1
|
Xu C, Wu JH, Yu H, Chun-Ge, Liu YX, Zou JJ, Li J. Effect of two novel GABAA receptor positive allosteric modulators on neuropathic and inflammatory pain in mice. Neuropharmacology 2025; 269:110317. [PMID: 39884570 DOI: 10.1016/j.neuropharm.2025.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Loss of GABAergic inhibition in the spinal dorsal horn (SDH) is implicated in central sensitization and chronic pain. Both agonists and positive allosteric modulators (PAMs) of GABAA receptor are found to be effective in the management of chronic pain. In addition to benzodiazepines, neuroactive steroids (NASs) also act as PAMs through binding to unique sites of GABAA receptors. Thus, it is worth investigating whether these NASs can attenuate chronic pain. This study tested the antinociceptive properties of two novel NAS PAMs, ganaxolone and zuranolone, in segmental spinal nerve ligation (SNL)-induced neuropathic pain and complete Freund's adjuvant (CFA)-induced inflammation pain models. Spinally administered ganaxolone and zuranolone both exhibited dose-dependent analgesic effects but with quite different durations. This antinociceptive effect might be generated from elevated GABAergic inhibition, as the PAMs both enhanced GABA-evoked currents in SDH neurons, and the K+-Cl- cotransporter isoform 2 (KCC2) antagonist reversed the analgesic effect of the PAMs. Different from ganaxolone, zuranolone produced a durable increase in the surface expression of GABAA receptors and of the amplitude of spontaneous inhibitory currents, which may contribute to the long-lasting analgesic effect. Furthermore, the PAMs alleviated SNL-induced mechanical allodynia synergistically with diazepam or GABAA receptor activator muscimol at inactive doses, consistent with the non-competitive activity and distinct binding sites from benzodiazepines. In summary, our findings suggest that NASs may not only acutely modulate GABA receptor activity but also induce sustained metabotropic effects on GABAA receptors and thus exert long-lasting antinociceptive effects.
Collapse
Affiliation(s)
- Chu Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jian-Hong Wu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Hui Yu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chun-Ge
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-Xin Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jian-Jun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Sharma A, Sharma PK, Kompella UB. Lotilaner for Demodex Blepharitis: The Journey from Veterinary Use to Human Medicine. J Ocul Pharmacol Ther 2025; 41:173-186. [PMID: 40080410 DOI: 10.1089/jop.2024.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
In 2023, Xdemvy® (0.25% lotilaner ophthalmic solution) was approved by the U.S. FDA for treating Demodex blepharitis in humans. This article reviews lotilaner's history, physicochemical properties, pharmacokinetics, pharmacology, clinical outcomes, and other indications for which it is being evaluated clinically. Furthermore, the article discusses Demodex blepharitis, alternative treatments used in the clinic to ameliorate its symptoms, and other drugs in development. Prior to its approval in humans, lotilaner found extensive application in treating parasitic infections in cats and dogs. Lotilaner was previously approved in 2017 as an oral veterinary medicine (Credelio®) for canines to treat demodicosis, other mite infections, and tick infections. Lotilaner belongs to the isoxazoline class of drugs and is a potent arthropod-selective gamma-aminobutyric acid-gated chloride ion channel inhibitor. Like several other drugs in the isoxazoline class, lotilaner has a long plasma half-life and high plasma protein binding of about 99.9%. When used as indicated, lotilaner treats infested Demodex blepharitis in 42 days, with its antiparasitic action starting within 24 h. Furthermore, lotilaner is also being evaluated for its efficacy in other conditions such as Lyme disease and dry eye disease. Other products evaluated for treating Demodex blepharitis include ivermectin eye ointment, ivermectin-metronidazole gel, permethrin cream, terpinen-4-ol wipes, and hypochlorous acid spray. Along with these, azithromycin eye drop, azithromycin/loteprednol eye drop, and other treatments are being evaluated for treating blepharitis. Other drugs from the isoxazoline drug class including afoxolaner, sarolaner, and fluralaner, could also be potentially explored for human use.
Collapse
Affiliation(s)
- Akanksha Sharma
- CU Diabetes and Endocrinology Clinical Trial Program, Rocky Mountain Regional VA Medical Center, Division of Endocrinology, Metabolism & Diabetes, University of Colorado, Aurora, Colorado, USA
| | - Pankaj Kumar Sharma
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Neureiter EG, Erickson-Oberg MQ, Nigam A, Johnson JW. Inhibition of NMDA receptors and other ion channel types by membrane-associated drugs. Front Pharmacol 2025; 16:1561956. [PMID: 40371334 PMCID: PMC12075551 DOI: 10.3389/fphar.2025.1561956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels present at most excitatory synapses in the brain that play essential roles in cognitive functions including learning and memory consolidation. However, NMDAR dysregulation is implicated in many nervous system disorders. Diseases that involve pathological hyperactivity of NMDARs can be treated clinically through inhibition by channel blocking drugs. NMDAR channel block can occur via two known mechanisms. First, in traditional block, charged drug molecules can enter the channel directly from the extracellular solution after NMDAR activation and channel opening. Second, uncharged molecules of channel blocking drug can enter the hydrophobic plasma membrane, and upon NMDAR activation the membrane-associated drug can transit into the channel through a fenestration within the NMDAR. This membrane-associated mechanism of action is called membrane to channel inhibition (MCI) and is not well understood despite the clinical importance of NMDAR channel blocking drugs. Intriguingly, a hydrophobic route of access for drugs is not unique to NMDARs. Our review will address inhibition of NMDARs and other ion channels by membrane-associated drugs and consider how the path of access may affect a drug's therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Mielko J, Pakulska J, Oszczyk A, Lustyk K, Pytka K, Sałaciak K. Beyond surgery: Repurposing anesthetics for treatment of central nervous system disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111386. [PMID: 40311741 DOI: 10.1016/j.pnpbp.2025.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/11/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
The development of new drugs is a complex, expensive, and time-consuming process, often fraught with a high likelihood of failure. Amid these obstacles, drug repurposing, which identifies new therapeutic applications for already existing medications, offers a more economical and time-saving approach, particularly in the challenging field of neurological and psychiatric disorders. This narrative review explores both preclinical and clinical studies to examine the potential of anesthetics such as ketamine, nitrous oxide, isoflurane, sevoflurane, propofol, dexmedetomidine, and sodium oxybate in treating central nervous system disorders. Various research highlights the potential of anesthetics to provide rapid antidepressant effects, enhance learning and memory, improve synaptic plasticity, and offer neuroprotective benefits, demonstrating promise for treating depression, post-traumatic stress disorder, cognitive decline, traumatic brain injury, and neurodegenerative disorders. Anesthetics appear to alleviate symptoms in neurological conditions, likely by modulating GABAergic and glutamatergic pathways. However, challenges such as dose-dependent neurotoxicity, variability in preclinical and clinical outcomes, as well as environmental concerns remain significant issues. Future research is essential to optimize dosing strategies, ensure long-term safety, and gain a deeper understanding of the precise mechanisms of action. The concept of anesthetics' repurposing presents a unique solution to tackle the challenges in neurological and psychiatric therapy by providing a platform for the development of new and improved therapies.
Collapse
Affiliation(s)
- Joana Mielko
- Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Julia Pakulska
- Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Amelia Oszczyk
- Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Sałaciak
- Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
5
|
Alvarez LD, Alves NRC. Structure and Dynamics of Cannabinoid Binding to the GABA A Receptor. Proteins 2025. [PMID: 40271542 DOI: 10.1002/prot.26831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Research on medical cannabis is progressing, with several cannabinoids emerging as promising compounds for clinical use. The available evidence suggests that cannabinoids may modulate the glycine receptor (GlyR) and GABAA receptor, which are part of the pentameric ligand-gated ion channels (pLGICs) superfamily and facilitate chemical communication in the nervous system. In a previous study, we employed molecular dynamics (MD) simulations to elucidate the dynamics of the GlyR/Δ9-tetrahydrocannabinol (THC) complex and successfully identified a representative binding mode. Given the structural similarity between GlyR and GABAAR, we employed a similar strategy to investigate GABAAR-cannabinoid interactions. We initially assessed the binding mode of THC to GABAAR-α1β2γ2 at the equivalent binding site of the GlyR-that is, on its two α-subunits-as well as the impact of this binding on the channel's dimensions. Our results indicate, first, that the binding modes of THC to GABAAR and GlyR exhibit comparable characteristics and, second, that THC may function as a potentiator of GABA activity due to a significant opening of the channel pore. Additionally, we aimed to reduce the overall computational cost associated with exploring binding modes. To this end, we developed and validated a simplified model comprising a single-monomer system for cannabinoid binding studies. This model proved to be accurate and cost-effective, accelerating the in silico screening process and allowing for the study of GABAAR-cannabinoid binding through docking and MD simulations. Moreover, the analysis of different cannabinoids in this system suggests that cannabigerol (CBG) and cannabichromene (CBC) could act as ligands for GABAAR, opening unexplored avenues for research.
Collapse
Affiliation(s)
- Lautaro Damian Alvarez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- UMYMFOR, CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - N R Carina Alves
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- UMYMFOR, CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
6
|
Pant S, Tam SW, Long SB. The pentameric chloride channel BEST1 is activated by extracellular GABA. Proc Natl Acad Sci U S A 2025; 122:e2424474122. [PMID: 40249777 PMCID: PMC12037058 DOI: 10.1073/pnas.2424474122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025] Open
Abstract
Bestrophin-1 (BEST1) is a chloride channel expressed in the eye and other tissues of the body. A link between BEST1 and the principal inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been proposed. The most appreciated receptors for extracellular GABA are the GABAB G-protein-coupled receptors and the pentameric GABAA chloride channels, both of which have fundamental roles in the central nervous system. Here, we demonstrate that BEST1 is directly activated by GABA. Through functional studies and atomic-resolution structures of human and chicken BEST1, we identify a GABA binding site on the channel's extracellular side and determine the mechanism by which GABA binding stabilizes opening of the channel's central gate. This same gate, "the neck," is activated by intracellular [Ca2+], indicating that BEST1 is controlled by ligands from both sides of the membrane. The studies demonstrate that BEST1, which shares no structural homology with GABAA receptors, is a GABA-activated chloride channel. The physiological implications of this finding remain to be studied.
Collapse
Affiliation(s)
- Swati Pant
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY10065
| | - Stephanie W. Tam
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY10065
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| |
Collapse
|
7
|
Yuan Z, Pavel MA, Hansen SB. GABA and astrocytic cholesterol determine the lipid environment of GABA AR in cultured cortical neurons. Commun Biol 2025; 8:647. [PMID: 40263458 PMCID: PMC12015214 DOI: 10.1038/s42003-025-08026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
The γ-aminobutyric acid (GABA) type A receptor (GABAAR), a GABA activated pentameric chloride channel, mediates fast inhibitory neurotransmission in the brain. The lipid environment is critical for GABAAR function. How lipids regulate the channel in the cell membrane is not fully understood. Here we employed super resolution imaging of lipids to demonstrate that the agonist GABA induces a rapid and reversible membrane translocation of GABAAR to phosphatidylinositol 4,5-bisphosphate (PIP2) clusters in mouse primary cortical neurons. This translocation relies on nanoscopic separation of PIP2 clusters and lipid rafts (cholesterol-dependent ganglioside clusters). In a resting state, the GABAAR associates with lipid rafts and this colocalization is enhanced by uptake of astrocytic secretions. These astrocytic secretions delay desensitization and enhance maximum current. In an Alzheimer's Disease (AD) mouse model with high brain cholesterol, GABAAR shifts into lipid rafts. Our findings suggest cholesterol is a signaling molecule and astrocytes regulates GABAARs in neurons by secreting cholesterol. The findings have implications for treating mood disorders and AD associated with altered brain lipids.
Collapse
Affiliation(s)
- Zixuan Yuan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Institute of Medical Physiology, Chinese Institutes for Medical Research (CIMR), Beijing, 100069, China.
- Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Zhang B, Wang Q, Zhang Y, Wang H, Kang J, Zhu Y, Wang B, Feng S. Treatment of Insomnia With Traditional Chinese Medicine Presents a Promising Prospect. Phytother Res 2025. [PMID: 40251853 DOI: 10.1002/ptr.8495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Insomnia, a prevalent sleep disorder, significantly impacts global health. While Western medications provide temporary relief, their risks of dependency and cognitive impairment have spurred the search for safer alternatives. Traditional Chinese Medicine (TCM) offers a promising approach to treating insomnia by focusing on harmonizing the balance of Yin and Yang and the functions of internal organs. This review explores recent research advances in TCM for insomnia treatment, integrating classical theories with modern scientific understanding of key pathological mechanisms, including neurotransmitter regulation (GABA, monoamines), immune-inflammatory responses, the HPA axis, and interactions with the gut microbiota. Growing clinical evidence supports the effectiveness of classical TCM prescriptions and treatments like acupuncture in improving sleep quality, particularly when combined with Western medications to enhance efficacy and reduce dependency. However, TCM also has its limitations. Future research directions should focus on modernizing TCM applications, addressing comorbidities associated with insomnia, exploring the role of gut microbiota, and optimizing medicinal and edible homologous products. By integrating traditional knowledge with cutting-edge technologies, TCM holds great potential for advancing personalized and effective insomnia treatments globally.
Collapse
Affiliation(s)
- Boyi Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| | - Yuhang Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hanyu Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingyu Kang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yandi Zhu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| |
Collapse
|
9
|
Hui Z, Deng H, Xu Y, Gao Y, Zhai C, Mao ND, Che H, Li Z, Zhang Y, Zhang H, Xie T, Ye XY. Discovery and optimization of AAK1 inhibitors based on 1H-indazole scaffold for the potential treatment of SARS-CoV-2 infection. Mol Divers 2025:10.1007/s11030-025-11135-4. [PMID: 40175846 DOI: 10.1007/s11030-025-11135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/11/2025] [Indexed: 04/04/2025]
Abstract
The process of various virus entry into host cells, including SARS-CoV-2, is mediated by clathrin-mediated endocytosis (CME). AP-2 plays a crucial role in this process by recognizing membrane receptors and binding with clathrin, facilitating the formation of clathrin-coated vesicles and promoting CME. AAK1 catalyzes the phosphorylation of AP2M1 subunit at Thr156. Therefore, suppressing AAK1 activity can hinder virus invasion by blocking CME. indicating that AAK1 could be a potential target for developing novel antiviral drugs against SARS-CoV-2. In this study, we present a series of novel AAK1 inhibitors based on previously reported AAK1 inhibitors. Drug design was carried out by fusing the 1H-indazole scaffold of SGC-AAK1-1 with pharmacophore groups of compound 6, and further optimized with the assistance of molecular docking. Among the 42 compounds novelly synthesized, compounds 9i, 9s, 11f and 11l exhibited comparable antiviral activity against SARS-CoV-2 infection compared to reference compound 6 at the concentration of 3 μM. Particularly, 11f showed almost no cytotoxicity at all tested concentrations. Additionally, 11f exhibited favorable predictive pharmacokinetic properties. These findings support the potential of 11f as a lead compound for developing antiviral drugs targeting SARS-CoV-2 infection, as well as potentially other viruses which are dependent on the CME process to enter host cells. In summary, we have expanded the structural types of AAK1 inhibitors and successfully obtained effective AAK1 inhibitors with antiviral capabilities.
Collapse
Affiliation(s)
- Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
- Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, P. R. China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yueying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yuan Gao
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 311121, Zhejiang, P. R. China
| | - Chenfeng Zhai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Nian-Dong Mao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zhen Li
- SanOmics AI Co. Ltd, Hangzhou, 3l1103, Zhejiang, P. R. China
| | - Yuting Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Hang Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China.
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China.
| |
Collapse
|
10
|
Zhou J, Wang L, Zhong Z, Yuan L, Huang J, Zou P, Cao X, Peng D, Liao B, Zeng J. Pharmacological mechanism and clinical application of ciprofol. Front Pharmacol 2025; 16:1572112. [PMID: 40201700 PMCID: PMC11975953 DOI: 10.3389/fphar.2025.1572112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
Propofol has become one of the most commonly used anesthetic agents because of its good sedative effects, rapid onset, and fast metabolism. However, its associated respiratory and circulatory depression and injection pain make it difficult for patients to tolerate. Ciprofol, which is structurally similar to propofol but has an additional cyclopropyl group, is less likely to impact respiratory and circulatory function and cause injection pain, highlighting its potential for clinical application. Currently, as research on Ciprofol is still in the exploratory stage, its clinical application is limited because its underlying mechanisms are not yet fully understood. The aim of this article is to review the pharmacological mechanisms of propofol, hypothesize the primary pharmacological effects and potential adverse reactions of Ciprofol, and summarize its current clinical application status, with the goal of providing a reference for future clinical use.
Collapse
Affiliation(s)
- Jianshun Zhou
- Department of Anesthesiology, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Lifeng Wang
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhaoying Zhong
- Department of Anesthesiology, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Lei Yuan
- Department of Anesthesiology, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Jinhua Huang
- Department of Anesthesiology, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Ping Zou
- Department of Anesthesiology, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Xiaohui Cao
- Department of Anesthesiology, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Donglan Peng
- Department of Anesthesiology, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Baozhen Liao
- Department of Anesthesiology, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Jianqiang Zeng
- Department of Anesthesiology, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
11
|
Fan R, Jia Y, Chen Z, Li S, Qi B, Ma A. Foods for Sleep Improvement: A Review of the Potential and Mechanisms Involved. Foods 2025; 14:1080. [PMID: 40238208 PMCID: PMC11988850 DOI: 10.3390/foods14071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Insomnia affects one-third of the world's population; the negative effects of insomnia are significant, and traditional insomnia medications have numerous side effects and cause considerable suffering. This has aroused interest in obtaining sleep-improving substances from foods. This study conducted a comprehensive literature review using Web of Science and PubMed with keywords like "sleep", "insomnia", and "food". A subsequent summary of the literature revealed that certain foods, including milk, Ziziphus jujuba, Lactuca sativa, ginseng, Schisandra chinensis, and Juglans regia, etc., are purported to enhance sleep quality by prolonging sleep duration, reducing sleep latency, and alleviating anxiety. The mechanisms of these foods' effects mainly occur via the central nervous system, particularly the gamma-aminobutyric acid (GABA)ergic and 5-hydroxytryptamine (5-HT)ergic systems. Although this review supports the fact that they have potential, further research is needed. There are also issues such as more limited foods, fewer mechanisms, fewer pharmacokinetic studies, and more traditional research models being involved. These need to be addressed in the future to adequately address the problem of insomnia. It is hoped that this study will contribute to research into foods with sleep-improving properties and, in the future, provide an effective natural alternative for those seeking medication.
Collapse
Affiliation(s)
- Rui Fan
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Bing Qi
- Hebei Key Laboratory of Walnut Nutritional Function and Processing Technology, Hengshui 053000, China;
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| |
Collapse
|
12
|
Avstrikova M, Milán Rodríguez P, Burke SM, Hibbs RE, Changeux JP, Cecchini M. Hidden complexity of α7 nicotinic acetylcholine receptor desensitization revealed by MD simulations and Markov state modeling. Proc Natl Acad Sci U S A 2025; 122:e2420993122. [PMID: 39946538 PMCID: PMC11848294 DOI: 10.1073/pnas.2420993122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in neuronal signaling throughout the nervous system. Its implication in neurological disorders and inflammation has spurred the development of numerous compounds that enhance channel activation. However, the therapeutic potential of these compounds has been limited by the characteristically fast desensitization of the α7 receptor. Using recent high-resolution structures from cryo-EM, and all-atom molecular dynamic simulations augmented by Markov state modeling, here we explore the mechanism of α7 receptor desensitization and its implication on allosteric modulation. The results provide a precise characterization of the desensitization gate and illuminate the mechanism of ion-pore opening/closing with an agonist bound. In addition, the simulations reveal the existence of a short-lived, open-channel intermediate between the activated and desensitized states that rationalizes the paradoxical pharmacology of the L247T mutant and may be relevant to type-II allosteric modulation. This analysis provides an interpretation of the signal transduction mechanism and its regulation in α7 receptors.
Collapse
Affiliation(s)
- Mariia Avstrikova
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| | - Paula Milán Rodríguez
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| | - Sean M. Burke
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| | - Ryan E. Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| | - Jean-Pierre Changeux
- Neuroscience Department, Institut Pasteur, Collège de France, ParisF-75005, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| |
Collapse
|
13
|
Feely S, Rios Rodriguez M, Shannon A, Young S, Rosales JP, Kaur G. A Dive Into Cerebellar Dysfunction, Motor Deficits and GABAergic Signaling in Down Syndrome. Cureus 2025; 17:e79623. [PMID: 40151699 PMCID: PMC11949090 DOI: 10.7759/cureus.79623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Down syndrome (DS) mouse models and DS human fetus studies clearly indicate severe neurogenesis impairment in the cerebellum. Clinical features of DS include motor dysfunction and cerebellar hypotrophy, with a particularly marked decrease in the number of granule cells (GCs). GCs are crucial for managing sensory communication within the cerebellum via mossy fibers and their interactions with Purkinje cells (PCs) and inhibitory interneurons. The current review discusses cerebellar alterations in DS and its impact on GABAergic transmission, bringing to light the impact on GABAergic signaling and its role in motor coordination dysfunction observed in individuals with DS. The findings highlight the significance of GABAergic transmission in the pathophysiology of DS and its potential as a target for therapeutic innervation. Moreover, understanding the disruptions in GABAergic signaling may provide insights into developing novel treatment strategies.
Collapse
Affiliation(s)
- Shannon Feely
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Misleydi Rios Rodriguez
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Alyssa Shannon
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Serena Young
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Justin Peter Rosales
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Gurjinder Kaur
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| |
Collapse
|
14
|
Ma R, Kim US, Chung Y, Kang HR, Zhang Y, Han K. Recent advances in CYFIP2-associated neurodevelopmental disorders: From human genetics to molecular mechanisms and mouse models. Brain Dev 2025; 47:104302. [PMID: 39603202 DOI: 10.1016/j.braindev.2024.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Cytoplasmic FMR1-interacting protein 2 (CYFIP2) is an evolutionarily conserved protein with a critical role in brain development and function. As a key component of the WAVE regulatory complex, CYFIP2 regulates actin cytoskeleton dynamics, essential for maintaining proper neuronal morphology and circuit formation. Recent studies have also shown that CYFIP2 interacts with various RNA-binding proteins, suggesting its involvement in mRNA processing and translation in neurons. Since 2018, de novo CYFIP2 variants have been identified in patients with neurodevelopmental disorders, particularly developmental and epileptic encephalopathy and West syndrome, characterized by early-onset intractable seizures, intellectual disability, microcephaly, and developmental delay. This review summarizes these CYFIP2 variants and examines their potential impact on the molecular functions of CYFIP2, focusing on its roles in regulating actin dynamics and mRNA processing/translation. Additionally, we review various Cyfip2 mouse models, highlighting the insights they offer into CYFIP2 function, dysfunction, and clinical relevance. Finally, we discuss future research directions aimed at better understanding CYFIP2-associated neurodevelopmental disorders and potential therapeutic strategies.
Collapse
Affiliation(s)
- Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - U Suk Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yousun Chung
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
15
|
Zhou J, Noviello CM, Teng J, Moore H, Lega B, Hibbs RE. Resolving native GABA A receptor structures from the human brain. Nature 2025; 638:562-568. [PMID: 39843743 PMCID: PMC12103249 DOI: 10.1038/s41586-024-08454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025]
Abstract
Type A GABA (γ-aminobutyric acid) receptors (GABAA receptors) mediate most fast inhibitory signalling in the brain and are targets for drugs that treat epilepsy, anxiety, depression and insomnia and for anaesthetics1,2. These receptors comprise a complex array of 19 related subunits, which form pentameric ligand-gated ion channels. The composition and structure of native GABAA receptors in the human brain have been inferred from subunit localization in tissue1,3, functional measurements and structural analysis from recombinant expression4-7 and in mice8. However, the arrangements of subunits that co-assemble physiologically in native human GABAA receptors remain unknown. Here we isolated α1 subunit-containing GABAA receptors from human patients with epilepsy. Using cryo-electron microscopy, we defined a set of 12 native subunit assemblies and their 3D structures. We address inconsistencies between previous native and recombinant approaches, and reveal details of previously undefined subunit interfaces. Drug-like densities in a subset of these interfaces led us to uncover unexpected activity on the GABAA receptor of antiepileptic drugs and resulted in localization of one of these drugs to the benzodiazepine-binding site. Proteomics and further structural analysis suggest interactions with the auxiliary subunits neuroligin 2 and GARLH4, which localize and modulate GABAA receptors at inhibitory synapses. This work provides a structural foundation for understanding GABAA receptor signalling and targeted pharmacology in the human brain.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Colleen M Noviello
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Haley Moore
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bradley Lega
- Departments of Neurological Surgery, Neurology, Psychiatry and the Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ryan E Hibbs
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
17
|
Krámos B, Béni Z, Túrós GI, Éliás O, Potor A, Kapus GL, Szabó G. Ligand Binding and Functional Effect of Novel Bicyclic α5 GABA A Receptor Negative Allosteric Modulators. J Chem Inf Model 2025; 65:402-416. [PMID: 39688538 DOI: 10.1021/acs.jcim.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The significant importance of GABAA receptors in the treatment of central nervous system (CNS) disorders has been known for a long time. However, only in recent years have experimental protein structures been published that can open the door to understanding protein-ligand interactions and may effectively help the rational drug design for the future. In our previous work (Szabó, G. J. Med. Chem. 2022, 65(11), 7876), where a promising selective α5-GABAA negative allosteric modulator (NAM) was developed containing the 3-(4-fluorophenyl)-5-methyl-1,2-oxazole headgroup, we noticed a switch-like effect of a single nitrogen atom for the receptor function in some derivatives having a dihydro-naphthyridinone or dihydro-isoquinolinone moiety. Here, we focused on this chemotype, and a small set of compounds were designed to investigate ligand-receptor interactions experimentally and through computational methods. Elaborated compounds were tested against GABAA α1 and α5 subunit-containing receptors, and binding affinities and functional activities were measured. Starting from the published experimental structure of an engineered, homopentameric, basmisanil-binding GABAA receptor-like construct consisting of modified α5 subunits and an α1-containing GABAA structure, we created a new model of the ligand binding site at the α5/γ2 interface. Using this model, the measured ligand affinities were able to be reproduced well by free energy perturbation (FEP) calculations. In addition, calculations were able to explain the obtained structure-activity relationships, among others, the switch-like effect of the aromatic nitrogen position in the dihydro-naphthyridinone motif for the functional character, and suggest different binding poses for the ligands presenting silent versus negative allosteric effects in this set (SAMs vs. NAMs, respectively). We believe that our results can help design α5 selective GABAA negative allosteric modulators and better understand the GABAA receptor.
Collapse
Affiliation(s)
- Balázs Krámos
- Spectroscopic Research Department, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - Zoltán Béni
- Spectroscopic Research Department, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - György István Túrós
- Medicinal Chemistry Laboratory II, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - Olivér Éliás
- Medicinal Chemistry Laboratory II, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - Attila Potor
- Medicinal Chemistry Laboratory II, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - Gábor László Kapus
- Proprietary R&D Coordination Department, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - György Szabó
- Medicinal Chemistry Laboratory II, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| |
Collapse
|
18
|
Haloi N, Eriksson Lidbrink S, Howard RJ, Lindahl E. Adaptive sampling-based structural prediction reveals opening of a GABA A receptor through the αβ interface. SCIENCE ADVANCES 2025; 11:eadq3788. [PMID: 39772677 PMCID: PMC11708891 DOI: 10.1126/sciadv.adq3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are ligand-gated ion channels in the central nervous system with largely inhibitory function. Despite being a target for drugs including general anesthetics and benzodiazepines, experimental structures have yet to capture an open state of classical synaptic α1β2γ2 GABAA receptors. Here, we use a goal-oriented adaptive sampling strategy in molecular dynamics simulations followed by Markov state modeling to capture an energetically stable putative open state of the receptor. The model conducts chloride ions with comparable conductance as in electrophysiology measurements. Relative to experimental structures, our open model is relatively expanded at both the cytoplasmic (-2') and central (9') gates, coordinated with distinctive rearrangements at the transmembrane αβ subunit interface. Consistent with previous experiments, targeted substitutions disrupting interactions at this interface slowed the open-to-desensitized transition rate. This work demonstrates the capacity of advanced simulation techniques to investigate a computationally and experimentally plausible functionally critical of a complex membrane protein yet to be resolved by experimental methods.
Collapse
Affiliation(s)
- Nandan Haloi
- SciLifeLab, Department of Applied Physics, KTH Royal Institute of Technology, Tomtebodävagen 23, Solna, 17165 Stockholm, Sweden
| | - Samuel Eriksson Lidbrink
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23, Solna, 17165 Stockholm, Sweden
| | - Rebecca J. Howard
- SciLifeLab, Department of Applied Physics, KTH Royal Institute of Technology, Tomtebodävagen 23, Solna, 17165 Stockholm, Sweden
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23, Solna, 17165 Stockholm, Sweden
| | - Erik Lindahl
- SciLifeLab, Department of Applied Physics, KTH Royal Institute of Technology, Tomtebodävagen 23, Solna, 17165 Stockholm, Sweden
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23, Solna, 17165 Stockholm, Sweden
| |
Collapse
|
19
|
Wang Y, Zhang Y, Li W, Salovska B, Zhang J, Li T, Li H, Liu Y, Kaczmarek LK, Pusztai L, Klein DE. GABA A receptor π forms channels that stimulate ERK through a G-protein-dependent pathway. Mol Cell 2025; 85:166-176.e5. [PMID: 39642883 PMCID: PMC11698630 DOI: 10.1016/j.molcel.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
The rare γ-aminobutyric acid type-A receptor (GABAAR) subunit π (GABRP) is highly expressed in certain cancers, where it stimulates growth through extracellular-regulated kinase (ERK) signaling by an uncharacterized pathway. To elucidate GABRP's signaling mechanism, we determined cryoelectron microscopy (cryo-EM) structures of GABRP embedded in native nanodiscs, both in the presence and absence of GABA. Structurally, GABRP homopentamers closely resemble heteropentameric GABAAR anion channels, transitioning from a closed "resting" state to an open "active" state upon GABA binding. However, functional assays reveal that GABRP responds more like a type-B metabotropic receptor. At physiological concentrations of GABA, chloride flux is not detected. Rather, GABRP activates a G-protein-coupled pathway leading to ERK signaling. Ionotropic activity is only triggered at supraphysiological GABA concentrations, effectively decoupling it from GABRP's signaling functions. These findings provide a structural and functional blueprint for GABRP, opening new avenues for targeted inhibition of GABA growth signals in GABRP-positive cancers.
Collapse
Affiliation(s)
- Yueyue Wang
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Breast Medical Oncology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jianan Zhang
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tongqing Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hengyi Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lajos Pusztai
- Breast Medical Oncology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daryl E Klein
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
20
|
Rong W, Qian X, Yin Y, Gu Y, Su W, Li J, Xu Y, Zhu H, Li J, Zhu Q. N-Demethylsinomenine Relieves Neuropathic Pain in Male Mice Mainly via Regulating α2-Subtype GABA A Receptors. CNS Neurosci Ther 2025; 31:e70197. [PMID: 39749638 PMCID: PMC11696256 DOI: 10.1111/cns.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
AIMS N-Demethylsinomenine (NDSM) demonstrates good analgesic efficacy in preclinical pain models. However, how NDSM exerts analgesic actions remains unknown. METHODS We examined the analgesic effects of NDSM using both pain-evoked and pain-suppressed behavioral assays in two persistent pain models. Then western blot assay and immunofluorescence staining were used to investigate the effects of NDSM on the expression of the GABAA receptor α2 subunit (GABRA2) and inflammatory factors in the spinal cord and brain tissues of male spared nerve injury (SNI) mice. Finally, the individual subtypes of GABAARs (α1, α2, α3, and α5) were respectively silenced by viral-mediated knockdown to explore the involvement of subtypes of GABAARs in the effects of NDSM on the pain-like behaviors in male SNI mice. RESULTS NDSM demonstrated significant analgesic effects against chronic pain both in pain-evoked and pain-suppressed behavioral assays. NDSM treatment significantly reversed the SNI induced down-regulation of GABRA2 and up-regulation of TNF-α and IL-1β. The analgesic effects of NDSM were completely blocked by silencing GABRA2 or partially blocked by silencing GABRA3. CONCLUSION This study provided the first evidence that the analgesic effects of NDSM are mediated primarily by GABRA2 and partially by GABRA3, and the inhibition of neuroinflammation also contributes to the analgesic effects of NDSM.
Collapse
Affiliation(s)
- Weiwei Rong
- School of PharmacyNantong UniversityNantongJiangsuChina
- Provincial Key Laboratory of Inflammation and Molecular Drug TargetNantongJiangsuChina
| | - Xunjia Qian
- School of PharmacyNantong UniversityNantongJiangsuChina
| | - Yujian Yin
- School of PharmacyNantong UniversityNantongJiangsuChina
| | - Yipeng Gu
- School of PharmacyNantong UniversityNantongJiangsuChina
| | - Weiyi Su
- School of PharmacyNantong UniversityNantongJiangsuChina
| | - Jie‐Jia Li
- Affiliated Hospital 2 of Nantong UniversityNantongJiangsuChina
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yue Xu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Hongyan Zhu
- School of PharmacyNantong UniversityNantongJiangsuChina
| | - Junxu Li
- School of PharmacyNantong UniversityNantongJiangsuChina
| | - Qing Zhu
- School of PharmacyNantong UniversityNantongJiangsuChina
- Provincial Key Laboratory of Inflammation and Molecular Drug TargetNantongJiangsuChina
| |
Collapse
|
21
|
Wu L, Wang J, Ye H, Yao Y, Hu M, Cheng J, Kong L, Liu W, Ge F. Impacts of hexafluoropropylene oxide tetrameric acid (HFPO-TeA) on neurodevelopment and GABAergic signaling in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117424. [PMID: 39616666 DOI: 10.1016/j.ecoenv.2024.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/26/2025]
Abstract
Hexafluoropropylene oxide oligomer acids (HFPOs), an emerging environmental pollutant, are increasingly utilized in the manufacture of fluorinated synthetic materials as a substitute for traditional perfluorooctanoic acid (PFOA), resulting in a corresponding rise in detection rates in aquatic environments, which may present inherent safety hazards to ecosystems and public health. However, few data are available on the issue of their toxicity and mechanism. This study aimed to investigate the potential toxic effects of hexafluoroepoxypropane tetrameric acid (HFPO-TeA), a typical HFPO, on the early developmental stages of zebrafish larvae. It revealed that HFPO-TeA exposure resulted in significant detrimental effects, including adverse impacts on general morphological characteristics, such as eye area, heart rate, and swimming bladder, in zebrafish embryos and larvae. Targeted metabolomics and transcriptomics inquiries clarified that HFPO-TeA exposure reduced the levels of the neurotransmitter gamma-aminobutyric acid (GABA) and downregulated the expression of genes related to the GABA pathway. Simultaneously, transgenic zebrafish exhibited that exposure to HFPO-TeA impedes the growth of GABAergic neurons. Moreover, the molecular docking analysis indicated that GABAA receptors might be the potential targets of HFPO-TeA. Taken together, the current data highlights that the HFPO-TeA might not be safe alternatives to PFOA. This study presented a model for HFPO-TeA-induced neurotoxicity in developing zebrafish that can aid in ecological risk assessments.
Collapse
Affiliation(s)
- Linlin Wu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China
| | - Heyong Ye
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyang Yao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Miaoyang Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jie Cheng
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingcan Kong
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China.
| |
Collapse
|
22
|
Sun X, Liu F, Liu H, Guo L, Ma H, Zhu J, Qian Y. Molecular mechanisms and behavioral relevance underlying neural correlates of childhood neglect. J Affect Disord 2024; 367:795-805. [PMID: 39255872 DOI: 10.1016/j.jad.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Childhood neglect is associated with brain changes, yet the molecular mechanisms and behavioral relevance underlying such associations remain elusive. METHODS We calculated fractional amplitude of low-frequency fluctuations (fALFF) using resting-state functional MRI and tested their correlation with childhood neglect across a large sample of 510 healthy young adults. Then, we investigated the spatial relationships of the identified neural correlates of childhood neglect with gene expression, neurotransmitter, and behavioral domain atlases. RESULTS We found that more severe childhood neglect was correlated with higher fALFF in the bilateral anterior cingulate cortex. Remarkably, the identified neural correlates of childhood neglect were spatially correlated with expression of gene categories primarily involving neuron, synapse, ion channel, cognitive and perceptual processes, and physiological response and regulation. Concurrently, there were significant associations between the neural correlates and specific neurotransmitter systems including serotonin and GABA. Finally, neural correlates of childhood neglect were associated with diverse behavioral domains implicating mental disorders, emotion, cognition, and sensory perception. LIMITATIONS The cross-sectional study design cannot unequivocally establish causality. CONCLUSIONS Our findings may not only add to the current knowledge regarding the relationship between childhood neglect and mental health, but also have clinical implications for developing preventive strategies for individuals exposed to childhood neglect who are at risk for mental disorders.
Collapse
Affiliation(s)
- Xuetian Sun
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Fujun Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Hu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Lixin Guo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Haining Ma
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China.
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China.
| |
Collapse
|
23
|
Pant S, Tam SW, Long SB. The pentameric chloride channel BEST1 is activated by extracellular GABA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624909. [PMID: 39605608 PMCID: PMC11601618 DOI: 10.1101/2024.11.22.624909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bestrophin 1 (BEST1) is chloride channel expressed in the eye, central nervous system (CNS), and other tissues in the body. A link between BEST1 and the principal inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been proposed. The most appreciated receptors for extracellular GABA are the GABAB G-protein coupled receptors and the pentameric GABAA chloride channels, both of which have fundamental roles in the CNS. Here, we demonstrate that BEST1 is directly activated by GABA. Through functional studies and atomic-resolution structures of human and chicken BEST1, we identify a GABA binding site on the channel's extracellular side and determine the mechanism by which GABA binding induces opening of the channel's central gate. This same gate is activated by intracellular [Ca2+], indicating that BEST1 is controlled by ligands from both sides of the membrane. The studies demonstrate that BEST1, which shares no structural homology with GABAA, is a GABA-activated chloride channel. The physiological implications of this finding remain to be studied.
Collapse
Affiliation(s)
- Swati Pant
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, USA
| | - Stephanie W. Tam
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, USA
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
24
|
Dong J, Wang Z, Li L, Zhang M, Wang S, Luo Y, Dong Y, Wang X, Wang Y, Wang K, Yin Y. Fasudil Alleviates Postoperative Neurocognitive Disorders in Mice by Downregulating the Surface Expression of α5GABAAR in Hippocampus. CNS Neurosci Ther 2024; 30:e70098. [PMID: 39491498 PMCID: PMC11532233 DOI: 10.1111/cns.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
AIM Postoperative neurocognitive disorder (PND) refers to the cognitive impairment experienced by patients after surgery. As a target of sevoflurane, a kind of inhalation anesthetic, the balance of the GABAergic system can be disrupted during the perioperative period. In this study, we explored the promoting effect of abnormal elevation of the α5 subtype of γ-aminobutyric acid type A (GABAA) receptors caused by sevoflurane and surgical trauma on PND, as well as the therapeutic effect of fasudil on PND. METHODS Eight-week-old mice were pretreated with fasudil, and after 10 days, sevoflurane-induced femoral fracture surgery was performed to establish an animal model of PND. The Morris water maze and fear conditioning tests were used to evaluate PND induced by this model. Biochemical and electrophysiological analyses were conducted to assess the protective effect of fasudil on the GABAergic system. RESULTS Following artificial fracture, the hippocampus-dependent memory was damaged in these mice. Fasudil pretreatment, however, ameliorated cognitive function impairment in mice induced by sevoflurane and surgery. Mechanistically, fasudil was found to restore the increased hippocampus expression and function of α5GABAARs in mice with PND. In addition, pretreatment with Fasudil inhibited the enhancement in the calcium ion concentration and phosphorylation of Camk2, as well as the activation of the Radixin pathway which led to increased phosphorylation of the ERM family in the hippocampal CA1 region of the PND model. CONCLUSION Preadministration of fasudil improved postoperative cognitive function in PND mice by inhibiting the activation of Camk2 and Radixin pathways and finally downregulating the surface expression of α5GABAAR in hippocampus neurons.
Collapse
Affiliation(s)
- Jinpeng Dong
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhun Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | | | - Mengxue Zhang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Sixuan Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical SciencesBeijingChina
| | - Ying Dong
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaokun Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical SciencesBeijingChina
| | - Kaiyuan Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yiqing Yin
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
25
|
Xie WL, Ge ML, Chen D, Chen GQ, Mei YX, Lai YJ. Psychiatric disorders associated with fluoroquinolones: a pharmacovigilance analysis of the FDA adverse event reporting system database. Front Pharmacol 2024; 15:1435923. [PMID: 39469624 PMCID: PMC11513374 DOI: 10.3389/fphar.2024.1435923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Background Fluoroquinolones are broad-spectrum antibiotics with significant antimicrobial activity. Despite their therapeutic benefits, they are associated with a range of adverse drug reactions (ADRs), particularly those affecting the central nervous system (CNS). This study aimed to analyze the psychiatric ADRs linked to fluoroquinolones using data from the FDA Adverse Event Reporting System (FAERS) database. Methods A retrospective pharmacovigilance study was conducted using FAERS data from Q1 2004 to Q4 2023. The data processing phase involved the FDA-recommended deduplication method, and ADRs were classified according to Medical Dictionary for Regulatory Activities (MedDRA). Disproportionality analysis was performed using the reporting odds ratio (ROR), and statistical significance was assessed using the Chi-square test or Fisher's exact test. Results The study identified 84,777 reports associated with fluoroquinolones, with 359,480 Preferred Terms-annotated entries, 27,816 of these reports were psychiatric ADRs. Mood disorders were the most frequently reported, including anxiety, depression, and delirium, with some reports escalating to suicidal ideation and behaviors. The Standardized MedDRA Query classification system was used to categorize these ADRs into Depression, Suicide/self-injury, Psychosis and psychotic disorders, and Non-infectious encephalopathy/delirium. Ciprofloxacin was most frequently linked to depression and suicidal ideation, while moxifloxacin showed a robust correlation with delirium. The risk of psychiatric ADRs varied by age group, with affective disorders more prevalent in adults under 65 and psychosis and delirium in those over 65. Conclusion Fluoroquinolones are associated with a range of psychiatric ADRs, with notable differences between the drugs in the class. The study highlights the need for caution in prescribing fluoroquinolones, particularly for patients with pre-existing mental health conditions or those in higher risk age groups. The findings also underscore the importance of considering age-specific preventive strategies when administering these antibiotics.
Collapse
Affiliation(s)
- Wen-Long Xie
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Lan Ge
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Chen
- Department of Obstetrical, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Qing Chen
- Department of Cardiovascular, Changjiang County Integrative Medicine Hospital, Changjiang, China
| | - Yuan-Xi Mei
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Ji Lai
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Crocetti L, Guerrini G, Melani F, Mascia MP, Giovannoni MP. 3,8-Disubstituted Pyrazolo[1,5-a]quinazoline as GABA A Receptor Modulators: Synthesis, Electrophysiological Assays, and Molecular Modelling Studies. Int J Mol Sci 2024; 25:10840. [PMID: 39409169 PMCID: PMC11477267 DOI: 10.3390/ijms251910840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
As a continuation of our study in the field of GABAA receptor modulators, we report the design and synthesis of new pyrazolo[1,5-a]quinazoline (PQ) bearing at the 8-position an oxygen or nitrogen function. All the final compounds and some intermediates, showing the three different forms of the pyrazolo[1,5-a]quinazoline scaffold (5-oxo-4,5-dihydro, -4,5-dihydro, and heteroaromatic form), have been screened with an electrophysiological technique on recombinant GABAAR (α1β2γ2-GABAAR), expressed in Xenopus laevis oocytes, by evaluating the variation in produced chlorine current, and permitting us to identify some interesting compounds (6d, 8a, 8b, and 14) on which further functional assays were performed. Molecular modelling studies (docking, minimization of complex ligand-receptor, and MD model) and a statistical analysis by a Hierarchical Cluster Analysis (HCA) have collocated these ligands in the class corresponding to their pharmacological profile. The HCA results are coherent with the model we recently published (Proximity Frequencies), identifying the residues γThr142 and αHis102 as discriminant for the agonist and antagonist profile.
Collapse
Affiliation(s)
- Letizia Crocetti
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Gabriella Guerrini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Fabrizio Melani
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Maria Paola Mascia
- CNR-Institute of Neuroscience, Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Maria Paola Giovannoni
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (L.C.); (F.M.); (M.P.G.)
| |
Collapse
|
27
|
Gonda X, Tarazi FI, Dome P. The emergence of antidepressant drugs targeting GABA A receptors: A concise review. Biochem Pharmacol 2024; 228:116481. [PMID: 39147329 DOI: 10.1016/j.bcp.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Depression is among the most common psychiatric illnesses, which imposes a major socioeconomic burden on patients, caregivers, and the public health system. Treatment with classical antidepressants (e.g. tricyclic antidepressants and selective serotonine reuptake inhibitors), which primarily affect monoaminergic systems has several limitations, such as delayed onset of action and moderate efficacy in a relatively large proportion of depressed patients. Furthermore, depression is highly heterogeneus, and its different subtypes, including post-partum depression, involve distinct neurobiology, warranting a differential approach to pharmacotherapy. Given these shortcomings, the need for novel antidepressants that are superior in efficacy and faster in onset of action is fully justified. The development and market introduction of rapid-acting antidepressants has accelerated in recent years. Some of these new antidepressants act through the GABAergic system. In this review, we discuss the discovery, efficacy, and limitations of treatment with classic antidepressants. We provide a detailed discussion of GABAergic neurotransmission, with a special focus on GABAA receptors, and possible explanations for the mood-enhancing effects of GABAergic medications (in particular neurosteroids acting at GABAA receptors), and, ultimately, we present the most promising molecules belonging to this family which are currently used in clinical practice or are in late phases of clinical development.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Frank I Tarazi
- Department of Psychiatry and Neurology, Harvard Medical School and McLean Hospital, Boston, MA, USA
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Nyiro Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary
| |
Collapse
|
28
|
Wang YJ, Seibert H, Ahn LY, Schaffer AE, Mu TW. Pharmacological chaperones restore proteostasis of epilepsy-associated GABA A receptor variants. Pharmacol Res 2024; 208:107356. [PMID: 39216838 PMCID: PMC11457296 DOI: 10.1016/j.phrs.2024.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α1 variants. Mechanism of action study demonstrated that they enhance the folding, assembly, and trafficking and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hailey Seibert
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
29
|
Vásquez E, Oresti GM, Paez MD, Callegari EA, Masone D, Muñoz EM. Impact of aging on the GABA B receptor-mediated connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606013. [PMID: 39131332 PMCID: PMC11312617 DOI: 10.1101/2024.07.31.606013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
GABA B receptors (GABABRs) are heterodimeric seven-transmembrane receptors that interact with a range of proteins and form large protein complexes on cholesterol-rich membrane microdomains. As the brain ages, membrane cholesterol levels exhibit alterations, although it remains unclear how these changes impact protein-protein interactions and downstream signaling. Herein, we studied the structural bases for the interaction between GABABR and the KCC2 transporter, including their protein expression and distribution, and we compared data between young and aged rat cerebella. Also, we analyzed lipid profiles for both groups, and we used molecular dynamics simulations on three plasma membrane systems with different cholesterol concentrations, to further explore the GABABR-transporter interaction. Based on our results, we report that a significant decrease in GABAB2 subunit expression occurs in the aged rat cerebella. After performing a comparative co-immunoprecipitation analysis, we confirm that GABABR and KCC2 form a protein complex in adult and aged rat cerebella, although their interaction levels are reduced substantially as the cerebellum ages. On the other hand, our lipid analyses reveal a significant increase in cholesterol and sphingomyelin levels of the aged cerebella. Finally, we used the Martini coarse-grained model to conduct molecular dynamics simulations, from which we observed that membrane cholesterol concentrations can dictate whether the GABABR tail domains physically establish G protein-independent contacts with a transporter, and the timing when those associations eventually occur. Taken together, our findings illustrate how age-related alterations in membrane cholesterol levels affect protein-protein interactions, and how they could play a crucial role in regulating GABABR's interactome-mediated signaling. Significance Statement This study elucidates age-related changes in cerebellar GABAB receptors (GABABRs), KCC2, and plasma membrane lipids, shedding light on mechanisms underlying neurological decline. Molecular dynamics simulations reveal how membrane lipids influence protein-protein interactions, offering insights into age-related neurodegeneration. The findings underscore the broader impact of cerebellar aging on motor functions, cognition, and emotional processing in the elderly. By elucidating plasma membrane regulation and GABAergic dynamics, this research lays the groundwork for understanding aging-related neurological disorders and inspires further investigation into therapeutic interventions.
Collapse
Affiliation(s)
- Elena Vásquez
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Gerardo M. Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María D. Paez
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Eduardo A. Callegari
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Estela M. Muñoz
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| |
Collapse
|
30
|
Shi W, Li M, Zhang T, Yang C, Zhao D, Bai J. GABA system in the prefrontal cortex involved in psychostimulant addiction. Cereb Cortex 2024; 34:bhae319. [PMID: 39098820 DOI: 10.1093/cercor/bhae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Drug addiction is a chronic and relapse brain disorder. Psychostimulants such as cocaine and amphetamine are highly addictive drugs. Abuse drugs target various brain areas in the nervous system. Recent studies have shown that the prefrontal cortex (PFC) plays a key role in regulating addictive behaviors. The PFC is made up of excitatory glutamatergic cells and gamma-aminobutyric acid (GABAergic) interneurons. Recently, studies showed that GABA level was related with psychostimulant addiction. In this review, we will introduce the role and mechanism of GABA and γ-aminobutyric acid receptors (GABARs) of the PFC in regulating drug addiction, especially in psychostimulant addiction.
Collapse
Affiliation(s)
- Wenjing Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Minyu Li
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Ting Zhang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Chunlong Yang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Dongdong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| |
Collapse
|
31
|
Sawada R, Sakajiri Y, Shibata T, Yamanishi Y. Predicting therapeutic and side effects from drug binding affinities to human proteome structures. iScience 2024; 27:110032. [PMID: 38868195 PMCID: PMC11167438 DOI: 10.1016/j.isci.2024.110032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Evaluation of the binding affinities of drugs to proteins is a crucial process for identifying drug pharmacological actions, but it requires three dimensional structures of proteins. Herein, we propose novel computational methods to predict the therapeutic indications and side effects of drug candidate compounds from the binding affinities to human protein structures on a proteome-wide scale. Large-scale docking simulations were performed for 7,582 drugs with 19,135 protein structures revealed by AlphaFold (including experimentally unresolved proteins), and machine learning models on the proteome-wide binding affinity score (PBAS) profiles were constructed. We demonstrated the usefulness of the method for predicting the therapeutic indications for 559 diseases and side effects for 285 toxicities. The method enabled to predict drug indications for which the related protein structures had not been experimentally determined and to successfully extract proteins eliciting the side effects. The proposed method will be useful in various applications in drug discovery.
Collapse
Affiliation(s)
- Ryusuke Sawada
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuko Sakajiri
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| | - Tomokazu Shibata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
32
|
Chojnacka W, Teng J, Kim JJ, Jensen AA, Hibbs RE. Structural insights into GABA A receptor potentiation by Quaalude. Nat Commun 2024; 15:5244. [PMID: 38898000 PMCID: PMC11187190 DOI: 10.1038/s41467-024-49471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Methaqualone, a quinazolinone marketed commercially as Quaalude, is a central nervous system depressant that was used clinically as a sedative-hypnotic, then became a notorious recreational drug in the 1960s-80s. Due to its high abuse potential, medical use of methaqualone was eventually prohibited, yet it persists as a globally abused substance. Methaqualone principally targets GABAA receptors, which are the major inhibitory neurotransmitter-gated ion channels in the brain. The restricted status and limited accessibility of methaqualone have contributed to its pharmacology being understudied. Here, we use cryo-EM to localize the GABAA receptor binding sites of methaqualone and its more potent derivative, PPTQ, to the same intersubunit transmembrane sites targeted by the general anesthetics propofol and etomidate. Both methaqualone and PPTQ insert more deeply into subunit interfaces than the previously-characterized modulators. Binding of quinazolinones to this site results in widening of the extracellular half of the ion-conducting pore, following a trend among positive allosteric modulators in destabilizing the hydrophobic activation gate in the pore as a mechanism for receptor potentiation. These insights shed light on the underexplored pharmacology of quinazolinones and further elucidate the molecular mechanisms of allosteric GABAA receptor modulation through transmembrane binding sites.
Collapse
Affiliation(s)
- Weronika Chojnacka
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jeong Joo Kim
- Protein Structure and Function, Loxo@Lilly, Louisville, CO, USA
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ryan E Hibbs
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Mortensen M, Bright DP, Fagotti J, Dorovykh V, Cerna B, Smart TG. Forty Years Searching for Neurosteroid Binding Sites on GABA A Receptors. Neuroscience 2024:S0306-4522(24)00257-4. [PMID: 38852898 DOI: 10.1016/j.neuroscience.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Brain inhibition is a vital process for controlling and sculpting the excitability of the central nervous system in healthy individuals. This level of control is provided over several timescales and involves the neurotransmitter GABA acting at inhibitory synapses to: rapidly inhibit neurons by activating the GABAA receptor; over a slower timescale, to tonically activate extrasynaptic GABAA receptors to provide a low level of background inhibition; and finally, to activate G-protein coupled GABAB receptors to control transmitter release by inhibiting presynaptic Ca2+ channels whilst providing postsynaptic inhibition via K+ channel activation. From this plethora of roles for GABA and its receptors, the GABAA receptor isoform is of major interest due to its dynamic functional plasticity, which in part, is due to being targeted by modulatory brain neurosteroids derived from sex and stress hormones. This family of neurosteroids can, depending on their structure, potentiate, activate and also inhibit the activity of GABAA receptors to affect brain inhibition. This review tracks the methods that have been deployed in probing GABAA receptors, and charts the sterling efforts made by several groups to locate the key neurosteroid binding sites that affect these important receptors. Increasing our knowledge of these binding sites will greatly facilitate our understanding of the physiological roles of neurosteroids and will help to advance their use as novel therapeutics to combat debilitating brain diseases.
Collapse
Affiliation(s)
- Martin Mortensen
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Damian P Bright
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Juliane Fagotti
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Valentina Dorovykh
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Barbora Cerna
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom
| | - Trevor G Smart
- University College London, Dept Neuroscience, Physiology & Pharmacology, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
34
|
Yuan Z, Pavel MA, Hansen SB. GABA and astrocytic cholesterol determine the lipid environment of GABA AR in cultured cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591395. [PMID: 38746110 PMCID: PMC11092523 DOI: 10.1101/2024.04.26.591395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The γ-aminobutyric acid (GABA) type A receptor (GABAAR), a GABA activated pentameric chloride channel, mediates fast inhibitory neurotransmission in the brain. The lipid environment is critical for GABAAR function. How lipids regulate the channel in the cell membrane is not fully understood. Here we employed super resolution imaging of lipids to demonstrate that the agonist GABA induces a rapid and reversible membrane translocation of GABAAR to phosphatidylinositol 4,5-bisphosphate (PIP2) clusters in mouse primary cortical neurons. This translocation relies on nanoscopic separation of PIP2 clusters and lipid rafts (cholesterol-dependent ganglioside clusters). In a resting state, the GABAAR associates with lipid rafts and this colocalization is enhanced by uptake of astrocytic secretions. These astrocytic secretions enhance endocytosis and delay desensitization. Our findings suggest intercellular signaling from astrocytes regulates GABAAR location based on lipid uptake in neurons. The findings have implications for treating mood disorders associated with altered neural excitability.
Collapse
Affiliation(s)
- Zixuan Yuan
- Department of Molecular Medicine, Department of Neuroscience, The Scripps Research Institute, Scripps, Jupiter, Florida 33458, USA
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Scripps, Jupiter, Florida 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, Department of Neuroscience, The Scripps Research Institute, Scripps, Jupiter, Florida 33458, USA
| | - Scott B. Hansen
- Department of Molecular Medicine, Department of Neuroscience, The Scripps Research Institute, Scripps, Jupiter, Florida 33458, USA
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Scripps, Jupiter, Florida 33458, USA
- Department of Molecular Medicine, Department of Neuroscience, UF Scripps, Jupiter, Florida 33458, USA
| |
Collapse
|
35
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structural basis of ligand specificity and channel activation in an insect gustatory receptor. Cell Rep 2024; 43:114035. [PMID: 38573859 PMCID: PMC11100771 DOI: 10.1016/j.celrep.2024.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
36
|
Alvarez LD, Carina Alves NR. Structural Basis for Molecular Recognition of Cannabinoids by Inhibitory Cys-Loop Channels. J Med Chem 2024; 67:3274-3286. [PMID: 38428383 DOI: 10.1021/acs.jmedchem.3c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Cannabis sativa has a long history of medicinal use, dating back to ancient times. This plant produces cannabinoids, which are now known to interact with several human proteins, including Cys-loop receptors for glycine (GlyR) and gamma-aminobutyric acid (GABAAR). As these channels are the primary mediators of inhibitory signals, they contribute to the diverse effects of cannabinoids on the nervous system. Evidence suggests that cannabinoid binding sites are located within the transmembrane domain, although their precise location has remained undetermined for over a decade. The process of identification of the binding site and the computational approaches employed are the main subjects of this Perspective, which includes an analysis of the most recently resolved cryo-EM structures of zebrafish GlyR bound to Δ9-tetrahydrocannabinol and the THC-GlyR complex obtained through molecular dynamics simulations. With this work, we aim to contribute to guiding future studies investigating the molecular basis of cannabinoid action on inhibitory channels.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- UMYMFOR, CONICET-Universidad de Buenos Aires, Ciudad UniversitariaBuenos Aires C1428EGA, Argentina
| | - N R Carina Alves
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- UMYMFOR, CONICET-Universidad de Buenos Aires, Ciudad UniversitariaBuenos Aires C1428EGA, Argentina
| |
Collapse
|
37
|
Burke SM, Avstrikova M, Noviello CM, Mukhtasimova N, Changeux JP, Thakur GA, Sine SM, Cecchini M, Hibbs RE. Structural mechanisms of α7 nicotinic receptor allosteric modulation and activation. Cell 2024; 187:1160-1176.e21. [PMID: 38382524 PMCID: PMC10950261 DOI: 10.1016/j.cell.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in cholinergic signaling throughout the nervous system. Its unique physiological characteristics and implications in neurological disorders and inflammation make it a promising but challenging therapeutic target. Positive allosteric modulators overcome limitations of traditional α7 agonists, but their potentiation mechanisms remain unclear. Here, we present high-resolution structures of α7-modulator complexes, revealing partially overlapping binding sites but varying conformational states. Structure-guided functional and computational tests suggest that differences in modulator activity arise from the stable rotation of a channel gating residue out of the pore. We extend the study using a time-resolved cryoelectron microscopy (cryo-EM) approach to reveal asymmetric state transitions for this homomeric channel and also find that a modulator with allosteric agonist activity exploits a distinct channel-gating mechanism. These results define mechanisms of α7 allosteric modulation and activation with implications across the pentameric receptor superfamily.
Collapse
Affiliation(s)
- Sean M Burke
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariia Avstrikova
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67081 Strasbourg Cedex, France
| | - Colleen M Noviello
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Jean-Pierre Changeux
- Neuroscience Department, Institut Pasteur, Collège de France, 75015 Paris, France
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67081 Strasbourg Cedex, France.
| | - Ryan E Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
38
|
Uddin MJ, Niloy SI, Aktaruzzaman M, Talukder MEK, Rahman MM, Imon RR, Uddin AFMS, Amin MZ. Neuropharmacological assessment and identification of possible lead compound (apomorphine) from Hygrophila spinosa through in-vivo and in-silico approaches. J Biomol Struct Dyn 2024:1-16. [PMID: 38385482 DOI: 10.1080/07391102.2024.2317974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The aim of this research is to examine possible neurological activity of methanol, ethyl acetate, and aqueous extracts of Hygrophila spinosa and identify possible lead compounds through in silico analysis. In vivo, neuropharmacological activity was evaluated by using four distinct neuropharmacological assessment assays. Previously reported GC-MS data and earlier literature were utilized to identify the phytochemicals present in Hygrophila spinosa. Computational studies notably molecular docking and molecular dynamic simulations were conducted with responsible receptors to assess the stability of the best interacting compound. Pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity were considered to evaluate the drug likeliness properties of the identified compounds. All the in vivo results support the notion that different extracts (methanol, ethyl acetate, and aqueous) of Hygrophila spinosa have significant (*p = 0.05) sedative-hypnotic, anxiolytic, and anti-depressant activity. Among all the extracts, specifically methanol extracts of Hygrophila spinosa (MHS 400 mg/kg.b.w.) showed better sedative, anxiolytic and antidepressant activity than aqueous and ethyl acetate extracts. In silico molecular docking analysis revealed that among 53 compounds 7 compounds showed good binding affinities and one compound, namely apomorphine (CID: 6005), surprisingly showed promising binding affinity to all the receptors . An analysis of molecular dynamics simulations confirmed that apomorphine (CID: 6005) had a high level of stability at the protein binding site. Evidence suggests that Hygrophila spinosa has significant sedative, anxiolytic, and antidepressant activity. In silico analysis revealed that a particular compound (apomorphine) is responsible for this action. Further research is required in order to establish apomorphine as a drug for anxiety, depression, and sleep disorders.
Collapse
Affiliation(s)
- Mohammad Jashim Uddin
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Clinical Pharmacy and Pharmacology. Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Md Aktaruzzaman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Clinical Pharmacy and Pharmacology. Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Enamul Kabir Talukder
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Mashiar Rahman
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Raihan Rahman Imon
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - A F M Shahab Uddin
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Ziaul Amin
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
39
|
Ozoe Y, Nakao T, Kondo S, Yoshioka Y, Ozoe F, Banba S. Knock-in mutagenesis in Drosophila Rdl underscores the critical role of the conserved M3 glycine in mediating the actions of broflanilide and isocycloseram on GABA receptors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105776. [PMID: 38458683 DOI: 10.1016/j.pestbp.2024.105776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
γ-Aminobutyric acid receptors (GABARs) are crucial targets for pest control chemicals, including meta-diamide and isoxazoline insecticides, which act as negative allosteric modulators of insect GABARs. Previous cell-based assays have indicated that amino acid residues in the transmembrane cavity between adjacent subunits of Drosophila RDL GABAR (i.e., Ile276, Leu280, and Gly335) are involved in mediating the action of meta-diamides. In this study, to confirm this result at the organismal level, we employed CRISPR/Cas9-mediated genome editing, generated six transgenic Drosophila strains carrying substitutions in these amino acid residues, and investigated their sensitivity to broflanilide and isocycloseram. Flies homozygous for the I276F mutation did not exhibit any change in sensitivity to the tested insecticides compared to the control flies. Conversely, I276C homozygosity was lethal, and heterozygous flies exhibited ∼2-fold lower sensitivity to broflanilide than the control flies. Flies homozygous for the L280C mutation survived into adulthood but exhibited infertility. Both heterozygous and homozygous L280C flies exhibited ∼3- and ∼20-fold lower sensitivities to broflanilide and isocycloseram, respectively, than the control flies. The reduction in sensitivity to isocycloseram in L280C flies diminished to ∼3-fold when treated with piperonyl butoxide. Flies homozygous for the G335A mutation reached the adult stage. However, they were sterile, had small bodies, and exhibited reduced locomotion, indicating the critical role of Gly335 in RDL function. These flies exhibited markedly increased tolerance to topically applied broflanilide and isocycloseram, demonstrating that the conserved Gly335 is the target of the insecticidal actions of broflanilide and isocycloseram. Considering the significant fitness costs, the Gly335 mutation may not pose a serious risk for the development of resistance in field populations of insect pests. However, more careful studies using insect pests are needed to investigate whether our perspective applies to resistance development under field conditions.
Collapse
Affiliation(s)
- Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan; Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan.
| | - Toshifumi Nakao
- Agrochemicals Research Center, Mitsui Chemicals Crop and Life Solutions, Inc, Mobara, Chiba 297-0017, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan; Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yasuhide Yoshioka
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Fumiyo Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan; Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Shinichi Banba
- Agrochemicals Research Center, Mitsui Chemicals Crop and Life Solutions, Inc, Mobara, Chiba 297-0017, Japan.
| |
Collapse
|
40
|
Platonov M, Maximyuk O, Rayevsky A, Iegorova O, Hurmach V, Holota Y, Bulgakov E, Cherninskyi A, Karpov P, Ryabukhin S, Krishtal O, Volochnyuk D. Integrated workflow for the identification of new GABA A R positive allosteric modulators based on the in silico screening with further in vitro validation. Case study using Enamine's stock chemical space. Mol Inform 2024; 43:e202300156. [PMID: 37964718 DOI: 10.1002/minf.202300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Numerous studies reported an association between GABAA R subunit genes and epilepsy, eating disorders, autism spectrum disorders, neurodevelopmental disorders, and bipolar disorders. This study was aimed to find some potential positive allosteric modulators and was performed by combining the in silico approach with further in vitro evaluation of its real activity. We started from the GABAA R-diazepam complexes and assembled a lipid embedded protein ensemble to refine it via molecular dynamics (MD) simulation. Then we focused on the interaction of α1β2γ2 with some Z-drugs (non-benzodiazepine compounds) using an Induced Fit Docking (IFD) into the relaxed binding site to generate a pharmacophore model. The pharmacophore model was validated with a reference set and applied to decrease the pre-filtered Enamine database before the main docking procedure. Finally, we succeeded in identifying a set of compounds, which met all features of the docking model. The aqueous solubility and stability of these compounds in mouse plasma were assessed. Then they were tested for the biological activity using the rat Purkinje neurons and CHO cells with heterologously expressed human α1β2γ2 GABAA receptors. Whole-cell patch clamp recordings were used to reveal the GABA induced currents. Our study represents a convenient and tunable model for the discovery of novel positive allosteric modulators of GABAA receptors. A High-throughput virtual screening of the largest available database of chemical compounds resulted in the selection of 23 compounds. Further electrophysiological tests allowed us to determine a set of 3 the most outstanding active compounds. Considering the structural features of leader compounds, the study can develop into the MedChem project soon.
Collapse
Affiliation(s)
- Maksym Platonov
- Institute of molecular biology and genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Alexey Rayevsky
- Institute of molecular biology and genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
| | - Olena Iegorova
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Vasyl Hurmach
- Institute of molecular biology and genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
| | - Yuliia Holota
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
| | - Elijah Bulgakov
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
| | - Andrii Cherninskyi
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Pavel Karpov
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
| | - Sergey Ryabukhin
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv., Glushkova Ave, 03022, Kyiv, Ukraine
- Institute of organic chemistry NAS of Ukraine, 5 Murmanska Str., 02660, Kyiv, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Dmitriy Volochnyuk
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv., Glushkova Ave, 03022, Kyiv, Ukraine
- Institute of organic chemistry NAS of Ukraine, 5 Murmanska Str., 02660, Kyiv, Ukraine
| |
Collapse
|
41
|
Xiao F, Ding X, Shi Y, Wang D, Wang Y, Cui C, Zhu T, Chen K, Xiang P, Luo X. Application of ensemble learning for predicting GABA A receptor agonists. Comput Biol Med 2024; 169:107958. [PMID: 38194778 DOI: 10.1016/j.compbiomed.2024.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Over the past few decades, agonists binding to the benzodiazepine site of the GABAA receptor have been successfully developed as clinical drugs. Different modulators (agonist, antagonist, and reverse agonist) bound to benzodiazepine sites exhibit different or even opposite pharmacological effects, however, their structures are so similar that it is difficult to distinguish them based solely on molecular skeleton. This study aims to develop classification models for predicting the agonists. METHODS 306 agonists or non-agonists were collected from literature. Six machine learning algorithms including RF, XGBoost, AdaBoost, GBoost, SVM, and ANN algorithms were employed for model development. Using six descriptors including 1D/2D Descriptors, ECFP4, 2D-Pharmacophore, MACCS, PubChem, and Estate fingerprint to characterize chemical structures. The model interpretability was explored by SHAP method. RESULTS The best model demonstrated an AUC value of 0.905 and an MCC value of 0.808 for the test set. The PubMac-based model (PubMac-GB) achieved best AUC values of 0.935 for test set. The SHAP analysis results emphasized that MaccsFP62, ECFP_624, ECFP_724, and PubchemFP213 were the crucial molecular features. Applicability domain analysis was also performed to determine reliable prediction boundaries for the model. The PubMac-GB model was applied to virtual screening for potential GABAA agonists and the top 100 compounds were given. CONCLUSION Overall, our ensemble learning-based model (PubMac-GB) achieved comparable performance and would be helpful in effectively identifying agonists of GABAA receptors.
Collapse
Affiliation(s)
- Fu Xiao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xiaoyu Ding
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yan Shi
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Dingyan Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yitian Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chen Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Tingfei Zhu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Ping Xiang
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, 200063, China.
| | - Xiaomin Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
42
|
Bergh C, Rovšnik U, Howard R, Lindahl E. Discovery of lipid binding sites in a ligand-gated ion channel by integrating simulations and cryo-EM. eLife 2024; 12:RP86016. [PMID: 38289224 PMCID: PMC10945520 DOI: 10.7554/elife.86016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Ligand-gated ion channels transduce electrochemical signals in neurons and other excitable cells. Aside from canonical ligands, phospholipids are thought to bind specifically to the transmembrane domain of several ion channels. However, structural details of such lipid contacts remain elusive, partly due to limited resolution of these regions in experimental structures. Here, we discovered multiple lipid interactions in the channel GLIC by integrating cryo-electron microscopy and large-scale molecular simulations. We identified 25 bound lipids in the GLIC closed state, a conformation where none, to our knowledge, were previously known. Three lipids were associated with each subunit in the inner leaflet, including a buried interaction disrupted in mutant simulations. In the outer leaflet, two intrasubunit sites were evident in both closed and open states, while a putative intersubunit site was preferred in open-state simulations. This work offers molecular details of GLIC-lipid contacts particularly in the ill-characterized closed state, testable hypotheses for state-dependent binding, and a multidisciplinary strategy for modeling protein-lipid interactions.
Collapse
Affiliation(s)
- Cathrine Bergh
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of TechnologyStockholmSweden
| | - Urška Rovšnik
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Rebecca Howard
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of TechnologyStockholmSweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Erik Lindahl
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of TechnologyStockholmSweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| |
Collapse
|
43
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structure of an insect gustatory receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572336. [PMID: 38187590 PMCID: PMC10769236 DOI: 10.1101/2023.12.19.572336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Gustatory Receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors. However, GR structures have not been experimentally determined. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect Olfactory Receptors (ORs). Upon fructose binding, BmGr9's ion channel gate opens through helix S7b movements. In contrast to ORs, BmGR9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also unlike ORs, fructose binding by BmGr9 involves helix S5 and a binding pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with distinct ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M. Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Richard M. Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally
| | - Willem J. Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A. Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- Lead contact
| |
Collapse
|
44
|
Cowgill J, Fan C, Haloi N, Tobiasson V, Zhuang Y, Howard RJ, Lindahl E. Structure and dynamics of differential ligand binding in the human ρ-type GABA A receptor. Neuron 2023; 111:3450-3464.e5. [PMID: 37659407 DOI: 10.1016/j.neuron.2023.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/04/2023]
Abstract
The neurotransmitter γ-aminobutyric acid (GABA) drives critical inhibitory processes in and beyond the nervous system, partly via ionotropic type-A receptors (GABAARs). Pharmacological properties of ρ-type GABAARs are particularly distinctive, yet the structural basis for their specialization remains unclear. Here, we present cryo-EM structures of a lipid-embedded human ρ1 GABAAR, including a partial intracellular domain, under apo, inhibited, and desensitized conditions. An apparent resting state, determined first in the absence of modulators, was recapitulated with the specific inhibitor (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid and blocker picrotoxin and provided a rationale for bicuculline insensitivity. Comparative structures, mutant recordings, and molecular simulations with and without GABA further explained the sensitized but slower activation of ρ1 relative to canonical subtypes. Combining GABA with picrotoxin also captured an apparent uncoupled intermediate state. This work reveals structural mechanisms of gating and modulation with applications to ρ-specific pharmaceutical design and to our biophysical understanding of ligand-gated ion channels.
Collapse
Affiliation(s)
- John Cowgill
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Chen Fan
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Nandan Haloi
- Department of Applied Physics, SciLifeLab, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Victor Tobiasson
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden.
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden; Department of Applied Physics, SciLifeLab, KTH Royal Institute of Technology, 17121 Solna, Sweden.
| |
Collapse
|
45
|
Asahi M, Yamato K, Ozoe F, Ozoe Y. External amino acid residues of insect GABA receptor channels dictate the action of the isoxazoline ectoparasiticide fluralaner. PEST MANAGEMENT SCIENCE 2023; 79:4078-4082. [PMID: 37288963 DOI: 10.1002/ps.7606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Fluralaner is the first isoxazoline ectoparasiticide developed to protect companion animals from fleas and ticks. Fluralaner primarily inhibits arthropod γ-aminobutyric acid receptors (GABARs), which are ligand-gated ion channels comprising five subunits arranged around the channel pore. We previously reported that the action site of fluralaner resides at the M1-M3 transmembrane interface between adjacent GABAR subunits. To investigate whether fluralaner interacts with the second transmembrane segment (M2) located deep in the interface, we generated four housefly RDL GABAR mutants with non-conservative amino acid substitutions in the M2 region. RESULTS Electrophysiological analysis of GABARs expressed in Xenopus oocytes indicated that S313A and S314A mutants exhibited fluralaner sensitivities similar to that of the wild type. M312S mutant exhibited approximately seven-fold lower sensitivity than that of the wild type. Notably, the N316L mutant was almost insensitive to fluralaner. CONCLUSION The findings of this study indicate that the conserved external amino acid residues of insect GABAR channels play a critical role in the antagonistic effect of fluralaner. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miho Asahi
- Biological Research Laboratories, Nissan Chemical Corporation, Shiraoka, Saitama, Japan
| | - Kohei Yamato
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane, Japan
| | - Fumiyo Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane, Japan
- Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane, Japan
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane, Japan
- Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
46
|
Olafuyi OK, Kapusta K, Reed A, Kolodziejczyk W, Saloni J, Hill GA. Investigation of cannabidiol's potential targets in limbic seizures. In-silico approach. J Biomol Struct Dyn 2023; 41:7744-7756. [PMID: 36129109 PMCID: PMC10699433 DOI: 10.1080/07391102.2022.2124454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Even though the vast armamentarium of FDA-approved antiepileptic drugs is currently available, over one-third of patients do not respond to medication, which arises a need for alternative medicine. In clinical and preclinical studies, various investigations have shown the advantage of specific plant-based cannabidiol (CBD) products in treating certain groups of people with limbic epilepsy who have failed to respond to conventional therapies. This work aims to investigate possible mechanisms by which CBD possesses its anticonvulsant properties. Molecular targets for CBD's treatment of limbic epilepsy, including hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1), gamma-aminobutyric acid aminotransferase (GABA-AT), and gamma-aminobutyric acid type A receptor (GABAA), were used to evaluate its binding affinity. Interactions with the CB1 receptor were initially modeled as a benchmark, which further proved the efficiency of proposed here approach. Considering the successful benchmark, we further used the same concept for in silico investigation, targeting proteins of interest. As a result of molecular docking, molecular mechanics, and molecular dynamics simulations models of CBD-receptor complexes were proposed and evaluated. While CBD possessed decently high affinity and stability within the binding pockets of GABA-AT and some binding sites of GABAA, the most effective binding was observed in the CBD complex with HCN1 receptor. 100 ns molecular dynamics simulation revealed that CBD binds the open pore of HCN1 receptor, forming a similar pattern of interactions as potent Lamotrigine. Therefore, we can propose that HCN1 can serve as a most potent target for cannabinoid antiepileptic treatment. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Olabimpe K. Olafuyi
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry,
Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217,
USA
| | - Karina Kapusta
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry,
Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217,
USA
| | - Alexander Reed
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry,
Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217,
USA
| | - Wojciech Kolodziejczyk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry,
Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217,
USA
| | - Julia Saloni
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry,
Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217,
USA
| | - Glake A. Hill
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry,
Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217,
USA
| |
Collapse
|
47
|
Legesse DH, Fan C, Teng J, Zhuang Y, Howard RJ, Noviello CM, Lindahl E, Hibbs RE. Structural insights into opposing actions of neurosteroids on GABA A receptors. Nat Commun 2023; 14:5091. [PMID: 37607940 PMCID: PMC10444788 DOI: 10.1038/s41467-023-40800-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors mediate fast inhibitory signaling in the brain and are targets of numerous drugs and endogenous neurosteroids. A subset of neurosteroids are GABAA receptor positive allosteric modulators; one of these, allopregnanolone, is the only drug approved specifically for treating postpartum depression. There is a consensus emerging from structural, physiological and photolabeling studies as to where positive modulators bind, but how they potentiate GABA activation remains unclear. Other neurosteroids are negative modulators of GABAA receptors, but their binding sites remain debated. Here we present structures of a synaptic GABAA receptor bound to allopregnanolone and two inhibitory sulfated neurosteroids. Allopregnanolone binds at the receptor-bilayer interface, in the consensus potentiator site. In contrast, inhibitory neurosteroids bind in the pore. MD simulations and electrophysiology support a mechanism by which allopregnanolone potentiates channel activity and suggest the dominant mechanism for sulfated neurosteroid inhibition is through pore block.
Collapse
Affiliation(s)
| | - Chen Fan
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Yuxuan Zhuang
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rebecca J Howard
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Colleen M Noviello
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Erik Lindahl
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden.
- Dept. of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden.
| | - Ryan E Hibbs
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
48
|
Voronin MV, Shangin SV, Litvinova SA, Abramova EV, Kurbanov RD, Rybina IV, Vakhitova YV, Seredenin SB. Pharmacological Analysis of GABA A Receptor and Sigma1R Chaperone Interaction: Research Report I-Investigation of the Anxiolytic, Anticonvulsant and Hypnotic Effects of Allosteric GABA A Receptors' Ligands. Int J Mol Sci 2023; 24:9580. [PMID: 37298532 PMCID: PMC10253922 DOI: 10.3390/ijms24119580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Two groups of facts have been established in previous drug development studies of the non-benzodiazepine anxiolytic fabomotizole. First, fabomotizole prevents stress-induced decrease in binding ability of the GABAA receptor's benzodiazepine site. Second, fabomotizole is a Sigma1R chaperone agonist, and exposure to Sigma1R antagonists blocks its anxiolytic effect. To prove our main hypothesis of Sigma1R involvement in GABAA receptor-dependent pharmacological effects, we performed a series of experiments on BALB/c and ICR mice using Sigma1R ligands to study anxiolytic effects of benzodiazepine tranquilizers diazepam (1 mg/kg i.p.) and phenazepam (0.1 mg/kg i.p.) in the elevated plus maze test, the anticonvulsant effects of diazepam (1 mg/kg i.p.) in the pentylenetetrazole-induced seizure model, and the hypnotic effects of pentobarbital (50 mg/kg i.p.). Sigma1R antagonists BD-1047 (1, 10, and 20 mg/kg i.p.), NE-100 (1 and 3 mg/kg i.p.), and Sigma1R agonist PRE-084 (1, 5, and 20 mg/kg i.p.) were used in the experiments. Sigma1R antagonists have been found to attenuate while Sigma1R agonists can enhance GABAARs-dependent pharmacological effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulia V. Vakhitova
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (M.V.V.); (S.V.S.); (S.A.L.); (E.V.A.); (R.D.K.)
| | - Sergei B. Seredenin
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (M.V.V.); (S.V.S.); (S.A.L.); (E.V.A.); (R.D.K.)
| |
Collapse
|
49
|
Pierce SR, Germann AL, Xu SQ, Menon SL, Ortells MO, Arias HR, Akk G. Mutational Analysis of Anesthetic Binding Sites and Their Effects on GABA A Receptor Activation and Modulation by Positive Allosteric Modulators of the α7 Nicotinic Receptor. Biomolecules 2023; 13:698. [PMID: 37189445 PMCID: PMC10135968 DOI: 10.3390/biom13040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The positive allosteric modulators (PAMs) of the α7 nicotinic receptor N-(5-Cl-2-hydroxyphenyl)-N'-[2-Cl-5-(trifluoromethyl)phenyl]-urea (NS-1738) and (E)-3-(furan-2-yl)-N-(p-tolyl)-acrylamide (PAM-2) potentiate the α1β2γ2L GABAA receptor through interactions with the classic anesthetic binding sites located at intersubunit interfaces in the transmembrane domain of the receptor. In the present study, we employed mutational analysis to investigate in detail the involvement and contributions made by the individual intersubunit interfaces to receptor modulation by NS-1738 and PAM-2. We show that mutations to each of the anesthetic-binding intersubunit interfaces (β+/α-, α+/β-, and γ+/β-), as well as the orphan α+/γ- interface, modify receptor potentiation by NS-1738 and PAM-2. Furthermore, mutations to any single interface can fully abolish potentiation by the α7-PAMs. The findings are discussed in the context of energetic additivity and interactions between the individual binding sites.
Collapse
Affiliation(s)
- Spencer R. Pierce
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison L. Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sophia Q. Xu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saumith L. Menon
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcelo O. Ortells
- Facultad de Medicina, Universidad de Morón, CONICET, Morón 1708, Argentina
| | - Hugo R. Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK 74464, USA
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
50
|
Wang YJ, Seibert H, Ahn LY, Schaffer AE, Mu TW. Pharmacological chaperones restore proteostasis of epilepsy-associated GABA A receptor variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537383. [PMID: 37131660 PMCID: PMC10153171 DOI: 10.1101/2023.04.18.537383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α 1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α 1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α 1 variants. Mechanism of action study demonstrated that they enhance the folding and assembly and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Hailey Seibert
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Lucie Y. Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ashleigh E. Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|