1
|
Pozmanter C, Benner L, Kelly SE, Curnutte H, Emilfork L, Van Doren M. Tudor domain containing protein 5-like identifies a novel germline body and regulates maternal RNAs during oogenesis in Drosophila. Genetics 2025; 229:iyaf024. [PMID: 39982762 DOI: 10.1093/genetics/iyaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Tudor domain-containing proteins are conserved across the animal kingdom for their function in germline development and fertility. Previously, we demonstrated that Tudor domain-containing protein 5-like plays an important role in the germline where it promotes male identity. However, Tudor domain-containing protein 5-like is also expressed in both the ovary and testis during later stages of germline development, suggesting that it plays a role in germline differentiation in both sexes. We found that Tudor domain-containing protein 5-like localizes to a potentially novel germline body and plays a role in posttranscriptional gene regulation. Additionally, embryos laid by Tdrd5l-mutant females exhibited reduced viability and displayed dorsal appendage defects suggesting a failure of proper dorsal-ventral patterning. As dorsal-ventral patterning is dependent on gurken (grk), we examined Gurken expression during oogenesis. We observed premature accumulation of Gurken protein in nurse cells indicating that translation is no longer properly repressed during mRNA transport to the oocyte. We also observed increased nurse cell accumulation of the cytoplasmic polyadenylation element binding protein Oo18 RNA-binding protein, a translational activator of grk. Decreasing orb function was able to partially rescue the Tdrd5l-mutant phenotype, and so defects in Orb expression are likely a primary cause of the defects in Tdrd5l mutants. Our data indicate that Tdrd5l is important for translational repression of maternal mRNAs such as orb, and possibly others, following their synthesis in the nurse cells and during their transport to the oocyte.
Collapse
Affiliation(s)
- Caitlin Pozmanter
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leif Benner
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, 6 Center Drive, Bldg. 6B Room 3B326, Bethesda, MD 20892, USA
| | - Sydney E Kelly
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Harrison Curnutte
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Laura Emilfork
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Mark Van Doren
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Vaglietti S, Boggio Bozzo S, Ghirardi M, Fiumara F. Divergent evolution of low-complexity regions in the vertebrate CPEB protein family. FRONTIERS IN BIOINFORMATICS 2025; 5:1491735. [PMID: 40182702 PMCID: PMC11965684 DOI: 10.3389/fbinf.2025.1491735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/28/2025] [Indexed: 04/05/2025] Open
Abstract
The cytoplasmic polyadenylation element-binding proteins (CPEBs) are a family of translational regulators involved in multiple biological processes, including memory-related synaptic plasticity. In vertebrates, four paralogous genes (CPEB1-4) encode proteins with phylogenetically conserved C-terminal RNA-binding domains and variable N-terminal regions (NTRs). The CPEB NTRs are characterized by low-complexity regions (LCRs), including homopolymeric amino acid repeats (AARs), and have been identified as mediators of liquid-liquid phase separation (LLPS) and prion-like aggregation. After their appearance following gene duplication, the four paralogous CPEB proteins functionally diverged in terms of activation mechanisms and modes of mRNA binding. The paralog-specific NTRs may have contributed substantially to such functional diversification but their evolutionary history remains largely unexplored. Here, we traced the evolution of vertebrate CPEBs and their LCRs/AARs focusing on primary sequence composition, complexity, repetitiveness, and their possible functional impact on LLPS propensity and prion-likeness. We initially defined these composition- and function-related quantitative parameters for the four human CPEB paralogs and then systematically analyzed their evolutionary variation across more than 500 species belonging to nine major clades of different stem age, from Chondrichthyes to Euarchontoglires, along the vertebrate lineage. We found that the four CPEB proteins display highly divergent, paralog-specific evolutionary trends in composition- and function-related parameters, primarily driven by variation in their LCRs/AARs and largely related to clade stem ages. These findings shed new light on the molecular and functional evolution of LCRs in the CPEB protein family, in both quantitative and qualitative terms, highlighting the emergence of CPEB2 as a proline-rich prion-like protein in younger vertebrate clades, including Primates.
Collapse
Affiliation(s)
| | | | | | - Ferdinando Fiumara
- “Rita Levi-Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Daiwile AP, Ladenheim B, Jayanthi S, Cadet JL. Punishment-Induced Suppression of Methamphetamine Self-Administration Is Accompanied by the Activation of the CPEB4/GLD2 Polyadenylation Complex of the Translational Machinery. Int J Mol Sci 2025; 26:2734. [PMID: 40141377 PMCID: PMC11942873 DOI: 10.3390/ijms26062734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Methamphetamine (METH) use disorder (MUD) is a public health catastrophe. Herein, we used a METH self-administration model to assess behavioral responses to the dopamine receptor D1 (DRD1) antagonist, SCH23390. Differential gene expression was measured in the dorsal striatum after a 30-day withdrawal from METH. SCH23390 administration reduced METH taking in all animals. Shock Resistant (SR) rats showed greater incubation of METH seeking, which was correlated with increased Creb1, Cbp, and JunD mRNA expression. Cytoplasmic polyadenylation element binding protein 4 (Cpeb4) mRNA levels were increased in shock-sensitive (SS) rats. SS rats also showed increased protein levels for cleavage and polyadenylation specificity factor (CPSF) and germ line development 2 (GLD2) that are CPEB4-interacting proteins. Interestingly, GLD2-regulated GLUN2A mRNA and its protein showed increased expression in the shock-sensitive rats. Taken together, these observations identified CPEB4-regulated molecular mechanisms acting via NMDA GLUN2A receptors as potential targets for the treatment of METH use disorder.
Collapse
Affiliation(s)
| | | | | | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; (A.P.D.); (B.L.); (S.J.)
| |
Collapse
|
4
|
Sun N, Su Z, Zheng X. Research progress of mosquito-borne virus mRNA vaccines. Mol Ther Methods Clin Dev 2025; 33:101398. [PMID: 39834558 PMCID: PMC11743085 DOI: 10.1016/j.omtm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus. Enhancements in mRNA vaccine design, such as improvements to the 5' cap structure, 5'UTR, open reading frame, 3'UTR, and polyadenylation tail, have significantly increased mRNA stability and translation efficiency. Additionally, the use of lipid nanoparticles and polymer nanoparticles has greatly improved the delivery efficiency of mRNA vaccines. Currently, mRNA vaccines against mosquito-borne viruses are under development and clinical trials, showing promising protective effects. Future research should continue to optimize vaccine design and delivery systems to achieve broad-spectrum and long-lasting protection against various mosquito-borne virus infections.
Collapse
Affiliation(s)
- Ningze Sun
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Zhiwei Su
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
5
|
Liang W, Liu L, Chen D, Wang K, Lin S, Chen W, Li S, Deng B, Li Q, Han C. De Novo Assembly, Characterization and Comparative Transcriptome Analysis of the Mature Male and Female Gonads in Acrossocheilus parallens. Animals (Basel) 2025; 15:806. [PMID: 40150335 PMCID: PMC11939445 DOI: 10.3390/ani15060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Acrossocheilus parallens has become an important commercial aquaculture species in southern China due to its high nutritional content and ornamental value. However, at present, there is very little research on its gonad development and reproductive regulation, which has restricted the development of its aquaculture industry. In this research, the gonadal transcriptome sequencing data of female and male A. parallens were first analyzed and compared. A total of 67,251 unigenes were successfully assembled and a total of 34,069 unigenes were annotated. After the comparative transcriptome analysis, a sum of 14,514 differentially expressed genes (DEGs) were identified between the male and female gonads, with 9111 having significantly high expression in the testes and 5403 having high expression in the ovaries. Additionally, 82 DEGs related to reproduction, gonad development and differentiation in the gonads were identified and the differential expression profiles of partial genes were further validated using real-time fluorescence quantitative PCR. These results provide basic data for further research on the functions of the genes and pathways related to sex differentiation and gonad development in A. parallens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiang Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (W.L.); (L.L.); (D.C.); (K.W.); (S.L.); (W.C.); (S.L.); (B.D.)
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (W.L.); (L.L.); (D.C.); (K.W.); (S.L.); (W.C.); (S.L.); (B.D.)
| |
Collapse
|
6
|
Zhang H, Li C, Lu S, Wu H, Li J, Liu Q, Yan Y, Tang Y, Xu R, Zhao X, Pan M, Wei Q, Peng S, Ma B. The GPER is an important factor through which somatic cells regulate oocyte maternal mRNA translation and developmental competence. Int J Biol Macromol 2025; 290:138827. [PMID: 39694393 DOI: 10.1016/j.ijbiomac.2024.138827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The G protein-coupled estrogen receptor (GPER) plays a crucial role in various biological processes, but its regulation of oocyte meiosis remains unclear. In this study, we generated a Gper1 knockout in growing oocytes using Zp3-Cre, revealing that GPER is essential for oocyte maturation and embryo development. RNA-seq analysis indicated that GPER deficiency significantly altered the oocyte transcriptome and disrupted mRNA translation. Immunoprecipitation mass spectrometry revealed that GPER directly interacts with HSP90 and modulates the ERK1/2 and PI3K-AKT signaling pathways, which are vital for enhancing maternal mRNA translation and developmental potential. We also found that cumulus cell-derived GPER-positive vesicles and delivered to oocytes through a RAB11A-dependent pathway. RAB11A facilitates GPER recycling, preventing its degradation in late endosomes and promoting its plasma membrane localization. Moreover, epidermal growth factor (EGF) improves GPER expression in cumulus cells by upregulating RAB11A, thereby enhancing the exocytosis of recycling vesicles. Knockdown of Rab11a severely reduced GPER-positive vesicles in oocytes, impairing spindle morphogenesis and meiosis. Our findings highlight the critical role of somatic cell signals in regulating maternal mRNA translation and oocyte quality for embryonic development.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sihai Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Jingmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qingyang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yutong Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yaju Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sha Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Zhang J, Yang CQ, Liu ZQ, Wu SP, Li ZG, Zhang LM, Fan HW, Guo ZY, Man HY, Li X, Lu YM, Zhu LQ, Liu D. Cpeb1 remodels cell type-specific translational program to promote fear extinction. SCIENCE ADVANCES 2025; 11:eadr8687. [PMID: 39792668 PMCID: PMC11721575 DOI: 10.1126/sciadv.adr8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex (IL) during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction. Specifically, Cpeb1 deficiency in neurons activates the translation of heterochromatin protein 1 binding protein 3, which enhances microRNA networks, whereas in microglia, it suppresses the translation of chemokine receptor 1 (Cx3cr1), resulting in an aged-like microglial phenotype. These coordinated alterations impair spine formation and plasticity. Our study highlights the critical role of cell type-specific protein translation in fear extinction and provides an insight into therapeutic targets for disorders with extinction deficits.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chun-Qing Yang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shi-Ping Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zu-Guang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luo-Man Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Hong-Wei Fan
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi-Yuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430030, China
| | - You-Ming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
8
|
Yang J, Bu J, Liu B, Liu Y, Zhang Z, Li Z, Lu F, Zhu B, Li Y. MARTRE family proteins negatively regulate CCR4-NOT activity to protect poly(A) tail length and promote translation of maternal mRNA. Nat Commun 2025; 16:248. [PMID: 39747175 PMCID: PMC11696134 DOI: 10.1038/s41467-024-55610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
The mammalian early embryo development requires translation of maternal mRNA inherited from the oocyte. While poly(A) tail length influences mRNA translation efficiency during the oocyte-to-embryo transition (OET), molecular mechanisms regulating maternal RNA poly(A) tail length are not fully understood. In this study, we identified MARTRE, a previously uncharacterized protein family (MARTRE1-MARTRE6), as regulators expressed during mouse OET that modulate poly(A) tail length. MARTRE inhibits deadenylation through the direct interaction with the deadenylase CCR4-NOT, and ectopic expression of Martre stabilized mRNA by attenuating poly(A) tail shortening. Deletion of the Martre gene locus results in shortened poly(A) tails and decreased translation efficiency of actively translated mRNAs in mouse zygotes, but does not affect maternal mRNA decay. MARTRE proteins thus fine-tune maternal mRNA translation by negatively regulating the deadenylating activity of CCR4-NOT. Moreover, Martre knockout embryos show delayed 2-cell stage progression and compromised preimplantation development. Together, our findings highlight protection of long poly(A) tails from active deadenylation as an important mechanism to coordinate translation of maternal mRNA.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiachen Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yusheng Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhuqiang Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ziyi Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Falong Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yingfeng Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Breton TS, Oliveira ME, Chillemi T, Harriman W, Korasadowicz J, Saverese E, Bourget E, Murray CA, Martyniuk CJ, DiMaggio MA. Spatial and quantitative gene expression analysis of SREB receptors in the gonads of green-spotted pufferfish (Dichotomyctere nigroviridis). Gen Comp Endocrinol 2025; 360:114641. [PMID: 39536984 PMCID: PMC11646178 DOI: 10.1016/j.ygcen.2024.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Super-conserved Receptors Expressed in Brain (SREB) are a highly conserved family of orphan G protein-coupled receptors that consist of three members in most vertebrates: SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). Each receptor is associated with diverse physiological processes and expressed in both ovaries and testes, but reproductive functions are only beginning to be understood. In addition, some fishes gained a novel fourth gene, SREB3B, which may have unique functions. The purpose of this study was to conduct a spatial and quantitative analysis of SREBs in the gonads of pufferfish (Dichotomyctere nigroviridis), which expresses all four genes. Multiplex RNAscope and absolute qPCR were used to assess gene expression patterns in both ovaries and testes. Expression was detected in early ovaries and dominated by sreb1 (approximately 2500 copies/ng RNA vs. 300 or less for others), with notable expression of all receptors in primary oocytes, granulosa cells, and small numbers of extra-follicular cells. Within primary oocytes, sreb1 and sreb3b exhibited diffuse patterns that may indicate early functions, while sreb2 and sreb3a were granular and may reflect stored mRNA. Early testicular development was dominated by sreb1 and sreb2 (∼5000 copies/ng RNA) in spermatogonia. These patterns were somewhat reduced in late testes (∼1000-2600 copies/ng RNA), but sreb3b exhibited a novel spatial pattern (∼380 copies/ng RNA) within spermatogenic cysts. These results highlight diverse roles for the SREB family, and sreb3b is hypothesized to have unique roles in fish reproduction.
Collapse
Affiliation(s)
- Timothy S Breton
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA.
| | | | - Truly Chillemi
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA
| | - William Harriman
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Joanna Korasadowicz
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Eme Saverese
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Emma Bourget
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Casey A Murray
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matthew A DiMaggio
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570, USA
| |
Collapse
|
10
|
Lenarcic EM, Hale AE, Vincent HA, Dickmander RJ, Sanders W, Moorman NJ. Protein phosphatase 1 suppresses PKR/EIF2α signaling during human cytomegalovirus infection. J Virol 2024; 98:e0059024. [PMID: 39470211 PMCID: PMC11575161 DOI: 10.1128/jvi.00590-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/15/2024] [Indexed: 10/30/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world's population. Lytic HCMV replication in immunocompromised individuals or neonates can lead to severe disease in multiple organ systems and even death. The establishment of lytic replication is driven by the first viral proteins expressed upon infection, the immediate early proteins, which play a key role in creating an intracellular environment conducive to virus replication. Two immediate early proteins, the functional orthologs pTRS1 and pIRS1, stimulate immediate early gene expression by suppressing antiviral PKR/eIF2α signaling and enhance the translation of viral mRNAs independent of PKR antagonism. To better understand the molecular functions of pTRS1, we used proximity labeling proteomics to identify proteins that interact with pTRS1 in infected cells. Multiple novel host and viral interactors were identified, including the catalytic subunits of the protein phosphatase 1 (PP1) holoenzyme. Mutations to a PP1 catalytic subunit known to disrupt binding to PP1 regulatory subunits decreased binding to pTRS1. pTRS1 immune complexes contained phosphatase activity, and inhibition of phosphatase activity in transfected or infected cells reversed the ability of pTRS1 to inhibit the antiviral kinase PKR. Depletion of individual PP1 catalytic subunits decreased virus replication and increased the phosphorylation of the PKR substrate eIF2α. Taken together, our data suggest potential novel functions for pTRS1 and define a novel role for PP1 as an antagonist of the antiviral PKR/eIF2α signaling axis during HCMV infection.IMPORTANCEThe human cytomegalovirus (HCMV) pTRS1 and pIRS1 proteins are critical regulators of HCMV replication, both during primary infection and during reactivation from viral latency. Thus, defining the molecular functions of pTRS1/pIRS1 is important for understanding the molecular events controlling HCMV replication and viral disease. These data provide new insights into potential pTRS1 functional roles, providing a starting point for others to understand new features of infected cell biology. Another important result of this study is the finding that specific protein phosphatase 1 (PP1) regulatory subunits are required to suppress PKR/eIF2α signaling, a critical cellular innate immune defense to viral infection. These data lay the groundwork for future efforts to discover therapeutics that disrupt pTRS1 interaction with PP1 allowing cellular defenses to limit HCMV replication and disease.
Collapse
Affiliation(s)
- Erik M. Lenarcic
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew E. Hale
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather A. Vincent
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rebekah J. Dickmander
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
12
|
Saraiva HFRDA, Sangalli JR, Alves L, da Silveira JC, Meirelles FV, Perecin F. NPPC and AREG supplementation in IVM systems alter mRNA translation and decay programs-related gene expression in bovine COC. Anim Reprod 2024; 21:e20230101. [PMID: 39021501 PMCID: PMC11253787 DOI: 10.1590/1984-3143-ar2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/29/2024] [Indexed: 07/20/2024] Open
Abstract
During oocyte meiosis resumption, a coordinated program of transcript translation and decay machinery promotes a remodeling of mRNA stores, which determines the success of the acquisition of competence and early embryo development. We investigated levels of two genes related to mRNA translation (CPEB1 and CPEB4) and two related to mRNA degradation (CNOT7 and ZFP36L2) machinery and found ZFP36L2 downregulated in in vitro-matured bovine oocytes compared to in vivo counterparts. Thereafter, we tested the effects of a pre-IVM step with NPPC and a modified IVM with AREG on the modulation of members of mRNA translation and degradation pathways in cumulus cells and oocytes. Our data showed a massive upregulation of genes associated with translational and decay processes in cumulus cells, promoted by NPPC and AREG supplementation, up to 9h of IVM. The oocytes were less affected by NPPC and AREG, and even though ZFP36L2 transcript and protein levels were downregulated at 9 and 19h of IVM, only one (KDM4C) from the ten target genes evaluated was differently expressed in these treatments. These data suggest that cumulus cells are more prone to respond to NPPC and AREG supplementation in vitro, regarding translational and mRNA decay programs. Given the important nursing role of these cells, further studies could contribute to a better understanding of the impact of these modulators in maternal mRNA modulation and improve IVM outcomes.
Collapse
Affiliation(s)
| | - Juliano Rodrigues Sangalli
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Luana Alves
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Juliano Coelho da Silveira
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Flávio Vieira Meirelles
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Felipe Perecin
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
13
|
Zhao Y, Zhang L, Yang J, Li C, Li P. CPEB2 inhibits preeclampsia progression by regulating SSTR3 translation through polyadenylation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167191. [PMID: 38648900 DOI: 10.1016/j.bbadis.2024.167191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
AIMS Trophoblast cell dysfunction is one of the important factors leading to preeclampsia (PE). Cytoplasmic polyadenylation element-binding 2 (CPEB2) has been found to be differentially expressed in PE patients, but whether it mediates PE process by regulating trophoblast cell function is unclear. METHODS The expression of CPEB2 and somatostatin receptor 3 (SSTR3) was detected by quantitative real-time PCR, Western blot (WB) and immunofluorescence staining. Cell functions were analyzed by CCK-8 assay, EdU assay, flow cytometry and transwell assay. Epithelial-mesenchymal transition (EMT)-related protein levels were detected by WB. The interaction of CPEB2 and SSTR3 was confirmed by RIP assay, dual-luciferase reporter assay and PCR poly(A) tail assay. Animal experiments were performed to explore the effect of CPEB2 on PE progression in vivo, and the placental tissues of rat were used for H&E staining, immunohistochemical staining and TUNEL staining. RESULTS CPEB2 was lowly expressed in PE patients. CPEB2 upregulation accelerated trophoblast cell proliferation, migration, invasion and EMT, while its knockdown had an opposite effect. CPEB2 bound to the CPE site in the 3'-UTR of SSTR3 mRNA to suppress SSTR3 translation through reducing poly(A) tails. Besides, SSTR3 overexpression suppressed trophoblast cell proliferation, migration, invasion and EMT, while its silencing accelerated trophoblast cell functions. However, these effects could be reversed by CPEB2 upregulation and knockdown, respectively. In vivo experiments, CPEB2 overexpression relieved histopathologic changes, inhibited apoptosis, promoted proliferation and enhanced EMT in the placenta of PE rat by decreasing SSTR3 expression. CONCLUSION CPEB2 inhibited PE progression, which promoted trophoblast cell functions by inhibiting SSTR3 translation through polyadenylation.
Collapse
Affiliation(s)
- Yanhua Zhao
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha City, Hunan Province 410008, PR China
| | - Liran Zhang
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha City, Hunan Province 410008, PR China
| | - Jingjing Yang
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha City, Hunan Province 410008, PR China
| | - Caiwen Li
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha City, Hunan Province 410008, PR China
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha City, Hunan Province 410008, PR China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha City, Hunan Province 410008, PR China.
| |
Collapse
|
14
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Role of Post-Transcriptional Regulation in Learning and Memory in Mammals. Genes (Basel) 2024; 15:337. [PMID: 38540396 PMCID: PMC10970538 DOI: 10.3390/genes15030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
After many decades, during which most molecular studies on the regulation of gene expression focused on transcriptional events, it was realized that post-transcriptional control was equally important in order to determine where and when specific proteins were to be synthesized. Translational regulation is of the most importance in the brain, where all the steps of mRNA maturation, transport to different regions of the cells and actual expression, in response to specific signals, constitute the molecular basis for neuronal plasticity and, as a consequence, for structural stabilization/modification of synapses; notably, these latter events are fundamental for the highest brain functions, such as learning and memory, and are characterized by long-term potentiation (LTP) of specific synapses. Here, we will discuss the molecular bases of these fundamental events by considering both the role of RNA-binding proteins (RBPs) and the effects of non-coding RNAs involved in controlling splicing, editing, stability and translation of mRNAs. Importantly, it has also been found that dysregulation of mRNA metabolism/localization is involved in many pathological conditions, arising either during brain development or in the adult nervous system.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
15
|
Smith PR, Campbell ZT. RNA-binding proteins in pain. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1843. [PMID: 38576117 PMCID: PMC11003723 DOI: 10.1002/wrna.1843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
RNAs are meticulously controlled by proteins. Through direct and indirect associations, every facet in the brief life of an mRNA is subject to regulation. RNA-binding proteins (RBPs) permeate biology. Here, we focus on their roles in pain. Chronic pain is among the largest challenges facing medicine and requires new strategies. Mounting pharmacologic and genetic evidence obtained in pre-clinical models suggests fundamental roles for a broad array of RBPs. We describe their diverse roles that span RNA modification, splicing, stability, translation, and decay. Finally, we highlight opportunities to expand our understanding of regulatory interactions that contribute to pain signaling. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patrick R. Smith
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
| | - Zachary T. Campbell
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53792
| |
Collapse
|
16
|
Yu M, Zhang S, Ma Z, Qiang J, Wei J, Sun L, Kocher TD, Wang D, Tao W. Disruption of Zar1 leads to arrested oogenesis by regulating polyadenylation via Cpeb1 in tilapia (Oreochromis niloticus). Int J Biol Macromol 2024; 260:129632. [PMID: 38253139 DOI: 10.1016/j.ijbiomac.2024.129632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.
Collapse
Affiliation(s)
- Miao Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shiyi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhisheng Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, United States of America
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Lee K, Cho K, Morey R, Cook-Andersen H. An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition. Cell Rep 2024; 43:113710. [PMID: 38306272 PMCID: PMC11034814 DOI: 10.1016/j.celrep.2024.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Without new transcription, gene expression across the oocyte-to-embryo transition (OET) relies instead on regulation of mRNA poly(A) tails to control translation. However, how tail dynamics shape translation across the OET in mammals remains unclear. We perform long-read RNA sequencing to uncover poly(A) tail lengths across the mouse OET and, incorporating published ribosome profiling data, provide an integrated, transcriptome-wide analysis of poly(A) tails and translation across the entire transition. We uncover an extended wave of global deadenylation during fertilization in which short-tailed, oocyte-deposited mRNAs are translationally activated without polyadenylation through resistance to deadenylation. Subsequently, in the embryo, mRNAs are readenylated and translated in a surge of global polyadenylation. We further identify regulation of poly(A) tail length at the isoform level and stage-specific enrichment of mRNA sequence motifs among regulated transcripts. These data provide insight into the stage-specific mechanisms of poly(A) tail regulation that orchestrate gene expression from oocyte to embryo in mammals.
Collapse
Affiliation(s)
- Katherine Lee
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Conti M, Kunitomi C. A genome-wide perspective of the maternal mRNA translation program during oocyte development. Semin Cell Dev Biol 2024; 154:88-98. [PMID: 36894378 PMCID: PMC11250054 DOI: 10.1016/j.semcdb.2023.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Transcriptional and post-transcriptional regulations control gene expression in most cells. However, critical transitions during the development of the female gamete relies exclusively on regulation of mRNA translation in the absence of de novo mRNA synthesis. Specific temporal patterns of maternal mRNA translation are essential for the oocyte progression through meiosis, for generation of a haploid gamete ready for fertilization and for embryo development. In this review, we will discuss how mRNAs are translated during oocyte growth and maturation using mostly a genome-wide perspective. This broad view on how translation is regulated reveals multiple divergent translational control mechanisms required to coordinate protein synthesis with progression through the meiotic cell cycle and with development of a totipotent zygote.
Collapse
Affiliation(s)
- Marco Conti
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.
| | - Chisato Kunitomi
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Wang X, Leung FS, Bush JO, Conti M. Alternative cleavage and polyadenylation of the Ccnb1 mRNA defines accumulation of cyclin protein during the meiotic cell cycle. Nucleic Acids Res 2024; 52:1258-1271. [PMID: 38048302 PMCID: PMC10853788 DOI: 10.1093/nar/gkad1151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Progression through the mitotic and meiotic cell cycle is driven by fluctuations in the levels of cyclins, the regulatory subunits controlling the localization and activity of CDK1 kinases. Cyclin levels are regulated through a precise balance of synthesis and degradation. Here we demonstrate that the synthesis of Cyclin B1 during the oocyte meiotic cell cycle is defined by the selective translation of mRNA variants generated through alternative cleavage and polyadenylation (APA). Using gene editing in mice, we introduced mutations into the proximal and distal polyadenylation elements of the 3' untranslated region (UTR) of the Ccnb1 mRNA. Through in vivo loss-of-function experiments, we demonstrate that the translation of mRNA with a short 3' UTR specifies Cyclin B1 protein levels that set the timing of meiotic re-entry. In contrast, translation directed by a long 3' UTR is necessary to direct Cyclin B1 protein accumulation during the MI/MII transition. These findings establish that the progression through the cell cycle is dependent on the selective translation of multiple mRNA variants generated by APA.
Collapse
Affiliation(s)
- Xiaotian Wang
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Fang-Shiuan Leung
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy T, Wood MA, Luptak A. Inhibition of Cpeb3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs and enhances object location memory. eLife 2024; 13:e90116. [PMID: 38319152 PMCID: PMC10919898 DOI: 10.7554/elife.90116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the Cpeb3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C Chen
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Carlene A Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | | | - Marie Myszka
- Department of Chemistry, University of California, IrvineIrvineUnited States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California, IrvineIrvineUnited States
| | - Luiz FM Passalacqua
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Timothy Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Andrej Luptak
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
- Department of Chemistry, University of California, IrvineIrvineUnited States
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineUnited States
| |
Collapse
|
21
|
Ramachandran K, Futtner CR, Sommars MA, Quattrocelli M, Omura Y, Fruzyna E, Wang JC, Waldeck NJ, Senagolage MD, Telles CG, Demonbreun AR, Prendergast E, Lai N, Arango D, Bederman IR, McNally EM, Barish GD. Transcriptional programming of translation by BCL6 controls skeletal muscle proteostasis. Nat Metab 2024; 6:304-322. [PMID: 38337096 PMCID: PMC10949880 DOI: 10.1038/s42255-024-00983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Skeletal muscle is dynamically controlled by the balance of protein synthesis and degradation. Here we discover an unexpected function for the transcriptional repressor B cell lymphoma 6 (BCL6) in muscle proteostasis and strength in mice. Skeletal muscle-specific Bcl6 ablation in utero or in adult mice results in over 30% decreased muscle mass and force production due to reduced protein synthesis and increased autophagy, while it promotes a shift to a slower myosin heavy chain fibre profile. Ribosome profiling reveals reduced overall translation efficiency in Bcl6-ablated muscles. Mechanistically, tandem chromatin immunoprecipitation, transcriptomic and translational analyses identify direct BCL6 repression of eukaryotic translation initiation factor 4E-binding protein 1 (Eif4ebp1) and activation of insulin-like growth factor 1 (Igf1) and androgen receptor (Ar). Together, these results uncover a bifunctional role for BCL6 in the transcriptional and translational control of muscle proteostasis.
Collapse
Affiliation(s)
- Krithika Ramachandran
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christopher R Futtner
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Meredith A Sommars
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mattia Quattrocelli
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yasuhiro Omura
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ellen Fruzyna
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Janice C Wang
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nathan J Waldeck
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madhavi D Senagolage
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carmen G Telles
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nicola Lai
- Department of Mechanical, Chemical, and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ilya R Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Grant D Barish
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
22
|
Li J, Wu Y, Zhang D, Zhang Z, Li S, Cheng X, Chen L, Zhou G, Yuan C. The Roles of Cytoplasmic Polyadenylation Element Binding Protein 1 in Tumorigenesis. Mini Rev Med Chem 2024; 24:2008-2018. [PMID: 38879767 DOI: 10.2174/0113895575293544240605112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND CPEB1 is an alternative polyadenylation binding protein that promotes or suppresses the expression of related mRNAs and proteins by binding to a highly conserved Cytoplasmic Polyadenylation Element (CPE) in the mRNAs 3'UTR. It is found to express abnormally in multiple tumors and affect tumorigenesis through many pathways. This review summarizes the functions and mechanisms of CPEB1 in a variety of cancers and suggests new directions for future related treatments. METHODS A total of 95 articles were eligible for inclusion based on the year, quality of the research, and the strength of association with CPEB1. In this review, current research about how CPEB1 affects the initiation and progression of glioblastoma, breast cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, non-small cell lung cancer, prostate cancer, and melanoma are dissected, and the biomedical functions and mechanisms are summarized. RESULTS CPEB1 mostly presents as a tumor suppressor for breast cancer, endometrial carcinoma, hepatocellular carcinoma, non-small cell lung cancer, prostate cancer, and melanoma. However, for glioblastoma, gastric cancer, and colorectal cancer, CPEB1 exhibts two opposing properties of tumorigenesis, either promoting or inhibiting it. CONCLUSION CPEB1 is likely to serve as a target and dynamic detection index or prognostic indicator for its function of apoptosis, activity, proliferation, migration, invasion, stemness, drug resistance, and even ferroptosis in various cancers.
Collapse
Affiliation(s)
- JiaYi Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Yinxin Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Dingyin Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Ziyan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Songqiang Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Xi Cheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Lihan Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
23
|
Zhao G, Zhao Z, Xia M, Xiao L, Zhu B, Wang H, Li X, Di J. CPEB2 inhibit cell proliferation through upregulating p21 mRNA stability in glioma. Sci Rep 2023; 13:23103. [PMID: 38158431 PMCID: PMC10756880 DOI: 10.1038/s41598-023-50848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
Glioma is the most common primary malignant brain tumor in adults and remains an incurable disease at present. Thus, there is an urgent need for progress in finding novel molecular mechanisms that control the progression of glioma which could be used as therapeutic targets for glioma patients. The RNA binding protein cytoplasmic polyadenylate element-binding protein 2 (CPEB2) is involved in the pathogenesis of several tumors. However, the role of CPEB2 in glioma progression is unknown. In this study, the functional characterization of the role and molecular mechanism of CPEB2 in glioma were examined using a series of biological and cellular approaches in vitro and in vivo. Our work shows CPEB2 is significantly downregulated in various glioma patient cohorts. Functional characterization of CPEB2 by overexpression and knockdown revealed that it inhibits glioma cell proliferation and promotes apoptosis. CPEB2 exerts an anti-tumor effect by increasing p21 mRNA stability and inducing G1 cell cycle arrest in glioma. Overall, this work stands as the first report of CPEB2 downregulation and involvement in glioma pathogenesis, and identifies CPEB2 as an important tumor suppressor gene through targeting p21 in glioma, which revealed that CPEB2 may become a promising predictive biomarker for prognosis in glioma patients.
Collapse
Affiliation(s)
- Guang Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, Jiangsu, China
- Department of Emergency Medicine, The First People's Hospital of Kunshan, Kunshan, 215300, Jiangsu, China
| | - Zhongjun Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Mingyi Xia
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Lishun Xiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Bao Zhu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Hui Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiang Li
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, Jiangsu, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
24
|
Ocharán-Mercado A, Loaeza-Loaeza J, Castro-Coronel Y, Acosta-Saavedra LC, Hernández-Kelly LC, Hernández-Sotelo D, Ortega A. RNA-Binding Proteins: A Role in Neurotoxicity? Neurotox Res 2023; 41:681-697. [PMID: 37776476 PMCID: PMC10682104 DOI: 10.1007/s12640-023-00669-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/15/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Despite sustained efforts to treat neurodegenerative diseases, little is known at the molecular level to understand and generate novel therapeutic approaches for these malignancies. Therefore, it is not surprising that neurogenerative diseases are among the leading causes of death in the aged population. Neurons require sophisticated cellular mechanisms to maintain proper protein homeostasis. These cells are generally sensitive to loss of gene expression control at the post-transcriptional level. Post-translational control responds to signals that can arise from intracellular processes or environmental factors that can be regulated through RNA-binding proteins. These proteins recognize RNA through one or more RNA-binding domains and form ribonucleoproteins that are critically involved in the regulation of post-transcriptional processes from splicing to the regulation of association of the translation machinery allowing a relatively rapid and precise modulation of the transcriptome. Neurotoxicity is the result of the biological, chemical, or physical interaction of agents with an adverse effect on the structure and function of the central nervous system. The disruption of the proper levels or function of RBPs in neurons and glial cells triggers neurotoxic events that are linked to neurodegenerative diseases such as spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), fragile X syndrome (FXS), and frontotemporal dementia (FTD) among many others. The connection between RBPs and neurodegenerative diseases opens a new landscape for potentially novel therapeutic targets for the intervention of these neurodegenerative pathologies. In this contribution, a summary of the recent findings of the molecular mechanisms involved in the plausible role of RBPs in RNA processing in neurodegenerative disease is discussed.
Collapse
Affiliation(s)
- Andrea Ocharán-Mercado
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Jaqueline Loaeza-Loaeza
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Yaneth Castro-Coronel
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas 88, Chilpancingo, Guerrero, 39086, México
| | - Leonor C Acosta-Saavedra
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Daniel Hernández-Sotelo
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas 88, Chilpancingo, Guerrero, 39086, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México.
| |
Collapse
|
25
|
Kretsch RC, Andersen ES, Bujnicki JM, Chiu W, Das R, Luo B, Masquida B, McRae EK, Schroeder GM, Su Z, Wedekind JE, Xu L, Zhang K, Zheludev IN, Moult J, Kryshtafovych A. RNA target highlights in CASP15: Evaluation of predicted models by structure providers. Proteins 2023; 91:1600-1615. [PMID: 37466021 PMCID: PMC10792523 DOI: 10.1002/prot.26550] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
The first RNA category of the Critical Assessment of Techniques for Structure Prediction competition was only made possible because of the scientists who provided experimental structures to challenge the predictors. In this article, these scientists offer a unique and valuable analysis of both the successes and areas for improvement in the predicted models. All 10 RNA-only targets yielded predictions topologically similar to experimentally determined structures. For one target, experimentalists were able to phase their x-ray diffraction data by molecular replacement, showing a potential application of structure predictions for RNA structural biologists. Recommended areas for improvement include: enhancing the accuracy in local interaction predictions and increased consideration of the experimental conditions such as multimerization, structure determination method, and time along folding pathways. The prediction of RNA-protein complexes remains the most significant challenge. Finally, given the intrinsic flexibility of many RNAs, we propose the consideration of ensemble models.
Collapse
Affiliation(s)
- Rachael C. Kretsch
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Ebbe S. Andersen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Janusz M. Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Wah Chiu
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Rhiju Das
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, Sichuan, China
| | - Benoît Masquida
- UMR 7156, CNRS – Universite de Strasbourg, Strasbourg, France
| | - Ewan K.S. McRae
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Griffin M. Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, Sichuan, China
| | - Joseph E. Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Lily Xu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ivan N. Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - John Moult
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | | |
Collapse
|
26
|
Soeda S, Oyama M, Kozuka-Hata H, Yamamoto T. The CCR4-NOT complex suppresses untimely translational activation of maternal mRNAs. Development 2023; 150:dev201773. [PMID: 37767629 PMCID: PMC10617601 DOI: 10.1242/dev.201773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Control of mRNA poly(A) tails is essential for regulation of mRNA metabolism, specifically translation efficiency and mRNA stability. Gene expression in maturing oocytes relies largely on post-transcriptional regulation, as genes are transcriptionally silent during oocyte maturation. The CCR4-NOT complex is a major mammalian deadenylase, which regulates poly(A) tails of maternal mRNAs; however, the function of the CCR4-NOT complex in translational regulation has not been well understood. Here, we show that this complex suppresses translational activity of maternal mRNAs during oocyte maturation. Oocytes lacking all CCR4-NOT deadenylase activity owing to genetic deletion of its catalytic subunits, Cnot7 and Cnot8, showed a large-scale gene expression change caused by increased translational activity during oocyte maturation. Developmental arrest during meiosis I in these oocytes resulted in sterility of oocyte-specific Cnot7 and Cnot8 knockout female mice. We further showed that recruitment of CCR4-NOT to maternal mRNAs is mediated by the 3'UTR element CPE, which suppresses translational activation of maternal mRNAs. We propose that suppression of untimely translational activation of maternal mRNAs via deadenylation by CCR4-NOT is essential for proper oocyte maturation.
Collapse
Affiliation(s)
- Shou Soeda
- Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, 904-0495, Japan
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, 565-0871, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, 904-0495, Japan
| |
Collapse
|
27
|
Ogami K, Ogawa K, Sanpei S, Ichikawa F, Udagawa T, Hoshino SI. A Combinatorial Code for CPEB-Mediated c-myc Repression. Cells 2023; 12:2410. [PMID: 37830624 PMCID: PMC10572585 DOI: 10.3390/cells12192410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
During early embryonic development, the RNA-binding protein CPEB mediates cytoplasmic polyadenylation and translational activation through a combinatorial code defined by the cy-toplasmic polyadenylation element (CPE) present in maternal mRNAs. However, in non-neuronal somatic cells, CPEB accelerates deadenylation to repress translation of the target, including c-myc mRNA, through an ill-defined cis-regulatory mechanism. Using RNA mutagenesis and electrophoretic mobility shift assays, we demonstrated that a combination of tandemly arranged consensus (cCPE) and non-consensus (ncCPE) cytoplasmic polyadenylation elements (CPEs) constituted a combinatorial code for CPEB-mediated c-myc mRNA decay. CPEB binds to cCPEs with high affinity (Kd = ~250 nM), whereas it binds to ncCPEs with low affinity (Kd > ~900 nM). CPEB binding to a cCPE enhances CPEB binding to the proximal ncCPE. In contrast, while a cCPE did not activate mRNA degradation, an ncCPE was essential for the induction of degradation, and a combination of a cCPE and ncCPEs further promoted degradation. Based on these findings, we propose a model in which the high-affinity binding of CPEB to the cCPE accelerates the binding of the second CPEB to the ncCPEs, resulting in the recruitment of deadenylases, acceleration of deadenylation, and repression of c-myc mRNAs.
Collapse
Affiliation(s)
- Koichi Ogami
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan (F.I.); (T.U.)
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Keima Ogawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan (F.I.); (T.U.)
| | - Shoko Sanpei
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan (F.I.); (T.U.)
| | - Fumito Ichikawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan (F.I.); (T.U.)
| | - Tsuyoshi Udagawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan (F.I.); (T.U.)
| | - Shin-ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan (F.I.); (T.U.)
| |
Collapse
|
28
|
Pei Z, Deng K, Xu C, Zhang S. The molecular regulatory mechanisms of meiotic arrest and resumption in Oocyte development and maturation. Reprod Biol Endocrinol 2023; 21:90. [PMID: 37784186 PMCID: PMC10544615 DOI: 10.1186/s12958-023-01143-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
In human female primordial germ cells, the transition from mitosis to meiosis begins from the fetal stage. In germ cells, meiosis is arrested at the diplotene stage of prophase in meiosis I (MI) after synapsis and recombination of homologous chromosomes, which cannot be segregated. Within the follicle, the maintenance of oocyte meiotic arrest is primarily attributed to high cytoplasmic concentrations of cyclic adenosine monophosphate (cAMP). Depending on the specific species, oocytes can remain arrested for extended periods of time, ranging from months to even years. During estrus phase in animals or the menstrual cycle in humans, the resumption of meiosis occurs in certain oocytes due to a surge of luteinizing hormone (LH) levels. Any factor interfering with this process may lead to impaired oocyte maturation, which in turn affects female reproductive function. Nevertheless, the precise molecular mechanisms underlying this phenomenon has not been systematically summarized yet. To provide a comprehensive understanding of the recently uncovered regulatory network involved in oocyte development and maturation, the progress of the cellular and molecular mechanisms of oocyte nuclear maturation including meiosis arrest and meiosis resumption is summarized. Additionally, the advancements in understanding the molecular cytoplasmic events occurring in oocytes, such as maternal mRNA degradation, posttranslational regulation, and organelle distribution associated with the quality of oocyte maturation, are reviewed. Therefore, understanding the pathways regulating oocyte meiotic arrest and resumption will provide detailed insight into female reproductive system and provide a theoretical basis for further research and potential approaches for novel disease treatments.
Collapse
Affiliation(s)
- Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Ke Deng
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| | - Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
29
|
de Diego-Garcia L, Brennan GP, Auer T, Menendez-Mendez A, Parras A, Martin-Gil A, Mitra M, Ollà I, Villalba-Benito L, Gil B, Alves M, Lau K, Delanty N, Beausang A, Cryan J, Brett FM, Farrell MA, O'Brien DF, Mendez R, Carracedo-Rodríguez G, Henshall DC, Lucas JJ, Engel T. CPEB4-CLOCK crosstalk during temporal lobe epilepsy. Epilepsia 2023; 64:2827-2840. [PMID: 37543852 DOI: 10.1111/epi.17736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVE Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development. The cytoplasmic polyadenylation element-binding protein CPEB4 was found to drive epilepsy-induced poly(A) tail changes, and mice lacking CPEB4 develop a more severe seizure and epilepsy phenotype. The mechanisms controlling CPEB4 function and the downstream pathways that influence the recurrence of spontaneous seizures in epilepsy remain poorly understood. METHODS Status epilepticus was induced in wild-type and CPEB4-deficient male mice via an intra-amygdala microinjection of kainic acid. CLOCK binding to the CPEB4 promoter was analyzed via chromatin immunoprecipitation assay and melatonin levels via high-performance liquid chromatography in plasma. RESULTS Here, we show increased binding of CLOCK to recognition sites in the CPEB4 promoter region during status epilepticus in mice and increased Cpeb4 mRNA levels in N2A cells overexpressing CLOCK. Bioinformatic analysis of CPEB4-dependent genes undergoing changes in their poly(A) tail during epilepsy found that genes involved in the regulation of circadian rhythms are particularly enriched. Clock transcripts displayed a longer poly(A) tail length in the hippocampus of mice post-status epilepticus and during epilepsy. Moreover, CLOCK expression was increased in the hippocampus in mice post-status epilepticus and during epilepsy, and in resected hippocampus and cortex of patients with drug-resistant temporal lobe epilepsy. Furthermore, CPEB4 is required for CLOCK expression after status epilepticus, with lower levels in CPEB4-deficient compared to wild-type mice. Last, CPEB4-deficient mice showed altered circadian function, including altered melatonin blood levels and altered clustering of spontaneous seizures during the day. SIGNIFICANCE Our results reveal a new positive transcriptional-translational feedback loop involving CPEB4 and CLOCK, which may contribute to the regulation of the sleep-wake cycle during epilepsy.
Collapse
Affiliation(s)
- Laura de Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Ocupharm Group Research, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Gary P Brennan
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Theresa Auer
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Aida Menendez-Mendez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Alberto Parras
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Center for Molecular Biology "Severo Ochoa," Spanish National Research Council/Autonomous University of Madrid, Madrid, Spain, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Alba Martin-Gil
- Ocupharm Group Research, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Meghma Mitra
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ivana Ollà
- Center for Molecular Biology "Severo Ochoa," Spanish National Research Council/Autonomous University of Madrid, Madrid, Spain, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Leticia Villalba-Benito
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Beatriz Gil
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Kelvin Lau
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | - Raúl Mendez
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - José J Lucas
- Center for Molecular Biology "Severo Ochoa," Spanish National Research Council/Autonomous University of Madrid, Madrid, Spain, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
30
|
Zhang J, Zhang X, Gao Y, Li L, Bai L, Wang L, Qiao Y, Wang X, Liang Z, Xu JT. Neuralized1-Mediated CPEB3 Ubiquitination in the Spinal Dorsal Horn Contributes to the Pathogenesis of Neuropathic Pain in Rats. ACS Chem Neurosci 2023; 14:3418-3430. [PMID: 37644621 DOI: 10.1021/acschemneuro.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Compelling evidence has shown that Neuralized1 (Neurl1) facilitates hippocampal-dependent memory storage by modulating cytoplasmic polyadenylation element-binding protein 3 (CPEB3)-dependent protein synthesis. In the current study, we investigated the role of Neurl1 in the pathogenesis of neuropathic pain and the underlying mechanisms. The neuropathic pain was evaluated by lumbar 5 spinal nerve ligation (SNL) in rats. Immunofluorescence staining, Western blotting, qRT-PCR, and coimmunoprecipitation (Co-IP) were performed to investigate the underlying mechanisms. Our results showed that SNL led to an increase of Neurl1 in the spinal dorsal horn. Spinal microinjection of AAV-EGFP-Neurl1 shRNA alleviated mechanical allodynia; decreased the level of CPEB3 ubiquitination; inhibited the production of GluA1, GluA2, and PSD95; and reduced GluA1-containing AMPA receptors in the membrane of the dorsal horn following SNL. Knockdown of spinal CPEB3 decreased the production of GluA1, GluA2, and PSD95 in the dorsal horn and attenuated abnormal pain after SNL. Overexpression of Neurl1 in the dorsal horn resulted in pain-related hypersensitivity in naïve rats; raised the level of CPEB3 ubiquitination; increased the production of GluA1, GluA2, and PSD95; and augmented GluA1-containing AMPA receptors in the membrane in the dorsal horn. Moreover, spinal Neurl1 overexpression-induced mechanical allodynia in naïve rats was partially reversed by repeated intrathecal injections of CPEB3 siRNA. Collectively, our results suggest that SNL-induced upregulation of Neurl1 through CPEB3 ubiquitination-dependent production of GluA1, GluA2, and PSD95 in the dorsal horn contributes to the pathogenesis of neuropathic pain in rats. Targeting spinal Neurl1 might be a promising therapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Zongyi Liang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
- Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| |
Collapse
|
31
|
Kim HM, Kang MK, Seong SY, Jo JH, Kim MJ, Shin EK, Lee CG, Han SJ. Meiotic Cell Cycle Progression in Mouse Oocytes: Role of Cyclins. Int J Mol Sci 2023; 24:13659. [PMID: 37686466 PMCID: PMC10487953 DOI: 10.3390/ijms241713659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
All eukaryotic cells, including oocytes, utilize an engine called cyclin-dependent kinase (Cdk) to drive the cell cycle. Cdks are activated by a co-factor called cyclin, which regulates their activity. The key Cdk-cyclin complex that regulates the oocyte cell cycle is known as Cdk1-cyclin B1. Recent studies have elucidated the roles of other cyclins, such as B2, B3, A2, and O, in oocyte cell cycle regulation. This review aims to discuss the recently discovered roles of various cyclins in mouse oocyte cell cycle regulation in accordance with the sequential progression of the cell cycle. In addition, this review addresses the translation and degradation of cyclins to modulate the activity of Cdks. Overall, the literature indicates that each cyclin performs unique and redundant functions at various stages of the cell cycle, while their expression and degradation are tightly regulated. Taken together, this review provides new insights into the regulatory role and function of cyclins in oocyte cell cycle progression.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Jun Hyeon Jo
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Min Ju Kim
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Eun Kyeong Shin
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Seung Jin Han
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
- Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea
- Institute of Basic Science, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
32
|
Cui HS, Lee YR, Ro YM, Joo SY, Cho YS, Kim JB, Kim DH, Seo CH. Knockdown of CPEB1 and CPEB4 Inhibits Scar Formation via Modulation of TAK1 and SMAD Signaling. Ann Dermatol 2023; 35:293-302. [PMID: 37550230 PMCID: PMC10407338 DOI: 10.5021/ad.22.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Cytoplasmic polyadenylation element binding (CPEB) proteins are sequence-specific RNA-binding proteins that control translation via cytoplasmic polyadenylation. We previously reported that CPEB1 or CPEB4 knockdown suppresses TAK1 and SMAD signaling in an in vitro study. OBJECTIVE This study aimed to investigate whether suppression of CPEB1 or CPEB4 expression inhibits scar formation in a mice model of acute dermal wound healing. METHODS CPEB1 and CPEB4 expression levels were suppressed by siRNA treatment. Skin wounds were created by pressure-induced ulcers in mice. Images of the wound healing were obtained using a digital camera and contraction was measured by ImageJ. mRNA and protein expression was analyzed using quantitative real time polymerase chain reaction and western blotting, respectively. RESULTS Wound contraction was significantly decreased by pre-treatment with CPEB1 or CPEB4 siRNA compared to the control. Suppression of CPEB1 or CPEB4 expression decreased TAK1 signaling by reducing the levels of TLR4 and TNF-α, phosphorylated TAK1, p38, ERK, JNK, and NF-κB-p65. Decreased levels of phosphorylated SMAD2 and SMAD3 indicated a reduction in SMAD signaling as well. Consequently, the expression of α-SMA, fibronectin, and type I collagen decreased. CONCLUSION CPEB1 siRNA or CPEB4 siRNA inhibit scar formation by modulating the TAK1 and SMAD signaling pathways. Our study highlights CPEB1 and CPEB4 as potential therapeutic targets for the treatment of scar formation.
Collapse
Affiliation(s)
- Hui Song Cui
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - You Ra Lee
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Yu Mi Ro
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - June-Bum Kim
- Department of Pediatrics, Uijeongbu Eulji Medical Center, Eulji University College of Medicine, Uijeongbu, Korea
| | - Dong Hyun Kim
- Department of Rehabilitation Medicine, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea.
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea.
| |
Collapse
|
33
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy TW, Wood MA, Lupták A. Inhibition of CPEB3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs, and enhances object location memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543953. [PMID: 37333407 PMCID: PMC10274809 DOI: 10.1101/2023.06.07.543953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element binding protein 3 (CPEB3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the CPEB3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C. Chen
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Carlene A. Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Jacob S. Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Mehran Nikan
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Marie Myszka
- Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California–Irvine, Irvine, California 92697, United States
| | - Luiz F. M. Passalacqua
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
| | - Timothy W. Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California–Irvine, Irvine, California 92697, United States
| |
Collapse
|
34
|
Jiang Y, Adhikari D, Li C, Zhou X. Spatiotemporal regulation of maternal mRNAs during vertebrate oocyte meiotic maturation. Biol Rev Camb Philos Soc 2023; 98:900-930. [PMID: 36718948 DOI: 10.1111/brv.12937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| |
Collapse
|
35
|
He S, Valkov E, Cheloufi S, Murn J. The nexus between RNA-binding proteins and their effectors. Nat Rev Genet 2023; 24:276-294. [PMID: 36418462 DOI: 10.1038/s41576-022-00550-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
Abstract
RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP-effector interactions and their roles in reducing the complexity of RNA networks. We discern the emerging unifying principles and discuss their utility in our understanding of RBP function, regulation of biological processes and contribution to human disease.
Collapse
Affiliation(s)
- Shiyang He
- Department of Biochemistry, University of California, Riverside, CA, USA
- Center for RNA Biology and Medicine, Riverside, CA, USA
| | - Eugene Valkov
- RNA Biology Laboratory & Center for Structural Biology, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
- Stem Cell Center, University of California, Riverside, CA, USA.
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
| |
Collapse
|
36
|
Takahashi N, Franciosi F, Daldello EM, Luong XG, Althoff P, Wang X, Conti M. CPEB1-dependent disruption of the mRNA translation program in oocytes during maternal aging. Nat Commun 2023; 14:416. [PMID: 36697412 PMCID: PMC9877008 DOI: 10.1038/s41467-023-35994-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
The molecular causes of deteriorating oocyte quality during aging are poorly defined. Since oocyte developmental competence relies on post-transcriptional regulations, we tested whether defective mRNA translation contributes to this decline in quality. Disruption in ribosome loading on maternal transcripts is present in old oocytes. Using a candidate approach, we detect altered translation of 3'-UTR-reporters and altered poly(A) length of the endogenous mRNAs. mRNA polyadenylation depends on the cytoplasmic polyadenylation binding protein 1 (CPEB1). Cpeb1 mRNA translation and protein levels are decreased in old oocytes. This decrease causes de-repression of Ccnb1 translation in quiescent oocytes, premature CDK1 activation, and accelerated reentry into meiosis. De-repression of Ccnb1 is corrected by Cpeb1 mRNA injection in old oocytes. Oocyte-specific Cpeb1 haploinsufficiency in young oocytes recapitulates all the translation phenotypes of old oocytes. These findings demonstrate that a dysfunction in the oocyte translation program is associated with the decline in oocyte quality during aging.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Federica Franciosi
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,Reproductive and Developmental Biology Lab, Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 20133, Milan, Italy
| | - Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Peter Althoff
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Xiaotian Wang
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA. .,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA. .,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
37
|
Luciano AM, Franciosi F, Dey P, Ladron De Guevara M, Monferini N, Bonumallu SKN, Musmeci G, Fagali Franchi F, Garcia Barros R, Colombo M, Lodde V. Progress toward species-tailored prematuration approaches in carnivores. Theriogenology 2023; 196:202-213. [PMID: 36423514 DOI: 10.1016/j.theriogenology.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
In the past four decades, the bovine model has been highly informative and inspiring to assisted reproductive technologies (ART) in other species. Most of the recent advances in ART have come from studies in cattle, particularly those unveiling the importance of several processes that must be recapitulated in vitro to ensure the proper development of the oocyte. The maintenance of structural and functional communications between the cumulus cells and the oocyte and a well-orchestrated chromatin remodeling with the gradual silencing of transcriptional activity represent essential processes for the progressive acquisition of oocyte developmental competence. These markers are now considered the milestones of physiological approaches to increase the efficiency of reproductive technologies. Different in vitro approaches have been proposed. In particular, the so-called "pre-IVM" or "prematuration" is a culture step performed before in vitro maturation (IVM) to support the completion of the oocyte differentiation process. Although these attempts only partially improved the embryo quality and yield, they currently represent a proof of principle that oocytes retrieved from an ovary or an ovarian batch shouldn't be treated as a whole and that tailored approaches can be developed for culturing competent oocytes in several species, including humans. An advancement in ART's efficiency would be desirable in carnivores, where the success is still limited. Since the progress in reproductive medicine has often come from comparative studies, this review highlights aspects that have been critical in other species and how they may be extended to carnivores.
Collapse
Affiliation(s)
- Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy.
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Pritha Dey
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Magdalena Ladron De Guevara
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Sai Kamal Nag Bonumallu
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giulia Musmeci
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Fernanda Fagali Franchi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Rodrigo Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Martina Colombo
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| |
Collapse
|
38
|
Brouze A, Krawczyk PS, Dziembowski A, Mroczek S. Measuring the tail: Methods for poly(A) tail profiling. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1737. [PMID: 35617484 PMCID: PMC10078590 DOI: 10.1002/wrna.1737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/31/2023]
Abstract
The 3'-end poly(A) tail is an important and potent feature of most mRNA molecules that affects mRNA fate and translation efficiency. Polyadenylation is a posttranscriptional process that occurs in the nucleus by canonical poly(A) polymerases (PAPs). In some specific instances, the poly(A) tail can also be extended in the cytoplasm by noncanonical poly(A) polymerases (ncPAPs). This epitranscriptomic regulation of mRNA recently became one of the most interesting aspects in the field. Advances in RNA sequencing technologies and software development have allowed the precise measurement of poly(A) tails, identification of new ncPAPs, expansion of the function of known enzymes, discovery and a better understanding of the physiological role of tail heterogeneity, and recognition of a correlation between tail length and RNA translatability. Here, we summarize the development of polyadenylation research methods, including classic low-throughput approaches, Illumina-based genome-wide analysis, and advanced state-of-art techniques that utilize long-read third-generation sequencing with Pacific Biosciences and Oxford Nanopore Technologies platforms. A boost in technical opportunities over recent decades has allowed a better understanding of the regulation of gene expression at the mRNA level. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Aleksandra Brouze
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Szczepan Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
39
|
He M, Jiao S, Zhang R, Ye D, Wang H, Sun Y. Translational control by maternal Nanog promotes oogenesis and early embryonic development. Development 2022; 149:286111. [PMID: 36533583 DOI: 10.1242/dev.201213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Many maternal mRNAs are translationally repressed during oocyte development and spatio-temporally activated during early embryogenesis, which is crucial for oocyte and early embryo development. By analyzing maternal mutants of nanog (Mnanog) in zebrafish, we demonstrated that Nanog tightly controls translation of maternal mRNA during oogenesis via transcriptional repression of eukaryotic translation elongation factor 1 alpha 1, like 2 (eef1a1l2). Loss of maternal Nanog led to defects of egg maturation, increased endoplasmic reticulum stress, and an activated unfold protein response, which was caused by elevated translational activity. We further demonstrated that Nanog, as a transcriptional repressor, represses the transcription of eefl1a1l2 by directly binding to the eef1a1l2 promoter in oocytes. More importantly, depletion of eef1a1l2 in nanog mutant females effectively rescued the elevated translational activity in oocytes, oogenesis defects and embryonic defects of Mnanog embryos. Thus, our study demonstrates that maternal Nanog regulates oogenesis and early embryogenesis through translational control of maternal mRNA via a mechanism whereby Nanog acts as a transcriptional repressor to suppress transcription of eef1a1l2.
Collapse
Affiliation(s)
- Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
40
|
Kehrer T, Cupic A, Ye C, Yildiz S, Bouhhadou M, Crossland NA, Barrall E, Cohen P, Tseng A, Çağatay T, Rathnasinghe R, Flores D, Jangra S, Alam F, Mena N, Aslam S, Saqi A, Marin A, Rutkowska M, Ummadi MR, Pisanelli G, Richardson RB, Veit EC, Fabius JM, Soucheray M, Polacco BJ, Evans MJ, Swaney DL, Gonzalez-Reiche AS, Sordillo EM, van Bakel H, Simon V, Zuliani-Alvarez L, Fontoura BMA, Rosenberg BR, Krogan NJ, Martinez-Sobrido L, García-Sastre A, Miorin L. Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.18.512708. [PMID: 36299428 DOI: 10.1101/2022.12.07.519389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
UNLABELLED We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.
Collapse
|
41
|
Beopoulos A, Géa M, Fasano A, Iris F. Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front Neurosci 2022; 16:988735. [PMID: 36408388 PMCID: PMC9671112 DOI: 10.3389/fnins.2022.988735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) involves alterations in neural connectivity affecting cortical network organization and excitation to inhibition ratio. It is characterized by an early increase in brain volume mediated by abnormal cortical overgrowth patterns and by increases in size, spine density, and neuron population in the amygdala and surrounding nuclei. Neuronal expansion is followed by a rapid decline from adolescence to middle age. Since no known neurobiological mechanism in human postnatal life is capable of generating large excesses of frontocortical neurons, this likely occurs due to a dysregulation of layer formation and layer-specific neuronal migration during key early stages of prenatal cerebral cortex development. This leads to the dysregulation of post-natal synaptic pruning and results in a huge variety of forms and degrees of signal-over-noise discrimination losses, accounting for ASD clinical heterogeneities, including autonomic nervous system abnormalities and comorbidities. We postulate that sudden changes in environmental conditions linked to serotonin/kynurenine supply to the developing fetus, throughout the critical GW7 - GW20 (Gestational Week) developmental window, are likely to promote ASD pathogenesis during fetal brain development. This appears to be driven by discrete alterations in differentiation and patterning mechanisms arising from in utero RNA editing, favoring vulnerability outcomes over plasticity outcomes. This paper attempts to provide a comprehensive model of the pathogenesis and progression of ASD neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research and Treatment, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
42
|
Munk M, Villalobo E, Villalobo A, Berchtold MW. Differential expression of the three independent CaM genes coding for an identical protein: Potential relevance of distinct mRNA stability by different codon usage. Cell Calcium 2022; 107:102656. [DOI: 10.1016/j.ceca.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
43
|
Poetz F, Lebedeva S, Schott J, Lindner D, Ohler U, Stoecklin G. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation. Genome Biol 2022; 23:193. [PMID: 36096941 PMCID: PMC9465963 DOI: 10.1186/s13059-022-02760-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation. RESULTS Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex. CONCLUSIONS While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Uwe Ohler
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
- Department of Biology, Humboldt Universität Berlin, 10099, Berlin, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany.
| |
Collapse
|
44
|
Zou Z, Zhang C, Wang Q, Hou Z, Xiong Z, Kong F, Wang Q, Song J, Liu B, Liu B, Wang L, Lai F, Fan Q, Tao W, Zhao S, Ma X, Li M, Wu K, Zhao H, Chen ZJ, Xie W. Translatome and transcriptome co-profiling reveals a role of TPRXs in human zygotic genome activation. Science 2022; 378:abo7923. [PMID: 36074823 DOI: 10.1126/science.abo7923] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Translational regulation plays a critical role during the oocyte-to-embryo transition (OET) and zygotic genome activation (ZGA). Here, we integrated ultra-low-input Ribo-seq with mRNA-seq to co-profile the translatome and transcriptome in human oocytes and early embryos. Comparison with mouse counterparts identified widespread differentially translated genes functioning in epigenetic reprogramming, transposon defense, and small RNA biogenesis, in part driven by species-specific regulatory elements in 3' untranslated regions. Moreover, PRD-like homeobox transcription factors, including TPRXL, TPRX1, and TPRX2, are highly translated around ZGA. TPRX1/2/L knockdown leads to defective ZGA and preimplantation development. Ectopically expressed TPRXs bind and activate key ZGA genes in human embryonic stem cells. These data reveal the conservation and divergence of translation landscapes during OET and identify critical regulators of human ZGA.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenzhen Hou
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Zhuqing Xiong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinzhu Song
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Boyang Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijuan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenrong Tao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Xiaonan Ma
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Miao Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Keliang Wu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Chen J, Li L, Liu TY, Fu HF, Lai YH, Lei X, Xu JF, Yu JS, Xia YJ, Zhang TH, Yang DJ, He YL. CPEB3 suppresses gastric cancer progression by inhibiting ADAR1-mediated RNA editing via localizing ADAR1 mRNA to P bodies. Oncogene 2022; 41:4591-4605. [PMID: 36068334 DOI: 10.1038/s41388-022-02454-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
Deciphering the crosstalk between RNA-binding proteins and corresponding RNAs will provide a better understanding of gastric cancer (GC) progression. The comprehensive bioinformatics study identified cytoplasmic polyadenylation element-binding protein 3 (CPEB3) might play a vital role in GC progression. Then we found CPEB3 was downregulated in GC and correlated with prognosis. In addition, CPEB3 suppressed GC cell proliferation, invasion and migration in vitro, as well as tumor growth and metastasis in vivo. Mechanistic study demonstrated CPEB3 interacted with 3'-UTR of ADAR1 mRNA through binding to CPEC nucleotide element, and then inhibited its translation by localizing it to processing bodies (P bodies), eventually leading to the suppression of ADAR1-mediated RNA editing. Microscale thermophoresis assay further revealed that the direct interaction between CPEB3 and GW182, the P-body's major component, was through the 440-698AA region of CPEB3 binding to the 403-860AA region of GW182. Finally, AAV9-CPEB3 was developed and administrated in mouse models to assess its potential value in gene therapy. We found AAV9-CPEB3 inhibited GC growth and metastasis. Besides, AAV9-CPEB3 induced hydropic degeneration in mouse liver, but did not cause kidney damage. These findings concluded that CPEB3 suppresses GC progression by inhibiting ADAR1-mediated RNA editing via localizing ADAR1 mRNA to P bodies.
Collapse
Affiliation(s)
- Jian Chen
- Center for Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Li
- Department of Clinical Microbiology Laboratory, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Tian-Yu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua-Feng Fu
- Center for Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan-Hui Lai
- Department of Thyroid and Breast Surgery, The Eastern Division of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiong Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ji-Shang Yu
- Center for Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Jian Xia
- Center for Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tian-Hao Zhang
- Center for Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong-Jie Yang
- Center for Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yu-Long He
- Center for Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China. .,Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
46
|
Siemer AB. What makes functional amyloids work? Crit Rev Biochem Mol Biol 2022; 57:399-411. [PMID: 35997712 PMCID: PMC9588633 DOI: 10.1080/10409238.2022.2113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Although first described in the context of disease, cross-β (amyloid) fibrils have also been found as functional entities in all kingdoms of life. However, what are the specific properties of the cross-β fibril motif that convey biological function, make them especially suited for their particular purpose, and distinguish them from other fibrils found in biology? This review approaches these questions by arguing that cross-β fibrils are highly periodic, stable, and self-templating structures whose formation is accompanied by substantial conformational change that leads to a multimerization of their core and framing sequences. A discussion of each of these properties is followed by selected examples of functional cross-β fibrils that show how function is usually achieved by leveraging many of these properties.
Collapse
Affiliation(s)
- Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
47
|
Sato K, Sakai M, Ishii A, Maehata K, Takada Y, Yasuda K, Kotani T. Identification of embryonic RNA granules that act as sites of mRNA translation after changing their physical properties. iScience 2022; 25:104344. [PMID: 35620421 PMCID: PMC9127168 DOI: 10.1016/j.isci.2022.104344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
Fertilized eggs begin to translate mRNAs at appropriate times and placements to control development, but how the translation is regulated remains unclear. Here, we found that pou5f3 mRNA encoding a transcriptional factor essential for development formed granules in a dormant state in zebrafish oocytes. Although the number of pou5f3 granules remained constant, Pou5f3 protein accumulated after fertilization. Intriguingly, signals of newly synthesized peptides and a ribosomal protein became colocalized with pou5f3 granules after fertilization and, moreover, nascent Pou5f3 was shown to be synthesized in the granules. This functional change was accompanied by changes in the state and internal structure of granules. Dissolution of the granules reduced the rate of protein synthesis. Similarly, nanog and sox19b mRNAs in zebrafish and Pou5f1/Oct4 mRNA in mouse assembled into granules. Our results reveal that subcellular compartments, termed embryonic RNA granules, function as activation sites of translation after changing physical properties for directing vertebrate development.
Collapse
Affiliation(s)
- Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Moeko Sakai
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Anna Ishii
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kaori Maehata
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kyota Yasuda
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
48
|
Biziaev NS, Egorova TV, Alkalaeva EZ. Dynamics of Eukaryotic mRNA Structure during Translation. Mol Biol 2022. [DOI: 10.1134/s0026893322030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat Cell Biol 2022; 24:968-980. [PMID: 35697785 DOI: 10.1038/s41556-022-00928-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
In mammals, translational control plays critical roles during oocyte-to-embryo transition (OET) when transcription ceases. However, the underlying regulatory mechanisms remain challenging to study. Here, using low-input Ribo-seq (Ribo-lite), we investigated translational landscapes during OET using 30-150 mouse oocytes or embryos per stage. Ribo-lite can also accommodate single oocytes. Combining PAIso-seq to interrogate poly(A) tail lengths, we found a global switch of translatome that closely parallels changes of poly(A) tails upon meiotic resumption. Translation activation correlates with polyadenylation and is supported by polyadenylation signal proximal cytoplasmic polyadenylation elements (papCPEs) in 3' untranslated regions. By contrast, translation repression parallels global de-adenylation. The latter includes transcripts containing no CPEs or non-papCPEs, which encode many transcription regulators that are preferentially re-activated before zygotic genome activation. CCR4-NOT, the major de-adenylation complex, and its key adaptor protein BTG4 regulate translation downregulation often independent of RNA decay. BTG4 is not essential for global de-adenylation but is required for selective gene de-adenylation and production of very short-tailed transcripts. In sum, our data reveal intimate interplays among translation, RNA stability and poly(A) tail length regulation underlying mammalian OET.
Collapse
|
50
|
Crawford RA, Ashe MP, Hubbard SJ, Pavitt GD. Cytosolic aspartate aminotransferase moonlights as a ribosome-binding modulator of Gcn2 activity during oxidative stress. eLife 2022; 11:73466. [PMID: 35621265 PMCID: PMC9191892 DOI: 10.7554/elife.73466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of translation is a fundamental facet of the cellular response to rapidly changing external conditions. Specific RNA-binding proteins (RBPs) co-ordinate the translational regulation of distinct mRNA cohorts during stress. To identify RBPs with previously under-appreciated roles in translational control, we used polysome profiling and mass spectrometry to identify and quantify proteins associated with translating ribosomes in unstressed yeast cells and during oxidative stress and amino acid starvation, which both induce the integrated stress response (ISR). Over 800 proteins were identified across polysome gradient fractions, including ribosomal proteins, translation factors, and many others without previously described translation-related roles, including numerous metabolic enzymes. We identified variations in patterns of PE in both unstressed and stressed cells and identified proteins enriched in heavy polysomes during stress. Genetic screening of polysome-enriched RBPs identified the cytosolic aspartate aminotransferase, Aat2, as a ribosome-associated protein whose deletion conferred growth sensitivity to oxidative stress. Loss of Aat2 caused aberrantly high activation of the ISR via enhanced eIF2α phosphorylation and GCN4 activation. Importantly, non-catalytic AAT2 mutants retained polysome association and did not show heightened stress sensitivity. Aat2 therefore has a separate ribosome-associated translational regulatory or 'moonlighting' function that modulates the ISR independent of its aspartate aminotransferase activity.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Simon J Hubbard
- Division of Evolution, Infection and Genomics, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|