosis-related gene Caspase-9 in SCNT blastocysts. These results suggest that asiatic acid exerts beneficial effects on early embryonic development in porcine embryos and that asiatic acid may be useful for improving the in vitro production of porcine embryos.
Collapse
Affiliation(s)
- Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiao Xia Li
- Institute of Special Animal & Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yun Fei Diao
- Institute of Special Animal & Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng-Lei Liu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Da-Li Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Chun-Yan Bai
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|