1
|
Klaihmon P, Sungkhaphan P, Thavornyutikarn B, Kitpakornsanti S, Septham P, Young A, Lorthongpanich C, Janvikul W, Singhatanadgit W. Platelet Responses to Urethane Dimethacrylate-Based Bone Cements Containing Monocalcium Phosphate/ε-Polylysine: Role of ε-Polylysine in In Vitro Wound Healing Induced by Platelet-Derived Growth Factor-BB. ACS MATERIALS AU 2025; 5:339-352. [PMID: 40093841 PMCID: PMC11907285 DOI: 10.1021/acsmaterialsau.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 03/19/2025]
Abstract
Platelets play a pivotal role in initiating bone fracture healing. However, the interaction between platelets and bone cements used for fracture repair remains relatively unexplored. This study investigated the platelet response to recently developed urethane dimethacrylate-based bone cements containing 8% (w/w) monocalcium phosphate monohydrate (MCPM) and/or 5% (w/w) ε-polylysine (PLS). All experimental bone cements achieved final monomer conversions of 75-78%, compared with the 86% conversion of the commercial PMMA bone cement Kyphon. The MCPM and PLS microparticles, varying in size, were dispersed within the glass-filler-incorporated polymer matrix. In contrast to Kyphon, all experimental cements exhibited significantly smoother and more hydrophilic surfaces. Bone cements incorporating PLS, with or without MCPM, effectively activated platelets by inducing cellular adhesion, aggregation, and extracellular-signal-regulated kinase (ERK) activation, comparable to Kyphon. Flow cytometry analysis demonstrated a statistically significant increase in CD62P-positive platelets following exposure to PLS-incorporated bone cements and exogenously administered PLS in a concentration-dependent manner, but not with Kyphon. A wound healing assay revealed a 2-fold enhancement in wound closure within 24 h and exceeding 85% at 48 h by bone cements containing PLS, with or without MCPM, and Kyphon. Notably, platelet-derived growth factor BB (PDGF-BB) secretion was significantly elevated, specifically after platelet exposure to PLS-incorporated bone cements, a phenomenon not observed with Kyphon. Interestingly, PDGF-BB neutralization attenuated wound closure induced by the PLS-incorporated bone cements. In conclusion, the urethane dimethacrylate-based bone cements containing PLS demonstrated a significant enhancement in platelet activation and PDGF-BB secretion, which, at least partly, enhanced in vitro wound closure. The results suggest that PDGF-BB plays a crucial role in the PLS-mediated enhancement of wound healing in these bone cements.
Collapse
Affiliation(s)
- Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piyarat Sungkhaphan
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathum-thani 12120, Thailand
| | - Boonlom Thavornyutikarn
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathum-thani 12120, Thailand
| | - Setthawut Kitpakornsanti
- Faculty of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Pathum-thani 12121, Thailand
| | - Praphasri Septham
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Anne Young
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, London NW3 2PF, U.K
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Janvikul
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathum-thani 12120, Thailand
| | - Weerachai Singhatanadgit
- Faculty of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Pathum-thani 12121, Thailand
| |
Collapse
|
2
|
Cheng M, Yue T, Wang H, Jiang L, Huang Q, Li F. Biomimetic nanoparticles co-deliver hirudin and lumbrukinase to ameliorate thrombus and inflammation for atherosclerosis therapy. Asian J Pharm Sci 2025; 20:100990. [PMID: 39917726 PMCID: PMC11795807 DOI: 10.1016/j.ajps.2024.100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 02/09/2025] Open
Abstract
Atherosclerosis (AS) is a progressive inflammatory disease, and thrombosis most likely leads to cardiovascular morbidity and mortality globally. Thrombolytic drugs alone cannot completely prevent thrombotic events, and treatments targeting thrombosis also need to regulate the inflammatory process. Based on the dynamic pathological development of AS, biomimetic thrombus-targeted nanoparticles HMTL@PM were prepared. Hirudin and lumbrukinase, effective substances of traditional Chinese medicine, were self-assembled under the action of tannic acid and Mn2+. HMTL@PM dissociated in the weakly acidic microenvironment of atherosclerosis and exhibited excellent therapeutic effects, including alleviating inflammation, dissolving thrombus, anticoagulation, and promoting cholesterol efflux. HMTL@PM effectively regulated the progression of AS and provided a new perspective for the development of drug delivery systems for AS therapy, which holds important research significance for reducing the mortality of cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Mengying Cheng
- Zhejiang Chinese Medical University, School of Pharmaceutical Sciences, Hangzhou, 310053, China
| | - Tianxiang Yue
- Zhejiang Chinese Medical University, School of Pharmaceutical Sciences, Hangzhou, 310053, China
| | - Hong Wang
- Zhejiang Chinese Medical University, School of Pharmaceutical Sciences, Hangzhou, 310053, China
| | - Lai Jiang
- Zhejiang Chinese Medical University, School of Pharmaceutical Sciences, Hangzhou, 310053, China
| | - Qiaoling Huang
- Zhejiang Chinese medical university, Hangzhou Third People's Hospital, Hangzhou 310009, China
| | - Fanzhu Li
- Zhejiang Chinese Medical University, School of Pharmaceutical Sciences, Hangzhou, 310053, China
| |
Collapse
|
3
|
Ye Y, Leng M, Chai S, Yang L, Ren L, Wan W, Wang H, Li L, Li C, Meng Z. Antiplatelet effects of the CEACAM1-derived peptide QDTT. Platelets 2024; 35:2308635. [PMID: 38345065 DOI: 10.1080/09537104.2024.2308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) restricts platelet activation via platelet collagen receptor GPVI/FcRγ-chain. In this study, screening against collagen-induced platelet aggregation was performed to identify functional CEACAM1 extracellular domain fragments. CEACAM1 fragments, including Ala-substituted peptides, were synthesized. Platelet assays were conducted on healthy donor samples for aggregation, cytotoxicity, adhesion, spreading, and secretion. Mice were used for tail bleeding and FeCl3-induced thrombosis experiments. Clot retraction was assessed using platelet-rich plasma. Extracellular segments of CEACAM1 and A1 domain-derived peptide QDTT were identified, while N, A2, and B domains showed no involvement. QDTT inhibited platelet aggregation. Ala substitution for essential amino acids (Asp139, Thr141, Tyr142, Trp144, and Trp145) in the QDTT sequence abrogated collagen-induced aggregation inhibition. QDTT also suppressed platelet secretion and "inside-out" GP IIb/IIIa activation by convulxin, along with inhibiting PI3K/Akt pathways. QDTT curtailed FeCl3-induced mesenteric thrombosis without significantly prolonging bleeding time, implying the potential of CEACAM1 A1 domain against platelet activation without raising bleeding risk, thus paving the way for novel antiplatelet drugs.
Collapse
Affiliation(s)
- Yujia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Min Leng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Shengjie Chai
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lihong Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Longcheng Ren
- Cardiovascular Department, Tengchong Hospital of Traditional Chinese Medicine, Tengchong, PR China
| | - Wen Wan
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Huawei Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Longjun Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Chaozhong Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| |
Collapse
|
4
|
Zivkovic M, Pols - van Veen E, van der Vegte V, Sebastian SA, de Moor AS, Korporaal SJ, Schutgens RE, Urbanus RT. Functional characterization of a nanobody-based glycoprotein VI-specific platelet agonist. Res Pract Thromb Haemost 2024; 8:102582. [PMID: 39512585 PMCID: PMC11541698 DOI: 10.1016/j.rpth.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 11/15/2024] Open
Abstract
Background Glycoprotein (GP)VI is a platelet-specific collagen receptor required for platelet activation during hemostasis. Platelet reactivity toward collagen is routinely assessed during diagnostic workup of platelet disorders. GPVI can be activated by inducing receptor clustering with suspensions of fibrillar collagen or synthetic cross-linked collagen-related peptide (CRP-XL). However, these suspensions are poorly standardized or difficult to produce. Nanobodies are small recombinant camelid-derived heavy-chain antibody variable regions. They are highly stable, specific, and ideal candidates for developing a stable GPVI agonist for diagnostic assays. Objectives Develop a stable nanobody-based GPVI agonist. Methods Nanobody D2 (NbD2) was produced as dimers and purified. Tetramers were generated via C-terminal fusion of dimers with click chemistry. Nanobody constructs were functionally characterized with light transmission aggregometry (LTA) in platelet-rich plasma and whole blood flow cytometry. Diagnostic performance was assessed in patients with inherited platelet function disorders with LTA and flow cytometry. Results NbD2 was specific for human platelet GPVI. Dimers did not result in platelet activation in LTA or flow cytometry settings and fully inhibited CRP-XL-induced P-selectin expression and fibrinogen binding in whole blood and attenuated collagen-induced platelet aggregation in platelet-rich plasma. However, NbD2 tetramers caused full platelet aggregation, as well as P-selectin expression and fibrinogen binding. NbD2 tetramers were able to discriminate between inherited platelet function disorder patients and healthy controls based on fibrinogen binding, similar to CRP-XL. Conclusion Nanobody tetramers to GPVI induce platelet activation and can be used to assess the GPVI pathway in diagnostic assays.
Collapse
Affiliation(s)
- Minka Zivkovic
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elisabeth Pols - van Veen
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vossa van der Vegte
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Silvie A.E. Sebastian
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annick S. de Moor
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Suzanne J.A. Korporaal
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roger E.G. Schutgens
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rolf T. Urbanus
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
6
|
Slater A, Khattak S, Thomas MR. GPVI inhibition: Advancing antithrombotic therapy in cardiovascular disease. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:465-473. [PMID: 38453424 PMCID: PMC11323372 DOI: 10.1093/ehjcvp/pvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Glycoprotein (GP) VI (GPVI) plays a major role in thrombosis but not haemostasis, making it a promising antithrombotic target. The primary role of GPVI on the surface of platelets is a signalling receptor for collagen, which is one of the most potent thrombotic sub-endothelial components that is exposed by atherosclerotic plaque rupture. Inhibition of GPVI has therefore been investigated as a strategy for treatment and prevention of atherothrombosis, such as during stroke and acute coronary syndromes. A range of specific GPVI inhibitors have been characterized, and two of these inhibitors, glenzocimab and revacept, have completed Phase II clinical trials in ischaemic stroke. In this review, we summarize mechanisms of GPVI activation and the latest progress of clinically tested GPVI inhibitors, including their mechanisms of action. By focusing on what is known about GPVI activation, we also discuss whether alternate strategies could be used to target GPVI.
Collapse
Affiliation(s)
- Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Sophia Khattak
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| |
Collapse
|
7
|
Pretorius E, Kell DB. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin Thromb Hemost 2024; 50:537-551. [PMID: 37748515 PMCID: PMC11105946 DOI: 10.1055/s-0043-1774796] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
8
|
Xue J, Deng J, Qin H, Yan S, Zhao Z, Qin L, Liu J, Wang H. The interaction of platelet-related factors with tumor cells promotes tumor metastasis. J Transl Med 2024; 22:371. [PMID: 38637802 PMCID: PMC11025228 DOI: 10.1186/s12967-024-05126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.
Collapse
Affiliation(s)
- Jie Xue
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Jianzhao Deng
- Clinical Laboratory, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Hongwei Qin
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Songxia Yan
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Zhen Zhao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Lifeng Qin
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Jiao Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China.
| |
Collapse
|
9
|
Wang X, Slater A, Lee SC, Harrison N, Pollock NL, Bakker SE, Navarro S, Nieswandt B, Dafforn TR, García Á, Watson SP, Tomlinson MG. Purification and characterisation of the platelet-activating GPVI/FcRγ complex in SMALPs. Arch Biochem Biophys 2024; 754:109944. [PMID: 38395124 DOI: 10.1016/j.abb.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The collagen/fibrin(ogen) receptor, glycoprotein VI (GPVI), is a platelet activating receptor and a promising anti-thrombotic drug target. However, while agonist-induced GPVI clustering on platelet membranes has been shown to be essential for its activation, it is unknown if GPVI dimerisation represents a unique conformation for ligand binding. Current GPVI structures all contain only the two immunoglobulin superfamily (IgSF) domains in the GPVI extracellular region, so lacking the mucin-like stalk, transmembrane, cytoplasmic tail of GPVI and its associated Fc receptor γ (FcRγ) homodimer signalling chain, and provide contradictory insights into the mechanisms of GPVI dimerisation. Here, we utilised styrene maleic-acid lipid particles (SMALPs) to extract GPVI in complex with its two associated FcRγ chains from transfected HEK-293T cells, together with the adjacent lipid bilayer, then purified and characterised the GPVI/FcRγ-containing SMALPs, to enable structural insights into the full-length GPVI/FcRγ complex. Using size exclusion chromatography followed by a native polyacrylamide gel electrophoresis (PAGE) method, SMA-PAGE, we revealed multiple sizes of the purified GPVI/FcRγ SMALPs, suggesting the potential existence of GPVI oligomers. Importantly, GPVI/FcRγ SMALPs were functional as they could bind collagen. Mono-dispersed GPVI/FcRγ SMALPs could be observed under negative stain electron microscopy. These results pave the way for the future investigation of GPVI stoichiometry and structure, while also validating SMALPs as a promising tool for the investigation of human membrane protein interactions, stoichiometry and structure.
Collapse
Affiliation(s)
- Xueqing Wang
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15782 Santiago de Compostela, Spain.
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Sarah C Lee
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Neale Harrison
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Naomi L Pollock
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Saskia E Bakker
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Stefano Navarro
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Tim R Dafforn
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ángel García
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15782 Santiago de Compostela, Spain
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
10
|
Haffouz A, Elleuch H, Khemakhem B, Ben Amor I, Jerbi A, Gargouri J, Sahli E, Mhadhbi N, Ghalla H, Rezgui F, Gargouri A, HadjKacem B. Antiplatelet activity and toxicity profile of novel phosphonium salts derived from Michael reaction. Eur J Pharm Sci 2024; 194:106692. [PMID: 38181870 DOI: 10.1016/j.ejps.2024.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
In this work, five novel phosphonium salts derived from the Michael reaction were screened for their antiplatelet activity. Our findings revealed that compounds 2a, 2b, 2c, and 2d significantly inhibit platelet aggregation triggered by ADP or collagen (P < 0.001). Notably, compound 2c inhibited the arachidonic acid pathway (P < 0.001). Moreover, the selected compounds reduce CD62-P expression and inhibit GPIIb/IIIa activation. The interactions of the active compounds with their targets, ADP and collagen receptors, P2Y12 and GPVI respectively were investigated in silico using molecular docking studies. The results revealed a strong affinity of the active compounds for P2Y12 and GPVI. Additionally, cytotoxicity assays on platelets, erythrocytes, and human embryonic kidney HEK293 cells showed that compounds 2a, 2c and 2d were non-toxic even at high concentrations. In summary, our study shows that phosphonium salts can have strong antiplatelet power and suggests that compounds 2a, 2c and 2d could be promising antiplatelet agents for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Asma Haffouz
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Haitham Elleuch
- Laboratory of Organic Chemistry, Faculty of Sciences, University Campus, 2092, University of Tunis El Manar, Tunis, Tunisia
| | - Bassem Khemakhem
- Laboratory of Plant Biotechnology, Sfax Faculty of Sciences, BP 1171, University of Sfax, 3038 Sfax, Tunisia
| | - Ikram Ben Amor
- Laboratory of Hematology (LR19SP04), Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029 Sfax, Tunisia
| | - Amira Jerbi
- Laboratory of Hematology (LR19SP04), Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029 Sfax, Tunisia
| | - Jalel Gargouri
- Laboratory of Hematology (LR19SP04), Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029 Sfax, Tunisia
| | - Emna Sahli
- Analytical service provider unit, Centre of Biotechnology of Sfax, University of Sfax, 3018, Sfax, Tunisia
| | - Noureddine Mhadhbi
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia; University of Monastir, Preparatory Institute for Engineering Studies of Monastir, 5019 Monastir, Tunisia
| | - Houcine Ghalla
- Quantum Physics and Statistic Laboratory, Faculty of Sciences, University of Monastir, Monastir, 5000, Tunisia
| | - Farhat Rezgui
- Laboratory of Organic Chemistry, Faculty of Sciences, University Campus, 2092, University of Tunis El Manar, Tunis, Tunisia
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Basma HadjKacem
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia.
| |
Collapse
|
11
|
Mazighi M, Köhrmann M, Lemmens R, Lyrer PA, Molina CA, Richard S, Toni D, Plétan Y, Sari A, Meilhoc A, Jandrot-Perrus M, Binay S, Avenard G, Comenducci A, Grouin JM, Grotta JC. Safety and efficacy of platelet glycoprotein VI inhibition in acute ischaemic stroke (ACTIMIS): a randomised, double-blind, placebo-controlled, phase 1b/2a trial. Lancet Neurol 2024; 23:157-167. [PMID: 38267188 DOI: 10.1016/s1474-4422(23)00427-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Antagonists of glycoprotein VI-triggered platelet activation used in combination with recanalisation therapies are a promising therapeutic approach in acute ischaemic stroke. Glenzocimab is an antibody fragment that inhibits the action of platelet glycoprotein VI. We aimed to determine and assess the safety and efficacy of the optimal dose of glenzocimab in patients with acute ischaemic stroke eligible to receive alteplase with or without mechanical thrombectomy. METHODS This randomised, double-blind, placebo-controlled study with dose-escalation (1b) and dose-confirmation (2a) phases (ACTIMIS) was done in 26 stroke centres in six European countries. Participants were adults (≥18 years) with disabling acute ischaemic stroke with a National Institutes of Health Stroke Scale score of 6 or higher before alteplase administration. Patients were randomly assigned treatment using a central electronic procedure. Total administered dose at the end of the intravenous administration was 125 mg, 250 mg, 500 mg, and 1000 mg of glenzocimab or placebo in phase 1b and 1000 mg of glenzocimab or placebo in phase 2a. Treatment was initiated 4·5 h or earlier from stroke symptom onset in patients treated with alteplase with or without mechanical thrombectomy. The sponsor, study investigator and study staff, patients, and central laboratories were all masked to study treatment until database lock. Primary endpoints across both phases were safety, mortality, and intracranial haemorrhage (symptomatic, total, and fatal), assessed in all patients who received at least a partial dose of study medication (safety set). The trial is registered on ClinicalTrials.gov, NCT03803007, and is complete. FINDINGS Between March 6, 2019, and June 27, 2021, 60 recruited patients were randomly assigned to 125 mg, 250 mg, 500 mg, or 1000 mg glenzocimab, or to placebo in phase 1b (n=12 per group) and were included in the safety analysis. Glenzocimab 1000 mg was well tolerated and selected as the phase 2a recommended dose; from Oct 2, 2020, to June 27, 2021, 106 patients were randomly assigned to glenzocimab 1000 mg (n=53) or placebo (n=53). One patient in the placebo group received glenzocimab in error and therefore 54 and 52, respectively, were included in the safety set. In phase 2a, the most frequent treatment-emergent adverse event was non-symptomatic haemorrhagic transformation, which occurred in 17 (31%) of 54 patients treated with glenzocimab and 26 (50%) of 52 patients treated with placebo. Symptomatic intracranial haemorrhage occurred in no patients treated with glenzocimab compared with five (10%) patients in the placebo group. All-cause deaths were lower with glenzocimab 1000 mg (four [7%] patients) than with placebo (11 [21%] patients). INTERPRETATION Glenzocimab 1000 mg in addition to alteplase, with or without mechanical thrombectomy, was well tolerated, and might reduce serious adverse events, intracranial haemorrhage, and mortality. These findings support the need for future research into the potential therapeutic inhibition of glycoprotein VI with glenzocimab plus alteplase in patients with acute ischaemic stroke. FUNDING Acticor Biotech.
Collapse
Affiliation(s)
- Mikaël Mazighi
- Department of Neurology, Hôpital Lariboisière, APHP Nord, Paris, France; Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France; University of Paris City, FHU Neurovasc, INSERM 1144, Paris, France.
| | - Martin Köhrmann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Robin Lemmens
- Experimental Neurology Research Group, Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Philippe A Lyrer
- Stroke Center and Department of Neurology, University Hospital Basel, Basel, Switzerland
| | | | - Sébastien Richard
- Neurology Stroke Unit, University Hospital Centre Nancy, Nancy, France
| | - Danilo Toni
- Neurovascular Unit, Policlinico Umberto I, Department of Human Neurosciences, University of Rome, 'La Sapienza', Rome, Italy
| | | | | | | | - Martine Jandrot-Perrus
- Innovation diagnostique et thérapeutique en pathologies cérébrovasculaires et thrombotiques, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | | | | | | | | | - James C Grotta
- Memorial Hermann Hospital-Texas Medical Center, Clinical Innovation and Research Institute, Houston, TX, USA
| |
Collapse
|
12
|
Casari M, Siegl D, Deppermann C, Schuppan D. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front Immunol 2023; 14:1277808. [PMID: 38116017 PMCID: PMC10728659 DOI: 10.3389/fimmu.2023.1277808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to the loss of hepatocyte function, portal hypertension, variceal bleeding, and increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic and reversible process, however, from the cirrhotic stage, there is significant progression to hepatocellular carcinoma. Both liver-resident macrophages (Kupffer cells) and monocyte-derived macrophages are important drivers of fibrosis progression, but can also induce its regression once triggers of chronic inflammation are eliminated. In liver cancer, they are attracted to the tumor site to become tumor-associated macrophages (TAMs) polarized towards a M2- anti-inflammatory/tumor-promoting phenotype. Besides their role in thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor development by secreting profibrogenic factors and regulating the innate immune response, e.g., by interacting with monocytes and macrophages. Here, we review recent literature on the role of macrophages and platelets and their interplay in liver fibrosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Siegl
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Detlef Schuppan
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Kwon HW, Rhee MH, Shin JH. The Inhibitory Effects of Protaetia brevitarsis seulensis Larvae Extract on Human Platelet Aggregation and Glycoprotein IIb/IIIa Expression. Prev Nutr Food Sci 2023; 28:328-334. [PMID: 37842257 PMCID: PMC10567598 DOI: 10.3746/pnf.2023.28.3.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 10/17/2023] Open
Abstract
The white-spotted flower chafer, Protaetia brevitarsis seulensis, is used as a traditional remedy against liver cirrhosis, hepatitis, and hepatic cancer. In this study, we investigated if P. brevitarsis extract (PBE) inhibited platelet aggregation via integrin αIIb/β3 regulation. We observed that PBE inhibited αIIb/β3 activation by regulating the cyclic nucleotides, cyclic adenosine monophosphate and cyclic guanosine monophosphate. Additionally, PBE affected phosphatidylinositol-3 kinase, Akt, SYK, glycogen synthase kinase-3α/β, cytosolic phospholipase A2, and p38 expression, which are signal transduction molecules expressed by platelets, and consequently suppressed αIIbβ3 activity and thromboxane A2 generation. Taken together, PBE showed strong antiplatelet effects and may be used to block thrombosis- and platelet-mediated cardiovascular diseases.
Collapse
Affiliation(s)
- Hyuk-Woo Kwon
- Department of Biomedical Laboratory Science, Far East University, Chungbuk 2760, Korea
- Microbiological Resource Research Institute, Far East University, Chungbuk 7601, Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 19, Korea
| | - Jung-Hae Shin
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 19, Korea
| |
Collapse
|
14
|
Chaudhary PK, Kim S, Kim S. Shedding Light on the Cell Biology of Platelet-Derived Extracellular Vesicles and Their Biomedical Applications. Life (Basel) 2023; 13:1403. [PMID: 37374185 DOI: 10.3390/life13061403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
EVs are membranous subcellular structures originating from various cells, including platelets which consist of biomolecules that can modify the target cell's pathophysiological functions including inflammation, cell communication, coagulation, and metastasis. EVs, which are known to allow the transmission of a wide range of molecules between cells, are gaining popularity in the fields of subcellular treatment, regenerative medicine, and drug delivery. PEVs are the most abundant EVs in circulation, being produced by platelet activation, and are considered to have a significant role in coagulation. PEV cargo is extremely diverse, containing lipids, proteins, nucleic acids, and organelles depending on the condition that induced their release and can regulate a wide range of biological activities. PEVs, unlike platelets, can overcome tissue barriers, allowing platelet-derived contents to be transferred to target cells and organs that platelets cannot reach. Their isolation, characterization, and therapeutic efficacy, on the other hand, are poorly understood. This review summarizes the technical elements of PEV isolation and characterization methods as well as the pathophysiological role of PEVs, including therapeutic potential and translational possibility in diverse disciplines.
Collapse
Affiliation(s)
- Preeti Kumari Chaudhary
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
15
|
Isser S, Maurer A, Reischl G, Schaller M, Gonzalez-Menendez I, Quintanilla-Martinez L, Gawaz M, Pichler BJ, Beziere N. Radiolabeled GPVI-Fc for PET Imaging of Multiple Extracellular Matrix Fibers: A New Look into Pulmonary Fibrosis Progression. J Nucl Med 2023; 64:940-945. [PMID: 36702555 PMCID: PMC10241016 DOI: 10.2967/jnumed.122.264552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Invariably fatal and with a particularly fast progression, pulmonary fibrosis (PF) is currently devoid of curative treatment options. Routine clinical diagnosis relies on breathing tests and visualizing the changes in lung structure by CT, but anatomic information is often not sufficient to identify early signs of progressive PF. For more efficient diagnosis, additional imaging techniques were investigated in combination with CT, such as 18F-FDG PET, although with limited success because of lack of disease specificity. Therefore, novel molecular targets enabling specific diagnosis are investigated, in particular for molecular imaging techniques. Methods: In this study, we used a 64Cu-radiolabeled platelet glycoprotein VI fusion protein (64Cu-GPVI-Fc) targeting extracellular matrix (ECM) fibers as a PET tracer to observe longitudinal ECM remodeling in a bleomycin-induced PF mouse model. Results: 64Cu-GPVI-Fc showed significant uptake in fibrotic lungs, matching histology results. Contrary to 18F-FDG PET measurements, 64Cu-GPVI-Fc uptake was linked entirely to the fibrotic activity of tissue and not was susceptible to inflammation. Conclusion: Our study highlights 64Cu-GPVI-Fc as a specific tracer for ECM remodeling in PF, with clear therapy-monitoring and clinical translation potential.
Collapse
Affiliation(s)
- Simon Isser
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; and
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany;
- Cluster of Excellence EXC 2124, "Controlling Microbes to Fight Infections," Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Aggarwal A, Jennings CL, Manning E, Cameron SJ. Platelets at the Vessel Wall in Non-Thrombotic Disease. Circ Res 2023; 132:775-790. [PMID: 36927182 PMCID: PMC10027394 DOI: 10.1161/circresaha.122.321566] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Platelets are small, anucleate entities that bud from megakaryocytes in the bone marrow. Among circulating cells, platelets are the most abundant cell, traditionally involved in regulating the balance between thrombosis (the terminal event of platelet activation) and hemostasis (a protective response to tissue injury). Although platelets lack the precise cellular control offered by nucleate cells, they are in fact very dynamic cells, enriched in preformed RNA that allows them the capability of de novo protein synthesis which alters the platelet phenotype and responses in physiological and pathological events. Antiplatelet medications have significantly reduced the morbidity and mortality for patients afflicted with thrombotic diseases, including stroke and myocardial infarction. However, it has become apparent in the last few years that platelets play a critical role beyond thrombosis and hemostasis. For example, platelet-derived proteins by constitutive and regulated exocytosis can be found in the plasma and may educate distant tissue including blood vessels. First, platelets are enriched in inflammatory and anti-inflammatory molecules that may regulate vascular remodeling. Second, platelet-derived microparticles released into the circulation can be acquired by vascular endothelial cells through the process of endocytosis. Third, platelets are highly enriched in mitochondria that may contribute to the local reactive oxygen species pool and remodel phospholipids in the plasma membrane of blood vessels. Lastly, platelets are enriched in proteins and phosphoproteins which can be secreted independent of stimulation by surface receptor agonists in conditions of disturbed blood flow. This so-called biomechanical platelet activation occurs in regions of pathologically narrowed (atherosclerotic) or dilated (aneurysmal) vessels. Emerging evidence suggests platelets may regulate the process of angiogenesis and blood flow to tumors as well as education of distant organs for the purposes of allograft health following transplantation. This review will illustrate the potential of platelets to remodel blood vessels in various diseases with a focus on the aforementioned mechanisms.
Collapse
Affiliation(s)
- Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Courtney L. Jennings
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Emily Manning
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Scott J. Cameron
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Hematology, Taussig Cancer Center, Cleveland, Ohio
| |
Collapse
|
17
|
Damaskinaki FN, Jooss NJ, Martin EM, Clark JC, Thomas MR, Poulter NS, Emsley J, Kellam B, Watson SP, Slater A. Characterizing the binding of glycoprotein VI with nanobody 35 reveals a novel monomeric structure of glycoprotein VI where the conformation of D1+D2 is independent of dimerization. J Thromb Haemost 2023; 21:317-328. [PMID: 36700508 DOI: 10.1016/j.jtha.2022.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 11/06/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The platelet-signaling receptor glycoprotein VI (GPVI) is a promising antithrombotic target. We have previously raised a series of high-affinity nanobodies (Nbs) against GPVI and identified Nb2, Nb21, and Nb35 as potent GPVI inhibitors. The Nb2 binding site has been mapped to the D1 domain, which is directly adjacent to the CRP binding site. Ligand-binding complementary determining region 3 has only 15% conservation between all 3 Nbs. OBJECTIVES To map the binding sites of Nb21 and Nb35 on GPVI. METHODS We determined the X-ray crystal structure of the D1 and D2 extracellular domains of the GPVI-Nb35 complex. We then looked at the effects of various GPVI mutations on the ability of Nbs to inhibit collagen binding and GPVI signaling using surface binding assays and transfected cell lines. RESULTS The crystal structure of GPVI bound to Nb35 was solved. GPVI was present as a monomer, and the D1+D2 conformation was comparable to that in the dimeric structure. Arg46, Tyr47, and Ala57 are common residues on GPVI targeted by both Nb2 and Nb35. Mutating Arg46 to an Ala abrogated the ability of Nb2, Nb21, and Nb35 to inhibit collagen-induced GPVI signaling and blocked the binding of all 3 Nbs. In addition, Arg60 was found to reduce Nb21 inhibition but not the inhibition Nb2 or Nb35. CONCLUSIONS These findings reveal key residues involved in the high-affinity binding of GPVI inhibitors and negate the idea that GPVI dimerization induces a conformational change required for ligand binding.
Collapse
Affiliation(s)
- Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK; Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Natalie J Jooss
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joanne C Clark
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Cardiology, University Hospitals Birmingham, Birmingham, UK
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Jonas Emsley
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK; Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK; Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
18
|
Sun W, Han D, Awad MA, Leibowitz JL, Griffith BP, Wu ZJ. Role of thrombin to non-physiological shear stress induced platelet activation and function alternation. Thromb Res 2022; 219:141-149. [PMID: 36179652 PMCID: PMC11528493 DOI: 10.1016/j.thromres.2022.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Non-physiological shear stress (NPSS) and thrombin have two distinct mechanisms for activating platelets. NPSS in mechanically assisted circulation (MAC) devices can cause platelet dysfunction, e.g., by shedding its key receptors. In addition, patients with heart failure have increased levels of thrombin generation, which may further affect the NPSS-induced platelet dysfunction, resulting in device-associated complications. This study aimed to assess the combined effect of NPSS and thrombin in platelet activation, expression of adhesion receptors on the platelet surface, and alterations of platelet aggregation. METHODS Fresh human blood from healthy donors was divided into two groups; one group was treated by adding 0.01 U/mL thrombin, and another group not treated with thrombin served as a control comparison. They were then pumped through a novel blood shearing device which produces similar shear stress conditions to those in the MAC devices. Three levels of NPSS (i.e., 75, 125, and 175 Pa) with a 1.0 s exposure time were selected for the shearing conditions. Expression of platelet activation markers (PAC-1, activated GPIIb/IIIa and CD62P, platelet surface P-selectin) were investigated along with the shedding of platelet receptors (GPIb, GPIIb/IIIa, and GPVI), generation of platelet microparticles, and Phosphatidylserine (PS)-positive platelets detected by flow cytometry. Platelet aggregation (induced by collagen/ristocetin) was measured by Lumi-aggregometry. RESULTS Platelet receptors were shed after exposure to NPSS showing a positive correlation with the level of shear stress. The generation of platelet microparticles and PS-positive platelets also increased with greater NPSS. Elevated NPSS decreased the platelet aggregation capacity. Platelet activation level increased with greater NPSS. Being treated by thrombin can further exacerbate these characteristics under same level of NPSS, except that platelet activation level drastically dropped after the exposure to 175 Pa NPSS in the thrombin-treated blood. CONCLUSION After being treated by thrombin, platelets became more susceptible to NPSS, resulting in more receptor shedding, platelet microparticles, and PS-positive platelets, thus limiting platelet aggregation capacity after exposure to NPSS. Platelet activation, in terms of PAC-1 and P-selectin, is an interim status competing between the expression and shedding of these makers/receptors. When platelets have reached a saturation level of activation, exposure to excessive NPSS can potentially impair activation.
Collapse
Affiliation(s)
- Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dong Han
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Morcos A Awad
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua L Leibowitz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
19
|
Leitinger DE, Kaplan DZ. BTK Inhibitors in Haematology: Beyond B Cell Malignancies. Transfus Med Rev 2022; 36:239-245. [DOI: 10.1016/j.tmrv.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/25/2022] [Indexed: 11/27/2022]
|
20
|
Metformin Serves as a Novel Drug Treatment for Arterial Thrombosis: Inhibitory Mechanisms on Collagen-Induced Human Platelet Activation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metformin is widely used as first-line medication for type 2 diabetes (T2D), the main disease comorbid with kidney disease, cardiovascular diseases (CVDs), and retinopathy. Platelets are crucial in platelet-dependent arterial thrombosis, which causes CVDs and cerebrovascular diseases. Research indicates that metformin may improve these diseases; metformin reportedly reduced platelet activation in rats. However, no reports have included human platelets. We investigated the mechanisms underlying metformin’s effects on platelet activation by using human platelets and evaluated its in vivo effectiveness in experimental mice. Metformin inhibited platelet aggregation stimulated by collagen but not by arachidonic acid, U46619, or thrombin. Metformin suppressed ATP release, [Ca2+]i mobilization, and P-selectin expression, as well as phospholipase C (PLC)γ2/protein kinase C (PKC), p38 mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK3β) phosphorylation. Metformin did not affect vasodilator-stimulated phosphoprotein (VASP) phosphorylation. In the animal studies, metformin reduced acute pulmonary thromboembolism mortality without increasing bleeding times. These results provide insights into the role and mechanisms of metformin in human platelet activation. Metformin decreased platelet activation by interfering with the PLCγ2/PKC, PI3K/Akt/GSK3β, and p38 MAPK pathways through a VASP-independent mechanism. Metformin demonstrates promise as a new class of antiplatelet agent that can inhibit platelet activation.
Collapse
|
21
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
22
|
Structural insights into collagen binding by platelet receptor glycoprotein VI. Blood 2022; 139:3087-3098. [PMID: 35245360 DOI: 10.1182/blood.2021013614] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/08/2022] [Indexed: 02/02/2023] Open
Abstract
Glycoprotein VI (GPVI) mediates collagen-induced platelet activation after vascular damage and is an important contributor to the onset of thrombosis, heart attack, and stroke. Animal models of thrombosis have identified GPVI as a promising target for antithrombotic therapy. Although for many years the crystal structure of GPVI has been known, the essential details of its interaction with collagen have remained elusive. Here, we present crystal structures of the GPVI ectodomain bound to triple-helical collagen peptides, which reveal a collagen-binding site across the β-sheet of the D1 domain. Mutagenesis and binding studies confirm the observed binding site and identify Trp76, Arg38, and Glu40 as essential residues for binding to fibrillar collagens and collagen-related peptides (CRPs). GPVI binds a site on collagen comprising two collagen chains with the core formed by the sequence motif OGPOGP. Potent GPVI-binding peptides from Toolkit-III all contain OGPOGP; weaker binding peptides frequently contain a partial motif varying at either terminus. Alanine-scanning of peptide III-30 also identified two AGPOGP motifs that contribute to GPVI binding, but steric hindrance between GPVI molecules restricts the maximum binding capacity. We further show that no cooperative interactions could occur between two GPVI monomers binding to a stretch of (GPO)5 and that binding of ≥2 GPVI molecules to a fibril-embedded helix requires non-overlapping OGPOGP motifs. Our structure confirms the previously suggested similarity in collagen binding between GPVI and leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) but also indicates significant differences that may be exploited for the development of receptor-specific therapeutics.
Collapse
|
23
|
Shpakova V, Rukoyatkina N, Al Arawe N, Prilepskaya A, Kharazova A, Sharina I, Gambaryan S, Martin E. ML355 Modulates Platelet Activation and Prevents ABT-737 Induced Apoptosis in Platelets. J Pharmacol Exp Ther 2022; 381:164-175. [PMID: 35197320 PMCID: PMC9073945 DOI: 10.1124/jpet.121.000973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/05/2022] [Indexed: 01/14/2023] Open
Abstract
12-lipoxigenase (12-LOX) is implicated in regulation of platelet activation processes and can be a new promising target for antiplatelet therapy. However, investigations of 12-LOX were restricted by the lack of specific and potent 12-LOX inhibitors and by controversial data concerning the role of 12-LOX metabolites in platelet functions. A novel specific 12-LOX inhibitor ML355 was shown to inhibit platelet aggregation without adverse side effects on hemostasis; however, the molecular mechanisms of its action on platelets are poorly understood. Here, we showed that ML355 inhibited platelet activation induced by thrombin or thromboxane A2, but not by collagen-related peptide. ML355 blocked protein kinase B, phosphoinositide 3-kinase, and extracellular signal-regulated kinase, but not p38 kinase, spleen tyrosine kinase (Syk), or phospholipase Cγ2 phosphorylation in activated platelets. The main inhibitory effect of low doses of ML355 (1-20 μM) on thrombin activated platelets was mediated by the decrease in reactive oxygen species level, whereas high doses of ML355 (50 μM) caused cyclic adenosine monophosphate activation. ML355 did not affect the activity of nitric oxide-dependent soluble guanylyl cyclase, nor did it affect the relaxation of preconstricted aortic rings in mice. ML355 itself did not affect platelet viability, but at 50 μM dose blocked caspase-dependent apoptosis induced by B-cell lymphoma II inhibitor ABT-737. SIGNIFICANCE STATEMENT: The current paper provides novel and original data concerning molecular mechanisms of 12-LOX inhibitor ML355 action on platelets. These data reveal antiplatelet and protective effects of ML355 on platelets and may be of importance for both antiplatelet and anticancer therapy.
Collapse
Affiliation(s)
- Valentina Shpakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Nada Al Arawe
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Anna Prilepskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Alexandra Kharazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Iraida Sharina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Emil Martin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| |
Collapse
|
24
|
Foster H, Wilson C, Gauer JS, Xu RG, Howard MJ, Manfield IW, Ariëns R, Naseem K, Vidler LR, Philippou H, Foster R. A Comparative Assessment Study of Known Small-molecule GPVI Modulators. ACS Med Chem Lett 2022; 13:171-181. [PMID: 35178172 PMCID: PMC8842102 DOI: 10.1021/acsmedchemlett.1c00414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
The GPVI platelet receptor was recently validated as a safe antiplatelet target for the treatment of thrombosis using several peptidic modulators. In contrast, few weakly potent small-molecule GPVI antagonists have been reported. Those that have been published often lack evidence for target engagement, and their biological efficacy cannot be compared because of the natural donor variability associated with the assays implemented. Herein, we present the first side-by-side assessment of the reported GPVI small-molecule modulators. We have characterized their functional activities on platelet activation and aggregation using flow cytometry as well as light transmission and electrical impedance aggregometry. We also utilized microscale thermophoresis (MST) and saturation transfer difference (STD) NMR to validate GPVI binding and have used this along with molecular modeling to suggest potential binding interactions. We conclude that of the compounds examined, losartan and compound 5 are currently the most viable GPVI modulators.
Collapse
Affiliation(s)
- Holly Foster
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Clare Wilson
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Julia S. Gauer
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Rui-Gang Xu
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Mark J. Howard
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Iain W. Manfield
- Faculty
of Biological Sciences and Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Robert Ariëns
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Khalid Naseem
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | | | - Helen Philippou
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Richard Foster
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
25
|
Montague SJ, Patel P, Martin EM, Slater A, Quintanilla LG, Perrella G, Kardeby C, Nagy M, Mezzano D, Mendes PM, Watson SP. Platelet activation by charged ligands and nanoparticles: platelet glycoprotein receptors as pattern recognition receptors. Platelets 2021; 32:1018-1030. [PMID: 34266346 DOI: 10.1080/09537104.2021.1945571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Charge interactions play a critical role in the activation of the innate immune system by damage- and pathogen-associated molecular pattern receptors. The ability of these receptors to recognize a wide spectrum of ligands through a common mechanism is critical in host defense. In this article, we argue that platelet glycoprotein receptors that signal through conserved tyrosine-based motifs function as pattern recognition receptors (PRRs) for charged endogenous and exogenous ligands, including sulfated polysaccharides, charged proteins and nanoparticles. This is exemplified by GPVI, CLEC-2 and PEAR1 which are activated by a wide spectrum of endogenous and exogenous ligands, including diesel exhaust particles, sulfated polysaccharides and charged surfaces. We propose that this mechanism has evolved to drive rapid activation of platelets at sites of injury, but that under some conditions it can drive occlusive thrombosis, for example, when blood comes into contact with infectious agents or toxins. In this Opinion Article, we discuss mechanisms behind charge-mediated platelet activation and opportunities for designing nanoparticles and related agents such as dendrimers as novel antithrombotics.
Collapse
Affiliation(s)
- Samantha J Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pushpa Patel
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Caroline Kardeby
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Magdolna Nagy
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Diego Mezzano
- Laboratorio de Trombosis y Hemostasia, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Paula M Mendes
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| |
Collapse
|
26
|
Clark JC, Damaskinaki FN, Cheung YFH, Slater A, Watson SP. Structure-function relationship of the platelet glycoprotein VI (GPVI) receptor: does it matter if it is a dimer or monomer? Platelets 2021; 32:724-732. [PMID: 33634725 DOI: 10.1080/09537104.2021.1887469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 10/22/2022]
Abstract
GPVI is a critical signaling receptor responsible for collagen-induced platelet activation and a promising anti-thrombotic target in conditions such as coronary artery thrombosis, ischemic stroke, and atherothrombosis. This is due to the ability to block GPVI while having minimal effects on hemostasis, making it a more attractive target over current dual-antiplatelet therapy (DAPT) with acetyl salicylic acid and P2Y12 inhibitors where bleeding can be a problem. Our current understanding of how the structure of GPVI relates to function is inadequate and recent studies contradict each other. In this article, we summarize the structure-function relationships underlying the activation of GPVI by its major ligands, including collagen, fibrin(ogen), snake venom toxins and charged exogenous ligands such as diesel exhaust particles. We argue that contrary to popular belief dimerization of GPVI is not required for binding to collagen but serves to facilitate binding through increased avidity, and that GPVI is expressed as a mixture of monomers and dimers on resting platelets, with binding of multivalent ligands inducing higher order clustering.
Collapse
Affiliation(s)
- Joanne C Clark
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Yam Fung Hilaire Cheung
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Bioanalytics, Leibniz-Institut Für Analytische Wissenschaften - ISAS -e.v, Dortmund, Germany
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
27
|
Scheller I, Beck S, Göb V, Gross C, Neagoe RAI, Aurbach K, Bender M, Stegner D, Nagy Z, Nieswandt B. Thymosin β4 is essential for thrombus formation by controlling the G-actin/F-actin equilibrium in platelets. Haematologica 2021; 107:2846-2858. [PMID: 34348450 PMCID: PMC9713564 DOI: 10.3324/haematol.2021.278537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin β4 (encoded by Tmsb4x) is one of the two main G-actin-sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin β4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. Megakaryocyte numbers in the bone marrow and spleen were unaltered, however, Tmsb4x KO megakaryocytes showed defective proplatelet formation in vitro and in vivo. Thymosin β4-deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin β4 for actin dynamics during platelet biogenesis, platelet activation downstream of glycoprotein VI and thrombus stability.
Collapse
Affiliation(s)
- Inga Scheller
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,*IS and SB contributed equally as co-first authors
| | - Sarah Beck
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,*IS and SB contributed equally as co-first authors
| | - Vanessa Göb
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Carina Gross
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Raluca A. I. Neagoe
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Katja Aurbach
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Markus Bender
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Zoltan Nagy
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,B. Nieswandt
| |
Collapse
|
28
|
Structural characterization of a novel GPVI-nanobody complex reveals a biologically active domain-swapped GPVI dimer. Blood 2021; 137:3443-3453. [PMID: 33512486 DOI: 10.1182/blood.2020009440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Glycoprotein VI (GPVI) is the major signaling receptor for collagen on platelets. We have raised 54 nanobodies (Nb), grouped into 33 structural classes based on their complementary determining region 3 loops, against recombinant GPVI-Fc (dimeric GPVI) and have characterized their ability to bind recombinant GPVI, resting and activated platelets, and to inhibit platelet activation by collagen. Nbs from 6 different binding classes showed the strongest binding to recombinant GPVI-Fc, suggesting that there was not a single dominant class. The most potent 3, Nb2, 21, and 35, inhibited collagen-induced platelet aggregation with nanomolar half maximal inhibitory concentration (IC50) values and inhibited platelet aggregation under flow. The binding KD of the most potent Nb, Nb2, against recombinant monomeric and dimeric GPVI was 0.6 and 0.7 nM, respectively. The crystal structure of monomeric GPVI in complex with Nb2 revealed a binding epitope adjacent to the collagen-related peptide (CRP) binding groove within the D1 domain. In addition, a novel conformation of GPVI involving a domain swap between the D2 domains was observed. The domain swap is facilitated by the outward extension of the C-C' loop, which forms the domain swap hinge. The functional significance of this conformation was tested by truncating the hinge region so that the domain swap cannot occur. Nb2 was still able to displace collagen and CRP binding to the mutant, but signaling was abolished in a cell-based NFAT reporter assay. This demonstrates that the C-C' loop region is important for GPVI signaling but not ligand binding and suggests the domain-swapped structure may represent an active GPVI conformation.
Collapse
|
29
|
Molecular Basis of Complement C1q Collagen-Like Region Interaction with the Immunoglobulin-Like Receptor LAIR-1. Int J Mol Sci 2021; 22:ijms22105125. [PMID: 34066122 PMCID: PMC8151509 DOI: 10.3390/ijms22105125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
The immune system homeostasis relies on a tight equilibrium of interconnected stimulatory and inhibitory signals. Disruption of this balance is characteristic of autoimmune diseases such as systemic lupus erythematosus (SLE). Aside from activating the classical complement pathway and enhancing pathogens and apoptotic cells phagocytosis, C1q has been recently shown to play an important role in immune modulation and tolerance by interacting with several inhibitory and stimulatory immune receptors. Due to its functional organization into collagen-like (CLR) and globular (GR) regions and its multimeric nature, C1q is able to interact simultaneously with several of these receptors and locally congregate pro- and anti-inflammatory signals, thus modulating the immune response. Leukocyte associated immunoglobulin-like (Ig-like) receptor 1 (LAIR-1), a ubiquitous collagen receptor expressed in many immune cell types, has been reported to interact with the CLR of C1q. In this study, we provide new insights into the molecular and structural determinants underlying C1q/LAIR-1 interaction. Recombinant LAIR-1 extracellular Ig-like domain was produced and tested for its interaction with C1q. A molecular dissection of C1q combined with competition assays reveals that LAIR-1 interacts with C1q’s CLR through a binding site close but different from the one of its associated C1r2s2 proteases tetramer. On the other side, we identified LAIR-1 residues involved in C1q interaction by site-directed mutational analysis. All together, these results lead to propose a possible model for C1q interaction with LAIR-1 and will contribute to the fundamental understanding of C1q-mediated immune tolerance.
Collapse
|
30
|
Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev 2021; 46:100733. [PMID: 32682574 PMCID: PMC7354275 DOI: 10.1016/j.blre.2020.100733] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Haemostasis stops bleeding at the site of vascular injury and maintains the integrity of blood vessels through clot formation. This regulated physiological process consists of complex interactions between endothelial cells, platelets, von Willebrand factor and coagulation factors. Haemostasis is initiated by a damaged vessel wall, followed with a rapid adhesion, activation and aggregation of platelets to the exposed subendothelial extracellular matrix. At the same time, coagulation factors aggregate on the procoagulant surface of activated platelets to consolidate the platelet plug by forming a mesh of cross-linked fibrin. Platelets and coagulation mutually influence each other and there are strong indications that, thanks to the interplay between platelets and coagulation, haemostasis is far more effective than the two processes separately. Clinically this is relevant because impaired interaction between platelets and coagulation may result in bleeding complications, while excessive platelet-coagulation interaction induces a high thrombotic risk. In this review, platelets, coagulation factors and the complex interaction between them will be discussed in detail.
Collapse
Affiliation(s)
- Yaqiu Sang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Mark Roest
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | | | - Dana Huskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands.
| |
Collapse
|
31
|
Clark JC, Neagoe RAI, Zuidscherwoude M, Kavanagh DM, Slater A, Martin EM, Soave M, Stegner D, Nieswandt B, Poulter NS, Hummert J, Herten DP, Tomlinson MG, Hill SJ, Watson SP. Evidence that GPVI is Expressed as a Mixture of Monomers and Dimers, and that the D2 Domain is not Essential for GPVI Activation. Thromb Haemost 2021; 121:1435-1447. [PMID: 33638140 DOI: 10.1055/a-1401-5014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Collagen has been proposed to bind to a unique epitope in dimeric glycoprotein VI (GPVI) and the number of GPVI dimers has been reported to increase upon platelet activation. However, in contrast, the crystal structure of GPVI in complex with collagen-related peptide (CRP) showed binding distinct from the site of dimerization. Further fibrinogen has been reported to bind to monomeric but not dimeric GPVI. In the present study, we have used the advanced fluorescence microscopy techniques of single-molecule microscopy, fluorescence correlation spectroscopy (FCS) and bioluminescence resonance energy transfer (BRET), and mutagenesis studies in a transfected cell line model to show that GPVI is expressed as a mixture of monomers and dimers and that dimerization through the D2 domain is not critical for activation. As many of these techniques cannot be applied to platelets to resolve this issue, due to the high density of GPVI and its anucleate nature, we used Förster resonance energy transfer (FRET) to show that endogenous GPVI is at least partially expressed as a dimer on resting and activated platelet membranes. We propose that GPVI may be expressed as a monomer on the cell surface and it forms dimers in the membrane through diffusion, giving rise to a mixture of monomers and dimers. We speculate that the formation of dimers facilitates ligand binding through avidity.
Collapse
Affiliation(s)
- Joanne C Clark
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Raluca A I Neagoe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Wurzburg, Wurzburg, Germany
| | - Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Deirdre M Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mark Soave
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Wurzburg, Wurzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Wurzburg, Wurzburg, Germany
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Johan Hummert
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom.,Department for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Dirk-Peter Herten
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom.,Department for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Michael G Tomlinson
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
32
|
Borst O, Gawaz M. Glycoprotein VI - novel target in antiplatelet medication. Pharmacol Ther 2021; 217:107630. [DOI: 10.1016/j.pharmthera.2020.107630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023]
|
33
|
Huskens D, Li L, Florin L, de Kesel P, de Laat B, Roest M, Devreese KMJ. Flow cytometric analysis of platelet function to improve the recognition of thrombocytopathy. Thromb Res 2020; 194:183-189. [PMID: 32788114 DOI: 10.1016/j.thromres.2020.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Light transmission aggregometry (LTA) is the gold standard for diagnosing bleeding disorders. Although LTA is laborious, requires large volumes of blood and is relatively insensitive to small changes in platelet function, there is still no competing alternative approach to replace LTA for the diagnosis of platelet bleeding disorders. MATERIALS AND METHODS This study investigates the correlation between flow cytometry-based whole blood platelet activation test (WB-PACT) and LTA and whether WB-PACT is of additional value for the identification of bleeding disorders. In total, 161 patients with suspected bleeding diathesis were tested. RESULTS A correlation of 0.41 between LTA and WB-PACT was found, and there was agreement between tests in 62% of cases (κ = 0.23). The WB-PACT is of additional value to LTA to detect platelet function disorders (PFD) as 10 patients with elevated bleeding score (BS) were detected with WB-PACT, 4 with LTA and 7 patients were positive with both tests. Interestingly, in contrast to LTA, WB-PACT has an additional option to detect VWF disfunctions. CONCLUSION WB-PACT may have added value for the routine diagnostic work-up in patients who need to have platelet function tested.
Collapse
Affiliation(s)
- Dana Huskens
- Synapse Research Institute, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Li Li
- Synapse Research Institute, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Lisa Florin
- Coagulation Laboratory, Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Pieter de Kesel
- Coagulation Laboratory, Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bas de Laat
- Synapse Research Institute, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Mark Roest
- Synapse Research Institute, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Katrien M J Devreese
- Coagulation Laboratory, Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Nording H, Baron L, Langer HF. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020; 307:97-108. [DOI: 10.1016/j.atherosclerosis.2020.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
35
|
Abstract
: Mycophenolate mofetil (MMF) raises platelet counts in patients with primary immune thrombocytopenia. However, studies indicate that MMF inhibits collagen-induced platelet aggregation, potentially increasing bleeding risk following MMF therapy. The study evaluates the in-vitro effect of MMF on platelet function. Blood samples (n = 6) from healthy donors were incubated with vehicle, MMF or mycophenolic acid (MPA) at clinically relevant concentrations. Platelet aggregation was measured with flow cytometry and 96-well light transmission aggregometry (LTA). Using flow cytometry, we measured the expression of platelet CD49b, CD42b, CD42a, CD61 and CD41. Platelet activation was measured as the expression of P-selectin and the active form of the GPIIb/IIIa receptor following agonist stimulation. Agonists were: ADP, thrombin receptor-activating peptide, collagen, collagen-related peptide and U46619. The Platelet Function Analyzer-200 was used to measure global platelet function. MMF and MPA did not change platelet aggregation regardless of the agonist used. An exception was a significant, but minor decrease in collagen-induced platelet aggregation in samples with MMF (6 ± 3%, P = 0.02) and MPA (8 ± 4%, P = 0.01) compared with vehicle (22 ± 11%). However, this was not observed using the lesser sensitive LTA method. Compared with vehicle, MPA led to a significantly lower relative disposition of the surface collagen-receptor GPVI (7.8 ± 1.8 versus 8.8 ± 2.1 mean fluorescence intensity, P < 0.001). In all other platelet-related tests, neither MMF nor MPA showed any effect. In conclusion, MMF and MPA only had a minor effect on collagen-induced platelet aggregation, with MPA reducing the relative disposition of surface GPVI receptors.
Collapse
|
36
|
Millington-Burgess SL, Bonna AM, Rahman T, Harper MT. Ethaninidothioic acid (R5421) is not a selective inhibitor of platelet phospholipid scramblase activity. Br J Pharmacol 2020; 177:4007-4020. [PMID: 32496597 PMCID: PMC7429475 DOI: 10.1111/bph.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Ethaninidothioic acid (R5421) has been used as a scramblase inhibitor to determine the role of phospholipid scrambling across a range of systems including platelet procoagulant activity. The selectivity of R5421 has not been thoroughly studied. Here, we characterised the effects of R5421 on platelet function and its suitability for use as a scramblase inhibitor. Experimental Approach Human platelet activation was measured following pretreatment with R5421 and stimulation with a range of agonists. Phosphatidylserine exposure was measured using annexin V binding. Integrin αIIbβ3 activation and α‐granule release were measured by flow cytometry. Cytosolic Ca2+ signals were measured using Cal520 fluorescence. An in silico ligand‐based screen identified 16 compounds which were tested in these assays. Key Results R5421 inhibited A23187‐induced phosphatidylserine exposure in a time‐ and temperature‐dependent manner. R5421 inhibited Ca2+ signalling from the PAR1, PAR4 and glycoprotein VI receptors as well as platelet αIIbβ3 integrin activation and α‐granule release. R5421 is therefore not a selective inhibitor of platelet scramblase activity. An in silico screen identified the pesticide thiodicarb as similar to R5421. It also inhibited platelet phosphatidylserine exposure, Ca2+ signalling from the PAR1 and glycoprotein VI, αIIbβ3 activation and α‐granule release. Thiodicarb additionally disrupted Ca2+ homeostasis in unstimulated platelets. Conclusion and Implications R5421 is not a selective inhibitor of platelet scramblase activity. We have identified the pesticide thiodicarb, which had similar effects on platelet function to R5421 as well as additional disruption of Ca2+ signalling which may underlie some of thiodicarb's toxicity.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
37
|
Foster H, Wilson C, Philippou H, Foster R. Progress toward a Glycoprotein VI Modulator for the Treatment of Thrombosis. J Med Chem 2020; 63:12213-12242. [PMID: 32463237 DOI: 10.1021/acs.jmedchem.0c00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogenic thrombus formation accounts for the etiology of many serious conditions including myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. Despite the development of numerous anticoagulants and antiplatelet agents, the mortality rate associated with these diseases remains high. In recent years, however, significant epidemiological evidence and clinical models have emerged to suggest that modulation of the glycoprotein VI (GPVI) platelet receptor could be harnessed as a novel antiplatelet strategy. As such, many peptidic agents have been described in the past decade, while more recent efforts have focused on the development of small molecule modulators. Herein the rationale for targeting GPVI is summarized and the published GPVI modulators are reviewed, with particular focus on small molecules. A qualitative pharmacophore hypothesis for small molecule ligands at GPVI is also presented.
Collapse
Affiliation(s)
- Holly Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Clare Wilson
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
38
|
Kini RM, Koh CY. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem Pharmacol 2020; 181:114105. [PMID: 32579959 DOI: 10.1016/j.bcp.2020.114105] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases such as coronary and peripheral artery diseases, venous thrombosis, stroke, hypertension, and heart failure are enormous burden to health and economy globally. Snake venoms have been the sources of discovery of successful therapeutics targeting cardiovascular diseases. For example, the first-in-class angiotensin-converting enzyme inhibitor captopril was designed largely based on bradykinin-potentiating peptides from Bothrops jararaca venom. In the recent years, sensitive and high throughput approaches drive discovery and cataloging of new snake venom toxins. As one of the largest class of snake venom toxin, there are now>700 sequences of three-finger toxins (3FTxs) available, many of which are yet to be studied. While the function of 3FTxs are normally associated with neurotoxicity, increasingly more 3FTxs have been characterized to have pharmacological effects on cardiovascular systems. Here we focus on this family of snake venom toxins and their potential in developing therapeutics against cardiovascular diseases.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117558, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore.
| |
Collapse
|
39
|
Shedding of soluble glycoprotein VI is neither affected by animal-derived antibeta-2-glycoprotein 1 antibodies nor IgG fractions from patients with systemic lupus erythematosus. Blood Coagul Fibrinolysis 2020; 31:258-263. [DOI: 10.1097/mbc.0000000000000909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Maurer S, Kopp HG, Salih HR, Kropp KN. Modulation of Immune Responses by Platelet-Derived ADAM10. Front Immunol 2020; 11:44. [PMID: 32117229 PMCID: PMC7012935 DOI: 10.3389/fimmu.2020.00044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
Platelets have a crucial function in maintaining hemostasis. However, beyond their role in coagulation and thrombus formation, platelets have been implicated to affect various pathophysiological conditions such as infectious diseases, autoimmune disorders, and cancer. It is well-established that platelets aid local cancer growth by providing growth factors or contributing to cancer angiogenesis. In addition, they promote metastasis, among others by facilitation of tumor cell-extravasation and epithelial-to-mesenchymal-like transition as well as protecting metastasizing cancer cells from immunosurveillance. A variety of membrane-bound and soluble platelet-derived factors are involved in these processes, and many aspects of platelet biology in both health and disease are regulated by platelet-associated metalloproteinases and their inhibitors. Platelets synthesize (i) members of the matrix metalloproteinase (MMP) family and also inhibitors of MMPs such as members of the "tissue inhibitor of metalloproteinases" (TIMP) family as well as (ii) members of the "a disintegrin and metalloproteinase" (ADAM) family including ADAM10. Notably, platelet-associated metalloproteinase activity not only influences functions of platelets themselves: platelets can also induce expression and/or release of metalloproteinases e.g., in leukocytes or cancer cells, and ADAMs are emerging as important components by which platelets directly affect other cell types and function. This review outlines the function of metalloproteinases in platelet biology with a focus on ADAM10 and discusses the role of platelet-derived metalloproteinases in the interaction of platelets with components of the immune system and/or cancer cells.
Collapse
Affiliation(s)
- Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tuebingen, Tubingen, Germany.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hans-Georg Kopp
- Departments of Molecular Oncology and Thoracic Oncology, Robert-Bosch-Hospital Stuttgart, Stuttgart, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tuebingen, Tubingen, Germany
| | - Korbinian N Kropp
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of Mainz, Mainz, Germany
| |
Collapse
|
41
|
Hoop CL, Zhu J, Bhattacharya S, Tobita CA, Radford SE, Baum J. Collagen I Weakly Interacts with the β-Sheets of β 2-Microglobulin and Enhances Conformational Exchange To Induce Amyloid Formation. J Am Chem Soc 2020; 142:1321-1331. [PMID: 31875390 PMCID: PMC7135851 DOI: 10.1021/jacs.9b10421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Amyloidogenesis is
significant in both protein function and pathology.
Amyloid formation of folded, globular proteins is commonly initiated
by partial or complete unfolding. However, how this unfolding event
is triggered for proteins that are otherwise stable in their native
environments is not well understood. The accumulation of the immunoglobulin
protein β2-microglobulin (β2m) into
amyloid plaques in the joints of long-term hemodialysis patients is
the hallmark of dialysis-related amyloidosis (DRA). While β2m does not form amyloid unassisted near neutral pH in vitro, the localization of β2m deposits
to joint spaces suggests a role for the local extracellular matrix
(ECM) proteins, specifically collagens, in promoting amyloid formation.
Indeed, collagen and other ECM components have been observed to facilitate
β2m amyloid formation, but the large size and anisotropy
of the complex, combined with the low affinity of these interactions,
have limited atomic-level elucidation of the amyloid-promoting mechanism(s)
by these molecules. Using solution NMR approaches that uniquely probe
weak interactions in large molecular weight complexes, we are able
to map the binding interfaces on β2m for collagen
I and detect collagen I-induced μs–ms time-scale dynamics
in the β2m backbone. By combining solution NMR relaxation
methods and 15N-dark-state exchange saturation transfer
experiments, we propose a model in which weak, multimodal collagen
I−β2m interactions promote exchange with a
minor population of amyloid-competent species to induce fibrillogenesis.
The results portray the intimate role of the environment in switching
an innocuous protein into an amyloid-competent state, rationalizing
the localization of amyloid deposits in DRA.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Jie Zhu
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | | | - Caitlyn A Tobita
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Jean Baum
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
42
|
Lopera Higuita M, Griffiths LG. Small Diameter Xenogeneic Extracellular Matrix Scaffolds for Vascular Applications. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:26-45. [PMID: 31663438 DOI: 10.1089/ten.teb.2019.0229] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, despite the success of percutaneous coronary intervention (PCI), coronary artery bypass graft (CABG) remains among the most commonly performed cardiac surgical procedures in the United States. Unfortunately, the use of autologous grafts in CABG presents a major clinical challenge as complications due to autologous vessel harvest and limited vessel availability pose a significant setback in the success rate of CABG surgeries. Acellular extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissues have the potential to overcome these challenges, as they offer unlimited availability and sufficient length to serve as "off-the-shelf" CABGs. Unfortunately, regardless of numerous efforts to produce a fully functional small diameter xenogeneic ECM scaffold, the combination of factors required to overcome all failure mechanisms in a single graft remains elusive. This article covers the major failure mechanisms of current xenogeneic small diameter vessel ECM scaffolds, and reviews the recent advances in the field to overcome these failure mechanisms and ultimately develop a small diameter ECM xenogeneic scaffold for CABG. Impact Statement Currently, the use of autologous vessel in coronary artery bypass graft (CABG) is common practice. However, the use of autologous tissue poses significant complications due to tissue harvest and limited availability. Developing an alternative vessel for use in CABG can potentially increase the success rate of CABG surgery by eliminating complications related to the use of autologous vessel. However, this development has been hindered by an array of failure mechanisms that currently have not been overcome. This article describes the currently identified failure mechanisms of small diameter vascular xenogeneic extracellular matrix scaffolds and reviews current research targeted to overcoming these failure mechanisms toward ensuring long-term graft patency.
Collapse
Affiliation(s)
| | - Leigh G Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
43
|
Mizutani D, Onuma T, Tanabe K, Kojima A, Uematsu K, Nakashima D, Doi T, Enomoto Y, Matsushima-Nishiwaki R, Tokuda H, Ogura S, Iida H, Kozawa O, Iwama T. Olive polyphenol reduces the collagen-elicited release of phosphorylated HSP27 from human platelets. Biosci Biotechnol Biochem 2019; 84:536-543. [PMID: 31760852 DOI: 10.1080/09168451.2019.1697196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hydroxytyrosol (HT) and oleuropein (OLE) are natural polyphenols found in extra virgin olive oil. Accumulating evidence indicates that ingestion of olive oil contributes to reduce the risk of cardiovascular diseases and stroke. It has been reported that HT and OLE inhibit human platelet aggregation. We have shown that collagen induces the phosphorylation of heat shock protein 27 (HSP27) in human platelets, resulting in the release of HSP27, an extracellular pro-inflammatory agent. In this study, we investigated the effects of HT and OLE on the collagen-stimulated human platelet activation. The PDGF-AB secretion and the soluble CD40 ligand (sCD40L) release by collagen were reduced by HT or OLE. HT and OLE significantly suppressed the phosphorylation of HSP27 and the release of phosphorylated-HSP27. These findings suggest that olive polyphenol reduces the collagen-stimulated phosphorylation of HSP27 in human platelets and the release. Our results may provide a novel anti- inflammatory effect of olive polyphenol.
Collapse
Affiliation(s)
- Daisuke Mizutani
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Onuma
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akiko Kojima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Uematsu
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daiki Nakashima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Haruhiko Tokuda
- Department of Clinical Labolatory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
44
|
Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Żuber Z, Wojtkiewicz M, Wojtkiewicz J. Role of Microparticles in the Pathogenesis of Inflammatory Joint Diseases. Int J Mol Sci 2019; 20:E5453. [PMID: 31683793 PMCID: PMC6862866 DOI: 10.3390/ijms20215453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) make up a group of chronic immune-mediated inflammatory diseases (IMIDs). The course of these diseases involves chronic inflammation of joints and enthesopathies, which can result in joint damage and disability. Microparticles (MPs) are a group of small spherical membranous vesicles. The structure and cellular origin of MPs, mechanisms that stimulate their secretion and the place of their production, determine their biological properties, which could become manifest in the pathogenesis of immune-mediated inflammatory diseases. Microparticles can stimulate synovitis with proinflammatory cytokines and chemokines. MPs may also contribute to the pathogenesis of rheumatic diseases by the formation of immune complexes and complement activation, pro-coagulation activity, activation of vascular endothelium cells, and stimulation of metalloproteinase production. It seems that in the future, microparticles can become a modern marker of disease activity, a response to treatment, and, possibly, they can be used in the prognosis of the course of arthritis. The knowledge of the complexity of MPs biology remains incomplete and it requires further comprehensive studies to explain how they affect the development of rheumatic diseases. This review focuses on the immunopathogenic and therapeutic role of MPs in chronic immune-mediated inflammatory joint diseases.
Collapse
Affiliation(s)
- Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, Municipal Hospital in Olsztyn, 10-900 Olsztyn, Poland.
- Department of Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Zbigniew Żuber
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Kraków University, 30-705 Kraków, Poland.
| | - Maja Wojtkiewicz
- Faculty of Earth Sciences, Department of Geomatics and Cartography Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| |
Collapse
|
45
|
Tension in fibrils suppresses their enzymatic degradation - A molecular mechanism for 'use it or lose it'. Matrix Biol 2019; 85-86:34-46. [PMID: 31201857 DOI: 10.1016/j.matbio.2019.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022]
Abstract
Tissue homeostasis depends on a balance of synthesis and degradation of constituent proteins, with turnover of a given protein potentially regulated by its use. Extracellular matrix (ECM) is predominantly composed of fibrillar collagens that exhibit tension-sensitive degradation, which we review here at different levels of hierarchy. Past experiments and recent proteomics measurements together suggest that mechanical strain stabilizes collagen against enzymatic degradation at the scale of tissues and fibrils whereas isolated collagen molecules exhibit a biphasic behavior that depends on load magnitude. Within a Michaelis-Menten framework, collagenases at constant concentration effectively exhibit a low activity on substrate fibrils when the fibrils are strained by tension. Mechanisms of such mechanosensitive regulation are surveyed together with relevant interactions of collagen fibrils with cells.
Collapse
|
46
|
Onselaer MB, Nagy M, Pallini C, Pike JA, Perrella G, Quintanilla LG, Eble JA, Poulter NS, Heemskerk JWM, Watson SP. Comparison of the GPVI inhibitors losartan and honokiol. Platelets 2019; 31:187-197. [PMID: 30849265 PMCID: PMC7034533 DOI: 10.1080/09537104.2019.1585526] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Losartan and honokiol are small molecules which have been described to inhibit aggregation of platelets by collagen. Losartan has been proposed to block clustering of GPVI but not to affect binding of collagen. Honokiol has been reported to bind directly to GPVI but only at a concentration that is three orders of magnitude higher than that needed for inhibition of aggregation. The mechanism of action of both inhibitors is so far unclear. In the present study, we confirm the inhibitory effects of both agents on platelet aggregation by collagen and show that both also block the aggregation induced by the activation of CLEC-2 or the low affinity immune receptor FcγRIIa at similar concentrations. For GPVI and CLEC-2, this inhibition is associated with a reduction in protein tyrosine phosphorylation of multiple proteins including Syk. In contrast, on a collagen surface, spreading of platelets and clustering of GPVI (measured by single molecule localisation microscopy) was not altered by losartan or honokiol. Furthermore, in flow whole-blood, both inhibitors suppressed the formation of multi-layered platelet thrombi at arteriolar shear rates at concentrations that hardly affect collagen-induced platelet aggregation in platelet rich plasma. Together, these results demonstrate that losartan and honokiol have multiple effects on platelets which should be considered in the use of these compounds as anti-platelet agents.
Collapse
Affiliation(s)
- Marie-Blanche Onselaer
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, MD, The Netherlands
| | - Chiara Pallini
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| | - Gina Perrella
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, MD, The Netherlands
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, MD, The Netherlands
| | - Steve P Watson
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| |
Collapse
|
47
|
Izquierdo I, Barrachina MN, Hermida-Nogueira L, Casas V, Eble JA, Carrascal M, Abián J, García Á. Platelet membrane lipid rafts protein composition varies following GPVI and CLEC-2 receptors activation. J Proteomics 2019; 195:88-97. [PMID: 30677554 DOI: 10.1016/j.jprot.2019.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 12/11/2022]
Abstract
Lipid rafts are membrane microdomains that have been proposed to play an important role in several platelet-signalling cascades, including those mediated by the receptors Glycoprotein VI (GPVI), and C-type lectin domain family 1 member B (CLEC-2), both involved in thrombus formation. We have performed a LC-MS/MS proteomic analysis of lipid rafts isolated from platelets activated through GPVI and CLEC-2 as well as from resting platelets. Our aim was to determine the magnitude of changes in lipid rafts protein composition and to elucidate the relevance of these alterations in platelet function. A number of relevant signalling proteins were found enriched in lipid rafts following platelet activation (such as the tyrosine protein kinases Fyn, Lyn and Yes; the G proteins G(i) and G(z); and cAMP protein kinase). Interestingly, our results indicate that the relative enrichment of lipid rafts in these signalling proteins may not be a consequence of protein translocation to these domains upon platelet stimulation, but the result of a massive loss in cytoskeletal proteins after platelet activation. Thus, this study may help to better understand the effects of platelet activation in the reorganization of lipid rafts and set the basis for further proteomic studies of these membrane microdomains in platelets. SIGNIFICANCE: We performed the first proteomic comparative analysis of lipid rafts- protein composition in platelets activated through GPVI and CLEC-2 receptors and in resting state. We identified a number of signalling proteins essential for platelet activation relatively enriched in platelets activated through both receptors, and we show that lipid rafts reorganization upon platelet activation leads to a loss in cytoskeletal proteins, highly associated to these domains in resting platelets.
Collapse
Affiliation(s)
- Irene Izquierdo
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - María N Barrachina
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Joaquín Abián
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
48
|
Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129:12-23. [PMID: 30601137 DOI: 10.1172/jci122955] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine-based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
49
|
|
50
|
Sokol J, Skerenova M, Biringer K, Simurda T, Kubisz P, Stasko J. Glycoprotein VI Gene Variants Affect Pregnancy Loss in Patients With Platelet Hyperaggregability. Clin Appl Thromb Hemost 2018; 24:202S-208S. [PMID: 30278775 PMCID: PMC6714835 DOI: 10.1177/1076029618802358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to evaluate GP6 gene in patients with sticky platelet
syndrome (SPS) and fetal loss. Platelet aggregability was tested with
platelet-rich plasma using PACKS-4 aggregometer (Helena Laboratories).
High-resolution melting analysis on LightCycler 480 II (Roche Diagnostics) was
used for single-nucleotide polymorphism (SNP) genotyping. We examined 64
patients with SPS and 54 control participants. We found significantly higher
occurrence of 5 SNPs in patients with SPS versus controls (rs1671152, rs1654433,
rs1613662, rs1654416, and rs2304167). Moreover, the haplotype analysis showed a
significantly higher occurrence of 7 haplotypes in patients with SPS compared to
controls (acgg and aagg in GP6_5reg haplotype; ccgt in GP6_3reg haplotype; gg
and ta in GP6_REG haplotype; SKTH and PEAN in GP6_PEAN haplotype). Our results,
especially higher occurrence of 4 nonsynonymous variants within the coding
region, support the idea that GP6 polymorphisms are associated with the platelet
hyperaggregability accompanied by fetal loss.
Collapse
Affiliation(s)
- Juraj Sokol
- Department of Hematology and Transfusion Medicine, National Center of Hemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Maria Skerenova
- Department of Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tomas Simurda
- Department of Hematology and Transfusion Medicine, National Center of Hemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubisz
- Department of Hematology and Transfusion Medicine, National Center of Hemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Stasko
- Department of Hematology and Transfusion Medicine, National Center of Hemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|