1
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Elgazzaz M, Filipeanu C, Lazartigues E. Angiotensin-Converting Enzyme 2 Posttranslational Modifications and Implications for Hypertension and SARS-CoV-2: 2023 Lewis K. Dahl Memorial Lecture. Hypertension 2024; 81:1438-1449. [PMID: 38567498 PMCID: PMC11168885 DOI: 10.1161/hypertensionaha.124.22067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
ACE2 (angiotensin-converting enzyme 2), a multifunctional transmembrane protein, is well recognized as an important member of the (RAS) renin-angiotensin system with important roles in the regulation of cardiovascular function by opposing the harmful effects of Ang-II (angiotensin II) and AT1R (Ang-II type 1 receptor) activation. More recently, ACE2 was found to be the entry point for the SARS-CoV-2 virus into cells, causing COVID-19. This finding has led to an exponential rise in the number of publications focused on ACE2, albeit these studies often have opposite objectives to the preservation of ACE2 in cardiovascular regulation. However, notwithstanding accumulating data of the role of ACE2 in the generation of angiotensin-(1-7) and SARS-CoV-2 internalization, numerous other putative roles of this enzyme remain less investigated and not yet characterized. Currently, no drug modulating ACE2 function or expression is available in the clinic, and the development of new pharmacological tools should attempt targeting each step of the lifespan of the protein from synthesis to degradation. The present review expands on our presentation during the 2023 Lewis K. Dahl Memorial Lecture Sponsored by the American Heart Association Council on Hypertension. We provide a critical summary of the current knowledge of the mechanisms controlling ACE2 internalization and intracellular trafficking, the mutual regulation with GPCRs (G-protein-coupled receptors) and other proteins, and posttranslational modifications. A major focus is on ubiquitination which has become a critical step in the modulation of ACE2 cellular levels.
Collapse
Affiliation(s)
- Mona Elgazzaz
- Department of Physiology, Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Catalin Filipeanu
- Department of Pharmacology, Howard University, Washington, DC 20059, USA
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| |
Collapse
|
3
|
Liu J, Su G, Duan C, Sun Z, Xiao S, Zhou Y, Fang L. Porcine reproductive and respiratory syndrome virus infection activates ADAM17 to induce inflammatory responses. Vet Microbiol 2024; 292:110066. [PMID: 38555788 DOI: 10.1016/j.vetmic.2024.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), which has posed substantial threats to the swine industry worldwide, is primarily characterized by interstitial pneumonia. A disintegrin and metalloproteinase 17 (ADAM17) is a multifunctional sheddase involved in various inflammatory diseases. Herein, our study showed that PRRS virus (PRRSV) infection elevated ADAM17 activity, as demonstrated in primary porcine alveolar macrophages (PAMs), an immortalized PAM cell line (IPAM cells), and the lung tissues of PRRSV-infected piglets. We found that PRRSV infection promoted ADAM17 translocation from the endoplasmic reticulum to the Golgi by enhancing its interaction with inactive rhomboid protein 2 (iRhom2), a newly identified ADAM17 regulator, which in turn elevated ADAM17 activity. By screening for PRRSV-encoded structural proteins, viral envelope (E) and nucleocapsid (N) proteins were identified as the predominant ADAM17 activators. E and N proteins bind with both ADAM17 and iRhom2 to form ternary protein complexes, ultimately strengthening their interactions. Additionally, we demonstrated, using an ADAM17-knockout cell line, that ADAM17 augmented the shedding of soluble TNF-α, a pivotal inflammatory mediator. We also discovered that ADAM17-mediated cleavage of porcine TNF-α occurred between Arg-78 and Ser-79. By constructing a precision mutant cell line with Arg-78-Glu/Ser-79-Glu substitution mutations in TNF-α, we further revealed that the ADAM17-mediated production of soluble TNF-α contributed to the induction of inflammatory responses by PRRSV and its E and N proteins. Taken together, our results elucidate the mechanism by which PRRSV infection activates the iRhom2/ADAM17/TNF-α axis to enhance inflammatory responses, providing valuable insights into the elucidation of PRRSV pathogenesis.
Collapse
Affiliation(s)
- Jiao Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guanning Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenrui Duan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zheng Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
4
|
Kefaloyianni E. Soluble forms of cytokine and growth factor receptors: mechanisms of generation and modes of action in the regulation of local and systemic inflammation. FEBS Lett 2022; 596:589-606. [PMID: 35113454 PMCID: PMC11924200 DOI: 10.1002/1873-3468.14305] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Abstract
Cytokine and growth factor receptors are usually transmembrane proteins, but they can also exist in soluble forms, either through cleavage and release of their ligand-binding extracellular domain or through the secretion of a soluble isoform. As an extension of this concept, transmembrane receptors on exosomes released into the circulation may act similarly to circulating soluble receptors. These soluble receptors add to the complexity of cytokine and growth factor signalling: they can function as decoy receptor that compete for ligand binding with their respective membrane-bound forms thereby attenuating signalling, or stabilize their ligands, or activate additional signalling events through interactions with other cell-surface proteins. Their soluble nature allows for a functional role away from the production sites, in remote cell types and organs. Accumulating evidence demonstrates that soluble receptors participate in the regulation and orchestration of various key cellular processes, particularly inflammatory responses. In this review, we will discuss release mechanisms of soluble cytokine and growth factor receptors, their mechanisms of action and strategies for targeting their pathways in disease.
Collapse
Affiliation(s)
- Eirini Kefaloyianni
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
5
|
Yamamoto K, Wilkinson D, Bou-Gharios G. Targeting Dysregulation of Metalloproteinase Activity in Osteoarthritis. Calcif Tissue Int 2021; 109:277-290. [PMID: 32772139 PMCID: PMC8403128 DOI: 10.1007/s00223-020-00739-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Metalloproteinases were first identified as collagen cleaving enzymes and are now appreciated to play important roles in a wide variety of biological processes. The aberrant activity and dysregulation of the metalloproteinase family are linked to numerous diseases including cardiovascular and pulmonary diseases, chronic wounds, cancer, fibrosis and arthritis. Osteoarthritis (OA) is the most prevalent age-related joint disorder that causes pain and disability, but there are no disease-modifying drugs available. The hallmark of OA is loss of articular cartilage and elevated activities of matrix-degrading metalloproteinases are responsible. These enzymes do not exist in isolation and their activity is tightly regulated by a number of processes, such as transcription, proteolytic activation, interaction with their inhibitors, cell surface and extracellular matrix molecules, and endocytic clearance from the extracellular milieu. Here, we describe the functions and roles of metalloproteinase family in OA pathogenesis. We highlight recent studies that have illustrated novel mechanisms regulating their extracellular activity and impairment of such regulations that lead to the development of OA. We also discuss how to stop or slow down the degenerative processes by targeting aberrant metalloproteinase activity, which may in future become therapeutic interventions for the disease.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - David Wilkinson
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
6
|
Schoina C, Rodenburg SYA, Meijer HJG, Seidl MF, Lacambra LT, Bouwmeester K, Govers F. Mining oomycete proteomes for metalloproteases leads to identification of candidate virulence factors in Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2021; 22:551-563. [PMID: 33657266 PMCID: PMC8035641 DOI: 10.1111/mpp.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Pathogens deploy a wide range of pathogenicity factors, including a plethora of proteases, to modify host tissue or manipulate host defences. Metalloproteases (MPs) have been implicated in virulence in several animal and plant pathogens. Here we investigated the repertoire of MPs in 46 stramenopile species including 37 oomycetes, 5 diatoms, and 4 brown algae. Screening their complete proteomes using hidden Markov models (HMMs) trained for MP detection resulted in over 4,000 MPs, with most species having between 65 and 100 putative MPs. Classification in clans and families according to the MEROPS database showed a highly diverse MP repertoire in each species. Analyses of domain composition, orthologous groups, distribution, and abundance within the stramenopile lineage revealed a few oomycete-specific MPs and MPs potentially related to lifestyle. In-depth analyses of MPs in the plant pathogen Phytophthora infestans revealed 91 MPs, divided over 21 protein families, including 25 MPs with a predicted signal peptide or signal anchor. Expression profiling showed different patterns of MP gene expression during pre-infection and infection stages. When expressed in leaves of Nicotiana benthamiana, 12 MPs changed the sizes of lesions caused by inoculation with P. infestans; with 9 MPs the lesions were larger, suggesting a positive effect on the virulence of P. infestans, while 3 MPs had a negative effect, resulting in smaller lesions. To the best of our knowledge, this is the first systematic inventory of MPs in oomycetes and the first study pinpointing MPs as potential pathogenicity factors in Phytophthora.
Collapse
Affiliation(s)
- Charikleia Schoina
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
Enza Zaden Research and Development B. V.EnkhuizenNetherlands
| | - Sander Y. A. Rodenburg
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Bioinformatics GroupWageningen University and ResearchWageningenNetherlands
- Present address:
The Hyve B. V.UtrechtNetherlands
| | - Harold J. G. Meijer
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Wageningen Plant ResearchWageningen University and ResearchWageningenNetherlands
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
Theoretical Biology & Bioinformatics groupDepartment of BiologyUtrecht UniversityUtrechtNetherlands
| | - Lysette T. Lacambra
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
East‐West Seed Knowledge TransferNonthaburiThailand
| | - Klaas Bouwmeester
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Biosystematics GroupWageningen University and ResearchWageningenNetherlands
| | - Francine Govers
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
7
|
Akhtar B, Muhammad F, Sharif A, Anwar MI. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur J Pharmacol 2021; 899:174022. [PMID: 33727054 DOI: 10.1016/j.ejphar.2021.174022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 01/27/2023]
Abstract
Snake venoms are a potential source of various enzymatic and non-enzymatic compounds with a defensive role for the host. Various peptides with significant medicinal properties have been isolated and characterized from these venoms. Few of these are FDA approved. They inhibit tumor cells adhesion, migration, angiogenesis and metastasis by inhibiting integrins on transmembrane cellular surfaces. This plays important role in delaying tumor growth, neovascularization and development. Tumor targeting and smaller size make them ideal candidates as novel therapeutic agents for cancer treatment. This review is based on sources of these disintegrins, their targeting modality, classification and underlying anti-cancer potential.
Collapse
Affiliation(s)
- Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Faqir Muhammad
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Irfan Anwar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
8
|
Acheampong DO, Barffour IK, Boye A, Aninagyei E, Ocansey S, Morna MT. Male predisposition to severe COVID-19: Review of evidence and potential therapeutic prospects. Biomed Pharmacother 2020; 131:110748. [PMID: 33152916 PMCID: PMC7480230 DOI: 10.1016/j.biopha.2020.110748] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The severe form of COVID-19 has significant sex disparities, with high fatalities commonly reported among males than females. The incidence of COVID-19 has also been higher in males compared with their female counterparts. This trend could be attributed to a better responsive and robust immune system in females. Cytokine storm is one of the pathophysiological features of severe COVID-19, and it occurs as a result of over-activation of immune cells leading to severe inflammation and tissue damage. Nevertheless, it is well modulated in females compared to their male counterparts. Severe inflammation in males is reported to facilitate progression of mild to severe COVID-19. The sex hormones, estrogens and androgens which exist in varying functional levels respectively in females and males are cited as the underlying cause for the differential immune response to COVID-19. Evidence abounds that estrogen modulate the immune system to protect females from severe inflammation and for that matter severe COVID-19. On the contrary, androgen has been implicated in over-activation of immune cells, cytokine storm and the attendant severe inflammation, which perhaps predispose males to severe COVID-19. In this review efforts are made to expand understanding and explain the possible roles of the immune system, the sex hormones and the angiotensin-converting enzyme (ACE) systems in male bias to severe COVID-19. Also, this review explores possible therapeutic avenues including androgen deprivation therapy (ADT), estrogen-based therapy, and ACE inhibitors for consideration in the fight against COVID-19.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Angiotensin-Converting Enzyme 2
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Animals
- Betacoronavirus/physiology
- COVID-19
- Child
- Child, Preschool
- Coronavirus Infections/complications
- Coronavirus Infections/drug therapy
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/therapy
- Disease Susceptibility
- Female
- Gonadal Steroid Hormones/physiology
- Humans
- Immunity, Innate
- Infant
- Infant, Newborn
- Inflammation
- Male
- Mice
- Middle Aged
- Pandemics
- Peptidyl-Dipeptidase A/physiology
- Pneumonia, Viral/complications
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/therapy
- Prostatic Neoplasms/complications
- Prostatic Neoplasms/drug therapy
- Protein Disulfide-Isomerases/physiology
- Receptors, Cell Surface/physiology
- Receptors, Virus/physiology
- SARS-CoV-2
- Sex Distribution
- Smoking/adverse effects
- Young Adult
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana.
| | - Isaac Kyei Barffour
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Allied Health Sciences, Ho, Ghana
| | - Stephen Ocansey
- Department of Optometry and Vision Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Martin Tangnaa Morna
- Department of Surgery, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
9
|
Hosseini E, Hojjati S, Afzalniaye Gashti S, Ghasemzadeh M. Collagen-dependent platelet dysfunction and its relevance to either mitochondrial ROS or cytosolic superoxide generation: a question about the quality and functional competence of long-stored platelets. Thromb J 2020; 18:18. [PMID: 32884450 PMCID: PMC7457792 DOI: 10.1186/s12959-020-00233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/07/2020] [Indexed: 01/28/2023] Open
Abstract
Background Upon vascular damage, the exposed subendothelial matrix recruits circulating platelets to site of injury while inducing their firm adhesion mainly via GPVI-collagen interaction. GPVI also supports aggregatory and pro-coagulant functions in arterial shear rate even on the matrix other than collagen. Reactive oxygen species (ROS) modulate these stages of thrombosis; however augmented oxidant stress also disturbs platelet functions. Stored-dependent platelet lesion is associated with the increasing levels of ROS. Whether ROS accumulation is also relevant to collagen-dependent platelet dysfunction is the main interest of this study. Methods Fresh PRP-PCs (platelet concentrates) were either stimulated with potent ROS-inducers PMA and CCCP or stored for 5 days. Intra-platelet superoxide (O2 --) or mitochondrial-ROS and GPVI expression were detected by flowcytometery. GPVI shedding, platelet aggregation and spreading/adhesion to collagen were analyzed by western blot, aggregometry and fluorescence-microscopy, respectively. Results Mitochondrial-ROS levels in 5 days-stored PCs were comparable to those induced by mitochondrial uncoupler, CCCP while O2 -- generations were higher than those achieved by PMA. Shedding levels in 5 days-stored PCs were higher than those induced by these potent stimuli. GPVI expressions were reduced comparably in CCCP treated and 5 days-stored PCs. Platelet adhesion was also diminished during storage while demonstrating significant reverse correlation with GPVI shedding. However, only firm adhesion (indicated by platelets spreading or adhesion surface area) was relevant to GPVI expression. Platelet adhesion and aggregation also showed reverse correlations with both O2-- and mitochondrial-ROS formations; nonetheless mitochondrial-ROS was only relevant to firm adhesion. Conclusion As a sensitive indicator of platelet activation, GPVI shedding was correlated with either simple adhesion or spreading to collagen, while GPVI expression was only relevant to platelet spreading. Thereby, if the aim of GPVI evaluation is to examine platelet firm adhesion, expression seems to be a more specific choice. Furthermore, the comparable levels of ROS generation in 5 days-stored PCs and CCCP treated platelets, indicated that these products are significantly affected by oxidative stress. Reverse correlation of accumulating ROS with collagen-dependent platelet dysfunction is also a striking sign of an oxidant-induced lesion that may raise serious question about the post-transfusion quality and competence of longer-stored platelet products.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp Way, Next to the Milad Tower, Tehran, Iran
| | - Saba Hojjati
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp Way, Next to the Milad Tower, Tehran, Iran
| | - Safoora Afzalniaye Gashti
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp Way, Next to the Milad Tower, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp Way, Next to the Milad Tower, Tehran, Iran
| |
Collapse
|
10
|
ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int J Mol Sci 2020; 21:ijms21144866. [PMID: 32660144 PMCID: PMC7402354 DOI: 10.3390/ijms21144866] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) and mitochondria play a pivotal role in regulating platelet functions. Platelet activation determines a drastic change in redox balance and in platelet metabolism. Indeed, several signaling pathways have been demonstrated to induce ROS production by NAPDH oxidase (NOX) and mitochondria, upon platelet activation. Platelet-derived ROS, in turn, boost further ROS production and consequent platelet activation, adhesion and recruitment in an auto-amplifying loop. This vicious circle results in a platelet procoagulant phenotype and apoptosis, both accounting for the high thrombotic risk in oxidative stress-related diseases. This review sought to elucidate molecular mechanisms underlying ROS production upon platelet activation and the effects of an altered redox balance on platelet function, focusing on the main advances that have been made in platelet redox biology. Furthermore, given the increasing interest in this field, we also describe the up-to-date methods for detecting platelets, ROS and the platelet bioenergetic profile, which have been proposed as potential disease biomarkers.
Collapse
|
11
|
Jeremiasse B, Matta C, Fellows CR, Boocock DJ, Smith JR, Liddell S, Lafeber F, van Spil WE, Mobasheri A. Alterations in the chondrocyte surfaceome in response to pro-inflammatory cytokines. BMC Mol Cell Biol 2020; 21:47. [PMID: 32586320 PMCID: PMC7318434 DOI: 10.1186/s12860-020-00288-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Chondrocytes are exposed to an inflammatory micro-environment in the extracellular matrix (ECM) of articular cartilage in joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). In OA, degenerative changes and low-grade inflammation within the joint transform the behaviour and metabolism of chondrocytes, disturb the balance between ECM synthesis and degradation, and alter the osmolality and ionic composition of the micro-environment. We hypothesize that chondrocytes adjust their physiology to the inflammatory microenvironment by modulating the expression of cell surface proteins, collectively referred to as the ‘surfaceome’. Therefore, the aim of this study was to characterize the surfaceome of primary equine chondrocytes isolated from healthy joints following exposure to the pro-inflammatory cytokines interleukin-1-beta (IL-1β) and tumour necrosis factor-alpha (TNF-α). We employed combined methodology that we recently developed for investigating the surfaceome in stem cells. Membrane proteins were isolated using an aminooxy-biotinylation technique and analysed by mass spectrometry using high throughput shotgun proteomics. Selected proteins were validated by western blotting. Results Amongst the 431 unique cell surface proteins identified, a high percentage of low-abundance proteins, such as ion channels, receptors and transporter molecules were detected. Data are available via ProteomeXchange with identifier PXD014773. A high number of proteins exhibited different expression patterns following chondrocyte stimulation with pro-inflammatory cytokines. Low density lipoprotein related protein 1 (LPR-1), thrombospondin-1 (TSP-1), voltage dependent anion channel (VDAC) 1–2 and annexin A1 were considered to be of special interest and were analysed further by western blotting. Conclusions Our results provide, for the first time, a repository for proteomic data on differentially expressed low-abundance membrane proteins on the surface of chondrocytes in response to pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Bernadette Jeremiasse
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Christopher R Fellows
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Science and Medicine, University of Surrey, Guildford, UK
| | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | | | | | - Floris Lafeber
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Willem E van Spil
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ali Mobasheri
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands. .,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania. .,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Queen's Medical Centre, Nottingham, UK. .,Department of Orthopedics, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Reducing state attenuates ectodomain shedding of GPVI while restoring adhesion capacities of stored platelets: evidence addressing the controversy around the effects of redox condition on thrombosis. J Thromb Thrombolysis 2020; 50:123-134. [PMID: 32409937 DOI: 10.1007/s11239-020-02137-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thrombosis involves different stages including platelet adhesion to the site of injury, aggregatory events governed by integrin activation, pro-inflammatory responses recruiting leukocytes and finally, pro-coagulant activity which results in fibrin generation and clot formation. As important signaling agents, reactive oxygen species (ROS) reduce thrombus volume and growth, however given such a multistage mechanism, it is not well-elucidated how ROS inhibition modulates thrombosis. PRP-platelet concentrates (PCs) were either treated with ROS-reducing agents (1 mM NAC or 30 μM NOX inhibitor, VAS2870) or kept untreated during storage. Shedding and expression of platelet adhesion receptors in presence of inhibitors, agonists and CCCP (as controls) were analyzed by flow cytometery and western blot respectively. Besides above parameters, platelet adhesion to collagen in stored platelets was examined in presence of ROS inhibitors using fluorescence-microscopy. Highest levels of adhesion receptors shedding were achieved by ionophore and CCCP while collagen induces much more GPVI shedding than that of GPIbα. ROS inhibition reduced receptors shedding from day 3 of storage while enhanced their expressions. ROS inhibition not only did not reduce platelet adhesion capacity but it also enhanced platelets adhesion (in presence of NAC) or spreading (in presence of VAS2870) in 5 days-stored PCs. While reducing state significantly inhibits platelet aggregation and thrombus growth, our results indicated that as a first stage of thrombosis, platelet adhesion is resistance to such inhibitory effects. These findings highlight the fact that integrin-dependent platelet activation is much more vulnerable to the inhibition of ROS generation than GPVI-dependent platelet adhesion. Presumably, inhibition of platelet activating signals by ROS inhibitors preserves platelet adhesiveness to collagen due to lessening GPVI shedding.
Collapse
|
13
|
Scharfenberg F, Helbig A, Sammel M, Benzel J, Schlomann U, Peters F, Wichert R, Bettendorff M, Schmidt-Arras D, Rose-John S, Moali C, Lichtenthaler SF, Pietrzik CU, Bartsch JW, Tholey A, Becker-Pauly C. Degradome of soluble ADAM10 and ADAM17 metalloproteases. Cell Mol Life Sci 2020; 77:331-350. [PMID: 31209506 PMCID: PMC11105009 DOI: 10.1007/s00018-019-03184-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Disintegrin and metalloproteinases (ADAMs) 10 and 17 can release the extracellular part of a variety of membrane-bound proteins via ectodomain shedding important for many biological functions. So far, substrate identification focused exclusively on membrane-anchored ADAM10 and ADAM17. However, besides known shedding of ADAM10, we identified ADAM8 as a protease capable of releasing the ADAM17 ectodomain. Therefore, we investigated whether the soluble ectodomains of ADAM10/17 (sADAM10/17) exhibit an altered substrate spectrum compared to their membrane-bound counterparts. A mass spectrometry-based N-terminomics approach identified 134 protein cleavage events in total and 45 common substrates for sADAM10/17 within the secretome of murine cardiomyocytes. Analysis of these cleavage sites confirmed previously identified amino acid preferences. Further in vitro studies verified fibronectin, cystatin C, sN-cadherin, PCPE-1 as well as sAPP as direct substrates of sADAM10 and/or sADAM17. Overall, we present the first degradome study for sADAM10/17, thereby introducing a new mode of proteolytic activity within the protease web.
Collapse
Affiliation(s)
- Franka Scharfenberg
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany.
| | - Andreas Helbig
- Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel, Germany
| | - Martin Sammel
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Julia Benzel
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Florian Peters
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Rielana Wichert
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Maximilian Bettendorff
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | | | | | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, 69367, Lyon, France
| | - Stefan F Lichtenthaler
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Andreas Tholey
- Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel, Germany
| | - Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany.
| |
Collapse
|
14
|
Hosseini E, Mohtashami M, Ghasemzadeh M. Down-regulation of platelet adhesion receptors is a controlling mechanism of thrombosis, while also affecting post-transfusion efficacy of stored platelets. Thromb J 2019; 17:20. [PMID: 31660046 PMCID: PMC6806620 DOI: 10.1186/s12959-019-0209-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Physiologically, upon platelet activation, uncontrolled propagation of thrombosis is prevented by regulating mechanisms which affect the expression and function of either platelet adhesion receptors or integrins. Receptor ectodomain shedding is an elective mechanism which is mainly involved in down-regulation of adhesion receptors GPIbα and GPVI. Platelet integrin αIIbβ3 can also be modulated with a calpain-dependent proteolytic cleavage. In addition, activating signals may induce the internalization of expressed receptors to selectively down-regulate their intensity. Alternatively, further activation of platelets is associated with microvesiculation as a none-selective mechanism which leads to the loss of membrane- bearing receptors. In a non-physiological condition, the storage of therapeutic platelets has also shown to be associated with the unwilling activation of platelets which triggers receptors down-regulation via aforementioned different mechanisms. Notably, herein the changes are time-dependent and not controllable. While the expression and shedding of pro-inflammatory molecules can induce post-transfusion adverse effects, stored-dependent loss of adhesion receptors by ectodomain shedding or microvesiculation may attenuate post-transfusion adhesive functions of platelets causing their premature clearance from circulation. In its first part, the review presented here aims to describe the mechanisms involved in down-regulation of platelet adhesion receptors. It then highlights the crucial role of ectodomain shedding and microvesiculation in the propagation of "platelet storage lesion" which may affect the post-transfusion efficacy of platelet components.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran
| | - Maryam Mohtashami
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran
| | - Mehran Ghasemzadeh
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran.,2Australian Center for Blood Diseases, Monash University, Melbourne, Victoria 3004 Australia
| |
Collapse
|
15
|
Rochman M, Azouz NP, Rothenberg ME. Epithelial origin of eosinophilic esophagitis. J Allergy Clin Immunol 2019; 142:10-23. [PMID: 29980278 DOI: 10.1016/j.jaci.2018.05.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, allergen-driven inflammatory disease of the esophagus characterized predominantly by eosinophilic inflammation, leading to esophageal dysfunction. Converging data have placed the esophageal epithelium at the center of disease pathogenesis. In particular, the main EoE disease susceptibility loci at 2p23 and 5p22 encode for gene products that are produced by the esophageal epithelium: the intracellular protease calpain 14 and thymic stromal lymphopoietin, respectively. Furthermore, genetic and functional data establish a primary role for impaired epithelial barrier function in disease susceptibility and pathoetiology. Additionally, the EoE transcriptome, a set of genes dysregulated in the esophagi of patients with EoE, is enriched in genes that encode for proteins involved in esophageal epithelial cell differentiation. This transcriptome has a high proportion of esophagus-specific epithelial genes that are notable for the unexpected enrichment in genes encoding for proteases and protease inhibitors, as well as in IL-1 family genes, demonstrating a previously unappreciated role for innate immunity responses in the esophagus under homeostatic conditions. Among these pathways, basal production of the serine protease inhibitor, Kazal-type 7 (SPINK7) has been demonstrated to be part of the normal differentiation program of esophageal epithelium. Profound lost expression of SPINK7 occurs in patients with EoE and is sufficient for unleashing increased proteolytic activity (including urokinase plasminogen activator), impaired barrier function, and production of large quantities of proinflammatory and proallergic cytokines, including thymic stromal lymphopoietin. Collectively, we put forth a model in which the esophagus is normally equipped as an anti-inflammatory sensing organ and that defects in this pathway, mediated by epithelial protease/protease inhibitor imbalances, unleash inflammatory responses resulting in disorders, such as EoE.
Collapse
Affiliation(s)
- Mark Rochman
- Division of Allergy and Immunology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nurit P Azouz
- Division of Allergy and Immunology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
16
|
Malemud CJ. Inhibition of MMPs and ADAM/ADAMTS. Biochem Pharmacol 2019; 165:33-40. [PMID: 30826330 DOI: 10.1016/j.bcp.2019.02.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs), A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) are zinc-dependent endopeptidases that play a critical role in the destruction of extracellular matrix proteins and, the shedding of membrane-bound receptor molecules in various forms of arthritis and other diseases. Under normal conditions, MMP, ADAM and ADAMTS gene expression aids in the maintenance of homeostasis. However, in inflamed synovial joints characteristic of rheumatoid arthritis and osteoarthritis. MMP, ADAM and ADAMTS production is greatly increased under the influence of pro-inflammatory cytokines. Analyses based on medicinal chemistry strategies designed to directly inhibit the activity of MMPs have been largely unsuccessful when these MMP inhibitors were employed in animal models of rheumatoid arthritis and osteoarthritis. This is despite the fact that these MMP inhibitors were largely able to suppress pro-inflammatory cytokine-induced MMP production in vitro. A focus on ADAM and ADAMTS inhibitors has also been pursued. Thus, recent progress has identified the "sheddase" activity of ADAMs as a viable target and the development of GW280264X is an experimental ADAM17 inhibitor. Of note, a monoclonal antibody, GLPG1972, developed as an ADAMTS-5 inhibitor, entered a Phase I OA clinical trial. However, the failure of many of these previously developed inhibitors to move beyond the preclinical testing phase has required that novel strategies be developed that are designed to suppress both MMP, ADAM and ADAMTS production and activity.
Collapse
Affiliation(s)
- Charles J Malemud
- Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Medicine, Division of Rheumatic Diseases, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, United States.
| |
Collapse
|
17
|
Kefaloyianni E, Muthu ML, Kaeppler J, Sun X, Sabbisetti V, Chalaris A, Rose-John S, Wong E, Sagi I, Waikar SS, Rennke H, Humphreys BD, Bonventre JV, Herrlich A. ADAM17 substrate release in proximal tubule drives kidney fibrosis. JCI Insight 2018; 1:87023. [PMID: 27642633 DOI: 10.1172/jci.insight.87023] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Kidney fibrosis following kidney injury is an unresolved health problem and causes significant morbidity and mortality worldwide. In a study into its molecular mechanism, we identified essential causative features. Acute or chronic kidney injury causes sustained elevation of a disintegrin and metalloprotease 17 (ADAM17); of its cleavage-activated proligand substrates, in particular of pro-TNFα and the EGFR ligand amphiregulin (pro-AREG); and of the substrates' receptors. As a consequence, EGFR is persistently activated and triggers the synthesis and release of proinflammatory and profibrotic factors, resulting in macrophage/neutrophil ingress and fibrosis. ADAM17 hypomorphic mice, specific ADAM17 inhibitor-treated WT mice, or mice with inducible KO of ADAM17 in proximal tubule (Slc34a1-Cre) were significantly protected against these effects. In vitro, in proximal tubule cells, we show that AREG has unique profibrotic actions that are potentiated by TNFα-induced AREG cleavage. In vivo, in acute kidney injury (AKI) and chronic kidney disease (CKD, fibrosis) patients, soluble AREG is indeed highly upregulated in human urine, and both ADAM17 and AREG expression show strong positive correlation with fibrosis markers in related kidney biopsies. Our results indicate that targeting of the ADAM17 pathway represents a therapeutic target for human kidney fibrosis.
Collapse
Affiliation(s)
| | | | - Jakob Kaeppler
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xiaoming Sun
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Venkata Sabbisetti
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Athena Chalaris
- Institute for Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institute for Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Eitan Wong
- Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Weizmann Institute of Science, Rehovot, Israel
| | - Sushrut S Waikar
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Helmut Rennke
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Andreas Herrlich
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Alfandari D, Taneyhill LA. Cut loose and run: The complex role of ADAM proteases during neural crest cell development. Genesis 2018; 56:e23095. [PMID: 29476604 PMCID: PMC6105527 DOI: 10.1002/dvg.23095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022]
Abstract
ADAM metalloproteases have been shown to play critical roles during development. In this review, we will describe functional evidence that implicates ADAM proteins during the genesis, migration and differentiation of neural crest cells. We will restrict our analysis to the transmembrane ADAMs as other reviews have addressed the role of extracellular metalloproteases (Christian et al. [2013] Critical Reviews in Biochemistry and Molecular Biology 48:544-560). This review will describe advances that have been obtained mainly through the use of two vertebrate model systems, the frog, and avian embryos. The role of the principal substrates of ADAMs, the cadherins, has been extensively described in other reviews, most recently in (Cousin [1997] Mechanisms of Development 148:79-88; Taneyhill and Schiffmacher [2017] Genesis, 55). The function of ADAMs in the migration of other cell types, including the immune system, wound healing and cancer has been described previously in (Dreymueller et al. [2017] Mediators of Inflammation 2017: 9621724). Our goal is to illustrate both the importance of ADAMs in controlling neural crest behavior and how neural crest cells have helped us understand the molecular interactions, substrates, and functions of ADAM proteins in vivo.
Collapse
Affiliation(s)
- Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
19
|
Reyes R, Cardeñes B, Machado-Pineda Y, Cabañas C. Tetraspanin CD9: A Key Regulator of Cell Adhesion in the Immune System. Front Immunol 2018; 9:863. [PMID: 29760699 PMCID: PMC5936783 DOI: 10.3389/fimmu.2018.00863] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
The tetraspanin CD9 is expressed by all the major subsets of leukocytes (B cells, CD4+ T cells, CD8+ T cells, natural killer cells, granulocytes, monocytes and macrophages, and immature and mature dendritic cells) and also at a high level by endothelial cells. As a typical member of the tetraspanin superfamily, a prominent feature of CD9 is its propensity to engage in a multitude of interactions with other tetraspanins as well as with different transmembrane and intracellular proteins within the context of defined membranal domains termed tetraspanin-enriched microdomains (TEMs). Through these associations, CD9 influences many cellular activities in the different subtypes of leukocytes and in endothelial cells, including intracellular signaling, proliferation, activation, survival, migration, invasion, adhesion, and diapedesis. Several excellent reviews have already covered the topic of how tetraspanins, including CD9, regulate these cellular processes in the different cells of the immune system. In this mini-review, however, we will focus particularly on describing and discussing the regulatory effects exerted by CD9 on different adhesion molecules that play pivotal roles in the physiology of leukocytes and endothelial cells, with a particular emphasis in the regulation of adhesion molecules of the integrin and immunoglobulin superfamilies.
Collapse
Affiliation(s)
- Raquel Reyes
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Beatriz Cardeñes
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Yesenia Machado-Pineda
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Carlos Cabañas
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Inmunología, Oftalmología y OTR (IO2), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
20
|
Nakayama H, Sakaue T, Maekawa M, Fujisaki A, Higashiyama S. Cullin 3 regulates ADAMs-mediated ectodomain shedding of amphiregulin. Biochem Biophys Res Commun 2018; 499:17-23. [DOI: 10.1016/j.bbrc.2018.03.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
|
21
|
Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends Biochem Sci 2018; 43:269-284. [PMID: 29506880 DOI: 10.1016/j.tibs.2018.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/23/2022]
Abstract
Limited proteolytic processing is an essential and ubiquitous post-translational modification (PTM) affecting secreted proteins; failure to regulate the process is often associated with disease. Glycosylation is also a ubiquitous protein PTM and site-specific O-glycosylation in close proximity to sites of proteolysis can regulate and direct the activity of proprotein convertases, a disintegrin and metalloproteinases (ADAMs), and metalloproteinases affecting the activation or inactivation of many classes of proteins, including G-protein-coupled receptors (GPCRs). Here, we summarize the emerging data that suggest O-glycosylation to be a key regulator of limited proteolysis, and highlight the potential for crosstalk between multiple PTMs.
Collapse
|
22
|
Wilson JL, Kefaloyianni E, Stopfer L, Harrison C, Sabbisetti VS, Fraenkel E, Lauffenburger DA, Herrlich A. Functional Genomics Approach Identifies Novel Signaling Regulators of TGFα Ectodomain Shedding. Mol Cancer Res 2018; 16:147-161. [PMID: 29018056 PMCID: PMC5859574 DOI: 10.1158/1541-7786.mcr-17-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/16/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Ectodomain shedding of cell-surface precursor proteins by metalloproteases generates important cellular signaling molecules. Of importance for disease is the release of ligands that activate the EGFR, such as TGFα, which is mostly carried out by ADAM17 [a member of the A-disintegrin and metalloprotease (ADAM) domain family]. EGFR ligand shedding has been linked to many diseases, in particular cancer development, growth and metastasis, as well as resistance to cancer therapeutics. Excessive EGFR ligand release can outcompete therapeutic EGFR inhibition or the inhibition of other growth factor pathways by providing bypass signaling via EGFR activation. Drugging metalloproteases directly have failed clinically because it indiscriminately affected shedding of numerous substrates. It is therefore essential to identify regulators for EGFR ligand cleavage. Here, integration of a functional shRNA genomic screen, computational network analysis, and dedicated validation tests succeeded in identifying several key signaling pathways as novel regulators of TGFα shedding in cancer cells. Most notably, a cluster of genes with NFκB pathway regulatory functions was found to strongly influence TGFα release, albeit independent of their NFκB regulatory functions. Inflammatory regulators thus also govern cancer cell growth-promoting ectodomain cleavage, lending mechanistic understanding to the well-known connection between inflammation and cancer.Implications: Using genomic screens and network analysis, this study defines targets that regulate ectodomain shedding and suggests new treatment opportunities for EGFR-driven cancers. Mol Cancer Res; 16(1); 147-61. ©2017 AACR.
Collapse
Affiliation(s)
- Jennifer L Wilson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Eirini Kefaloyianni
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Lauren Stopfer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christina Harrison
- Department of Biology, University of Massachusetts, Boston, Massachusetts
| | | | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Andreas Herrlich
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
23
|
Wu J, Tao N, Tian Y, Xing G, Lv H, Han J, Lin C, Xie W. Proteolytic maturation of Drosophila Neuroligin 3 by tumor necrosis factor α-converting enzyme in the nervous system. Biochim Biophys Acta Gen Subj 2017; 1862:440-450. [PMID: 29107812 DOI: 10.1016/j.bbagen.2017.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND The functions of autism-associated Neuroligins (Nlgs) are modulated by their post-translational modifications, such as proteolytic cleavage. A previous study has shown that there are different endogenous forms of DNlg3 in Drosophila, indicating it may undergo proteolytic processing. However, the molecular mechanism underlying DNlg3 proteolytic processing is unknown. Here, we report a novel proteolytic mechanism that is essential for DNlg3 maturation and function in the nervous system. METHODS Molecular cloning, cell culture, immunohistochemistry, western blotting and genetic studies were employed to map the DNlg3 cleavage region, identify the protease and characterize the cleavage manner. Behavior analysis, immunohistochemistry and genetic manipulations were employed to study the functions of different DNlg3 forms in the nervous system and neuromuscular junction (NMJs). RESULTS Tumor necrosis factor α-converting enzyme (TACE) cleaved DNlg3 exclusively at its extracellular acetylcholinesterase-like domain to generate the N-terminal fragment and the short membrane-anchored fragment (sDNlg3). DNlg3 was constitutively processed in an activity-independent manner. Interestingly, DNlg3 was cleaved intracellularly in the Golgi apparatus before it arrived at the cell surface, a unique cleavage mechanism that is distinct from 'conventional' ectodomain shedding of membrane proteins, including rodent Nlg1. Genetic studies showed that sDNlg3 was essential for maintaining proper locomotor activity in Drosophila. CONCLUSIONS Our results revealed a unique cleavage mechanism of DNlg3 and a neuron-specific role for DNlg3 maturation which is important in locomotor activity. GENERAL SIGNIFICANCE Our study provides a new insight into a cleavage mechanism of Nlgs maturation in the nervous system.
Collapse
Affiliation(s)
- Jun Wu
- Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, China
| | - Nana Tao
- Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, China
| | - Yao Tian
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Guanglin Xing
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Huihui Lv
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Junhai Han
- Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, China; The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Chengqi Lin
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Wei Xie
- Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, China; The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China.
| |
Collapse
|
24
|
Wang L, Hoggard JA, Korleski ED, Long GV, Ree BC, Hensley K, Bond SR, Wolfsberg TG, Chen J, Zeczycki TN, Bridges LC. Multiple non-catalytic ADAMs are novel integrin α4 ligands. Mol Cell Biochem 2017; 442:29-38. [PMID: 28913673 DOI: 10.1007/s11010-017-3190-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
Abstract
The ADAM (a disintegrin and metalloprotease) protein family uniquely exhibits both catalytic and adhesive properties. In the well-defined process of ectodomain shedding, ADAMs transform latent, cell-bound substrates into soluble, biologically active derivatives to regulate a spectrum of normal and pathological processes. In contrast, the integrin ligand properties of ADAMs are not fully understood. Emerging models posit that ADAM-integrin interactions regulate shedding activity by localizing or sequestering the ADAM sheddase. Interestingly, 8 of the 21 human ADAMs are predicted to be catalytically inactive. Unlike their catalytically active counterparts, integrin recognition of these "dead" enzymes has not been largely reported. The present study delineates the integrin ligand properties of a group of non-catalytic ADAMs. Here we report that human ADAM11, ADAM23, and ADAM29 selectively support integrin α4-dependent cell adhesion. This is the first demonstration that the disintegrin-like domains of multiple catalytically inactive ADAMs are ligands for a select subset of integrin receptors that also recognize catalytically active ADAMs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Jason A Hoggard
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Erica D Korleski
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Gideon V Long
- Biochemistry, Molecular and Cell Sciences, Arkansas College of Osteopathic Medicine, Arkansas Colleges of Health Education, 7000 Chad Colley Blvd., Ft. Smith, AR, 72916, USA
| | - Brandy C Ree
- Biochemistry, Molecular and Cell Sciences, Arkansas College of Osteopathic Medicine, Arkansas Colleges of Health Education, 7000 Chad Colley Blvd., Ft. Smith, AR, 72916, USA
| | - Kenneth Hensley
- Biochemistry, Molecular and Cell Sciences, Arkansas College of Osteopathic Medicine, Arkansas Colleges of Health Education, 7000 Chad Colley Blvd., Ft. Smith, AR, 72916, USA
| | - Stephen R Bond
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tyra G Wolfsberg
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - JianMing Chen
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Lance C Bridges
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA. .,Biochemistry, Molecular and Cell Sciences, Arkansas College of Osteopathic Medicine, Arkansas Colleges of Health Education, 7000 Chad Colley Blvd., Ft. Smith, AR, 72916, USA.
| |
Collapse
|
25
|
Jakobs P, Schulz P, Schürmann S, Niland S, Exner S, Rebollido-Rios R, Manikowski D, Hoffmann D, Seidler DG, Grobe K. Ca 2+ coordination controls sonic hedgehog structure and its Scube2-regulated release. J Cell Sci 2017; 130:3261-3271. [PMID: 28778988 DOI: 10.1242/jcs.205872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Proteolytic processing of cell-surface-bound ligands, called shedding, is a fundamental system to control cell-cell signaling. Yet, our understanding of how shedding is regulated is still incomplete. One way to increase the processing of dual-lipidated membrane-associated Sonic hedgehog (Shh) is to increase the density of substrate and sheddase. This releases and also activates Shh by the removal of lipidated inhibitory N-terminal peptides from Shh receptor binding sites. Shh release and activation is enhanced by Scube2 [signal sequence, cubulin (CUB) domain, epidermal growth factor (EGF)-like protein 2], raising the question of how this is achieved. Here, we show that Scube2 EGF domains are responsible for specific proteolysis of the inhibitory Shh N-terminus, and that CUB domains complete the process by reversing steric masking of this peptide. Steric masking, in turn, depends on Ca2+ occupancy of Shh ectodomains, unveiling a new mode of shedding regulation at the substrate level. Importantly, Scube2 uncouples processing of Shh peptides from their lipid-mediated juxtamembrane positioning, and thereby explains the long-standing conundrum that N-terminally unlipidated Shh shows patterning activity in Scube2-expressing vertebrates, but not in invertebrates that lack Scube orthologs.
Collapse
Affiliation(s)
- Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Philipp Schulz
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sebastian Exner
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Rocio Rebollido-Rios
- Center for Medical Biotechnology, University of Duisburg-Essen, D-45117 Essen, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, University of Duisburg-Essen, D-45117 Essen, Germany
| | - Daniela G Seidler
- Centre for Internal Medicine, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School I3, EB2/R3110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
26
|
Yang CY, Chanalaris A, Troeberg L. ADAMTS and ADAM metalloproteinases in osteoarthritis - looking beyond the 'usual suspects'. Osteoarthritis Cartilage 2017; 25:1000-1009. [PMID: 28216310 PMCID: PMC5473942 DOI: 10.1016/j.joca.2017.02.791] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) and 'aggrecanase' a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) are well established to play key roles in osteoarthritis (OA) through degradation of extracellular matrix (ECM) type II collagen and aggrecan, and are thus potential targets for development of OA therapies. OBJECTIVE This paper aims to provide a comprehensive review of the expression and potential roles of other, lesser-known ADAMTSs and related adamalysins (or a disintegrin and metalloproteinases (ADAMs)) in cartilage, with a view to identifying potentially protective or homeostatic metalloproteinases in the joint and informing consequent selective inhibitor design. DESIGN A comprehensive literature search was performed using PubMed terms 'osteoarthritis' and 'ADAMTS' or 'ADAM'. RESULTS Several ADAMTSs and ADAMs were identified as having reportedly increased expression in OA. These include enzymes likely to play roles in cartilage matrix anabolism (e.g., the procollagen N-proteinases ADAMTS-2, ADAMTS-3 and ADAMTS-14), chondrocyte differentiation and proliferation (e.g., ADAM9, ADAM10, ADAM12), as well as enzymes contributing to cartilage catabolism (e.g., Cartilage oligomeric protein (COMP)-degrading ADAMTS-7 and ADAMTS-12). CONCLUSIONS In addition to the well-characterised MMPs, ADAMTS-4 and ADAMTS-5, many other ADAMTSs and ADAMs are expressed in cartilage and several show significantly altered expression in OA. Studies aimed at elucidating the pathophysiological roles of these enzymes in cartilage will contribute to our understanding of OA pathogenesis and enable design of targeted inhibitors that effectively target metalloproteinase-mediated cartilage degradation while sparing cartilage repair pathways.
Collapse
Affiliation(s)
| | | | - L. Troeberg
- Address correspondence and reprint requests to: L. Troeberg, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, OX3 7FY Oxford, UK.Kennedy Institute of RheumatologyUniversity of OxfordRoosevelt DriveOxfordOX3 7FYUK
| |
Collapse
|
27
|
ADAM Metalloprotease-Released Cancer Biomarkers. Trends Cancer 2017; 3:482-490. [DOI: 10.1016/j.trecan.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
|
28
|
Weiss G, Lai C, Fife ME, Grabiec AM, Tildy B, Snelgrove RJ, Xin G, Lloyd CM, Hussell T. Reversal of TREM-1 ectodomain shedding and improved bacterial clearance by intranasal metalloproteinase inhibitors. Mucosal Immunol 2017; 10:1021-1030. [PMID: 27966555 DOI: 10.1038/mi.2016.104] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/07/2016] [Indexed: 02/04/2023]
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is expressed on neutrophils and monocyte/macrophages and amplifies Toll-like receptor-mediated inflammation during infection. TREM-1 also exists in an antagonistic soluble form (sTREM-1) that has been used as a peripheral biomarker in sepsis, though the mechanisms of its release are not entirely clear. The requirement of TREM-1 in single microbial infections is controversial, with some studies showing a protective role and others a contribution to immunopathology. Furthermore, the role of membrane-bound and sTREM-1 in polygenic infections is currently unknown. In a mouse co-infection model where preceding viral infection greatly enhances bacteria co-infection, we now determine a mechanisms for the striking increase in sTREM-1 and the loss of TREM-1 on surface of neutrophils. We identified a matrix metalloproteinase (MMP)-9 cleavage site in TREM-1 and that the increase of MMP-9 in bronchoalveolar lavage fluid mirrors sTREM-1 release. In vitro studies with neutrophils and MMP-9 and the reduction of sTREM-1 in vivo after MMP-9 inhibition verifies that this enzyme cleaves TREM-1. Intriguingly, MMP-9 inhibition significantly reduces bacterial load and ensuing immunopathology in a co-infection model. This highlights MMP-9 inhibition as a potential therapeutic via blocking cleavage of TREM-1.
Collapse
Affiliation(s)
- G Weiss
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - C Lai
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - M E Fife
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester, UK
| | - A M Grabiec
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester, UK
| | - B Tildy
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - R J Snelgrove
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - G Xin
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - C M Lloyd
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
| | - T Hussell
- National Heart and Lung Institute, Department of Inflammation, Development &Repair, Imperial College London, London, UK
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester, UK
| |
Collapse
|
29
|
Yamamoto K, Santamaria S, Botkjaer KA, Dudhia J, Troeberg L, Itoh Y, Murphy G, Nagase H. Inhibition of Shedding of Low-Density Lipoprotein Receptor-Related Protein 1 Reverses Cartilage Matrix Degradation in Osteoarthritis. Arthritis Rheumatol 2017; 69:1246-1256. [PMID: 28235248 PMCID: PMC5449214 DOI: 10.1002/art.40080] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aggrecanase ADAMTS-5 and the collagenase matrix metalloproteinase 13 (MMP-13) are constitutively secreted by chondrocytes in normal cartilage, but rapidly endocytosed via the cell surface endocytic receptor low-density lipoprotein receptor-related protein 1 (LRP-1) and subsequently degraded. This endocytic system is impaired in osteoarthritic (OA) cartilage due to increased ectodomain shedding of LRP-1. The aim of this study was to identify the LRP-1 sheddase(s) in human cartilage and to test whether inhibition of LRP-1 shedding prevents cartilage degradation in OA. METHODS Cell-associated LRP-1 and soluble LRP-1 (sLRP-1) released from human cartilage explants and chondrocytes were measured by Western blot analysis. LRP-1 sheddases were identified by proteinase inhibitor profiling and gene silencing with small interfering RNAs. Specific monoclonal antibodies were used to selectively inhibit the sheddases. Degradation of aggrecan and collagen in human OA cartilage was measured by Western blot analysis using an antibody against an aggrecan neoepitope and a hydroxyproline assay, respectively. RESULTS Shedding of LRP-1 was increased in OA cartilage compared with normal tissue. Shed sLRP-1 bound to ADAMTS-5 and MMP-13 and prevented their endocytosis without interfering with their proteolytic activities. Two membrane-bound metalloproteinases, ADAM-17 and MMP-14, were identified as the LRP-1 sheddases in cartilage. Inhibition of their activities restored the endocytic capacity of chondrocytes and reduced degradation of aggrecan and collagen in OA cartilage. CONCLUSION Shedding of LRP-1 is a key link to OA progression. Local inhibition of LRP-1 sheddase activities of ADAM-17 and MMP-14 is a unique way to reverse matrix degradation in OA cartilage and could be effective as a therapeutic approach.
Collapse
|
30
|
Mishra HK, Ma J, Walcheck B. Ectodomain Shedding by ADAM17: Its Role in Neutrophil Recruitment and the Impairment of This Process during Sepsis. Front Cell Infect Microbiol 2017; 7:138. [PMID: 28487846 PMCID: PMC5403810 DOI: 10.3389/fcimb.2017.00138] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are specialized at killing bacteria and are recruited from the blood in a rapid and robust manner during infection. A cascade of adhesion events direct their attachment to the vascular endothelium and migration into the underlying tissue. A disintegrin and metalloproteinase 17 (ADAM17) functions in the cell membrane of neutrophils and endothelial cells by cleaving its substrates, typically in a cis manner, at an extracellular site proximal to the cell membrane. This process is referred to as ectodomain shedding and it results in the downregulation of various adhesion molecules and receptors, and the release of immune regulating factors. ADAM17 sheddase activity is induced upon cell activation and rapidly modulates intravascular adhesion events in response to diverse environmental stimuli. During sepsis, an excessive systemic inflammatory response against infection, neutrophil migration becomes severely impaired. This involves ADAM17 as indicated by increased levels of its cleaved substrates in the blood of septic patients, and that ADAM17 inactivation improves neutrophil recruitment and bacterial clearance in animal models of sepsis. Excessive ADAM17 sheddase activity during sepsis thus appears to undermine in a direct and indirect manner the necessary balance between intravascular adhesion and de-adhesion events that regulate neutrophil migration into sites of infection. This review provides an overview of ADAM17 function and regulation and its potential contribution to neutrophil dysfunction during sepsis.
Collapse
Affiliation(s)
- Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSt. Paul, MN, USA
| | - Jing Ma
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSt. Paul, MN, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSt. Paul, MN, USA
| |
Collapse
|
31
|
Ruiz-Arroyo VM, García-Robles I, Ochoa-Campuzano C, Goig GA, Zaitseva E, Baaken G, Martínez-Ramírez AC, Rausell C, Real MD. Validation of ADAM10 metalloprotease as a Bacillus thuringiensis Cry3Aa toxin functional receptor in Colorado potato beetle (Leptinotarsa decemlineata). INSECT MOLECULAR BIOLOGY 2017; 26:204-214. [PMID: 27918112 DOI: 10.1111/imb.12285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bacillus thuringiensis parasporal crystal proteins (Cry proteins) are insecticidal pore-forming toxins that bind to specific receptor molecules on the brush border membrane of susceptible insect midgut cells to exert their toxic action. In the Colorado potato beetle (CPB), a coleopteran pest, we previously proposed that interaction of Cry3Aa toxin with a CPB ADAM10 metalloprotease is an essential part of the mode of action of this toxin. Here, we annotated the gene sequence encoding an ADAM10 metalloprotease protein (CPB-ADAM10) in the CPB genome sequencing project, and using RNA interference gene silencing we demonstrated that CPB-ADAM10 is a Cry3Aa toxin functional receptor in CPB. Cry3Aa toxicity was significantly lower in CPB-ADAM10 silenced larvae and in vitro toxin pore-forming ability was greatly diminished in lipid planar bilayers fused with CPB brush border membrane vesicles (BBMVs) prepared from CPB-ADAM10 silenced larvae. In accordance with our previous data that indicated this toxin was a substrate of ADAM10 in CPB, Cry3Aa toxin membrane-associated proteolysis was altered when CPB BBMVs lacked ADAM10. The functional validation of CPB-ADAM10 as a Cry3Aa toxin receptor in CPB expands the already recognized role of ADAM10 as a pathogenicity determinant of pore-forming toxins in humans to an invertebrate species.
Collapse
Affiliation(s)
- V M Ruiz-Arroyo
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - I García-Robles
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - C Ochoa-Campuzano
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - G A Goig
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - E Zaitseva
- Department of Physiology, University of Freiburg, Freiburg, Germany
- Ionera Technologies GmbH, Freiburg, Germany
| | - G Baaken
- Ionera Technologies GmbH, Freiburg, Germany
| | - A C Martínez-Ramírez
- Servicios Centrales de Soporte a la Investigación Experimental (SCSIE), University of Valencia, Burjassot, Valencia, Spain
| | - C Rausell
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - M D Real
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
32
|
Abstract
Interleukin-6 (IL-6) is one of several pro-inflammatory cytokines present at elevated levels in the synovial fluid of individuals with confirmed clinical diagnosis of rheumatoid arthritis (RA) and osteoarthritis (OA). The mechanism of action of IL-6 was shown to involve its capacity to interact with a membrane-bound IL-6 receptor (mIL-6Rα), also known as the "classical" IL-6 pathway, or through its interaction with a soluble IL-6 receptor (sIL-6R) termed the "trans-signaling" pathway. Activation of downstream signaling is transduced via these IL-6 receptors and principally involves the Janus Kinase/Signal Transduction and Activators of Transcription (JAK/STAT) signaling pathway that is further regulated by glycoprotein-130 (gp130) interacting with the IL-6/mIL-6R complex. Phosphorylation of STAT proteins via JAK activation facilitates STAT proteins to act as transcription factors in inflammation. However, the biological function(s) of the sIL-6R in human chondrocytes requires further elucidation, although we previously showed that exogenous sIL-6R significantly suppressed the synthesis of neutrophil gelatinase-associated lipocalin (NGAL) in the immortalized line of human chondrocytes, C28/I2. NGAL was shown to regulate the activity of matrix metalloproteinase-9 (MMP-9), whose activity is crucial in OA for the destruction of articular cartilage. The "shedding" of sIL-6R from the plasma membrane is carried out by a family of enzymes known as A Distintegrin and Metalloproteinase (ADAM), which are also elevated in OA. In this paper, we have systematically reviewed the role played by IL-6 in OA. We have proposed that sIL-6R may be an important target for future drug development in OA by ameliorating cartilage extracellular protein degradation.
Collapse
Affiliation(s)
- Graham Akeson
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Charles J. Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, USA
- Correspondence: ; Tel.: +1-(216)-844-7846 or +1-(216)-536-1945; Fax: +1-(216)-844-2288
| |
Collapse
|
33
|
Growth factor and co-receptor release by structural regulation of substrate metalloprotease accessibility. Sci Rep 2016; 6:37464. [PMID: 27876763 PMCID: PMC5120278 DOI: 10.1038/srep37464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
Release of cytokines, growth factors and other life-essential molecules from precursors by a-disintegrin-and-metalloproteases (ADAMs) is regulated with high substrate-specificity. We hypothesized that this is achieved by cleavage-regulatory intracellular-domain (ICD)-modifications of the precursors. We show here that cleavage-stimuli-induced specific ICD-modifications cause structural substrate changes that enhance ectodomain sensitivity of neuregulin-1 (NRG1; epidermal-growth-factor) or CD44 (receptor-tyrosine-kinase (RTK) co-receptor) to chymotrypsin/trypsin or soluble ADAM. This inside-out signal transfer required substrate homodimerization and was prevented by cleavage-inhibitory ICD-mutations. In chimeras, regulation could be conferred to a foreign ectodomain, suggesting a common higher-order structure. We predict that substrate-specific protease-accessibility-regulation controls release of numerous ADAM substrates.
Collapse
|
34
|
Atapattu L, Saha N, Chheang C, Eissman MF, Xu K, Vail ME, Hii L, Llerena C, Liu Z, Horvay K, Abud HE, Kusebauch U, Moritz RL, Ding BS, Cao Z, Rafii S, Ernst M, Scott AM, Nikolov DB, Lackmann M, Janes PW. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth. J Exp Med 2016; 213:1741-57. [PMID: 27503072 PMCID: PMC4995075 DOI: 10.1084/jem.20151095] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 06/28/2016] [Indexed: 12/16/2022] Open
Abstract
The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance.
Collapse
Affiliation(s)
- Lakmali Atapattu
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Nayanendu Saha
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Chanly Chheang
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Moritz F Eissman
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Kai Xu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Mary E Vail
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Hii
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Carmen Llerena
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Zhanqi Liu
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Katja Horvay
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | - Bi-Sen Ding
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Zhongwei Cao
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Andrew M Scott
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Martin Lackmann
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Peter W Janes
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
35
|
Proteolysis in the Interstitium. Protein Sci 2016. [DOI: 10.1201/9781315374307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
ADAM10 localization in temporomandibular joint disk with internal derangement: an ex vivo immunohistochemical study. Acta Histochem 2016; 118:293-8. [PMID: 26947053 DOI: 10.1016/j.acthis.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/26/2016] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to determine the presence of ADAM10 in temporomandibular joint disk with internal derangement. Twenty-five paraffin blocks of displaced temporomandibular joint (TMJ) disk specimens from earlier investigations were retrieved from the archives of the University of Catania. Of these 16 had been removed from females and 9 from males; 11 with anterior disk displacement with reduction (ADDwR) and 14 with anterior disk displacement without reduction (ADDwoR). The sections were dehydrated, embedded in paraffin and cut. Then they were incubated in 0.3% H2O2/methanol and half of sections from each sample were incubated in diluted rabbit polyclonal anti-ADAM10 antibody. Then biotinylated anti-mouse/anti-rabbit IgG was applied to the sections, followed by avidin-biotin-perioxidase complex. The results were analyzed and the results were that ADAM10 was overexpressed in the posterior band of sections from patients with ADDwR compared to the other bands of both ADDwR and ADDwoR sections. Overexpression correlated with severe histopathological degeneration. We believe these results have the potential to provide insights into the pathogenesis of TMJ disk degeneration and to help design new therapeutic approaches targeting the proteolytic events that lead to tissue degeneration. Early therapeutic block of ADAM10 activity could succeed in limiting aggrecan-rich matrix breakdown without affecting normal physiology.
Collapse
|
37
|
Rapoport B, McLachlan SM. TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev 2016; 37:114-34. [PMID: 26799472 PMCID: PMC4823380 DOI: 10.1210/er.2015-1098] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 02/07/2023]
Abstract
The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with loss of a C-peptide region. The potential pathophysiological importance of TSHR cleavage into A- and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling.
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
38
|
Tejeda GS, Ayuso-Dolado S, Arbeteta R, Esteban-Ortega GM, Vidaurre OG, Díaz-Guerra M. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases. J Pathol 2016; 238:627-40. [PMID: 26712630 DOI: 10.1002/path.4684] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/02/2015] [Accepted: 12/20/2015] [Indexed: 12/19/2022]
Abstract
Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Sara Ayuso-Dolado
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Raquel Arbeteta
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Gema M Esteban-Ortega
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Oscar G Vidaurre
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
39
|
Facey A, Pinar I, Arthur JF, Qiao J, Jing J, Mado B, Carberry J, Andrews RK, Gardiner EE. A-Disintegrin-And-Metalloproteinase (ADAM) 10 Activity on Resting and Activated Platelets. Biochemistry 2016; 55:1187-94. [DOI: 10.1021/acs.biochem.5b01102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Adam Facey
- Australian
Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia 3004
| | - Isaac Pinar
- Department
of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia 3168
| | - Jane F. Arthur
- Australian
Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia 3004
| | - Jianlin Qiao
- Australian
Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia 3004
| | - Jing Jing
- Australian
Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia 3004
| | - Belden Mado
- Australian
Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia 3004
| | - Josie Carberry
- Department
of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia 3168
| | - Robert K. Andrews
- Australian
Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia 3004
| | - Elizabeth E. Gardiner
- Australian
Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia 3004
| |
Collapse
|
40
|
Dekky B, Wahart A, Sartelet H, Féré M, Angiboust JF, Dedieu S, Piot O, Devy J, Emonard H. Cellular Cholesterol Distribution Influences Proteolytic Release of the LRP-1 Ectodomain. Front Pharmacol 2016; 7:25. [PMID: 26903870 PMCID: PMC4751253 DOI: 10.3389/fphar.2016.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/26/2016] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional matricellular receptor composed of a large ligand-binding subunit (515-kDa α-chain) associated with a short trans-membrane subunit (85-kDa β-chain). LRP-1, which exhibits both endocytosis and cell signaling properties, plays a key role in tumor invasion by regulating the activity of proteinases such as matrix metalloproteinases (MMPs). LRP-1 is shed at the cell surface by proteinases such as membrane-type 1 MMP (MT1-MMP) and a disintegrin and metalloproteinase-12 (ADAM-12). Here, we show by using biophysical, biochemical, and cellular imaging approaches that efficient extraction of cell cholesterol and increased LRP-1 shedding occur in MDA-MB-231 breast cancer cells but not in MDA-MB-435 cells. Our data show that cholesterol is differently distributed in both cell lines; predominantly intracellularly for MDA-MB-231 cells and at the plasma membrane for MDA-MB-435 cells. This study highlights the relationship between the rate and cellular distribution of cholesterol and its impact on LRP-1 shedding modulation. Altogether, our data strongly suggest that the increase of LRP-1 shedding upon cholesterol depletion induces a higher accessibility of the sheddase substrate, i.e., LRP-1, at the cell surface rather than an increase of expression of the enzyme.
Collapse
Affiliation(s)
- Bassil Dekky
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| | - Amandine Wahart
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| | - Hervé Sartelet
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| | - Michaël Féré
- CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France; MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Université de Reims Champagne-ArdenneReims, France; Plateforme d'Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-ArdenneReims, France
| | - Jean-François Angiboust
- CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France; MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Université de Reims Champagne-ArdenneReims, France; Plateforme d'Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-ArdenneReims, France
| | - Stéphane Dedieu
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| | - Olivier Piot
- CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France; MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Université de Reims Champagne-ArdenneReims, France; Plateforme d'Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-ArdenneReims, France
| | - Jérôme Devy
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| | - Hervé Emonard
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| |
Collapse
|
41
|
Rapoport B, McLachlan SM. Withdrawn: TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev 2016; 2016:23-42. [PMID: 27454362 PMCID: PMC6958993 DOI: 10.1210/er.2015-1098.2016.1.test] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 12/29/2022]
Abstract
The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with lossofaC-peptideregion. The potential pathophysiological importance of TSHR cleavage into A-and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling. (Endocrine Reviews 37: 114-134, 2016).
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
42
|
Abstract
Proteases regulate a myriad of cell functions, both in normal and disease states. In addition to protein turnover, they regulate a range of signaling processes, including those mediated by Eph receptors and their ephrin ligands. A variety of proteases is reported to directly cleave Ephs and/or ephrins under different conditions, to promote receptor and/or ligand shedding, and regulate receptor/ligand internalisation and signaling. They also cleave other adhesion proteins in response to Eph-ephrin interactions, to indirectly facilitate Eph-mediated functions. Proteases thus contribute to Eph/ephrin mediated changes in cell-cell and cell-matrix interactions, in cell morphology and in cell migration and invasion, in a manner which appears to be tightly regulated by, and co-ordinated with, Eph signaling. This review summarizes the current literature describing the function and regulation of protease activities during Eph/ephrin-mediated cell signaling.
Collapse
Affiliation(s)
- Lakmali Atapattu
- a Department of Biochemistry and Molecular Biology ; Monash University , Victoria ; Australia
| | | | | |
Collapse
|
43
|
Distinct Intracellular Domain Substrate Modifications Selectively Regulate Ectodomain Cleavage of NRG1 or CD44. Mol Cell Biol 2015. [PMID: 26217011 DOI: 10.1128/mcb.00500-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ectodomain cleavage by A-disintegrin and -metalloproteases (ADAMs) releases many important biologically active substrates and is therefore tightly controlled. Part of the regulation occurs on the level of the enzymes and affects their cell surface abundance and catalytic activity. ADAM-dependent proteolysis occurs outside the plasma membrane but is mostly controlled by intracellular signals. However, the intracellular domains (ICDs) of ADAM10 and -17 can be removed without consequences for induced cleavage, and so far it is unclear how intracellular signals address cleavage. We therefore explored whether substrates themselves could be chosen for proteolysis via ICD modification. We report here that CD44 (ADAM10 substrate), a receptor tyrosine kinase (RTK) coreceptor required for cellular migration, and pro-NRG1 (ADAM17 substrate), which releases the epidermal growth factor (EGF) ligand neuregulin required for axonal outgrowth and myelination, are indeed posttranslationally modified at their ICDs. Tetradecanoyl phorbol acetate (TPA)-induced CD44 cleavage requires dephosphorylation of ICD serine 291, while induced neuregulin release depends on the phosphorylation of several NRG1-ICD serines, in part mediated by protein kinase Cδ (PKCδ). Downregulation of PKCδ inhibits neuregulin release and reduces ex vivo neurite outgrowth and myelination of trigeminal ganglion explants. Our results suggest that specific selection among numerous substrates of a given ADAM is determined by ICD modification of the substrate.
Collapse
|
44
|
Vullhorst D, Mitchell RM, Keating C, Roychowdhury S, Karavanova I, Tao-Cheng JH, Buonanno A. A negative feedback loop controls NMDA receptor function in cortical interneurons via neuregulin 2/ErbB4 signalling. Nat Commun 2015; 6:7222. [PMID: 26027736 PMCID: PMC4451617 DOI: 10.1038/ncomms8222] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022] Open
Abstract
The neuregulin receptor ErbB4 is an important modulator of GABAergic interneurons and neural network synchronization. However, little is known about the endogenous ligands that engage ErbB4, the neural processes that activate them or their direct downstream targets. Here we demonstrate, in cultured neurons and in acute slices, that the NMDA receptor is both effector and target of neuregulin 2 (NRG2)/ErbB4 signalling in cortical interneurons. Interneurons co-express ErbB4 and NRG2, and pro-NRG2 accumulates on cell bodies atop subsurface cisternae. NMDA receptor activation rapidly triggers shedding of the signalling-competent NRG2 extracellular domain. In turn, NRG2 promotes ErbB4 association with GluN2B-containing NMDA receptors, followed by rapid internalization of surface receptors and potent downregulation of NMDA but not AMPA receptor currents. These effects occur selectively in ErbB4-positive interneurons and not in ErbB4-negative pyramidal neurons. Our findings reveal an intimate reciprocal relationship between ErbB4 and NMDA receptors with possible implications for the modulation of cortical microcircuits associated with cognitive deficits in psychiatric disorders.
Collapse
Affiliation(s)
- Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Shriver Kennedy National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | - Robert M Mitchell
- Section on Molecular Neurobiology, Eunice Shriver Kennedy National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | - Carolyn Keating
- Section on Molecular Neurobiology, Eunice Shriver Kennedy National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | - Swagata Roychowdhury
- Section on Molecular Neurobiology, Eunice Shriver Kennedy National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | - Irina Karavanova
- Section on Molecular Neurobiology, Eunice Shriver Kennedy National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | - Jung-Hwa Tao-Cheng
- EM Facility, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Shriver Kennedy National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| |
Collapse
|
45
|
Hartmann M, Parra LM, Ruschel A, Lindner C, Morrison H, Herrlich A, Herrlich P. Inside-out Regulation of Ectodomain Cleavage of Cluster-of-Differentiation-44 (CD44) and of Neuregulin-1 Requires Substrate Dimerization. J Biol Chem 2015; 290:17041-54. [PMID: 25925953 DOI: 10.1074/jbc.m114.610204] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Indexed: 12/18/2022] Open
Abstract
Ectodomain shedding of transmembrane precursor proteins generates numerous life-essential molecules, such as epidermal growth factor receptor ligands. This cleavage not only releases the regulatory growth factor, but it is also the required first step for the subsequent processing by γ-secretase and the release of gene regulatory intracellular fragments. Signaling within the cell modifies the cytoplasmic tails of substrates, a step important in starting the specific and regulated cleavage of a large number of studied substrates. Ectodomain cleavage occurs, however, on the outside of the plasma membrane and is carried out by membrane-bound metalloproteases. How the intracellular domain modification communicates with the ectodomain of the substrate to allow for cleavage to occur is unknown. Here, we show that homodimerization of a cluster-of-differentiation-44 or of pro-neuregulin-1 monomers represents an essential pre-condition for their regulated ectodomain cleavage. Both substrates are associated with their respective metalloproteases under both basal or cleavage-stimulated conditions. These interactions only turn productive by specific intracellular signal-induced intracellular domain modifications of the substrates, which in turn regulate metalloprotease access to the substrates' ectodomain and cleavage. We propose that substrate intracellular domain modification induces a relative rotation or other positional change of the dimerization partners that allow metalloprotease cleavage in the extracellular space. Our findings fill an important gap in understanding substrate-specific inside-out signal transfer along cleaved transmembrane proteins and suggest that substrate dimerization (homo- or possibly heterodimerization) might represent a general principle in ectodomain shedding.
Collapse
Affiliation(s)
- Monika Hartmann
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and
| | - Liseth M Parra
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and the Harvard Institutes of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusett 02115
| | - Anne Ruschel
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and
| | - Christina Lindner
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and
| | - Helen Morrison
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and
| | - Andreas Herrlich
- the Harvard Institutes of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusett 02115
| | - Peter Herrlich
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and
| |
Collapse
|
46
|
Kleino I, Järviluoma A, Hepojoki J, Huovila AP, Saksela K. Preferred SH3 domain partners of ADAM metalloproteases include shared and ADAM-specific SH3 interactions. PLoS One 2015; 10:e0121301. [PMID: 25825872 PMCID: PMC4380453 DOI: 10.1371/journal.pone.0121301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/30/2015] [Indexed: 02/02/2023] Open
Abstract
A disintegrin and metalloproteinases (ADAMs) constitute a protein family essential for extracellular signaling and regulation of cell adhesion. Catalytic activity of ADAMs and their predicted potential for Src-homology 3 (SH3) domain binding show a strong correlation. Here we present a comprehensive characterization of SH3 binding capacity and preferences of the catalytically active ADAMs 8, 9, 10, 12, 15, 17, and 19. Our results revealed several novel interactions, and also confirmed many previously reported ones. Many of the identified SH3 interaction partners were shared by several ADAMs, whereas some were ADAM-specific. Most of the ADAM-interacting SH3 proteins were adapter proteins or kinases, typically associated with sorting and endocytosis. Novel SH3 interactions revealed in this study include TOCA1 and CIP4 as preferred partners of ADAM8, and RIMBP1 as a partner of ADAM19. Our results suggest that common as well as distinct mechanisms are involved in regulation and execution of ADAM signaling, and provide a useful framework for addressing the pathways that connect ADAMs to normal and aberrant cell behavior.
Collapse
Affiliation(s)
- Iivari Kleino
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annika Järviluoma
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ari Pekka Huovila
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| |
Collapse
|
47
|
Wanger TM, Dewitt S, Collins A, Maitland NJ, Poghosyan Z, Knäuper V. Differential regulation of TROP2 release by PKC isoforms through vesicles and ADAM17. Cell Signal 2015; 27:1325-35. [PMID: 25817572 DOI: 10.1016/j.cellsig.2015.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/04/2015] [Accepted: 03/15/2015] [Indexed: 12/29/2022]
Abstract
TROP2, a cancer cell surface protein with both pro-oncogenic and anti-oncogenic properties is cleaved by ADAM17. ADAM17 dependent cleavage requires novel PKC activity which is blocked by the ADAM10/ADAM17 inhibitor GW64 as well as by the PKC inhibitor Bim-1. Full length TROP2 release is induced by classical PKC activation and blocked by Gö6979, without affecting ADAM17 dependent TROP2 cleavage. Full length TROP2 is released in ectosomes, as inhibition of endocytosis did not prevent release. Inhibition of the atypical PKC isoform PKCζ stimulated metalloproteinase dependent N-terminal alternative TROP2 cleavage. The resulting alternative TROP2 cleavage product remains membrane associated via a disulphide bond, but is released in microvesicles with an average size of 107nm. Inhibition of endocytosis following PKCζ inhibition prevented alternative cleavage and release of TROP2, suggesting that these events require endocytic uptake and exosomal release of the corresponding microvesicles. The alternative TROP2 cleavage product was also found in PC3 cell lysates following deglycosylation, and may represent a novel biomarker in prostate cancer.
Collapse
Affiliation(s)
- Tim M Wanger
- College of Biomedical and Life Sciences, Cardiff University, Dental School, Cardiff CF14 4XY, United Kingdom
| | - Sharon Dewitt
- College of Biomedical and Life Sciences, Cardiff University, Dental School, Cardiff CF14 4XY, United Kingdom
| | - Anne Collins
- YCR Cancer Research Unit, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Norman J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Zaruhi Poghosyan
- College of Biomedical and Life Sciences, Cardiff University, Medical School, Cardiff CF14 4XN, United Kingdom
| | - Vera Knäuper
- College of Biomedical and Life Sciences, Cardiff University, Dental School, Cardiff CF14 4XY, United Kingdom
| |
Collapse
|
48
|
Andrews RK, Gardiner EE. Editorial: ADAMs control inflammation from afar. J Leukoc Biol 2015; 97:437-8. [DOI: 10.1189/jlb.3ce1114-528r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Mishra HK, Long C, Bahaie NS, Walcheck B. Regulation of CXCR2 expression and function by a disintegrin and metalloprotease-17 (ADAM17). J Leukoc Biol 2014; 97:447-54. [PMID: 25412626 DOI: 10.1189/jlb.3hi0714-340r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The chemokine receptor CXCR2 is expressed at high levels on circulating neutrophils and is critical for directing their migration to sites of inflammation. CXCR2 surface levels are rapidly modulated by 2 mechanisms-cell internalization and recycling upon ligand binding-and by a metalloprotease activity following overt neutrophil activation by nonligand stimuli. The latter process has only been described in human neutrophils, and essentially, nothing is known about its functional relevance and the specific protease involved. We show that targeting ADAM17 in mouse and human neutrophils blocks CXCR2 down-regulation induced by nonligand stimuli but not by chemokine ligands. This was determined by use of a selective ADAM17 inhibitor, an ADAM17 function-blocking antibody, and ADAM17 gene-targeted mice. CXCR2 is known to undergo a marked down-regulation during various inflammatory disorders, and this is associated with impaired neutrophil recruitment. We show that blocking ADAM17 activity reduced CXCR2 down-regulation on circulating neutrophils and enhanced their recruitment during acute inflammation, which was reversed by a CXCR2 inhibitor. Taken together, our findings demonstrate that unlike CXCR2 internalization, ADAM17 induction down-regulates the receptor in an irreversible manner and may serve as a master switch in controlling CXCR2 function, but may also contribute to neutrophil dysfunction during excessive inflammation.
Collapse
Affiliation(s)
- Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Chunmei Long
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Nooshin S Bahaie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
50
|
Liu S, Liu S, Wang Y, Liao Z. The P2/P2′ sites affect the substrate cleavage of TNF-α converting enzyme (TACE). Mol Immunol 2014; 62:122-8. [DOI: 10.1016/j.molimm.2014.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 01/08/2023]
|