1
|
Zheng Z, Wang JB, Sun R, Wang N, Weng XQ, Xu TY, Fu D, Feng Y, Xu PP, Cheng S, Wang L, Zhao Y, Qu B, Huang CX, Zhao WL. Dual targeting PD-L1 and 4-1BB to overcome dendritic cell-mediated lenalidomide resistance in follicular lymphoma. Signal Transduct Target Ther 2025; 10:29. [PMID: 39828715 PMCID: PMC11743790 DOI: 10.1038/s41392-024-02105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025] Open
Abstract
Immunomodulatory agent lenalidomide is effective in treating follicular lymphoma (FL). We conducted the first trial of immunotherapy rituximab plus lenalidomide in newly diagnosed FL in China (NCT03715309). One-hundred and fifteen patients were enrolled and treated with rituximab 375 mg/m2 intravenously on day 0 and lenalidomide 25 mg orally on day 1-10 for 6 cycles of induction treatment, as well as lenalidomide for 6 cycles and rituximab for 8 cycles of maintenance treatment. We found that inferior progression-free survival of the patients was significantly associated with elevated serum β2m and lymph node >6 cm, linking to decreased lymphoma cell autophagy and dendritic cell infiltration within the tumor microenvironment. PU.1 transcriptionally downregulated PD-L1 (Programmed death ligand 1) expression and upregulated 4-1BBL (4-1BB ligand) expression, increased lymphoma cell autophagy and dendritic cell maturation via PD-1/PD-L1 and 4-1BB/4-1BBL interaction. In vitro in co-culture system and in vivo in murine xenograft model, knockdown of PU.1 induced lenalidomide resistance, but sensitized FL cells to bi-specific PD-L1/4-1BB antibody or combined treatment of PD-L1 inhibitor and 4-1BB agonist. Collectively, PU.1 is essential in immunomodulatory effect of FL through PD-1/PD-L1- and 4-1BB/4-1BBL-mediated microenvironmental modulation. Dual targeting PD-L1 and 4-1BB could be an alternative immunotherapeutic strategy in the chemo-free era of FL treatment.
Collapse
Affiliation(s)
- Zhong Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Biao Wang
- Department of Laboratory Medicine, Shanghai RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Yuan Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Qu
- Department of Laboratory Medicine, Shanghai RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Xin Huang
- Department of Immunobiology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
2
|
Nyenhuis DA, Watanabe SM, Tjandra N, Carter CA. Tsg101 mimicry of canonical E2 enzymes underlies its role in ubiquitin signaling. Proc Natl Acad Sci U S A 2025; 122:e2419542121. [PMID: 39739800 PMCID: PMC11725782 DOI: 10.1073/pnas.2419542121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025] Open
Abstract
Tsg101 is a highly conserved protein best known as an early-functioning component of cellular ESCRT machinery participating in recognition, sorting, and trafficking of cellular cargo to various intracellular destinations. It shares sequence and structural homology to canonical ubiquitin-conjugating (E2) enzymes and is linked to diverse events regulated by Ub signaling. How it might fulfill these roles is unclear. Here, we show that Tsg101 E2 mimicry permits interactions with diverse ubiquitin ligating (E3) enzymes and underlies its multifunctional capabilities. Coexpression of Tsg101 with the E3 ligase NNedd4-2s protected the enzyme from degradation and, remarkably, other widely divergent ligases as well. Structural alignment with UbcH5, a canonical E2 enzyme, revealed that recognition at the E2-E3 interface, a region broadly conserved despite sequence and structural differences in both E2 and E3 enzymes, was critical for protection. Nevertheless, UbcH5 failed to protect NNedd4-2s, indicating that the UEV chaperone function is unique to the variant. Studies using Cy5-Ub-VME showed that Tsg101-mediated protection reduced accessibility to Cys residues in the ligase. Access to Tsg101 Ub-binding sites was critical: Rabeprazole, which interferes with Tsg101 Ub-binding, diminished E3 ligase protection. Thus, E2 mimicry permitting control of E3 ligase ubiquitin signaling underlies Tsg101's broad ability to participate in multiple cellular functions. The study provides mechanistic insight into how Tsg101, by partnering with diverse E3 ligases, can contribute to a broad range of cellular activities.
Collapse
Affiliation(s)
- David A. Nyenhuis
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20982
| | - Susan M. Watanabe
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794-5222
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20982
| | - Carol A. Carter
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794-5222
| |
Collapse
|
3
|
Zhang Q, Tian H, Ge K, Wang F, Gao P, Chen AM, Wang L, Zhao Y, Lian C, Wang F. PGD2/PTGDR2 signaling pathway affects the self-renewal capacity of gastric cancer stem cells by regulating ATG4B ubiquitination. Front Oncol 2024; 14:1496050. [PMID: 39777337 PMCID: PMC11703842 DOI: 10.3389/fonc.2024.1496050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background Prostaglandin D2 (PGD2) inhibits the development of different malignant tumors; however, the underlying mechanism of inhibiting tumor development is not yet clear. This study aimed to elucidate how PGD2 inhibits the stemness of gastric cancer stem cells (GCSCs) via autophagy and its underlying molecular mechanism to provide a theoretical basis for the treatment of gastric cancer. Methods In this study, GCSCs were enriched in vitro by serum-free incubation. Furthermore, the effects of PGD2 and PGD2 receptor (PTGDR2) on autophagy were detected by Western blotting, immunofluorescence analysis, and transmission electron microscopy. Moreover, the ATG4B ubiquitination levels were assessed via immunoprecipitation and other methods. Results The results indicated that PGD2 induced LC3I/LC3II conversion in GCSCs to activate autophagy, while PGD2 promoted the expression of PTGDR2, thereby further activating autophagy. Furthermore, PTGDR2 competes with ATG4B for binding with E3 ligase RNF5 (also known as RMA1) to promote autophagy protein ATG4B expression. Moreover, PTGDR2 knockdown blocked the activation of autophagy by PGD2 and the level of ATG4B ubiquitination in GCSCs. Conclusions In summary, it was elucidated that the PGD2/PTGDR2 signaling cascade affects GCSCs stemness by regulating autophagy, suggesting that the PGD2/PTGDR2 signaling pathway could serve as a novel target for cancer therapy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - HengJin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Kunpeng Ge
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - FeiFan Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - PeiYao Gao
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - AMin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Lulu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - YanMing Zhao
- Department of Clinical Laboratory, The Second People’s Hospital of Bengbu, Bengbu, China
| | - Chaoqun Lian
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - FengChao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
4
|
Packer M, Ferreira JP, Butler J, Filippatos G, Januzzi JL, González Maldonado S, Panova-Noeva M, Pocock SJ, Prochaska JH, Saadati M, Sattar N, Sumin M, Anker SD, Zannad F. Reaffirmation of Mechanistic Proteomic Signatures Accompanying SGLT2 Inhibition in Patients With Heart Failure: A Validation Cohort of the EMPEROR Program. J Am Coll Cardiol 2024; 84:1979-1994. [PMID: 39217550 DOI: 10.1016/j.jacc.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors exert a distinctive pattern of direct biological effects on the heart and kidney under experimental conditions, but the meaningfulness of these signatures for patients with heart failure has not been fully defined. OBJECTIVES We performed the first mechanistic validation study of large-scale proteomics in a double-blind randomized trial of any treatment in patients with heart failure. METHODS In a discovery cohort from the EMPEROR (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure and Reduced Ejection Fraction) program, we studied the effect of randomized treatment with placebo or empagliflozin on 1,283 circulating proteins in 1,134 patients with heart failure with a reduced or preserved ejection fraction. In a validation cohort, we expanded the number to 2,155 assessed proteins, which were measured in 1,120 EMPEROR participants who had not been studied previously. RESULTS In the validation cohort, 25 proteins were the most differentially enriched by empagliflozin (ie, ≥15% between-group difference and false discovery rate <1% at 12 weeks with known effects on the heart or kidney): 1) 13 proteins promote autophagy and other cellular quality-control functions (IGFBP1, OTUB1, DNAJB1, DNAJC9, RBP2, IST1, HSPA8, H-FABP, FABP6, ATPIFI, TfR1, EPO, IGBP1); 2) 12 proteins enhance mitochondrial health and ATP production (UMtCK, TBCA, L-FABP, H-FABP, FABP5, FABP6, RBP2, IST1, HSPA8, ATPIFI, TfR1, EPO); 3) 7 proteins augment cellular iron mobilization or erythropoiesis (TfR1, EPO, IGBP1, ERMAP, UROD, ATPIF1, SNCA); 4) 3 proteins influence renal tubular sodium handling; and 5) 9 proteins have restorative effects in the heart or kidneys, with many proteins exerting effects in >1 domain. These biological signatures replicated those observed in our discovery cohort. When the threshold for a meaningful between-group difference was lowered to ≥10%, there were 58 additional differentially enriched proteins with actions on the heart and kidney, but the biological signatures remained the same. CONCLUSIONS The replication of mechanistic signatures across discovery and validation cohorts closely aligns with the experimental effects of SGLT2 inhibitors. Thus, the actions of SGLT2 inhibitors-to promote autophagy, restore mitochondrial health and production of ATP, promote iron mobilization and erythropoiesis, influence renal tubular ion reabsorption, and normalize cardiac and renal structure and function-are likely to be relevant to patients with heart failure. (EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction [EMPEROR-Preserved], NCT03057951; EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction [EMPEROR-Reduced], NCT03057977).
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, USA; Imperial College London, London, United Kingdom.
| | - João Pedro Ferreira
- UnIC@RISE, Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA; University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece
| | - James L Januzzi
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece; Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | | | - Marina Panova-Noeva
- Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim, Germany; Center for Thrombosis and Haemostasis, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stuart J Pocock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jürgen H Prochaska
- Boehringer Ingelheim International GmbH, Ingelheim, Germany; Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maral Saadati
- Elderbrook Solutions GmbH, on behalf of Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité, Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France; F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| |
Collapse
|
5
|
Li L, Li J, Li JJ, Zhou H, Zhu XW, Zhang PH, Huang B, Zhao WT, Zhao XF, Chen ES. Chondrocyte autophagy mechanism and therapeutic prospects in osteoarthritis. Front Cell Dev Biol 2024; 12:1472613. [PMID: 39507422 PMCID: PMC11537998 DOI: 10.3389/fcell.2024.1472613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis characterized by progressive cartilage degradation, with its pathogenesis closely related to chondrocyte autophagy. Chondrocytes are the only cells in articular cartilage, and the function of chondrocytes plays a vital role in maintaining articular cartilage homeostasis. Autophagy, an intracellular degradation system that regulates energy metabolism in cells, plays an incredibly important role in OA. During the early stages of OA, autophagy is enhanced in chondrocytes, acting as an adaptive mechanism to protect them from various environmental changes. However, with the progress of OA, chondrocyte autophagy gradually decreases, leading to the accumulation of damaged organelles and macromolecules within the cell, prompting chondrocyte apoptosis. Numerous studies have shown that cartilage degradation is influenced by the senescence and apoptosis of chondrocytes, which are associated with reduced autophagy. The relationship between autophagy, senescence, and apoptosis is complex. While autophagy is generally believed to inhibit cellular senescence and apoptosis to promote cell survival, recent studies have shown that some proteins are degraded by selective autophagy, leading to the secretion of the senescence-associated secretory phenotype (SASP) or increased SA-β-Gal activity in senescent cells within the damaged region of human OA cartilage. Autophagy activation may lead to different outcomes depending on the timing, duration, or type of its activation. Thus, our study explored the complex relationship between chondrocyte autophagy and OA, as well as the related regulatory molecules and signaling pathways, providing new insights for the future development of safe and effective drugs targeting chondrocyte autophagy to improve OA.
Collapse
Affiliation(s)
- Lan Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Jiang Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Huan Zhou
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xing-Wang Zhu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Ping-Heng Zhang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Huang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Ting Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Feng Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - En-Sheng Chen
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Watanabe SM, Nyenhuis DA, Khan M, Ehrlich LS, Ischenko I, Powell MD, Tjandra N, Carter CA. Tsg101 UEV Interaction with Nedd4 HECT Relieves E3 Ligase Auto-Inhibition, Promoting HIV-1 Assembly and CA-SP1 Maturation Cleavage. Viruses 2024; 16:1566. [PMID: 39459900 PMCID: PMC11512315 DOI: 10.3390/v16101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Tsg101, a component of the endosomal sorting complex required for transport (ESCRT), is responsible for recognition of events requiring the machinery, as signaled by cargo tagging with ubiquitin (Ub), and for recruitment of downstream acting subunits to the site. Although much is known about the latter function, little is known about its role in the earlier event. The N-terminal domain of Tsg101 is a structural homologue of Ub conjugases (E2 enzymes) and the protein associates with Ub ligases (E3 enzymes) that regulate several cellular processes including virus budding. A pocket in the domain recognizes a motif, PT/SAP, that permits its recruitment. PT/SAP disruption makes budding dependent on Nedd4L E3 ligases. Using HIV-1 encoding a PT/SAP mutation that makes budding Nedd4L-dependent, we identified as critical for rescue the residues in the catalytic (HECT) domain of the E3 enzyme that lie in proximity to sites in Tsg101 that bind Ub non-covalently. Mutation of these residues impaired rescue by Nedd4L but the same mutations had no apparent effect in the context of a Nedd4 isomer, Nedd4-2s, whose N-terminal (C2) domain is naturally truncated, precluding C2-HECT auto-inhibition. Surprisingly, like small molecules that disrupt Tsg101 Ub-binding, small molecules that interfered with Nedd4 substrate recognition arrested budding at an early stage, supporting the conclusion that Tsg101-Ub-Nedd4 interaction promotes enzyme activation and regulates Nedd4 signaling for viral egress. Tsg101 regulation of E3 ligases may underlie its broad ability to function as an effector in various cellular activities, including viral particle assembly and budding.
Collapse
Affiliation(s)
- Susan M. Watanabe
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - David A. Nyenhuis
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (D.A.N.); (N.T.)
| | - Mahfuz Khan
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.K.); (M.D.P.)
| | - Lorna S. Ehrlich
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - Irene Ischenko
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - Michael D. Powell
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.K.); (M.D.P.)
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (D.A.N.); (N.T.)
| | - Carol A. Carter
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| |
Collapse
|
7
|
Yang X, Duckhorn J, Marshall J, Huang YWA. Interlinked destinies: How ubiquitin-proteasome and autophagy systems underpin neurocognitive outcomes. Exp Neurol 2024; 379:114869. [PMID: 38901755 PMCID: PMC11283956 DOI: 10.1016/j.expneurol.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The protein homeostasis, or proteostasis, is maintained through the coupling of two pivotal systems: the ubiquitin-proteasome and autophagy. Cumulative evidence has suggested E3 ubiquitin ligases specifically play a central role in this coupling, ensuring the regulation of synaptic and cognitive functions. Defects in these ligases have been identified as hallmarks in a range of neurodevelopmental and neurodegenerative disorders. Recent literature has spotlighted the E3 ubiquitin ligase, UBE3A, as a key player in this domain. Dysregulation or loss of UBE3A function has been linked to disrupted proteostasis, leading to synaptic and cognitive anomalies. Notably, such defects are prominently observed in conditions like Angelman syndrome, a neurodevelopmental disorder characterized by severe cognitive impairments. The emerging understanding of UBE3A's role in bridging the ubiquitin-proteasome and autophagy systems offers a promising therapeutic avenue. Targeting the defective pathways caused by UBE3A loss could pave the way for innovative treatments, potentially ameliorating the cognitive deficits observed in neurological disorders like Angelman syndrome. As the scientific community delves deeper into the molecular intricacies of E3 ubiquitin ligases, there is burgeoning hope for devising effective interventions for associated neurological conditions.
Collapse
Affiliation(s)
- Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Julia Duckhorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, United States.
| |
Collapse
|
8
|
Xiao Q, Cruz G, Botham R, Fox SG, Yu A, Allen S, Morimoto RI, Kelly JW. HaloTag as a substrate-based macroautophagy reporter. Proc Natl Acad Sci U S A 2024; 121:e2322500121. [PMID: 39074281 PMCID: PMC11317570 DOI: 10.1073/pnas.2322500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Macroautophagy is a conserved cellular degradation pathway that, upon upregulation, confers resilience toward various stress conditions, including protection against proteotoxicity associated with neurodegenerative diseases, leading to cell survival. Monitoring autophagy regulation in living cells is important to understand its role in physiology and pathology, which remains challenging. Here, we report that when HaloTag is expressed within a cell of interest and reacts with tetramethylrhodamine (TMR; its ligand attached to a fluorophore), the rate of fluorescent TMR-HaloTag conjugate accumulation in autophagosomes and lysosomes, observed by fluorescence microscopy, reflects the rate of autophagy. Notably, we found that TMR-HaloTag conjugates were mainly degraded by the proteasome (~95%) under basal conditions, while lysosomal degradation (~10% upon pharmacological autophagy activation) was slow and incomplete, forming a degraded product that remained fluorescent within a SDS-PAGE gel, in agreement with previous reports that HaloTag is resistant to lysosomal degradation when fused to proteins of interest. Autophagy activation is distinguished from autophagy inhibition by the increased production of the degraded TMR-HaloTag band relative to the full-length TMR-HaloTag band as assessed by SDS-PAGE and by a faster rate of TMR-HaloTag conjugate lysosomal puncta accumulation as observed by fluorescence microscopy. Pharmacological proteasome inhibition leads to accumulation of TMR-HaloTag in lysosomes, indicating possible cross talk between autophagy and proteasomal degradation.
Collapse
Affiliation(s)
- Qiang Xiao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Gabrielle Cruz
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
- Department of Biology, State University of New York College at Fredonia, Fredonia, NY14063
| | - Rachel Botham
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Susan G. Fox
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL60208
| | - Anan Yu
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL60208
| | - Seth Allen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL60208
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
9
|
Bardan Sarmiento M, Gang SS, van Oosten-Hawle P, Troemel ER. CUL-6/cullin ubiquitin ligase-mediated degradation of HSP-90 by intestinal lysosomes promotes thermotolerance. Cell Rep 2024; 43:114279. [PMID: 38795346 PMCID: PMC11238739 DOI: 10.1016/j.celrep.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024] Open
Abstract
Heat shock can be a lethal stressor. Previously, we described a CUL-6/cullin-ring ubiquitin ligase complex in the nematode Caenorhabditis elegans that is induced by intracellular intestinal infection and proteotoxic stress and that promotes improved survival upon heat shock (thermotolerance). Here, we show that CUL-6 promotes thermotolerance by targeting the heat shock protein HSP-90 for degradation. We show that CUL-6-mediated lowering of HSP-90 protein levels, specifically in the intestine, improves thermotolerance. Furthermore, we show that lysosomal function is required for CUL-6-mediated promotion of thermotolerance and that CUL-6 directs HSP-90 to lysosome-related organelles upon heat shock. Altogether, these results indicate that a CUL-6 ubiquitin ligase promotes organismal survival upon heat shock by promoting HSP-90 degradation in intestinal lysosomes. Thus, HSP-90, a protein commonly associated with protection against heat shock and promoting degradation of other proteins, is itself degraded to protect against heat shock.
Collapse
Affiliation(s)
| | - Spencer S Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Emily R Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
11
|
Sala-Gaston J, Pérez-Villegas EM, Armengol JA, Rawlins LE, Baple EL, Crosby AH, Ventura F, Rosa JL. Autophagy dysregulation via the USP20-ULK1 axis in the HERC2-related neurodevelopmental disorder. Cell Death Discov 2024; 10:163. [PMID: 38570483 PMCID: PMC10991529 DOI: 10.1038/s41420-024-01931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Sequence variants in the HERC2 gene are associated with a significant reduction in HERC2 protein levels and cause a neurodevelopmental disorder known as the HERC2-related disorder, which shares clinical features with Angelman syndrome, including global developmental delay, intellectual disability, autism, and movement disorders. Remarkably, the HERC2 gene is commonly deleted in individuals with Angelman syndrome, suggesting a potential contribution of HERC2 to the pathophysiology of this disease. Given the known critical role of autophagy in brain development and its implication in neurodevelopmental diseases, we undertook different experimental approaches to monitor autophagy in fibroblasts derived from individuals affected by the HERC2-related disorder. Our findings reveal alterations in the levels of the autophagy-related protein LC3. Furthermore, experiments with lysosomal inhibitors provide confirmation of an upregulation of the autophagy pathway in these patient-derived cells. Mechanistically, we corroborate an interaction between HERC2 and the deubiquitylating enzyme USP20; and demonstrate that HERC2 deficiency leads to increased USP20 protein levels. Notably, USP20 upregulation correlates with enhanced stability of the autophagy initiating kinase ULK1, highlighting the role of HERC2 as an autophagy regulator factor through the USP20-ULK1 axis. Moreover, we show that p38 acts as a modulator of this pathway, since p38 activation disrupts HERC2-USP20 interaction, leading to increased USP20 and LC3-II protein levels. Together, these findings uncover a previously unknown role for HERC2 in autophagy regulation and provide insights into the pathomolecular mechanisms underlying the HERC2-related disorder and Angelman syndrome.
Collapse
Affiliation(s)
- Joan Sala-Gaston
- Department of Physiological Sciences, University of Barcelona (UB), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013, Seville, Spain
| | - José A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013, Seville, Spain
| | - Lettie E Rawlins
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Andrew H Crosby
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Francesc Ventura
- Department of Physiological Sciences, University of Barcelona (UB), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, University of Barcelona (UB), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
12
|
Lu Y, Xu J, Li Y, Wang R, Dai C, Zhang B, Zhang X, Xu L, Tao Y, Han M, Guo R, Wu Q, Wu L, Meng Z, Tan M, Li J. DRAK2 suppresses autophagy by phosphorylating ULK1 at Ser 56 to diminish pancreatic β cell function upon overnutrition. Sci Transl Med 2024; 16:eade8647. [PMID: 38324636 DOI: 10.1126/scitranslmed.ade8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Impeded autophagy can impair pancreatic β cell function by causing apoptosis, of which DAP-related apoptosis-inducing kinase-2 (DRAK2) is a critical regulator. Here, we identified a marked up-regulation of DRAK2 in pancreatic tissue across humans, macaques, and mice with type 2 diabetes (T2D). Further studies in mice showed that conditional knockout (cKO) of DRAK2 in pancreatic β cells protected β cell function against high-fat diet feeding along with sustained autophagy and mitochondrial function. Phosphoproteome analysis in isolated mouse primary islets revealed that DRAK2 directly phosphorylated unc-51-like autophagy activating kinase 1 (ULK1) at Ser56, which was subsequently found to induce ULK1 ubiquitylation and suppress autophagy. ULK1-S56A mutation or pharmacological inhibition of DRAK2 preserved mitochondrial function and insulin secretion against lipotoxicity in mouse primary islets, Min6 cells, or INS-1E cells. In conclusion, these findings together indicate an indispensable role of the DRAK2-ULK1 axis in pancreatic β cells upon metabolic challenge, which offers a potential target to protect β cell function in T2D.
Collapse
Affiliation(s)
- Yuting Lu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Junyu Xu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
| | - Yufeng Li
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ruoran Wang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Chengqiu Dai
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingqian Zhang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Lei Xu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
| | - Yunhua Tao
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ming Han
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ren Guo
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Qingqian Wu
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Linshi Wu
- Shanghai Jiaotong University, School of Medicine, Renji Hospital, Shanghai, 201112, P. R. China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Minjia Tan
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingya Li
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Ahsan N, Shariq M, Surolia A, Raj R, Khan MF, Kumar P. Multipronged regulation of autophagy and apoptosis: emerging role of TRIM proteins. Cell Mol Biol Lett 2024; 29:13. [PMID: 38225560 PMCID: PMC10790450 DOI: 10.1186/s11658-023-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
TRIM proteins are characterized by their conserved N-terminal RING, B-box, and coiled-coil domains. These proteins are efficient regulators of autophagy, apoptosis, and innate immune responses and confer immunity against viruses and bacteria. TRIMs function as receptors or scaffold proteins that target substrates for autophagy-mediated degradation. Most TRIMs interact with the BECN1-ULK1 complex to form TRIMosomes, thereby efficiently targeting substrates to autophagosomes. They regulate the functions of ATG proteins through physical interactions or ubiquitination. TRIMs affect the lipidation of MAP1LC3B1 to form MAP1LC3B2, which is a prerequisite for phagophore and autophagosome formation. In addition, they regulate MTOR kinase and TFEB, thereby regulating the expression of ATG genes. TRIM proteins are efficient regulators of apoptosis and are crucial for regulating cell proliferation and tumor formation. Many TRIM proteins regulate intrinsic and extrinsic apoptosis via the cell surface receptors TGFBR2, TNFRSF1A, and FAS. Mitochondria modulate the anti- and proapoptotic functions of BCL2, BAX, BAK1, and CYCS. These proteins use a multipronged approach to regulate the intrinsic and extrinsic apoptotic pathways, culminating in coordinated activation or inhibition of the initiator and executor CASPs. Furthermore, TRIMs can have a dual effect in determining cell fate and are therefore crucial for cellular homeostasis. In this review, we discuss mechanistic insights into the role of TRIM proteins in regulating autophagy and apoptosis, which can be used to better understand cellular physiology. These findings can be used to develop therapeutic interventions to prevent or treat multiple genetic and infectious diseases.
Collapse
Affiliation(s)
- Nuzhat Ahsan
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohd Shariq
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 460012, India.
| | - Reshmi Raj
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | | | - Pramod Kumar
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
14
|
Aria F, Pandey K, Alberini CM. Excessive Protein Accumulation and Impaired Autophagy in the Hippocampus of Angelman Syndrome Modeled in Mice. Biol Psychiatry 2023; 94:68-83. [PMID: 36764852 PMCID: PMC10276539 DOI: 10.1016/j.biopsych.2022.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angelman syndrome (AS), a neurodevelopmental disorder caused by abnormalities of the 15q11.2-q13.1 chromosome region, is characterized by impairment of cognitive and motor functions, sleep problems, and seizures. How the genetic defects of AS produce these neurological symptoms is unclear. Mice modeling AS (AS mice) accumulate activity-regulated cytoskeleton-associated protein (ARC/ARG3.1), a neuronal immediate early gene (IEG) critical for synaptic plasticity. This accumulation suggests an altered protein metabolism. METHODS Focusing on the dorsal hippocampus (dHC), a brain region critical for memory formation and cognitive functions, we assessed levels and tissue distribution of IEGs, de novo protein synthesis, and markers of protein synthesis, endosomes, autophagy, and synaptic functions in AS mice at baseline and following learning. We also tested autophagic flux and memory retention following autophagy-promoting treatment. RESULTS AS dHC exhibited accumulation of IEGs ARC, FOS, and EGR1; autophagy proteins MLP3B, SQSTM1, and LAMP1; and reduction of the endosomal protein RAB5A. AS dHC also had increased levels of de novo protein synthesis, impaired autophagic flux with accumulation of autophagosome, and altered synaptic protein levels. Contextual fear conditioning significantly increased levels of IEGs and autophagy proteins, de novo protein synthesis, and autophagic flux in the dHC of normal mice, but not in AS mice. Enhancing autophagy in the dHC alleviated AS-related memory and autophagic flux impairments. CONCLUSIONS A major biological deficit of AS brain is a defective protein metabolism, particularly that dynamically regulated by learning, resulting in stalled autophagy and accumulation of neuronal proteins. Activating autophagy ameliorates AS cognitive impairments and dHC protein accumulation.
Collapse
Affiliation(s)
- Francesca Aria
- Center for Neural Science, New York University, New York, New York
| | - Kiran Pandey
- Center for Neural Science, New York University, New York, New York
| | | |
Collapse
|
15
|
Wang J, Qin X, Huang Y, Zhang Q, Pei J, Wang Y, Goren I, Ma S, Song Z, Liu Y, Xing H, Wang H, Yang B. TRIM7/RNF90 promotes autophagy via regulation of ATG7 ubiquitination during L. monocytogenes infection. Autophagy 2023; 19:1844-1862. [PMID: 36576150 PMCID: PMC10262811 DOI: 10.1080/15548627.2022.2162706] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
L. monocytogenes is a widely used infection model for the research on pathogenesis and host defense against gram-positive intracellular bacteria. Emerging evidence indicates that posttranslational modifications play a critical role in the regulation of macroautophagy/autophagy. However, little is known about the posttranslational modifications of ATG7, the essential protein in the autophagy process. In this study, we demonstrated that the RING-type E3 ligase TRIM7/RNF90 positively regulated autophagosome accumulation by promoting the ubiquitination of ATG7 at K413, thereby affecting L. monocytogenes infection. TRIM7 expression was induced by a variety range of conditions, including starvation, rapamycin stimulation, and L. monocytogenes infection. TRIM7 deficiency in mice or cells resulted in elevated innate immune responses and increased L. monocytogenes infection. ATG7 was associated with TRIM7 and the positive regulatory role of TRIM7 in L. monocytogenes infection-, starvation- or rapamycin-induced autophagosome accumulation was suggested by TRIM7 deficiency, TRIM7 overexpression, and TRIM7 knockdown. Further mechanistic investigation indicated that TRIM7 promoted the K63-linked ubiquitination of ATG7 at K413 and ubiquitination at this site was required for the function of ATG7 in autophagy and L. monocytogenes infection. Thus, our findings suggested a new regulator in intracellular bacterial infection and autophagy, with a novel posttranslational modification targeting ATG7. This research may expand our understanding of host anti-bacterial defense and the role of autophagy in intracellular bacterial infection.Abbreviations: ATG3: autophagy related 3; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG10: autophagy related 10; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; Baf A1: bafilomycin A1; CQ: chloroquine; BMDC: bone marrow-derived dendritic cell; BMDM: bone marrow-derived macrophage; CFUs: colony-forming units; CXCL10/IP-10: C-X-C motif chemokine ligand 10; EBSS: Earle's balanced salt solution; ELISA: enzyme-linked immunosorbent assay; IFIT1/ISG56: interferon induced protein with tetratricopeptide repeats 1; IFNB/IFN-β: interferon beta; IL6: interleukin 6; IRF3, interferon regulatory factor 3; Lm: L. monocytogenes; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; PLA: proximity ligation assay; PMA: phorbol myristate acetate; PMA-THP1, PMA-differentiated THP1; PMs: peritoneal macrophages; PTMs: posttranslational modifications; STING1, stimulator of interferon response cGAMP interactor 1; TBK1, TANK binding kinase 1; TNF/TNF-α: tumor necrosis factor; TRIM7/RNF90: tripartite motif containing; Hainan Provincial Natural Science Foundation of China.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao Qin
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yulu Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qunmei Zhang
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, County, China
| | - Jinyong Pei
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yi Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Idan Goren
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shujun Ma
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhishan Song
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanzi Liu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongxia Xing
- Xinxiang Key Laboratory of Movement Disorders, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bo Yang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
16
|
Mattiola I, Diefenbach A. Regulation of innate immune system function by the microbiome: Consequences for tumor immunity and cancer immunotherapy. Semin Immunol 2023; 66:101724. [PMID: 36758379 DOI: 10.1016/j.smim.2023.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Innate effector cells are immune cells endowed with host protective features and cytotoxic functions. By sensing the tissue environment, innate cells have an important role in regulating the transition from homeostasis to inflammation and the establishment of pathological states, including the onset and development of cancer. The tumor microenvironment induces molecular and functional modifications in innate cells, dampening their capability to initiate and sustain anti-tumor immune responses. Emerging studies clearly showed a contribution of the microbiota in modulating the functions of innate cells in cancer. Commensal microorganisms can not only directly interact with innate cells in the tumor microenvironment but can also exert immunomodulatory features from non-tumor sites through the release of microbial products. The microbiota can mediate the priming of innate cells at mucosal tissues and determine the strength of immune responses mediated by such cells when they migrate to non-mucosal tissues, having an impact on cancer. Finally, several evidences reported a strong contribution of the microbiota in promoting innate immune responses during anti-cancer therapies leading to enhanced therapeutic efficacy. In this review, we considered the current knowledge on the role of the microbiota in shaping host innate immune responses in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany; Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Recent Advances in the Treatment of Genetic Forms of Parkinson's Disease: Hype or Hope? Cells 2023; 12:cells12050764. [PMID: 36899899 PMCID: PMC10001341 DOI: 10.3390/cells12050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Parkinson's disease (PD) is a multifarious neurodegenerative disease. Its pathology is characterized by a prominent early death of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies with aggregated α-synuclein. Although the α-synuclein pathological aggregation and propagation, induced by several factors, is considered one of the most relevant hypotheses, PD pathogenesis is still a matter of debate. Indeed, environmental factors and genetic predisposition play an important role in PD. Mutations associated with a high risk for PD, usually called monogenic PD, underlie 5% to 10% of all PD cases. However, this percentage tends to increase over time because of the continuous identification of new genes associated with PD. The identification of genetic variants that can cause or increase the risk of PD has also given researchers the possibility to explore new personalized therapies. In this narrative review, we discuss the recent advances in the treatment of genetic forms of PD, focusing on different pathophysiologic aspects and ongoing clinical trials.
Collapse
|
18
|
Autophagy/Mitophagy Regulated by Ubiquitination: A Promising Pathway in Cancer Therapeutics. Cancers (Basel) 2023; 15:cancers15041112. [PMID: 36831455 PMCID: PMC9954143 DOI: 10.3390/cancers15041112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Autophagy is essential for organismal development, maintenance of energy homeostasis, and quality control of organelles and proteins. As a selective form of autophagy, mitophagy is necessary for effectively eliminating dysfunctional mitochondria. Both autophagy and mitophagy are linked with tumor progression and inhibition. The regulation of mitophagy and autophagy depend upon tumor type and stage. In tumors, mitophagy has dual roles: it removes damaged mitochondria to maintain healthy mitochondria and energy production, which are necessary for tumor growth. In contrast, mitophagy has been shown to inhibit tumor growth by mitigating excessive ROS production, thus preventing mutation and chromosomal instability. Ubiquitination and deubiquitination are important modifications that regulate autophagy. Multiple E3 ubiquitin ligases and DUBs modulate the activity of the autophagy and mitophagy machinery, thereby influencing cancer progression. In this review, we summarize the mechanistic association between cancer development and autophagy/mitophagy activities regulated by the ubiquitin modification of autophagic proteins. In addition, we discuss the function of multiple proteins involved in autophagy/mitophagy in tumors that may represent potential therapeutic targets.
Collapse
|
19
|
Shariq M, Quadir N, Alam A, Zarin S, Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE, Ehtesham NZ. The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy 2023; 19:3-23. [PMID: 35000542 PMCID: PMC9809970 DOI: 10.1080/15548627.2021.2021495] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intracellular pathogens have evolved various efficient molecular armaments to subvert innate defenses. Cellular ubiquitination, a normal physiological process to maintain homeostasis, is emerging one such exploited mechanism. Ubiquitin (Ub), a small protein modifier, is conjugated to diverse protein substrates to regulate many functions. Structurally diverse linkages of poly-Ub to target proteins allow enormous functional diversity with specificity being governed by evolutionarily conserved enzymes (E3-Ub ligases). The Ub-binding domain (UBD) and LC3-interacting region (LIR) are critical features of macroautophagy/autophagy receptors that recognize Ub-conjugated on protein substrates. Emerging evidence suggests that E3-Ub ligases unexpectedly protect against intracellular pathogens by tagging poly-Ub on their surfaces and targeting them to phagophores. Two E3-Ub ligases, PRKN and SMURF1, provide immunity against Mycobacterium tuberculosis (M. tb). Both enzymes conjugate K63 and K48-linked poly-Ub to M. tb for successful delivery to phagophores. Intriguingly, M. tb exploits virulence factors to effectively dampen host-directed autophagy utilizing diverse mechanisms. Autophagy receptors contain LIR-motifs that interact with conserved Atg8-family proteins to modulate phagophore biogenesis and fusion to the lysosome. Intracellular pathogens have evolved a vast repertoire of virulence effectors to subdue host-immunity via hijacking the host ubiquitination process. This review highlights the xenophagy-mediated clearance of M. tb involving host E3-Ub ligases and counter-strategy of autophagy inhibition by M. tb using virulence factors. The role of Ub-binding receptors and their mode of autophagy regulation is also explained. We also discuss the co-opting and utilization of the host Ub system by M. tb for its survival and virulence.Abbreviations: APC: anaphase promoting complex/cyclosome; ATG5: autophagy related 5; BCG: bacille Calmette-Guerin; C2: Ca2+-binding motif; CALCOCO2: calcium binding and coiled-coil domain 2; CUE: coupling of ubiquitin conjugation to ER degradation domains; DUB: deubiquitinating enzyme; GABARAP: GABA type A receptor-associated protein; HECT: homologous to the E6-AP carboxyl terminus; IBR: in-between-ring fingers; IFN: interferon; IL1B: interleukin 1 beta; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LGALS: galectin; LIR: LC3-interacting region; MAPK11/p38: mitogen-activated protein kinase 11; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK8/JNK: mitogen-activated protein kinase 8; MHC-II: major histocompatibility complex-II; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB1/p50: nuclear factor kappa B subunit 1; OPTN: optineurin; PB1: phox and bem 1; PE/PPE: proline-glutamic acid/proline-proline-glutamic acid; PknG: serine/threonine-protein kinase PknG; PRKN: parkin RBR E3 ubiquitin protein ligase; RBR: RING-in between RING; RING: really interesting new gene; RNF166: RING finger protein 166; ROS: reactive oxygen species; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; Ub: ubiquitin; UBA: ubiquitin-associated; UBAN: ubiquitin-binding domain in ABIN proteins and NEMO; UBD: ubiquitin-binding domain; UBL: ubiquitin-like; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Neha Quadir
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Anwar Alam
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Sheeba Zarin
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A. Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Neha Sharma
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasmine Samal
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Uzair Ahmad
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Indu Kumari
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India,Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India,Seyed E. Hasnain ; ; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India
| | - Nasreen Z. Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,CONTACT Nasreen Z. Ehtesham ; ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi110029, India
| |
Collapse
|
20
|
Liu N, Lin MM, Wang Y. The Emerging Roles of E3 Ligases and DUBs in Neurodegenerative Diseases. Mol Neurobiol 2022; 60:247-263. [PMID: 36260224 DOI: 10.1007/s12035-022-03063-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/27/2022] [Indexed: 10/24/2022]
Abstract
Despite annual increases in the incidence and prevalence of neurodegenerative diseases, there is a lack of effective treatment strategies. An increasing number of E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) have been observed to participate in the pathogenesis mechanisms of neurodegenerative diseases, on the basis of which we conducted a systematic literature review of the studies. This review will help to explore promising therapeutic targets from highly dynamic ubiquitination modification processes.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Miao-Miao Lin
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yan Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
21
|
Liu Z, Xia L. E3 ligase RNF5 inhibits type I interferon response in herpes simplex virus keratitis through the STING/IRF3 signaling pathway. Front Microbiol 2022; 13:944101. [PMID: 35992663 PMCID: PMC9382029 DOI: 10.3389/fmicb.2022.944101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex keratitis (HSK), caused by the herpes simplex virus 1 (HSV-1), is a major blinding disease in developed countries. HSV-1 can remain latent in the host for life and cannot be eradicated. The infection causes the secretion of various cytokines and aggregation of inflammatory cells. In the early stage of inflammation, mainly neutrophils infiltrate the cornea, and CD4+ T cells mediate the immunopathological changes in herpetic stromal keratitis in the subsequent progression. The STING/IRF3-mediated type I interferon (IFN) response can effectively inhibit viral replication and control infection, but the activity of STING is affected by various ubiquitination modifications. In this study, we found that the expression of RNF5 was elevated in corneal tissues and corneal epithelial cells after infection with HSV-1. Immunofluorescence staining confirmed that RNF5 was mainly expressed in the corneal epithelial layer. We silenced and overexpressed RNF5 expression in corneal epithelial cells and then inoculated them with HSV-1. We found that the expressions of STING, p-IRF3, p-TBK1, and IFN-β mRNA increased after RNF5 silencing. The opposite results were obtained after RNF5 overexpression. We also used siRNA to silence RNF5 in the mouse cornea and then established the HSK model. Compared with the siRNA-control group, the siRNA-RNF5 group showed significantly improved corneal inflammation, reduced clinical scores and tear virus titers, and significantly increased corneal IFN-β expression. In addition, the expressions of the proinflammatory cytokines IL-6 and TNF-α in the corneal tissue were significantly decreased, indicating that RNF5 silencing could effectively promote IFN-I expression, inhibit virus replication, alleviate inflammation, and reduce corneal inflammatory damage. In summary, our results suggest that RNF5 limits the type I IFN antiviral response in HSV corneal epithelitis by inhibiting STING/IRF3 signaling.
Collapse
|
22
|
Ding M, Fang H, Zhang J, Shi J, Yu X, Wen P, Wang Z, Cao S, Zhang Y, Shi X, Zhang H, He Y, Yan B, Tang H, Guo D, Gao J, Liu Z, Zhang L, Zhang S, Zhang X, Guo W. E3 ubiquitin ligase ring finger protein 5 protects against hepatic ischemia reperfusion injury by mediating phosphoglycerate mutase family member 5 ubiquitination. Hepatology 2022; 76:94-111. [PMID: 34735734 PMCID: PMC9303746 DOI: 10.1002/hep.32226] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (HIR) injury, a common clinical complication of liver transplantation and resection, affects patient prognosis. Ring finger protein 5 (RNF5) is an E3 ubiquitin ligase that plays important roles in endoplasmic reticulum stress, unfolded protein reactions, and inflammatory responses; however, its role in HIR is unclear. APPROACH AND RESULTS RNF5 expression was significantly down-regulated during HIR in mice and hepatocytes. Subsequently, RNF5 knockdown and overexpression of cell lines were subjected to hypoxia-reoxygenation challenge. Results showed that RNF5 knockdown significantly increased hepatocyte inflammation and apoptosis, whereas RNF5 overexpression had the opposite effect. Furthermore, hepatocyte-specific RNF5 knockout and transgenic mice were established and subjected to HIR, and RNF5 deficiency markedly aggravated liver damage and cell apoptosis and activated hepatic inflammatory responses, whereas hepatic RNF5 transgenic mice had the opposite effect compared with RNF5 knockout mice. Mechanistically, RNF5 interacted with phosphoglycerate mutase family member 5 (PGAM5) and mediated the degradation of PGAM5 through K48-linked ubiquitination, thereby inhibiting the activation of apoptosis-regulating kinase 1 (ASK1) and its downstream c-Jun N-terminal kinase (JNK)/p38. This eventually suppresses the inflammatory response and cell apoptosis in HIR. CONCLUSIONS We revealed that RNF5 protected against HIR through its interaction with PGAM5 to inhibit the activation of ASK1 and the downstream JNK/p38 signaling cascade. Our findings indicate that the RNF5-PGAM5 axis may be a promising therapeutic target for HIR.
Collapse
Affiliation(s)
- Ming‐Jie Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hao‐Ran Fang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Jia‐Kai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Ji‐Hua Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Pei‐Hao Wen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Zhi‐Hui Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Sheng‐Li Cao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Yi Zhang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiao‐Yi Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hua‐Peng Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Yu‐Ting He
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Bing Yan
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hong‐Wei Tang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Dan‐Feng Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Zhen Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shui‐Jun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | | | - Wen‐Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| |
Collapse
|
23
|
Brusa I, Sondo E, Falchi F, Pedemonte N, Roberti M, Cavalli A. Proteostasis Regulators in Cystic Fibrosis: Current Development and Future Perspectives. J Med Chem 2022; 65:5212-5243. [PMID: 35377645 PMCID: PMC9014417 DOI: 10.1021/acs.jmedchem.1c01897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In cystic fibrosis (CF), the deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) leads to misfolding and premature degradation of the mutant protein. These defects can be targeted with pharmacological agents named potentiators and correctors. During the past years, several efforts have been devoted to develop and approve new effective molecules. However, their clinical use remains limited, as they fail to fully restore F508del-CFTR biological function. Indeed, the search for CFTR correctors with different and additive mechanisms has recently increased. Among them, drugs that modulate the CFTR proteostasis environment are particularly attractive to enhance therapy effectiveness further. This Perspective focuses on reviewing the recent progress in discovering CFTR proteostasis regulators, mainly describing the design, chemical structure, and structure-activity relationships. The opportunities, challenges, and future directions in this emerging and promising field of research are discussed, as well.
Collapse
Affiliation(s)
- Irene Brusa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
24
|
Kushnareva Y, Moraes V, Suess J, Peters B, Newmeyer DD, Kuwana T. Disruption of mitochondrial quality control genes promotes caspase-resistant cell survival following apoptotic stimuli. J Biol Chem 2022; 298:101835. [PMID: 35304098 PMCID: PMC9018395 DOI: 10.1016/j.jbc.2022.101835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
In cells undergoing cell-intrinsic apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically marks an irreversible step in the cell death process. However, in some cases, a subpopulation of treated cells can exhibit a sublethal response, termed "minority MOMP." In this phenomenon, the affected cells survive, despite a low level of caspase activation and subsequent limited activation of the endonuclease caspase-activated DNase (DNA fragmentation factor subunit beta). Consequently, these cells can experience DNA damage, increasing the probability of oncogenesis. However, little is known about the minority MOMP response. To discover genes that affect the MOMP response in individual cells, we conducted an imaging-based phenotypic siRNA screen. We identified multiple candidate genes whose downregulation increased the heterogeneity of MOMP within single cells, among which were genes related to mitochondrial dynamics and mitophagy that participate in the mitochondrial quality control (MQC) system. Furthermore, to test the hypothesis that functional MQC is important for reducing the frequency of minority MOMP, we developed an assay to measure the clonogenic survival of caspase-engaged cells. We found that cells deficient in various MQC genes were indeed prone to aberrant post-MOMP survival. Our data highlight the important role of proteins involved in mitochondrial dynamics and mitophagy in preventing apoptotic dysregulation and oncogenesis.
Collapse
Affiliation(s)
- Yulia Kushnareva
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Vivian Moraes
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Julian Suess
- Department of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Bjoern Peters
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Donald D Newmeyer
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Tomomi Kuwana
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA.
| |
Collapse
|
25
|
Principi E, Sondo E, Bianchi G, Ravera S, Morini M, Tomati V, Pastorino C, Zara F, Bruno C, Eva A, Pedemonte N, Raffaghello L. Targeting of Ubiquitin E3 Ligase RNF5 as a Novel Therapeutic Strategy in Neuroectodermal Tumors. Cancers (Basel) 2022; 14:cancers14071802. [PMID: 35406574 PMCID: PMC8997491 DOI: 10.3390/cancers14071802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
RNF5, an endoplasmic reticulum (ER) E3 ubiquitin ligase, participates to the ER-associated protein degradation guaranteeing the protein homeostasis. Depending on tumor model tested, RNF5 exerts pro- or anti-tumor activity. The aim of this study was to elucidate the controversial role of RNF5 in neuroblastoma and melanoma, two neuroectodermal tumors of infancy and adulthood, respectively. RNF5 gene levels are evaluated in publicly available datasets reporting the gene expression profile of melanoma and neuroblastoma primary tumors at diagnosis. The therapeutic effect of Analog-1, an RNF5 pharmacological activator, was investigated on in vitro and in vivo neuroblastoma and melanoma models. In both neuroblastoma and melanoma patients the high expression of RNF5 correlated with a better prognostic outcome. Treatment of neuroblastoma and melanoma cell lines with Analog-1 reduced cell viability by impairing the glutamine availability and energy metabolism through inhibition of F1Fo ATP-synthase activity. This latter event led to a marked increase in oxidative stress, which, in turn, caused cell death. Similarly, neuroblastoma- and melanoma-bearing mice treated with Analog-1 showed a significant delay of tumor growth in comparison to those treated with vehicle only. These findings validate RNF5 as an innovative drug target and support the development of Analog-1 in early phase clinical trials for neuroblastoma and melanoma patients.
Collapse
Affiliation(s)
- Elisa Principi
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giovanna Bianchi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, 16132 Genova, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Cristina Pastorino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Federico Zara
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | | | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
26
|
The NEDD4 ubiquitin E3 ligase: a snapshot view of its functional activity and regulation. Biochem Soc Trans 2022; 50:473-485. [PMID: 35129615 DOI: 10.1042/bst20210731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Due to its fundamental role in all eukaryotic cells, a deeper understanding of the molecular mechanisms underlying ubiquitination is of central importance. Being responsible for chain specificity and substrate recognition, E3 ligases are the selective elements of the ubiquitination process. In this review, we discuss different cellular pathways regulated by one of the first identified E3 ligase, NEDD4, focusing on its pathophysiological role, its known targets and modulators. In addition, we highlight small molecule inhibitors that act on NEDD4 and discuss new strategies to effectively target this E3 enzyme.
Collapse
|
27
|
Mishra R, Bansal A, Mishra A. LISTERIN E3 Ubiquitin Ligase and Ribosome-Associated Quality Control (RQC) Mechanism. Mol Neurobiol 2021; 58:6593-6609. [PMID: 34590243 DOI: 10.1007/s12035-021-02564-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/12/2021] [Indexed: 01/09/2023]
Abstract
According to cellular demands, ribosomes synthesize and maintain the desired pool of proteins inside the cell. However, sometimes due to defects in ribosomal machinery and faulty mRNAs, these nascent polypeptides are constantly under threat to become non-functional. In such conditions, cells acquire the help of ribosome-associated quality control mechanisms (RQC) to eliminate such aberrant nascent proteins. The primary regulator of RQC is RING domain containing LISTERIN E3 ubiquitin ligase, which is associated with ribosomes and alleviates non-stop proteins-associated stress in cells. Mouse RING finger protein E3 ubiquitin ligase LISTERIN is crucial for embryonic development, and a loss in its function causes neurodegeneration. LISTERIN is overexpressed in the mouse brain and spinal cord regions, and its perturbed functions generate neurological and motor deficits, but the mechanism of the same is unclear. Overall, LISTERIN is crucial for brain health and brain development. The present article systematically describes the detailed nature, molecular functions, and cellular physiological characterization of LISTERIN E3 ubiquitin ligase. Improve comprehension of LISTERIN's neurological roles may uncover pathways linked with neurodegeneration, which in turn might elucidate a promising novel therapeutic intervention against human neurodegenerative diseases.
Collapse
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Anurag Bansal
- Center for Converging Technologies, Jaipur, University of Rajasthan, Jaipur, 302001, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India.
| |
Collapse
|
28
|
Yang Q, Chen X, Zhang Y, Hu S, Hu F, Huang Y, Ma T, Hu H, Tian H, Tian S, Ji YX, She ZG, Zhang P, Zhang XJ, Hu Y, Yang H, Yuan Y, Li H. The E3 Ubiquitin Ligase Ring Finger Protein 5 Ameliorates NASH Through Ubiquitin-Mediated Degradation of 3-Hydroxy-3-Methylglutaryl CoA Reductase Degradation Protein 1. Hepatology 2021; 74:3018-3036. [PMID: 34272738 DOI: 10.1002/hep.32061] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS NAFLD is the most prevalent chronic liver disease worldwide, but no effective pharmacological therapeutics are available for clinical use. NASH is the more severe stage of NAFLD. During this progress, dysregulation of endoplasmic reticulum (ER)-related pathways and proteins is one of the predominant hallmarks. We aimed to reveal the role of ring finger protein 5 (RNF5), an ER-localized E3 ubiquitin-protein ligase, in NASH and to explore its underlying mechanism. APPROACH AND RESULTS We first inspected the expression level of RNF5 and found that it was markedly decreased in livers with NASH in multiple species including humans. We then introduced adenoviruses for Rnf5 overexpression or knockdown into primary mouse hepatocytes and found that palmitic acid/oleic acid (PAOA)-induced lipid accumulation and inflammation in hepatocytes were markedly attenuated by Rnf5 overexpression but exacerbated by Rnf5 gene silencing. Hepatocyte-specific Rnf5 knockout significantly exacerbated hepatic steatosis, inflammatory response, and fibrosis in mice challenged with diet-induced NASH. Mechanistically, we identified 3-hydroxy-3-methylglutaryl CoA reductase degradation protein 1 (HRD1) as a binding partner of RNF5 by systematic interactomics analysis. RNF5 directly bound to HRD1 and promoted its lysine 48 (K48)-linked and K33-linked ubiquitination and subsequent proteasomal degradation. Furthermore, Hrd1 overexpression significantly exacerbated PAOA-induced lipid accumulation and inflammation, and short hairpin RNA-mediated Hrd1 knockdown exerted the opposite effects. Notably, Hrd1 knockdown significantly diminished PAOA-induced lipid deposition, and up-regulation of related genes resulted from Rnf5 ablation in hepatocytes. CONCLUSIONS These data indicate that RNF5 inhibits NASH progression by targeting HRD1 in the ubiquitin-mediated proteasomal pathway. Targeting the RNF5-HRD1 axis may provide insights into the pathogenesis of NASH and pave the way for developing strategies for NASH prevention and treatment.
Collapse
Affiliation(s)
- Qin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedures of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, China
| | - Yanfang Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Sha Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Fengjiao Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongping Huang
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Tengfei Ma
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Han Tian
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufeng Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hailong Yang
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedures of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, China
| | - Hongliang Li
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Potjewyd FM, Axtman AD. Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Front Cell Neurosci 2021; 15:768655. [PMID: 34867205 PMCID: PMC8637409 DOI: 10.3389/fncel.2021.768655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) is responsible for the degradation of misfolded or aggregated proteins via a multistep ATP-dependent proteolytic mechanism. This process involves a cascade of ubiquitin (Ub) transfer steps from E1 to E2 to E3 ligase. The E3 ligase transfers Ub to a targeted protein that is brought to the proteasome for degradation. The inability of the UPS to remove misfolded or aggregated proteins due to UPS dysfunction is commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD). UPS dysfunction in AD drives disease pathology and is associated with the common hallmarks such as amyloid-β (Aβ) accumulation and tau hyperphosphorylation, among others. E3 ligases are key members of the UPS machinery and dysfunction or changes in their expression can propagate other aberrant processes that accelerate AD pathology. The upregulation or downregulation of expression or activity of E3 ligases responsible for these processes results in changes in protein levels of E3 ligase substrates, many of which represent key proteins that propagate AD. A powerful way to better characterize UPS dysfunction in AD and the role of individual E3 ligases is via the use of high-quality chemical tools that bind and modulate specific E3 ligases. Furthermore, through combining gene editing with recent advances in 3D cell culture, in vitro modeling of AD in a dish has become more relevant and possible. These cell-based models of AD allow for study of specific pathways and mechanisms as well as characterization of the role E3 ligases play in driving AD. In this review, we outline the key mechanisms of UPS dysregulation linked to E3 ligases in AD and highlight the currently available chemical modulators. We present several key approaches for E3 ligase ligand discovery being employed with respect to distinct classes of E3 ligases. Where possible, specific examples of the use of cultured neurons to delineate E3 ligase biology have been captured. Finally, utilizing the available ligands for E3 ligases in the design of proteolysis targeting chimeras (PROTACs) to degrade aberrant proteins is a novel strategy for AD, and we explore the prospects of PROTACs as AD therapeutics.
Collapse
|
30
|
Lee J, Kim J, Shin J, Kang Y, Choi J, Cheong H. ATG101 Degradation by HUWE1-Mediated Ubiquitination Impairs Autophagy and Reduces Survival in Cancer Cells. Int J Mol Sci 2021; 22:9182. [PMID: 34502089 PMCID: PMC8430637 DOI: 10.3390/ijms22179182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a critical cytoprotective mechanism against stress, which is initiated by the protein kinase Unc-51-like kinase 1 (ULK1) complex. Autophagy plays a role in both inhibiting the progression of diseases and facilitating pathogenesis, so it is critical to elucidate the mechanisms regulating individual components of the autophagy machinery under various conditions. Here, we examined whether ULK1 complex component autophagy-related protein 101 (ATG101) is downregulated via ubiquitination, and whether this in turn suppresses autophagy activity in cancer cells. Knockout of ATG101 in cancer cells using CRISPR resulted in severe growth retardation and lower survival under nutrient starvation. Transfection of mutant ATG101 revealed that the C-terminal region is a key domain of ubiquitination, while co-immunoprecipitation and knockdown experiments revealed that HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1(HUWE1) is a major E3 ubiquitin ligase targeting ATG101. Protein levels of ATG101 was more stable and the related-autophagy activity was higher in HUWE1-depleted cancer cells compared to wild type (WT) controls, indicating that HUWE1-mediated ubiquitination promotes ATG101 degradation. Moreover, enhanced autophagy in HUWE1-depleted cancer cells was reversed by siRNA-mediated ATG101 knockdown. Stable ATG101 level in HUWE1-depleted cells was a strong driver of autophagosome formation similar to upregulation of the known HUWE1 substrate WD repeat domain, phosphoinositide interacting 2 (WIPI2). Cellular survival rates were higher in HUWE1-knockdown cancer cells compared to controls, while concomitant siRNA-mediated ATG101 knockdown tends to increase apoptosis rate. Collectively, these results suggest that HUWE1 normally serves to suppress autophagy by ubiquitinating and triggering degradation of ATG101 and WIPI2, which in turn represses the survival of cancer cells. Accordingly, ATG101-mediated autophagy may play a critical role in overcoming metabolic stress, thereby contributing to the growth, survival, and treatment resistance of certain cancers.
Collapse
Affiliation(s)
- JaeYung Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Korea; (J.L.); (J.K.); (J.S.); (Y.K.)
| | - Jiyea Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Korea; (J.L.); (J.K.); (J.S.); (Y.K.)
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Jeongeun Shin
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Korea; (J.L.); (J.K.); (J.S.); (Y.K.)
| | - YongHyun Kang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Korea; (J.L.); (J.K.); (J.S.); (Y.K.)
| | - Jungwon Choi
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Heesun Cheong
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Korea; (J.L.); (J.K.); (J.S.); (Y.K.)
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| |
Collapse
|
31
|
Ghosh B, Karmakar S, Prasad M, Mandal AK. Praja1 ubiquitin ligase facilitates degradation of polyglutamine proteins and suppresses polyglutamine-mediated toxicity. Mol Biol Cell 2021; 32:1579-1593. [PMID: 34161122 PMCID: PMC8351749 DOI: 10.1091/mbc.e20-11-0747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A network of chaperones and ubiquitin ligases sustain intracellular proteostasis and is integral in preventing aggregation of misfolded proteins associated with various neurodegenerative diseases. Using cell-based studies of polyglutamine (polyQ) diseases, spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD), we aimed to identify crucial ubiquitin ligases that protect against polyQ aggregation. We report here that Praja1 (PJA1), a Ring-H2 ubiquitin ligase abundantly expressed in the brain, is diminished when polyQ repeat proteins (ataxin-3/huntingtin) are expressed in cells. PJA1 interacts with polyQ proteins and enhances their degradation, resulting in reduced aggregate formation. Down-regulation of PJA1 in neuronal cells increases polyQ protein levels vis-a-vis their aggregates, rendering the cells vulnerable to cytotoxic stress. Finally, PJA1 suppresses polyQ toxicity in yeast and rescues eye degeneration in a transgenic Drosophila model of SCA3. Thus, our findings establish PJA1 as a robust ubiquitin ligase of polyQ proteins and induction of which might serve as an alternative therapeutic strategy in handling cytotoxic polyQ aggregates.
Collapse
Affiliation(s)
- Baijayanti Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Susnata Karmakar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Mohit Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Atin K Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
32
|
Regulation of autophagy flux by E3 ubiquitin ligase Pirh2 in lung cancer. Biochem Biophys Res Commun 2021; 563:119-125. [PMID: 34090148 DOI: 10.1016/j.bbrc.2021.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023]
Abstract
Autophagy is a special catabolic cellular program that is induced in response to deprivation of nutrients and energy starvation. During the execution of this program, cellular components, including aggregates, as well as damaged organelles and some proteins are encapsulated in special vesicles known as autophagosomes and subsequently are degraded after fusion of autophagosomes with lysosomes. Importantly, at late stages of tumorigenesis cancer cells employ autophagy to sustain proliferation in unfavorable conditions, including anti-cancer drug therapy. E3 ubiquitin ligases play an important role in controlling autophagy. Here we demonstrate that the E3 ligase, a p53-induced RING-H2 protein (Pirh2), is involved in the regulation of autophagy in non-small cell lung cancer cells. Knockdown of Pirh2 decreased the expression of genes involved in all steps of autophagy. Concomitantly, Pirh2 knockdown cell lines exhibited much less of the processed form of LC3 compared to the respective cell lines with normal levels of Pirh2. These results were confirmed by the immune fluorescence microscopy using LC3 antibody and the LysoTracker dye. In agreement with the protective role of autophagy, cells with attenuated expression of Pirh2 were more sensitive to the treatment with doxorubicin. Collectively, we have uncovered a novel function of Pirh2 in the regulation of autophagy in lung cancer cells.
Collapse
|
33
|
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, Monsalve M. Mitophagy in Human Diseases. Int J Mol Sci 2021; 22:3903. [PMID: 33918863 PMCID: PMC8069949 DOI: 10.3390/ijms22083903] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.
Collapse
Affiliation(s)
- Laura Doblado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Lueck
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Rey
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Alejandro K. Samhan-Arias
- Department of Biochemistry, Universidad Autónoma de Madrid e Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Ignacio Prieto
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Isaac Peral 42, 28015 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, Universita’ Degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| |
Collapse
|
34
|
Qu J, Zou T, Lin Z. The Roles of the Ubiquitin-Proteasome System in the Endoplasmic Reticulum Stress Pathway. Int J Mol Sci 2021; 22:1526. [PMID: 33546413 PMCID: PMC7913544 DOI: 10.3390/ijms22041526] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells, which is essential for synthesis, processing, sorting of protein and lipid metabolism. However, the cells activate a defense mechanism called endoplasmic reticulum stress (ER stress) response and initiate unfolded protein response (UPR) as the unfolded proteins exceed the folding capacity of the ER due to the environmental influences or increased protein synthesis. ER stress can mediate many cellular processes, including autophagy, apoptosis and senescence. The ubiquitin-proteasome system (UPS) is involved in the degradation of more than 80% of proteins in the cells. Today, increasing numbers of studies have shown that the two important components of UPS, E3 ubiquitin ligases and deubiquitinases (DUBs), are tightly related to ER stress. In this review, we summarized the regulation of the E3 ubiquitin ligases and DUBs in ER stress.
Collapse
Affiliation(s)
| | | | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (J.Q.); (T.Z.)
| |
Collapse
|
35
|
Feng Y, Ariosa AR, Yang Y, Hu Z, Dengjel J, Klionsky DJ. Downregulation of autophagy by Met30-mediated Atg9 ubiquitination. Proc Natl Acad Sci U S A 2021; 118:e2005539118. [PMID: 33443148 PMCID: PMC7817162 DOI: 10.1073/pnas.2005539118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macroautophagy/autophagy is a highly conserved eukaryotic molecular process that facilitates the recycling of superfluous cytoplasmic materials, damaged organelles, and invading pathogens, resulting in proper cellular homeostasis and survival during stress conditions. Autophagy is stringently regulated at multiple stages, including control at transcriptional, translational, and posttranslational levels. In this work, we identified a mechanism by which regulation of autophagy is achieved through the posttranslational modification of Atg9. Here, we show that, in order to limit autophagy to a low, basal level during normal conditions, Atg9 is ubiquitinated and subsequently targeted for degradation in a proteasome-dependent manner through the action of the E3 ligase Met30. When cells require increased autophagy flux to respond to nutrient deprivation, the proteolysis of Atg9 is significantly reduced. Overall, this work reveals an additional layer of mechanistic regulation that allows cells to further maintain appropriate levels of autophagy and to rapidly induce this process in response to stress.
Collapse
Affiliation(s)
- Yuchen Feng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Aileen R Ariosa
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Ying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109;
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
36
|
Adir O, Bening-Abu-Shach U, Arbib S, Henis-Korenblit S, Broday L. Inactivation of the Caenorhabditis elegans RNF-5 E3 ligase promotes IRE-1-independent ER functions. Autophagy 2020; 17:2401-2414. [DOI: 10.1080/15548627.2020.1827778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Orit Adir
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ulrike Bening-Abu-Shach
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shir Arbib
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Liao K, Niu F, Hu G, Guo ML, Sil S, Buch S. HIV Tat-mediated induction of autophagy regulates the disruption of ZO-1 in brain endothelial cells. Tissue Barriers 2020; 8:1748983. [PMID: 32299282 DOI: 10.1080/21688370.2020.1748983] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The blood-brain barrier (BBB) is a tight barrier that is critical for preventing the entry of pathogens and small molecules into the brain. HIV protein Tat (Tat) is known to disrupt the tight junctions of the BBB. Autophagy is an intracellular process that involves degradation and recycling of damaged organelles to the lysosome and has recently been implicated in the BBB disruption. The role of autophagy in Tat-mediated BBB disruption, however, remains elusive. Herein we hypothesized that Tat induces endothelial autophagy resulting in decreased expression of the tight junction protein ZO-1 leading to breach of the BBB. In this study, we demonstrated that exposure of human brain microvessel endothelial cells (HBMECs) to Tat resulted in induction of autophagy in a dose- and time-dependent manner, with upregulation of BECN1/Beclin 1, ATG5 and MAP1LC3B proteins and a concomitant downregulation of the tight junction protein ZO-1 ultimately leading to increased endothelial cell monolayer paracellular permeability in an in vitro BBB model. Pharmacological and genetic inhibition of autophagy resulted in the abrogation of Tat-mediated induction of MAP1LC3B with a concomitant restoration of tight junction proteins, thereby underscoring the role of autophagy in Tat-mediated breach of the BBB. Additionally, our data also demonstrated that Tat-mediated induction of autophagy involved PELI1/K63-linked ubiquitination of BECN1. Increased autophagy and decreased ZO-1 was further recapitulated in microvessels isolated from the brains of HIV Tg26 mice as well as the frontal cortex of HIV-infected autopsied brains. Overall, our findings identify autophagy as an important mechanism underlying Tat-mediated disruption of the BBB.
Collapse
Affiliation(s)
- Ke Liao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| | - Fang Niu
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| | - Guoku Hu
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| | - Ming-Lei Guo
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center , Omaha, NE, USA
| |
Collapse
|
38
|
Meng Q, Wu W, Pei T, Xue J, Xiao P, Sun L, Li L, Liang D. miRNA-129/FBW7/NF-κB, a Novel Regulatory Pathway in Inflammatory Bowel Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:731-740. [PMID: 31945730 PMCID: PMC6965515 DOI: 10.1016/j.omtn.2019.10.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
Abstract
F-box and WD repeat domain-containing protein 7 (FBW7) has been documented to be implicated in nuclear factor κB (NF-κB) signaling and inflammation, but its role in the pathogenesis of inflammatory bowel disease (IBD) remains unknown. FBW7 was increased both in colon tissues from IBD patients and trinitrobenzene sulphonic acid (TNBS)-induced colitis mice. Immunoprecipitation assay identified that FBW7 as a novel inhibitor of κBα (IκBα)-binding partner. FBW7 upregulation promoted IκBα ubiquitin-dependent degradation, NF-κB activation, and subsequent intestinal inflammation in intestinal epithelial cells, whereas inhibition of FBW7 produced the opposite effects. Computational analysis revealed that microRNA-129 (miR-129) directly targets at 3' UTR of FBW7. The miR-129-suppressed proteasome pathway mediated the degradation of IκBα by negatively regulating FBW7. The in vivo study demonstrated that upregulation of miR-129 ameliorated intestinal inflammation in TNBS-induced colitis mice through inhibition of the NF-κB signaling pathway. In conclusion, FBW7 is a novel E3 ubiquitin ligase for IκBα and thereby leads to NF-κB activation and inflammation. miR-129 negatively regulates FBW7 expression, resulting in secondary inhibition of the NF-κB pathway and amelioration of intestinal inflammation. Our findings provide new insight into the development of therapeutic strategies for the treatment of IBD.
Collapse
Affiliation(s)
- Qinghui Meng
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China.
| | - Weihua Wu
- Department of Endocrinology, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Tiemin Pei
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China.
| | - Junlin Xue
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Peng Xiao
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Liang Sun
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Long Li
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Desen Liang
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| |
Collapse
|
39
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
Affiliation(s)
- Lokman Varisli
- Union of Education and Science Workers (EGITIM SEN), Diyarbakir Branch, Diyarbakir, Turkey
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Osman Cen
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Natural Sciences, Joliet Jr College, Joliet, IL, USA
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
40
|
Kuan YC, Takahashi Y, Maruyama T, Shimizu M, Yamauchi Y, Sato R. Ring finger protein 5 activates sterol regulatory element-binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP. J Biol Chem 2020; 295:3918-3928. [PMID: 32054686 DOI: 10.1074/jbc.ra119.011849] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Sterol regulatory element-binding protein 2 (SREBP2) is the master transcription factor that regulates cholesterol metabolism. SREBP2 activation is regulated by SREBP chaperone SCAP. Here we show that ring finger protein 5 (RNF5), an endoplasmic reticulum-anchored E3 ubiquitin ligase, mediates the Lys-29-linked polyubiquitination of SCAP and thereby activates SREBP2. RNF5 knockdown inhibited SREBP2 activation and reduced cholesterol biosynthesis in human hepatoma cells, and RNF5 overexpression activated SREBP2. Mechanistic studies revealed that RNF5 binds to the transmembrane domain of SCAP and ubiquitinates the Lys-305 located in cytosolic loop 2 of SCAP. Moreover, the RNF5-mediated ubiquitination enhanced an interaction between SCAP luminal loop 1 and loop 7, a crucial event for SREBP2 activation. Notably, an overexpressed K305R SCAP variant failed to restore the SREBP2 pathway in SCAP-deficient cell lines. These findings define a new mechanism by which an ubiquitination-induced SCAP conformational change regulates cholesterol biosynthesis.
Collapse
Affiliation(s)
- Yen-Chou Kuan
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Maruyama
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshio Yamauchi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuichiro Sato
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan .,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
41
|
Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, Li HY, Lin HK. The Skp2 Pathway: A Critical Target for Cancer Therapy. Semin Cancer Biol 2020; 67:16-33. [PMID: 32014608 DOI: 10.1016/j.semcancer.2020.01.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
Strictly regulated protein degradation by ubiquitin-proteasome system (UPS) is essential for various cellular processes whose dysregulation is linked to serious diseases including cancer. Skp2, a well characterized component of Skp2-SCF E3 ligase complex, is able to conjugate both K48-linked ubiquitin chains and K63-linked ubiquitin chains on its diverse substrates, inducing proteasome mediated proteolysis or modulating the function of tagged substrates respectively. Overexpression of Skp2 is observed in various human cancers associated with poor survival and adverse therapeutic outcomes, which in turn suggests that Skp2 engages in tumorigenic activity. To that end, the oncogenic properties of Skp2 are demonstrated by various genetic mouse models, highlighting the potential of Skp2 as a target for tackling cancer. In this article, we will describe the downstream substrates of Skp2 as well as upstream regulators for Skp2-SCF complex activity. We will further summarize the comprehensive oncogenic functions of Skp2 while describing diverse strategies and therapeutic platforms currently available for developing Skp2 inhibitors.
Collapse
Affiliation(s)
- Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| | - Asad Moten
- National Capital Consortium, Department of Defense, Washington DC, 20307, USA; Institute for Complex Systems, HealthNovations International, Houston, TX, 77089, USA; Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20814, USA; Center on Genomics, Vulnerable Populations, and Health Disparities, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Rajeshkumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock AR 72202, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
42
|
Lee DE, Yoo JE, Kim J, Kim S, Kim S, Lee H, Cheong H. NEDD4L downregulates autophagy and cell growth by modulating ULK1 and a glutamine transporter. Cell Death Dis 2020; 11:38. [PMID: 31959741 PMCID: PMC6971022 DOI: 10.1038/s41419-020-2242-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 01/02/2023]
Abstract
In mammals, autophagosome formation is initiated by ULK1 via the posttranslational modification of this protein. However, the precise role of ULK1 ubiquitination in modulating autophagy is unknown. Here, we show that NEDD4L, an E3 ubiquitin ligase, binds ULK1 in pancreatic cancer cells. ULK1 expression was stabilized in NEDD4L knockdown cells compared to that in control cells, suggesting that NEDD4L is involved in ULK1 ubiquitination and its subsequent degradation. Autophagy activity was enhanced in NEDD4L knockdown cells compared to control cells. NEDD4L-depleted cells exhibited an increase in the cellular oxygen consumption rate (OCR) and mitochondrial membrane potential, and maintained mitochondrial fusion status in response to metabolic stress. Enhanced OCR and mitochondrial fusion morphology in NEDD4L knockdown cells were repressed by siRNA targeting ULK1. In addition to ULK1, ASCT2, a glutamine transporter, was accumulated in NEDD4L-depleted cells; this is important for maintaining autophagy activation and mitochondrial metabolic function. Finally, the cellular growth and survival rate increased in NEDD4L knockdown cells compared to control cells. However, the genetic or pharmacological blockade of either ULK1 or ASCT2 in NEDD4L-depleted cells sensitized pancreatic cancer cells, particularly in response to nutrient deprivation. In a mouse xenograft model of pancreatic cancer, the use of autophagy inhibitors suppressed tumor growth more in NEDD4L-depleted cells than in tumors from control cells. NEDD4L and ULK1 levels were inversely correlated in two different pancreatic cancer mouse models-xenograft mouse and KPC mouse models. These results suggest that NEDD4L suppressed autophagy and mitochondrial metabolism by reducing cellular ULK1 or ASCT2 levels, and thus could repress the growth and survival of pancreatic cancer cells. Therefore, ubiquitin ligase-mediated autophagy plays a critical role in regulating mitochondrial metabolism, thereby contributing to the growth and survival of certain cancers with low NEDD4L levels.
Collapse
Affiliation(s)
- Dong-Eun Lee
- Research Institute, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Republic of Korea.,Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Republic of Korea
| | - Ju Eun Yoo
- Research Institute, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Republic of Korea
| | - Jiyea Kim
- Research Institute, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Republic of Korea
| | - Seungki Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Republic of Korea
| | - Sunshin Kim
- Research Institute, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Republic of Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Republic of Korea
| | - Heesun Cheong
- Research Institute, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Republic of Korea. .,Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
43
|
Garza-Lombó C, Pappa A, Panayiotidis MI, Franco R. Redox homeostasis, oxidative stress and mitophagy. Mitochondrion 2020; 51:105-117. [PMID: 31972372 DOI: 10.1016/j.mito.2020.01.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/21/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Autophagy is a ubiquitous homeostatic mechanism for the degradation or turnover of cellular components. Degradation of mitochondria via autophagy (mitophagy) is involved in a number of physiological processes including cellular homeostasis, differentiation and aging. Upon stress or injury, mitophagy prevents the accumulation of damaged mitochondria and the increased steady state levels of reactive oxygen species leading to oxidative stress and cell death. A number of human diseases, particularly neurodegenerative disorders, have been linked to the dysregulation of mitophagy. In this mini-review, we aimed to review the molecular mechanisms involved in the regulation of mitophagy and their relationship with redox signaling and oxidative stress.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Rodrigo Franco
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
44
|
Nguyen KB, Spranger S. Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling. J Cell Biol 2020; 219:e201908224. [PMID: 31816057 PMCID: PMC7039199 DOI: 10.1083/jcb.201908224] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
The development of cancer immunotherapies has been guided by advances in our understanding of the dynamics between tumor cells and immune populations. An emerging consensus is that immune control of tumors is mediated by cytotoxic CD8+ T cells, which directly recognize and kill tumor cells. The critical role of T cells in tumor control has been underscored by preclinical and clinical studies that observed that T cell presence is positively correlated with patient response to checkpoint blockade therapy. However, the vast majority of patients do not respond or develop resistance, frequently associated with exclusion of T cells from the tumor microenvironment. This review focuses on tumor cell-intrinsic alterations that blunt productive anti-tumor immune responses by directly or indirectly excluding effector CD8+ T cells from the tumor microenvironment. A comprehensive understanding of the interplay between tumors and the immune response holds the promise for increasing the response to current immunotherapies via the development of rational novel combination treatments.
Collapse
Affiliation(s)
- Kim Bich Nguyen
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, Cambridge, MA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, Cambridge, MA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
45
|
Qi H, Li J, Xia FN, Chen JY, Lei X, Han MQ, Xie LJ, Zhou QM, Xiao S. Arabidopsis SINAT Proteins Control Autophagy by Mediating Ubiquitylation and Degradation of ATG13. THE PLANT CELL 2020; 32:263-284. [PMID: 31732704 PMCID: PMC6961628 DOI: 10.1105/tpc.19.00413] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/30/2019] [Accepted: 11/11/2019] [Indexed: 05/04/2023]
Abstract
In eukaryotes, autophagy maintains cellular homeostasis by recycling cytoplasmic components. The autophagy-related proteins (ATGs) ATG1 and ATG13 form a protein kinase complex that regulates autophagosome formation; however, mechanisms regulating ATG1 and ATG13 remain poorly understood. Here, we show that, under different nutrient conditions, the RING-type E3 ligases SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA1 (SINAT1), SINAT2, and SINAT6 control ATG1 and ATG13 stability and autophagy dynamics by modulating ATG13 ubiquitylation in Arabidopsis (Arabidopsis thaliana). During prolonged starvation and recovery, ATG1 and ATG13 were degraded through the 26S proteasome pathway. TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR1a (TRAF1a) and TRAF1b interacted in planta with ATG13a and ATG13b and required SINAT1 and SINAT2 to ubiquitylate and degrade ATG13s in vivo. Moreover, lysines K607 and K609 of ATG13a protein contributed to K48-linked ubiquitylation and destabilization, and suppression of autophagy. Under starvation conditions, SINAT6 competitively interacted with ATG13 and induced autophagosome biogenesis. Furthermore, under starvation conditions, ATG1 promoted TRAF1a protein stability in vivo, suggesting feedback regulation of autophagy. Consistent with ATGs functioning in autophagy, the atg1a atg1b atg1c triple knockout mutants exhibited premature leaf senescence, hypersensitivity to nutrient starvation, and reduction in TRAF1a stability. Therefore, these findings demonstrate that SINAT family proteins facilitate ATG13 ubiquitylation and stability and thus regulate autophagy.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Juan Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin-Yu Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xue Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Mu-Qian Han
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing-Ming Zhou
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
46
|
Hippocampal HECT E3 ligase inhibition facilitates consolidation, retrieval, and reconsolidation, and inhibits extinction of contextual fear memory. Neurobiol Learn Mem 2019; 167:107135. [PMID: 31821882 DOI: 10.1016/j.nlm.2019.107135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022]
Abstract
Ubiquitination is involved in synaptic plasticity and memory, but the involvement of HECT E3 ligases in these processes has not yet been established. Here, we bilaterally infused heclin, a specific inhibitor of some of these ligases, into the dorsal hippocampus of male Wistar rats that were trained in a contextual fear conditioning. Heclin improved short-term memory, consolidation, retrieval, and reconsolidation when administered immediately post training, prior to testing, or after memory reactivation, respectively. In addition, it impaired memory extinction when administered prior to a long reactivation session. Heclin infusion was also tested for locomotor activity and anxiety-like behavior in a circular arena, but no effect was seen. Taken together, these results indicate that HECT E3 ligases are involved in the modulation of fear memory.
Collapse
|
47
|
The many substrates and functions of NEDD4-1. Cell Death Dis 2019; 10:904. [PMID: 31787758 PMCID: PMC6885513 DOI: 10.1038/s41419-019-2142-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
Tumorigenesis, tumor growth, and prognosis are highly related to gene alterations and post-translational modifications (PTMs). Ubiquitination is a critical PTM that governs practically all aspects of cellular function. An increasing number of studies show that E3 ubiquitin ligases (E3s) are important enzymes in the process of ubiquitination that primarily determine substrate specificity and thus need to be tightly controlled. Among E3s, neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) has been shown to play a critical role in modulating the proliferation, migration, and invasion of cancer cells and the sensitivity of cancer cells to anticancer therapies via regulating multiple substrates. This review discusses some significant discoveries on NEDD4-1 substrates and the signaling pathways in which NEDD4-1 participates. In addition, we introduce the latest potential therapeutic strategies that inhibit or activate NEDD4-1 activity using small molecules. NEDD4-1 likely acts as a novel drug target or diagnostic marker in the battle against cancer.
Collapse
|
48
|
Zhao Y, Wang Z, Zhang W, Zhang L. Non-coding RNAs regulate autophagy process via influencing the expression of associated protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 151:32-39. [PMID: 31786247 DOI: 10.1016/j.pbiomolbio.2019.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is a tightly-regulated multi-step process involving the lysosomal degradation of proteins and cytoplasmic organelles. Central to this process is the formation of the autophagosome, a double membrane-bound vesicle, which is fuse with lysosomes or endosomes, and then deliver its cytoplasmic cargo to the lysosomes. Here, we summarize the recent process of autophagy, focusing on protein molecules, their complexes, and its essential roles of autophagy in various phases. Emerging evidence has revealed that miRNAs, lncRNAs, and circRNAs play an indispensable role in autophagy regulation by modulating targeting gene expression. This review we will summarize the main features of ncRNAs and point to gaps in our current knowledge of the connection between ncRNAs and autophagy, as well as their potential utilization in various disease phenotypes. Also, we highlight recent advances in ncRNAs and autophagy-associated protein interaction and how they regulate the autophagy process.
Collapse
Affiliation(s)
- Yunyi Zhao
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Ze Wang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China.
| | - Linbo Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
49
|
He X, Zhu Y, Zhang Y, Geng Y, Gong J, Geng J, Zhang P, Zhang X, Liu N, Peng Y, Wang C, Wang Y, Liu X, Wan L, Gong F, Wei C, Zhong H. RNF34 functions in immunity and selective mitophagy by targeting MAVS for autophagic degradation. EMBO J 2019; 38:e100978. [PMID: 31304625 PMCID: PMC6627233 DOI: 10.15252/embj.2018100978] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Viral infection triggers the formation of mitochondrial antiviral signaling protein (MAVS) aggregates, which potently promote immune signaling. Autophagy plays an important role in controlling MAVS-mediated antiviral signaling; however, the exact molecular mechanism underlying the targeted autophagic degradation of MAVS remains unclear. Here, we investigated the mechanism by which RNF34 regulates immunity and mitophagy by targeting MAVS. RNF34 binds to MAVS in the mitochondrial compartment after viral infection and negatively regulates RIG-I-like receptor (RLR)-mediated antiviral immunity. Moreover, RNF34 catalyzes the K27-/K29-linked ubiquitination of MAVS at Lys 297, 311, 348, and 362 Arg, which serves as a recognition signal for NDP52-dependent autophagic degradation. Specifically, RNF34 initiates the K63- to K27-linked ubiquitination transition on MAVS primarily at Lys 311, which facilitates the autophagic degradation of MAVS upon RIG-I stimulation. Notably, RNF34 is required for the clearance of damaged mitochondria upon viral infection. Thus, we elucidated the mechanism by which RNF34-mediated autophagic degradation of MAVS regulates the innate immune response, mitochondrial homeostasis, and infection.
Collapse
Affiliation(s)
- Xiang He
- Beijing Institute of BiotechnologyBeijingChina
| | - Yongjie Zhu
- Beijing Institute of BiotechnologyBeijingChina
| | | | - Yunqi Geng
- Beijing Institute of BiotechnologyBeijingChina
- Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Jing Gong
- Beijing Institute of BiotechnologyBeijingChina
- Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Jin Geng
- Beijing Institute of BiotechnologyBeijingChina
- Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | | | | | - Ning Liu
- Beijing Institute of BiotechnologyBeijingChina
| | - Yumeng Peng
- Beijing Institute of BiotechnologyBeijingChina
| | | | - Yujie Wang
- Beijing Institute of BiotechnologyBeijingChina
- Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Xin Liu
- Beijing Institute of BiotechnologyBeijingChina
| | - Luming Wan
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineAcademy of Military Medical SciencesBeijingChina
| | - Feng Gong
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineAcademy of Military Medical SciencesBeijingChina
| | - Congwen Wei
- Beijing Institute of BiotechnologyBeijingChina
| | - Hui Zhong
- Beijing Institute of BiotechnologyBeijingChina
| |
Collapse
|
50
|
Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5 -/- mice. Nat Commun 2019; 10:1492. [PMID: 30940817 PMCID: PMC6445090 DOI: 10.1038/s41467-019-09525-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells. Reduced UPR expression is also seen in murine and human melanoma tumor specimens that responded to immune checkpoint therapy. Co-housing of Rnf5−/− and WT mice abolishes the anti-tumor immunity and tumor inhibition phenotype, whereas transfer of 11 bacterial strains, including B. rodentium, enriched in Rnf5−/− mice, establishes anti-tumor immunity and restricts melanoma growth in germ-free WT mice. Altered UPR signaling, exemplified in Rnf5−/− mice, coincides with altered gut microbiota composition and anti-tumor immunity to control melanoma growth. RNF5 is a ubiquitin ligase regulating ER stress response. Here the authors show that Rnf5 deficiency potentiates immune response against melanoma via altered microbiota, and isolate bacterial strains that confer the same phenotype to wild type mice.
Collapse
|