1
|
Kauder F, Gyetvai G, Schmidt K, Stirnweis D, Haehre T, Prenzler K, Maeser A, Klapprodt C, Tiller F, Lübeck J, Stahl DJ. Expression of a modified Avr3a gene under the control of a synthetic pathogen-inducible promoter leads to Phytophthora infestans resistance in potato. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1683-1701. [PMID: 40059336 PMCID: PMC12018830 DOI: 10.1111/pbi.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 04/25/2025]
Abstract
Late blight resistance of potato was improved by the co-expression of the potato resistance gene R3a and the pathogen-inducible avirulence gene Avr3a of Phytopthora infestans. The synthetic pathogen-inducible promoter 2xS-4xD-NpCABEcore, which is composed of the cis-acting elements S and D and the core promoter of the NpCABE gene, was developed for potato. By analysis of 20 core promoters from Solanacea species synthetic promoters of the 2xS-2xD-type were generated which differ in their background activity, strength and promoter inducibility. These data showed that the core promoter plays an important role for the architecture of a synthetic promoter and influences the specificity and strength beside the cis-acting element. The 2xS-2xD-NpCABEcore promoter was further improved by increasing the number of the cis-acting elements resulting in the 2xS-4xD-NpCABEcore promoter. Modified Avr3a alleles, which triggered less cell death than the Avr3aKI allele, were expressed with the optimized synthetic promoter in transgenic potatoes with an R3a gene. The transgenic lines showed less late blight symptoms and up to 60% reduction of sporangia in detached leaf assays. The absence of a negative plant phenotype in the greenhouse demonstrated that the balanced co-expression of a modified Avr3a gene under the control of an optimized synthetic promoter is a promising strategy to increase late blight resistance of potatoes. This concept might be as well applied to other crops since the co-expression of the R3a and Avr3aKI gene induced cell death in leaves of corn, wheat and soybean in a transient assay.
Collapse
Affiliation(s)
| | | | - Klaus Schmidt
- KWS SAAT SE & Co. KGaAEinbeckGermany
- Deutsche Saatveredelung AGAsendorfGermany
| | | | | | - Kai Prenzler
- KWS SAAT SE & Co. KGaAEinbeckGermany
- Grillido GmbHMunichGermany
| | | | | | | | | | | |
Collapse
|
2
|
Wang X, Huo Z, Ma L, Ou S, Guo M. The salt and ABA inducible transcription factor gene, SlAITR3, negatively regulates tomato salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109735. [PMID: 40048942 DOI: 10.1016/j.plaphy.2025.109735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
It was of great significance for genetic improvement of salt-tolerant crops and increasing the yield of saline-alkali land to excavate salt stress response genes and clarify their molecular mechanism of regulating salt tolerance. Plant-specific transcription factor (TF) ABA-induced transcription repressors (AITRs) played important roles in salt stress. Nevertheless, the underlying mechanisms of how tomato AITRs (SlAITRs) regulate salt stress remain to be elucidated. In this study, we systematically described the characteristics of tomato SlAITR3 and its function in regulating salt tolerance. SlAITR3 was a transcriptional repressor located in nucleus, and SlAITR3 gene was induced by salt stress and abscisic acid (ABA). Tomato SlAITR3 silencing and knockout improved the salt tolerance. Compared with wide-type (WT) plants, the Na+/K+ ratio, cell membrane permeability and reactive oxygen species (ROS) were lower in SlAITR3 silencing or knockout mutants under salt stress conditions, while the antioxidant enzyme activities were higher. Conversely, the SlAITR3-overexpressing tomato plants showed sensitivity to salt stress. RNA-seq analysis suggested that SlAITR3 might function by regulating stress response genes, especially key genes involved in ion homeostasis and ROS metabolism. In summary, the nuclear localization TF SlAITR3 protein negatively regulated tomato salt tolerance. Our results provided a potential target and a new theoretical reference for the genetic improvement of tomato salt tolerance by biotechnology.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Zechun Huo
- College of Landscape Architecture, Shangqiu University, Shangqiu, 476000, China
| | - Li Ma
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Siying Ou
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Meng Guo
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, China; Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, 750021, China; Ningxia Facility Horticulture (Ningxia University) Technology Innovation Center, Yinchuan, 750021, China.
| |
Collapse
|
3
|
Mubeen M, Ali A, Iftikhar Y, Shahbaz M, Ullah MI, Ali MA, Fatima N, Sathiya Seelan JS, Tan YS, Algopishi UB. Innovative strategies for characterizing and managing huanglongbing in citrus. World J Microbiol Biotechnol 2024; 40:342. [PMID: 39375239 DOI: 10.1007/s11274-024-04135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/08/2024] [Indexed: 10/09/2024]
Abstract
Huanglongbing is a severe citrus disease that causes significant tree and crop losses worldwide. It is caused by three Candidatus liberibacter species and spread by psyllids and infected budwood. Various methods have been used to diagnose and understand HLB, including recent advances in molecular and biochemical assays that explore the pathogen's mode of action and its impact on the host plant. Characterization is essential for developing sustainable HLB management strategies. Nanotechnology, particularly nano sensors and metal nanoparticles, shows potential for precise disease diagnosis and control. Additionally, antibiotics, nanomaterials, and genetic engineering techniques like transgenesis offer promising avenues for mitigating HLB. These diverse approaches, from conventional to cutting-edge, contribute to developing integrated HLB management strategies for sustainable citrus cultivation. The review highlights the significant advancements in conventional and advanced molecular and biochemical characterization of HLB, aiding in early detection and understanding of the infection mechanism. It emphasizes the multidimensional efforts required to characterize disease and devise innovative management strategies. As the citrus industry faces unprecedented challenges, exploring new frontiers in HLB research provides hope for sustainable solutions and a resilient future for global citrus cultivation.
Collapse
Affiliation(s)
- Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Amjad Ali
- Department of Plant Protection, Sivas University of Science and Technology, Sivas, 58140, Turkey
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia.
| | - Muhammad Irfan Ullah
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Md Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, 44444, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | | |
Collapse
|
4
|
Tian J, Tang Z, Niu R, Zhou Y, Yang D, Chen D, Luo M, Mou R, Yuan M, Xu G. Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1715-1726. [PMID: 38679667 DOI: 10.1007/s11427-024-2588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Engineering disease-resistant plants can be a powerful solution to the issue of food security. However, it requires addressing two fundamental questions: what genes to express and how to control their expressions. To find a solution, we screen CRISPR-edited upstream open reading frame (uORF) variants in rice, aiming to optimize translational control of disease-related genes. By switching uORF types of the 5'-leader from Arabidopsis TBF1, we modulate the ribosome accessibility to the downstream firefly luciferase. We assume that by switching uORF types using CRISPR, we could generate uORF variants with alternative translation efficiency (CRISPR-aTrE-uORF). These variants, capable of boosting translation for resistance-associated genes and dampening it for susceptible ones, can help pinpoint previously unidentified genes with optimal expression levels. To test the assumption, we screened edited uORF variants and found that enhanced translational suppression of the plastic glutamine synthetase 2 can provide broad-spectrum disease resistance in rice with minimal fitness costs. This strategy, which involves modifying uORFs from none to some, or from some to none or different ones, demonstrates how translational agriculture can speed up the development of disease-resistant crops. This is vital for tackling the food security challenges we face due to growing populations and changing climates.
Collapse
Affiliation(s)
- Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Dan Yang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Luo
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
5
|
Iakovidis M, Chung EH, Saile SC, Sauberzweig E, El Kasmi F. The emerging frontier of plant immunity's core hubs. FEBS J 2023; 290:3311-3335. [PMID: 35668694 DOI: 10.1111/febs.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.
Collapse
Affiliation(s)
- Michail Iakovidis
- Horticultural Genetics and Biotechnology Department, Mediterranean Agricultural Institute of Chania, Greece
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Svenja C Saile
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Elke Sauberzweig
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| |
Collapse
|
6
|
Fu Y, Shu L, Li H, Zhang X, Liu X, Ou Z, Liang X, Qi X, Yang L. Establishment of Highly Efficient Plant Regeneration, Callus Transformation and Analysis of Botrytis cinerea-Responsive PR Promoters in Lilium brownii var. viridulum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1992. [PMID: 37653909 PMCID: PMC10221712 DOI: 10.3390/plants12101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
Lilium brownii var. viridulum, commonly called Longya lily, is a well-known flower and vegetable plant in China that has poor tolerance to Botrytis fungal disease. The molecularimprovement has mainly been restricted to an efficient regeneration and transformation system. In this study, the highly efficient regeneration of Longya lily was established through the optimization of embryogenic callus, adventitious shoot and rooting induction. The major factors influencing transformation (antibiotics, Agrobacterium concentration, infection time, suspension solution and coculture medium) were examined. The expression responses of PR promoters (ZmPR4 and BjCHI1) to B. cinerea were assessed in transgenic calli. The results showed that Murashige and Skoog (MS) medium with 1.0 mg·L-1 picloram (PIC) and 0.2 mg·L-1 1-naphthaleneacetic acid (NAA) under light conditions and MS with 0.5 mg·L-1 6-benzylaminopurine (6-BA) and 1.0 mg·L-1 NAA under darkness were optimal for embryogenic callus induction (64.67% rate) and proliferation (3.96 coefficient). Callus inoculation into MS containing 2.0 mg·L-1 thidiazuron (TDZ), 0.4 mg·L-1 NAA, 1.0 mg·L-1 TDZ and 0.5 mg·L-1 NAA led to shooting induction (92.22 of rate) and proliferation (3.28 of coefficient) promotion, respectively. The rooting rate reached 99.00% on MS with 0.3 mg·L-1 NAA. Moreover, a transformation rate of 65.56% was achieved by soaking the callus in Agrobacterium at an OD600 of 0.4 for 10 min in modified MS without NH4NO3 as the suspension solution and coculture medium before selecting 75 mg·L-1 hygromycin and 300 mg·L-1 cefotaxime. Only the BjCHI1 promoter was obviously expressed in transgenic calli. These results could facilitate the generation of Longya lily transgenic plants with improved B. cinerea resistance.
Collapse
Affiliation(s)
- Yongyao Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
- School of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Liling Shu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Hanyi Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Xingming Zhang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Xuan Liu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Zhengying Ou
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Xiaomeng Liang
- School of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Xiangying Qi
- School of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Liping Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| |
Collapse
|
7
|
Resistance strategies for defense against Albugo candida causing white rust disease. Microbiol Res 2023; 270:127317. [PMID: 36805163 DOI: 10.1016/j.micres.2023.127317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Albugo candida, the causal organism of white rust, is an oomycete obligate pathogen infecting crops of Brassicaceae family occurred on aerial part, including vegetable and oilseed crops at all growth stages. The disease expression is characterized by local infection appearing on the abaxial region developing white or creamy yellow blister (sori) on leaves and systemic infections cause hypertrophy and hyperplasia leading to stag-head of reproductive organ. To overcome this problem, several disease management strategies like fungicide treatments were used in the field and disease-resistant varieties have also been developed using conventional and molecular breeding. Due to high variability among A. candida isolates, there is no single approach available to understand the diverse spectrum of disease symptoms. In absence of resistance sources against pathogen, repetitive cultivation of genetically-similar varieties locally tends to attract oomycete pathogen causing heavy yield losses. In the present review, a deep insight into the underlying role of the non-host resistance (NHR) defence mechanism available in plants, and the strategies to exploit available gene pools from plant species that are non-host to A. candida could serve as novel sources of resistance. This work summaries the current knowledge pertaining to the resistance sources available in non-host germ plasm, the understanding of defence mechanisms and the advance strategies covers molecular, biochemical and nature-based solutions in protecting Brassica crops from white rust disease.
Collapse
|
8
|
Vo KTX, Yi Q, Jeon JS. Engineering effector-triggered immunity in rice: Obstacles and perspectives. PLANT, CELL & ENVIRONMENT 2023; 46:1143-1156. [PMID: 36305486 DOI: 10.1111/pce.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Improving rice immunity is one of the most effective approaches to reduce yield loss by biotic factors, with the aim of increasing rice production by 2050 amidst limited natural resources. Triggering a fast and strong immune response to pathogens, effector-triggered immunity (ETI) has intrigued scientists to intensively study and utilize the mechanisms for engineering highly resistant plants. The conservation of ETI components and mechanisms across species enables the use of ETI components to generate broad-spectrum resistance in plants. Numerous efforts have been made to introduce new resistance (R) genes, widen the effector recognition spectrum and generate on-demand R genes. Although engineering ETI across plant species is still associated with multiple challenges, previous attempts have provided an enhanced understanding of ETI mechanisms. Here, we provide a survey of recent reports in the engineering of rice R genes. In addition, we suggest a framework for future studies of R gene-effector interactions, including genome-scale investigations in both rice and pathogens, followed by structural studies of R proteins and effectors, and potential strategies to use important ETI components to improve rice immunity.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Qi Yi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| |
Collapse
|
9
|
Son S, Park SR. Plant translational reprogramming for stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1151587. [PMID: 36909402 PMCID: PMC9998923 DOI: 10.3389/fpls.2023.1151587] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Organisms regulate gene expression to produce essential proteins for numerous biological processes, from growth and development to stress responses. Transcription and translation are the major processes of gene expression. Plants evolved various transcription factors and transcriptome reprogramming mechanisms to dramatically modulate transcription in response to environmental cues. However, even the genome-wide modulation of a gene's transcripts will not have a meaningful effect if the transcripts are not properly biosynthesized into proteins. Therefore, protein translation must also be carefully controlled. Biotic and abiotic stresses threaten global crop production, and these stresses are seriously deteriorating due to climate change. Several studies have demonstrated improved plant resistance to various stresses through modulation of protein translation regulation, which requires a deep understanding of translational control in response to environmental stresses. Here, we highlight the translation mechanisms modulated by biotic, hypoxia, heat, and drought stresses, which are becoming more serious due to climate change. This review provides a strategy to improve stress tolerance in crops by modulating translational regulation.
Collapse
|
10
|
Huang Z, Xu Q, Fang X, Wu Z. Expression Activity of Artificial Promoters for Disease Resistance in Transgenic Eucalyptus urophylla. Genes (Basel) 2022; 13:genes13101813. [PMID: 36292698 PMCID: PMC9602378 DOI: 10.3390/genes13101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
The transcriptional properties of artificial promoters are closely related to the type and arrangement position of cis-elements. GWSF (374-bp) was an effective SPIP with four cis-element dimers. There were four pathogen-inducible cis-elements in the GWSF promoter (GST1-boxes, W-boxes, S-boxes, and F-boxes) and a minimal cauliflower mosaic virus 35S promoter. V-element dimers were inserted into the upstream (VGWSF), midstream (GWVSF), and downstream (GWSFV) regions of the original GWSF promoter sequence to examine their affect on the position. The expression activity of promoters was analyzed and estimated using the histochemical staining of leaf discs of eucalyptus with transient expression, an image digitization method to extract the color features, and the induction treatment by a plant pathogenic microorganism/inducer and qPCR assays. The histochemical staining results of the adventitious buds indicated that the promoters had been successfully integrated into the E. urophylla genome and that they drove the expression of the gus gene. There was a noticeable difference in the intensity of color between the adventitious buds on the same callus block, as well as the intensity of color within the same adventitious bud. According to the established two-factor model of blue value, there was a greater difference between the levels of the genotype factor than the promoter factor in eucalyptus leaf discs. Further, the basal and inducible transcriptional levels of the three improved promoters were investigated by qPCR. With the basal transcriptional level of the GWSF promoter normalized to one, the relative basal levels of VGWSF, GWVSF, and GWSFV were 1.40, 1.45, and 4.15, respectively. The qPCR results were consistent with the staining results of GUS histochemical staining. The three improved promoters all had the properties of being induced by salicylic acid, Ralstonia solanacearum, and Phytophthora capsici. The three improved promoters demonstrated a significantly higher TMV induction activity: their induction activity from high to low was GWSFV > GWVSF > VGWSF. The findings will be beneficial to the construction and optimization of artificial promoters for transgenic plants.
Collapse
Affiliation(s)
- Zhenchi Huang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Qingchun Xu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Xiaolan Fang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Zhihua Wu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
- Correspondence: ; Tel./Fax: +86-0759-3382-262 or +86-0759-3380-674
| |
Collapse
|
11
|
Dalla-Rizza M, Schvartzman C, Murchio S, Berrueta C, Boschi F, Menoni M, Lenzi A, Gimenez G. Field Performance of Resistant Potato Genotypes Transformed with the EFR Receptor from Arabidopsis thaliana in the Absence of Bacterial Wilt (Ralstonia solanacearum). THE PLANT PATHOLOGY JOURNAL 2022; 38:239-247. [PMID: 35678057 PMCID: PMC9343904 DOI: 10.5423/ppj.oa.01.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Bacterial wilt caused by the pathogen Ralstonia solanacearum is a devastating disease of potato crops. Harmonizing immunity to pathogens and crop yield is a balance between productive, economic, and environmental interests. In this work, the agronomic performance of two events of potato cultivar INIA Iporá expressing the Arabidopsis thaliana EFR gene (Iporá EFR 3 and Iporá EFR 12) previously selected for their high resistance to bacterial wilt was evaluated under pathogen-free conditions. During two cultivation cycles, the evaluated phenotypic characteristics were emergence, beginning of flowering, vigor, growth, leaf morphology, yield, number and size of tubers, analyzed under biosecurity standards. The phenotypic characteristics evaluated did not show differences, except in the morphology of the leaf with a more globose appearance and a shortening of the rachis in the transformation events with respect to untransformed Iporá. The Iporá EFR 3 genotype showed a ~40% yield decrease in reference to untransformed Iporá in the two trials, while Iporá EFR 12 did not differ statistically from untransformed Iporá. Iporá EFR 12 shows performance stability in the absence of the pathogen, compared to the untransformed control, positioning it as an interesting candidate for regions where the presence of the pathogen is endemic and bacterial wilt has a high economic impact.
Collapse
Affiliation(s)
- Marco Dalla-Rizza
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, CP 90100,
Uruguay
| | - Claudia Schvartzman
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, CP 90100,
Uruguay
| | - Sara Murchio
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, CP 90100,
Uruguay
| | - Cecilia Berrueta
- Programa de Producción Hortícola, Instituto Nacional de Investigación Agropecuaria, Canelones, CP 90100,
Uruguay
| | - Federico Boschi
- Instituto Nacional de Semillas, Canelones, CP 90100,
Uruguay
| | - Mariana Menoni
- Instituto Nacional de Semillas, Canelones, CP 90100,
Uruguay
| | - Alberto Lenzi
- Programa de Producción Hortícola, Instituto Nacional de Investigación Agropecuaria, Canelones, CP 90100,
Uruguay
| | - Gustavo Gimenez
- Programa de Producción Hortícola, Instituto Nacional de Investigación Agropecuaria, Canelones, CP 90100,
Uruguay
| |
Collapse
|
12
|
Osmani Z, Sabet MS, Nakahara KS. Aspartic protease inhibitor enhances resistance to potato virus Y and A in transgenic potato plants. BMC PLANT BIOLOGY 2022; 22:241. [PMID: 35549883 PMCID: PMC9097181 DOI: 10.1186/s12870-022-03596-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Viruses are the major threat to commercial potato (Solanum tuberosum) production worldwide. Because viral genomes only encode a small number of proteins, all stages of viral infection rely on interactions between viral proteins and host factors. Previously, we presented a list of the most important candidate genes involved in potato plants' defense response to viruses that are significantly activated in resistant cultivars. Isolated from this list, Aspartic Protease Inhibitor 5 (API5) is a critical host regulatory component of plant defense responses against pathogens. The purpose of this study is to determine the role of StAPI5 in defense of potato against potato virus Y and potato virus A, as well as its ability to confer virus resistance in a transgenic susceptible cultivar of potato (Desiree). Potato plants were transformed with Agrobacterium tumefaciens via a construct encoding the potato StAPI5 gene under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. RESULTS Transgenic plants overexpressing StAPI5 exhibited comparable virus resistance to non-transgenic control plants, indicating that StAPI5 functions in gene regulation during virus resistance. The endogenous StAPI5 and CaMV 35S promoter regions shared nine transcription factor binding sites. Additionally, the net photosynthetic rate, stomatal conductivity, and maximum photochemical efficiency of photosystem II were significantly higher in virus-infected transgenic plants than in wild-type plants. CONCLUSION Overall, these findings indicate that StAPI5 may be a viable candidate gene for engineering plant disease resistance to viruses that inhibit disease development.
Collapse
Affiliation(s)
- Zhila Osmani
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14111713116, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14111713116, Iran.
| | - Kenji S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Construction of a Porcine Skeletal Muscle-Specific Promoter by Inducing the Seed Region of miR-208a. Mol Biotechnol 2021; 64:473-481. [PMID: 34822105 DOI: 10.1007/s12033-021-00428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Transgenic promoter systems are of great interest for their potential use in gene therapy or production due to their high activity, long term, and cell specificity. Here, in order to obtain promoters with high activity and expressed specifically in skeletal muscle, the MYOD1, MYF5, and MCK were selected as the candidate genes. The truncated promoters were amplified and their activity was verified through dual-luciferase reporter gene test. We used genetic engineering techniques to improve promoter activity by tandemly linking enhancers and promoters or two promoters. Furthermore, synthetic promoter was the most active when two eMCK enhancers and pMCK promoter were cascaded. To improve the tissue specificity of the promoter, the seed region of translational repressor miR-208a was inserted into the downstream of the promoter (pGL3-2eMCK-pMCK-T208-mCherry-EGFP). The results showed that the expression level of target genes decreased significantly (P < 0.05) in myocardium rather than in skeletal muscle. The results of in vivo transfection indicated that tandem transcriptional regulatory elements can increase promoter activity in mice. This work laid the foundation for future research on genetically modified pigs.
Collapse
|
14
|
Translational regulation in pathogenic and beneficial plant-microbe interactions. Biochem J 2021; 478:2775-2788. [PMID: 34297042 DOI: 10.1042/bcj20210066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022]
Abstract
Plants are surrounded by a vast diversity of microorganisms. Limiting pathogenic microorganisms is crucial for plant survival. On the other hand, the interaction of plants with beneficial microorganisms promotes their growth or allows them to overcome nutrient deficiencies. Balancing the number and nature of these interactions is crucial for plant growth and development, and thus, for crop productivity in agriculture. Plants use sophisticated mechanisms to recognize pathogenic and beneficial microorganisms and genetic programs related to immunity or symbiosis. Although most research has focused on characterizing changes in the transcriptome during plant-microbe interactions, the application of techniques such as Translating Ribosome Affinity Purification (TRAP) and Ribosome profiling allowed examining the dynamic association of RNAs to the translational machinery, highlighting the importance of the translational level of control of gene expression in both pathogenic and beneficial interactions. These studies revealed that the transcriptional and the translational responses are not always correlated, and that translational control operates at cell-specific level. In addition, translational control is governed by cis-elements present in the 5'mRNA leader of regulated mRNAs, e.g. upstream open reading frames (uORFs) and sequence-specific motifs. In this review, we summarize and discuss the recent advances made in the field of translational control during pathogenic and beneficial plant-microbe interactions.
Collapse
|
15
|
Liu P, Zhang X, Zhang F, Xu M, Ye Z, Wang K, Liu S, Han X, Cheng Y, Zhong K, Zhang T, Li L, Ma Y, Chen M, Chen J, Yang J. A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. MOLECULAR PLANT 2021; 14:1088-1103. [PMID: 33798746 DOI: 10.1016/j.molp.2021.03.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/24/2021] [Accepted: 03/28/2021] [Indexed: 05/27/2023]
Abstract
Virus-derived small interference RNAs (vsiRNAs) not only suppress virus infection in plants via induction of RNA silencing but also enhance virus infection by regulating host defensive gene expression. However, the underlying mechanisms that control vsiRNA-mediated host immunity or susceptibility remain largely unknown. In this study, we generated several transgenic wheat lines using four artificial microRNA expression vectors carrying vsiRNAs from Wheat yellow mosaic virus (WYMV) RNA1. Laboratory and field tests showed that two transgenic wheat lines expressing amiRNA1 were highly resistant to WYMV infection. Further analyses showed that vsiRNA1 could modulate the expression of a wheat thioredoxin-like gene (TaAAED1), which encodes a negative regulator of reactive oxygen species (ROS) production in the chloroplast. The function of TaAAED1 in ROS scavenging could be suppressed by vsiRNA1 in a dose-dependent manner. Furthermore, transgenic expression of amiRNA1 in wheat resulted in broad-spectrum disease resistance to Chinese wheat mosaic virus, Barley stripe mosaic virus, and Puccinia striiformis f. sp. tritici infection, suggesting that vsiRNA1 is involved in wheat immunity via ROS signaling. Collectively, these findings reveal a previously unidentified mechanism underlying the arms race between viruses and plants.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoxiang Zhang
- Institute of Agricultural Sciences in Lixiahe District of Jiangsu Province, Yangzhou, Jiangsu 225007, China
| | - Fan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Miaoze Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuangxin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ke Wang
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaolei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ye Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Linzhi Li
- Yantai Academy of Agricultural Science, Shandong Province, No. 26 Gangcheng West Street, Fushan District, Yantai City, Shandong 265500, P.R. China
| | - Youzhi Ma
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Chen
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
16
|
Leng J, Tu W, Hou Y, Cui H. Temperature-Inducible Transgenic EDS1 and PAD4 in Arabidopsis Confer an Enhanced Disease Resistance at Elevated Temperature. PLANTS 2021; 10:plants10061258. [PMID: 34205696 PMCID: PMC8234125 DOI: 10.3390/plants10061258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 01/14/2023]
Abstract
Temperature is one of the most important environmental factors greatly affecting plant disease development. High temperature favors outbreaks of many plant diseases, which threaten food security and turn to be a big issue along with climate change and global warming. Here, we found that concurrent constitutive expression of the key immune regulators EDS1 and PAD4 in Arabidopsis significantly enhanced resistance to virulent bacterial pathogen Pseudomonas syringae pv. tomato at elevated temperature; however, autoimmunity-related growth retardation was also observed on these plants at a normal temperature. To balance this growth-defense trade-off, we generated transgenic plants dual expressing EDS1 and PAD4 genes under the control of a thermo-sensitive promoter from the HSP70 gene, whose expression is highly induced at an elevated temperature. Unlike constitutive overexpression lines, the proHSP70-EP transgenic lines exhibited enhanced resistance to bacterial pathogens at an elevated temperature without growth defects at normal condition. Thus, this study provides a potential strategy for genetic manipulation of plants to deal with the simultaneous abiotic and biotic stresses.
Collapse
|
17
|
Engineering cereal crops for enhanced abiotic stress tolerance. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Klejchova M, Silva-Alvim FAL, Blatt MR, Alvim JC. Membrane voltage as a dynamic platform for spatiotemporal signaling, physiological, and developmental regulation. PLANT PHYSIOLOGY 2021; 185:1523-1541. [PMID: 33598675 PMCID: PMC8133626 DOI: 10.1093/plphys/kiab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 05/10/2023]
Abstract
Membrane voltage arises from the transport of ions through ion-translocating ATPases, ion-coupled transport of solutes, and ion channels, and is an integral part of the bioenergetic "currency" of the membrane. The dynamics of membrane voltage-so-called action, systemic, and variation potentials-have also led to a recognition of their contributions to signal transduction, both within cells and across tissues. Here, we review the origins of our understanding of membrane voltage and its place as a central element in regulating transport and signal transmission. We stress the importance of understanding voltage as a common intermediate that acts both as a driving force for transport-an electrical "substrate"-and as a product of charge flux across the membrane, thereby interconnecting all charge-carrying transport across the membrane. The voltage interconnection is vital to signaling via second messengers that rely on ion flux, including cytosolic free Ca2+, H+, and the synthesis of reactive oxygen species generated by integral membrane, respiratory burst oxidases. These characteristics inform on the ways in which long-distance voltage signals and voltage oscillations give rise to unique gene expression patterns and influence physiological, developmental, and adaptive responses such as systemic acquired resistance to pathogens and to insect herbivory.
Collapse
Affiliation(s)
- Martina Klejchova
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fernanda A L Silva-Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
- Author for communication:
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
19
|
Chen S, Zhang N, Zhou G, Hussain S, Ahmed S, Tian H, Wang S. Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC PLANT BIOLOGY 2021; 21:137. [PMID: 33726681 PMCID: PMC7967987 DOI: 10.1186/s12870-021-02907-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/01/2021] [Indexed: 05/18/2023]
Abstract
BACKGORUND Environmental stresses including abiotic stresses and biotic stresses limit yield of plants. Stress-tolerant breeding is an efficient way to improve plant yield under stress conditions. Genome editing by CRISPR/Cas9 can be used in molecular breeding to improve agronomic traits in crops, but in most cases, with fitness costs. The plant hormone ABA regulates plant responses to abiotic stresses via signaling transduction. We previously identified AITRs as a family of novel transcription factors that play a role in regulating plant responses to ABA and abiotic stresses. We found that abiotic stress tolerance was increased in the single, double and triple aitr mutants. However, it is unclear if the increased abiotic stress tolerance in the mutants may have fitness costs. RESULTS We report here the characterization of AITRs as suitable candidate genes for CRISPR/Cas9 editing to improve plant stress tolerance. By using CRISPR/Cas9 to target AITR3 and AITR4 simultaneously in the aitr256 triple and aitr1256 quadruple mutants respectively, we generated Cas9-free aitr23456 quintuple and aitr123456 sextuple mutants. We found that reduced sensitivities to ABA and enhanced tolerance to drought and salt were observed in these mutants. Most importantly, plant growth and development was not affected even in the aitr123456 sextuple mutants, in whom the entire AITR family genes have been knocked out, and the aitr123456 sextuple mutants also showed a wild type response to the pathogen infection. CONCLUSIONS Our results suggest that knockout of the AITR family genes in Arabidopsis enhanced abiotic stress tolerance without fitness costs. Considering that knock-out a few AITRs will lead to enhanced abiotic stress tolerance, that AITRs are widely distributed in angiosperms with multiple encoding genes, AITRs may be targeted for molecular breeding to improve abiotic stress tolerance in plants including crops.
Collapse
Affiliation(s)
- Siyu Chen
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000, Linyi, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China.
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000, Linyi, China.
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
20
|
Sethi L, Kumari K, Dey N. Engineering of Plants for Efficient Production of Therapeutics. Mol Biotechnol 2021; 63:1125-1137. [PMID: 34398446 PMCID: PMC8365136 DOI: 10.1007/s12033-021-00381-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Plants are becoming useful platforms for recombinant protein production at present time. With the advancement of efficient molecular tools of genomics, proteomics, plants are now being used as a biofactory for production of different life saving therapeutics. Plant-based biofactory is an established production system with the benefits of cost-effectiveness, high scalability, rapid production, enabling post-translational modification, and being devoid of harmful pathogens contamination. This review introduces the main challenges faced by plant expression system: post-translational modifications, protein stability, biosafety concern and regulation. It also summarizes essential factors to be considered in engineering plants, including plant expression system, promoter, post-translational modification, codon optimization, and fusion tags, protein stabilization and purification, subcellular targeting, and making vaccines in an edible way. This review will be beneficial and informative to scholars and readers in the field of plant biotechnology.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Khushbu Kumari
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| |
Collapse
|
21
|
Wang Y, Wang C, Rajaofera MJN, Zhu L, Liu W, Zheng F, Miao W. WY7 is a newly identified promoter from the rubber powdery mildew pathogen that regulates exogenous gene expression in both monocots and dicots. PLoS One 2020; 15:e0233911. [PMID: 32479550 PMCID: PMC7263610 DOI: 10.1371/journal.pone.0233911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Promoters are very important for transcriptional regulation and gene expression, and have become invaluable tools for genetic engineering. Owing to the characteristics of obligate biotrophs, molecular research into obligate biotrophic fungi is seriously lagging behind, and very few of their endogenous promoters have been developed. In this study, a WY7 fragment was predicted in the genome of Oidium heveae Steinmann using PromoterScan. Its promoter function was verified with transient transformations (Agrobacterium tumefaciens-mediated transformation, ATMT) in Nicotiana tabacum cv. Xanthi nc. The analysis of the transcription range showed that WY7 could regulate GUS expression in both monocots (Zea mays Linn and Oryza sativa L. spp. Japonica cv. Nipponbare) and dicots (N. tabacum and Hylocereus undulates Britt). The results of the quantitative detection showed that the GUS transient expression levels when regulated by WY7 was more than 11.7 times that of the CaMV 35S promoter in dicots (N. tabacum) and 5.13 times that of the ACT1 promoter in monocots (O. sativa). GUS staining was not detected in the T1 generation of the WY7-GUS transgenic N. tabacum. This showed that WY7 is an inducible promoter. The cis elements of WY7 were predicted using PlantCARE, and further experiments indicated that WY7 was a low temperature- and salt-inducible promoter. Soluble proteins produced by WY7-hpa1Xoo transgenic tobacco elicited hypersensitive responses (HR) in N. tabacum leaves. N. tabacum transformed with pBI121-WY7-hpa1Xoo exhibited enhanced resistance to the tobacco mosaic virus (TMV). The WY7 promoter has a lot of potential as a tool for plant genetic engineering. Further in-depth studies will help to better understand the transcriptional regulation mechanisms of O. heveae.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Chen Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Mamy Jayne Nelly Rajaofera
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Li Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Fucong Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
22
|
Shokouhifar F, Bahrabadi M, Bagheri A, Mamarabadi M. Transient expression analysis of synthetic promoters containing F and D cis-acting elements in response to Ascochyta rabiei and two plant defense hormones. AMB Express 2019; 9:195. [PMID: 31802269 PMCID: PMC6892989 DOI: 10.1186/s13568-019-0919-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction of a foreign gene coding for a pathogen resistant protein into the target plant and constitutive expression of Resistance (R) proteins may confer high level of resistance. However, genetic engineering could lead to reprogramming of molecular mechanisms that manage physiological behavior, which in turn could lead to undesired results. Therefore, using a pathogen-inducible synthetic promoter approach, response to pathogens could be more specific. Ascochyta rabiei is a destructive fungal pathogen in chickpea production. In this study, we analyzed the expression pattern of three synthetic promoters in response to pathogen and two defense hormones. We have tested three synthetic pathogen-inducible promoters designated as (1) synthetic promoter-D box-D box (SP-DD), (2) synthetic promoter-F element-F element (SP-FF) and (3) synthetic promoter-F element-F element-D box-D box (SP-FFDD) via Agrobacterium transient expression assay. The cis-acting element designated as 'D' is a 31 base pair sequence from the promoter of parsley pathogenesis-related gene 2 (PR2 gene) and the cis-acting element designated as 'F' is a 39 base pairs sequence from the promoter of Arabidopsis AtCMPG1 gene. We used mycelial extracts from two pathotypes of A. rabiei as elicitor to define the responsiveness of the promoters against pathogen. Plant phytohormones including salicylic acid and methyl jasmonate were also used to study the promoter sensitivity in plant signaling pathways. Our results showed that the SP-FF promoter was highly inducible to A. rabiei and methyl jasmonate as well, while the SP-DD promoter was more sensitive to salicylic acid. The SP-FFDD promoter was equally responsive to both pathotypes of A. rabiei which is probably due to the complex nature of box D cis-acting element.
Collapse
Affiliation(s)
- Farhad Shokouhifar
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjan Bahrabadi
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashahad, Iran
| | - Mojtaba Mamarabadi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashahad, Iran
| |
Collapse
|
23
|
Li F, Liu W, Zhou X. Pivoting plant immunity from theory to the field. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1539-1542. [DOI: 10.1007/s11427-019-1565-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
|
24
|
Pandey SP, Singh AP, Srivastava S, Chandrashekar K, Sane AP. A strong early acting wound-inducible promoter, RbPCD1pro, activates cryIAc expression within minutes of wounding to impart efficient protection against insects. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1458-1470. [PMID: 30623549 PMCID: PMC6576099 DOI: 10.1111/pbi.13071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The expression of insecticidal proteins under constitutive promoters in transgenic plants is fraught with problems like developmental abnormalities, yield drag, expression in unwanted tissues, and seasonal changes in expression. RbPCD1pro, a rapid, early acting wound-inducible promoter from rose that is activated within 5 min of wounding, was isolated and characterized. Wounding increased transcript levels up to 150 and 500 folds within 5 and 20 min coupled with high translation as seen by histochemical GUS enzyme activity within 5-20 min. RbPCD1pro was activated by both sucking and chewing insects and showed wound-inducible expression in various aerial tissues of plants representing commercially important dicot and monocot families. The promoter showed no expression in any vegetative tissue except upon wounding. Functionality of RbPCD1pro was tested by its ability to drive expression of the insecticidal protein gene cryIAc in transgenic Arabidopsis and tomato. Strong wound-inducible CryIAc expression was observed in both plants that increased 100-350 fold (Arabidopsis) and 280-600 fold (tomato) over the unwounded background within 5 min and over 1000-1600 fold within 20 min. The unwounded background level was just 3-6% of the CaMV35S promoter while wound-induced expression was 5-27 folds higher than the best CaMV35S line in just 5 min and 80-fold higher in 20 min. Transgenic plants showed strong resistance even to larger fourth instar larvae of H. armigera and no abnormalities in development and general plant growth. This is one of the earliest acting promoters with wide biotechnological application across monocot and dicot plants.
Collapse
Affiliation(s)
- Saurabh Prakash Pandey
- Plant Gene Expression LabCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Amar Pal Singh
- Plant Gene Expression LabCSIR‐National Botanical Research InstituteLucknowIndia
- Present address:
National Institute for Plant Genome ResearchNew Delhi110067India
| | - Shruti Srivastava
- Plant Gene Expression LabCSIR‐National Botanical Research InstituteLucknowIndia
| | - Krishnappa Chandrashekar
- Genomics and Molecular Biology DivisionCSIR‐National Botanical Research InstituteLucknowIndia
- Present address:
IARI Regional CentreAundh, Pune411067India
| | - Aniruddha P. Sane
- Plant Gene Expression LabCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
25
|
Wang Y, Li Y, Rosas-Diaz T, Caceres-Moreno C, Lozano-Duran R, Macho AP. The IMMUNE-ASSOCIATED NUCLEOTIDE-BINDING 9 Protein Is a Regulator of Basal Immunity in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:65-75. [PMID: 29958083 DOI: 10.1094/mpmi-03-18-0062-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A robust regulation of plant immune responses requires a multitude of positive and negative regulators that act in concert. The immune-associated nucleotide-binding (IAN) gene family members are associated with immunity in different organisms, although no characterization of their function has been carried out to date in plants. In this work, we analyzed the expression patterns of IAN genes and found that IAN9 is repressed upon pathogen infection or treatment with immune elicitors. IAN9 encodes a plasma membrane-localized protein that genetically behaves as a negative regulator of immunity. A novel ian9 mutant generated by CRISPR/Cas9 shows increased resistance to Pseudomonas syringae, while transgenic plants overexpressing IAN9 show a slight increase in susceptibility. In vivo immunoprecipitation of IAN9-green fluorescent protein followed by mass spectrometry analysis revealed that IAN9 associates with a previously uncharacterized C3HC4-type RING-finger domain-containing protein that we named IAN9-associated protein 1 (IAP1), which also acts as a negative regulator of basal immunity. Interestingly, neither ian9 or iap1 mutant plants show any obvious developmental phenotype, suggesting that they display enhanced inducible immunity rather than constitutive immune responses. Because both IAN9 and IAP1 have orthologs in important crop species, they could be suitable targets to generate plants more resistant to diseases caused by bacterial pathogens without yield penalty.
Collapse
Affiliation(s)
- Yuanzheng Wang
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
- 2 University of Chinese Academy of Sciences, Beijing, China
| | - Yansha Li
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| | - Tabata Rosas-Diaz
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| | - Carlos Caceres-Moreno
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
- 2 University of Chinese Academy of Sciences, Beijing, China
| | - Rosa Lozano-Duran
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| | - Alberto P Macho
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| |
Collapse
|
26
|
Abstract
Designing the expression cassettes with desired properties remains the most important consideration of gene engineering technology. One of the challenges for predictive gene expression is the modeling of synthetic gene switches to regulate one or more target genes which would directly respond to specific chemical, environmental, and physiological stimuli. Assessment of natural promoter, high-throughput sequencing, and modern biotech inventory aided in deciphering the structure of cis elements and molding the native cis elements into desired synthetic promoter. Synthetic promoters which are molded by rearrangement of cis motifs can greatly benefit plant biotechnology applications. This review gives a glimpse of the manual in vivo gene regulation through synthetic promoters. It summarizes the integrative design strategy of synthetic promoters and enumerates five approaches for constructing synthetic promoters. Insights into the pattern of cis regulatory elements in the pursuit of desirable "gene switches" to date has also been reevaluated. Joint strategies of bioinformatics modeling and randomized biochemical synthesis are addressed in an effort to construct synthetic promoters for intricate gene regulation.
Collapse
|
27
|
Kong W, Ding L, Cheng J, Wang B. Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa. RICE (NEW YORK, N.Y.) 2018; 11:52. [PMID: 30209707 PMCID: PMC6135729 DOI: 10.1186/s12284-018-0243-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/05/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Complex co-regulatory networks in plants may elicit responses during pathogen infections. A number of genes are activated when these responses take place. Identification of these genes would shed new light on understanding the mechanisms of rice response to pathogen infections and the elucidation of crosstalk among diverse signaling networks in rice disease resistance/susceptibility. RESULTS Here we report the identification of genes with pathogen-inducible cis-regulatory elements (PICEs) (AS-1, G-box, GCC-box, and H-box) in the promoter regions in rice. Our results showed that a set of 882 rice genes contained these four elements in their promoter regions. Of these genes, 190 encode disease resistance/susceptibility related proteins, and 70 encode transcription factors. Analyses of the available microarray data demonstrated that 357 transcripts were differentially expressed after pathogen infections. 48 out of 53 differentially expressed transcription factors are up-regulated or down-regulated by more than 1.1-fold in response to pathogen infections. Analyses of the public mRNA-Seq data showed that 327 transcripts were differently expressed after pathogen infections. A total of 100 up-regulated genes and 37 down-regulated genes were found in common between the microarray and mRNA-Seq data. CONCLUSIONS We report here a set of rice genes that contain the four PICEs, i.e., AS-1, G-box, GCC-box, and H-box, in their promoter regions, of which, 53.5% were up- or down-regulated when pathogens attack. The PICEs in the gene promoters are critical for rice response to pathogen infections. They are also useful markers for identification of rice genes involved in response to pathogen infections.
Collapse
Affiliation(s)
- Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Li Ding
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Jia Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Bin Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
28
|
Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, Sharma TR. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice. Int J Mol Sci 2018; 19:E1141. [PMID: 29642631 PMCID: PMC5979409 DOI: 10.3390/ijms19041141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host-pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs) and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Nag
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Preeti Arya
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| |
Collapse
|
29
|
Díaz Tatis PA, Herrera Corzo M, Ochoa Cabezas JC, Medina Cipagauta A, Prías MA, Verdier V, Chavarriaga Aguirre P, López Carrascal CE. The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis. PLANTA 2018; 247:1031-1042. [PMID: 29453662 DOI: 10.1007/s00425-018-2863-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/24/2018] [Indexed: 05/27/2023]
Abstract
The overexpression of RXam1 leads to a reduction in bacterial growth of XamCIO136, suggesting that RXam1 might be implicated in strain-specific resistance. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) is a prevalent disease in all regions, where cassava is cultivated. CBB is a foliar and vascular disease usually controlled through host resistance. Previous studies have found QTLs explaining resistance to several Xam strains. Interestingly, one QTL called XM5 that explained 13% of resistance to XamCIO136 was associated with a similar fragment of the rice Xa21-resistance gene called PCR250. In this study, we aimed to further identify and characterize this fragment and its role in resistance to CBB. Screening and hybridization of a BAC library using the molecular marker PCR250 as a probe led to the identification of a receptor-like kinase similar to Xa21 and were called RXam1 (Resistance to Xam 1). Here, we report the functional characterization of susceptible cassava plants overexpressing RXam1. Our results indicated that the overexpression of RXam1 leads to a reduction in bacterial growth of XamCIO136. This suggests that RXAM1 might be implicated in strain-specific resistance to XamCIO136.
Collapse
Affiliation(s)
- Paula A Díaz Tatis
- Laboratorio Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá, Colombia
- Grupo de Ciencias Biológicas y Químicas, Departamento de Biología, Universidad Antonio Nariño, Cra1 #47a15, Bogotá, Colombia
| | - Mariana Herrera Corzo
- Laboratorio Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá, Colombia
- Programa de Biología y Mejoramiento de la Palma de Aceite, Cenipalma, Dir: Km 137 via Pto Araujo-La lizama, Bogotá, Colombia
| | - Juan C Ochoa Cabezas
- Laboratorio Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá, Colombia
- Department of Integrative Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479, Poznan, Poland
| | - Adriana Medina Cipagauta
- Plataforma de Transformación Genética, Centro Internacional de Agricultura Tropical (CIAT), Km 17 Recta Cali-Palmira, Palmira, Colombia
| | - Mónica A Prías
- Plataforma de Transformación Genética, Centro Internacional de Agricultura Tropical (CIAT), Km 17 Recta Cali-Palmira, Palmira, Colombia
| | - Valerie Verdier
- Institute de Recherche pour le Développement (IRD), CIRAD, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394, Montpellier, France
| | - Paul Chavarriaga Aguirre
- Plataforma de Transformación Genética, Centro Internacional de Agricultura Tropical (CIAT), Km 17 Recta Cali-Palmira, Palmira, Colombia
| | - Camilo E López Carrascal
- Laboratorio Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá, Colombia.
| |
Collapse
|
30
|
Hu Y, Li Y, Hou F, Wan D, Cheng Y, Han Y, Gao Y, Liu J, Guo Y, Xiao S, Wang Y, Wen YQ. Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:20-31. [PMID: 29362096 DOI: 10.1016/j.plantsci.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 11/11/2017] [Indexed: 05/08/2023]
Abstract
Powdery mildew is the most economically important disease of cultivated grapevines worldwide. Here, we report that the Arabidopsis broad-spectrum disease resistance gene RPW8.2 could improve resistance to powdery mildew in Vitis vinifera cv. Thompson Seedless. The RPW8.2-YFP fusion gene was stably expressed in grapevines from either the constitutive 35S promoter or the native promoter (NP) of RPW8.2. The grapevine shoots and plantlets transgenic for 35S::RPW8.2-YFP showed reduced rooting and reduced growth at later development stages in the absence of any pathogens. Infection tests with an adapted grapevine powdery mildew isolate En NAFU1 showed that hyphal growth and sporulation were significantly restricted in transgenic grapevines expressing either of the two constructs. The resistance appeared to be attributable to the ectopic expression of RPW8.2, and associated with the enhanced encasement of the haustorial complex (EHC) and onsite accumulation of H2O2. In addition, the RPW8.2-YFP fusion protein showed focal accumulation around the fungal penetration sites. Transcriptome analysis revealed that ectopic expression of RPW8.2 in grapevines not only significantly enhanced salicylic acid-dependent defense signaling, but also altered expression of other phytohormone-associated genes. Taken together, our results indicate that RPW8.2 could be utilized as a transgene for improving resistance against powdery mildew in grapevines.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yajuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Fengjuan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Dongyan Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yuan Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yongtao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yurong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Ye Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland College Park, Rockville, MD 20850, USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
31
|
Mohan C, Jayanarayanan AN, Narayanan S. Construction of a novel synthetic root-specific promoter and its characterization in transgenic tobacco plants. 3 Biotech 2017; 7:234. [PMID: 28691155 DOI: 10.1007/s13205-017-0872-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/06/2017] [Indexed: 12/01/2022] Open
Abstract
Synthetic promoter technology offers a framework for designing expression cassettes that could provide precise control of transgene expression. Such artificially designed promoters enable defined transgene regulation, reduce unwanted background expression, and can overcome homology-dependent gene silencing in transgenic plants. In the present study, a synthetic root-specific module was designed using characterized cis-acting elements, fused with minimal promoter (86 bp) from PortUbi882 promoter, and cloned in pCAMBIA1305.1 by replacing CaMV 35S promoter so as to drive GUS expression. Two constructs were made; one had the synthetic module at the 5' end of the minimal promoter (SynR1), whereas in the other construct, the module was present in both 5' and 3' ends (SynR2). Furthermore, the synthetic promoter constructs were transformed in tobacco wherein SynR1 promoter drove constitutive expression, whereas SynR2 conferred root-specific expression though slight leaky expression was present in stem. GUS assay in the roots of transgenic tobacco plants (T1) indicated that SynR2 promoter expressed significantly higher GUS activity than the CaMV 35S promoter. The real-time quantitative PCR (RT-qPCR) analysis of GUS gene further confirmed that SynR2 promoter conferred 2.1-fold higher root-specific expression when compared to CaMV 35S promoter.
Collapse
Affiliation(s)
- Chakravarthi Mohan
- Genetic Transformation Laboratory, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India.
- Molecular Biology Laboratory, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Ashwin Narayan Jayanarayanan
- Genetic Transformation Laboratory, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Subramonian Narayanan
- Genetic Transformation Laboratory, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| |
Collapse
|
32
|
Kanofsky K, Bahlmann AK, Hehl R, Dong DX. Combinatorial requirement of W- and WT-boxes in microbe-associated molecular pattern-responsive synthetic promoters. PLANT CELL REPORTS 2017; 36:971-986. [PMID: 28341984 DOI: 10.1007/s00299-017-2130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/10/2017] [Indexed: 05/12/2023]
Abstract
The WT-box GGACTTTC belongs to a novel class of MAMP-responsive cis-regulatory sequences that are part of combinatorial elements. Microbe-associated molecular pattern (MAMP)-responsive synthetic promoters were generated with two cis-regulatory modules (CRM1 and CRM2) from the Arabidopsis thaliana WRKY30 promoter. Both modules harbour two W-boxes and one WT-box. Mutation analysis of the synthetic promoters and transient gene expression analysis in parsley protoplasts underline the importance of the W- and WT-boxes for MAMP-responsive gene expression and reveal the combinatorial requirement of at least two boxes for full MAMP responsivity. In the context of the native promoter, CRM1 is required for MAMP responsivity, while CRM2 alone is not sufficient. Yeast one-hybrid screenings using CRM1 with a transcription factor (TF) only prey library select only WRKY factors. Selection of WRKY26, 40, 41, and 70 requires the W-boxes. The WT-box is also required for selection of WRKY26 and 41 in yeast. In plant cells, WRKY26, 40, and 41 act as repressors of MAMP-responsive gene expression, whereas WRKY70 is an activator. To investigate whether the WT-box is also required for WRKY26 and 41 mediated gene expression in plant cells, both were converted into transcriptional activators by adding the GAL4 activating domain (AD). In contrast to yeast, transient gene expression in parsley protoplasts shows that only the W-boxes from CRM1 are required for WRKY41AD-activated reporter gene activity but not the WT-box. In addition, WRKY70-activated reporter gene activity in parsley cells does not require the WT-box of CRM1. The results demonstrate the importance of the WT-box as a new cis-regulatory sequence for MAMP-responsive gene expression. Based on these and earlier results, two types of WT-boxes are proposed.
Collapse
Affiliation(s)
- Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Ann-Kathrin Bahlmann
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| | - Do Xuan Dong
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Laboratory of Plant Cell Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| |
Collapse
|
33
|
|
34
|
uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 2017; 545:491-494. [PMID: 28514448 PMCID: PMC5532539 DOI: 10.1038/nature22372] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/19/2017] [Indexed: 12/15/2022]
Abstract
Controlling plant disease has been a struggle for mankind since the advent of agriculture. Studies of plant immune mechanisms have led to strategies of engineering resistant crops through ectopic transcription of plants’ own defence genes, such as the master immune regulatory gene NPR11. However, enhanced resistance obtained through such strategies is often associated with significant penalties to fitness2, making the resulting products undesirable for agricultural applications. To remedy this problem, we sought more stringent mechanisms of expressing defence proteins. Based on our latest finding that translation of key immune regulators, such as TBF13, is rapidly and transiently induced upon pathogen challenge (accompanying manuscript), we developed “TBF1-cassette” consisting of not only the immune-inducible promoter but also two pathogen-responsive upstream open reading frames (uORFsTBF1) of the TBF1 gene. We demonstrate that inclusion of the uORFsTBF1-mediated translational control over the production of snc1 (an autoactivated immune receptor) in Arabidopsis (At) and AtNPR1 in rice enables us to engineer broad-spectrum disease resistance without compromising plant fitness in the laboratory or in the field. This broadly applicable new strategy may lead to reduced use of pesticides and lightening of selective pressure for resistant pathogens.
Collapse
|
35
|
Zou X, Jiang X, Xu L, Lei T, Peng A, He Y, Yao L, Chen S. Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. PLANT MOLECULAR BIOLOGY 2017; 93:341-353. [PMID: 27866312 DOI: 10.1007/s11103-016-0565-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
Expression of synthesized cecropin B genes in the citrus phloem, where Candidatus Liberibacter asiaticus resides, significantly decreased host susceptibility to Huanglongbing. Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus bacteria, is the most destructive disease of citrus worldwide. All of the commercial sweet orange cultivars lack resistance to this disease. The cationic lytic peptide cecropin B, isolated from the Chinese tasar moth (Antheraea pernyi), has been shown to effectively eliminate bacteria. In this study, we demonstrated that transgenic citrus (Citrus sinensis Osbeck) expressing the cecropin B gene specifically in the phloem had a decreased susceptibility to HLB. Three plant codon-optimized synthetic cecropin B genes, which were designed to secrete the cecropin B peptide into three specific sites, the extracellular space, the cytoplasm, and the endoplasmic reticulum, were constructed. Under the control of the selected phloem-specific promoter GRP1.8, these constructs were transferred into the citrus genome. All of the cecropin B genes were efficiently expressed in the phloem of transgenic plants. Over more than a year of evaluation, the transgenic lines exhibited reduced disease severity. Bacterial populations in transgenic lines were significantly lower than in the controls. Two lines, in which bacterial populations were significantly lower than in others, showed no visible symptoms. Thus, we demonstrated the potential application of the phloem-specific expression of an antimicrobial peptide gene to protect citrus plants from HLB.
Collapse
Affiliation(s)
- Xiuping Zou
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/National Center for Citrus Variety Improvement, Chongqing, 400712, People's Republic of China.
- Citrus Research Institute, Southwest University, Chongqing, 400716, People's Republic of China.
| | - Xueyou Jiang
- Citrus Research Institute, Southwest University, Chongqing, 400716, People's Republic of China
- Guangan Agricultural Bureau, Chongqing, 400716, People's Republic of China
| | - Lanzhen Xu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/National Center for Citrus Variety Improvement, Chongqing, 400712, People's Republic of China
- Citrus Research Institute, Southwest University, Chongqing, 400716, People's Republic of China
| | - Tiangang Lei
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/National Center for Citrus Variety Improvement, Chongqing, 400712, People's Republic of China
- Citrus Research Institute, Southwest University, Chongqing, 400716, People's Republic of China
| | - Aihong Peng
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/National Center for Citrus Variety Improvement, Chongqing, 400712, People's Republic of China
- Citrus Research Institute, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yongrui He
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/National Center for Citrus Variety Improvement, Chongqing, 400712, People's Republic of China
- Citrus Research Institute, Southwest University, Chongqing, 400716, People's Republic of China
| | - Lixiao Yao
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/National Center for Citrus Variety Improvement, Chongqing, 400712, People's Republic of China
- Citrus Research Institute, Southwest University, Chongqing, 400716, People's Republic of China
| | - Shanchun Chen
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/National Center for Citrus Variety Improvement, Chongqing, 400712, People's Republic of China.
- Citrus Research Institute, Southwest University, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
36
|
Lin CH, Chen CY. The pathogen-inducible promoter of defense-related LsGRP1 gene from Lilium functioning in phylogenetically distinct species of plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:22-31. [PMID: 27964782 DOI: 10.1016/j.plantsci.2016.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
A suitable promoter greatly enhances the efficiency of target gene expression of plant molecular breeding and farming; however, only very few promoters are available for economically important non-graminaceous ornamental monocots. In this study, an 868-bp upstream region of defense-related LsGRP1 of Lilium, named PLsGRP1, was cloned by genome walking and proven to exhibit promoter activity in Nicotiana benthamiana and Lilium 'Stargazer' as assayed by agroinfiltration-based β-glucuronidase (GUS) expression system. Many putative biotic stress-, abiotic stress- and physiological regulation-related cis-acting elements were found in PLsGRP1. Serial deletion analysis of PLsGRP1 performed in Nicotiana tabacum var. Wisconsin 38 accompanied with types of treatments indicated that 868-bp PLsGRP1 was highly induced upon pathogen challenges and cold stress while the 131-bp 3'-end region of PLsGRP1 could be dramatically induced by many kinds of abiotic stresses, biotic stresses and phytohormone treatments. Besides, transient GUS expression in a fern, gymnosperms, monocots and dicots revealed good promotor activity of PLsGRP1 in many phylogenetically distinct plant species. Thus, pathogen-inducible PLsGRP1 and its 131-bp 3'-end region are presumed potential as tools for plant molecular breeding and farming.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC.
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC.
| |
Collapse
|
37
|
Imran QM, Falak N, Hussain A, Mun BG, Sharma A, Lee SU, Kim KM, Yun BW. Nitric Oxide Responsive Heavy Metal-Associated Gene AtHMAD1 Contributes to Development and Disease Resistance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1712. [PMID: 27917181 PMCID: PMC5116471 DOI: 10.3389/fpls.2016.01712] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/31/2016] [Indexed: 05/29/2023]
Abstract
Exposure of plants to different biotic and abiotic stress condition instigates significant change in the cellular redox status; resulting in the elevation of reactive nitrogen species that play signaling role in mediating defense responses. Heavy metal associated (HMA) domain containing genes are required for spatio-temporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by AtHMA genes, we identified 14 Arabidopsis HMA genes that were differentially expressed in response to nitrosative stress through RNA-seq analysis. Of those 14 genes, the expression of eight HMA genes was significantly increased, whereas that of six genes was significantly reduced. We further validated the RNA-seq results through quantitative real-time PCR analysis. Gene ontology analysis revealed the involvement of these genes in biological processes such as hemostasis and transport. The majority of these nitric oxide (NO)-responsive AtHMA gene products are carrier/transport proteins. AtHMAD1 (At1g51090) showed the highest fold change to S-nitrosocystein. We therefore, further investigated its role in oxidative and nitrosative mediated stress conditions and found that AtHMAD1 has antagonistic role in shoot and root growth. Characterization of AtHMAD1 through functional genomics showed that the knock out mutant athmad1 plants were resistant to virulent Pseudomonas syringae (DC3000) and showed early induction and high transcript accumulation of pathogenesis related gene. Furthermore, inoculation of athamd1 with avirulent strain of the same bacteria showed negative regulation of R-gene mediated resistance. These results were supported by hypersensitive cell death response and cell death induced electrolyte leakage. AtHMAD1 was also observed to negatively regulate systemic acquired resistance SAR as the KO mutant showed induction of SAR marker genes. Overall, these results imply that NO-responsive AtHMA domain containing genes may play an important role in plant development and immunity.
Collapse
Affiliation(s)
- Q. Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Noreen Falak
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan UniversityMardan, Pakistan
| | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Arti Sharma
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Kyung-Min Kim
- Laboratory of Plant Molecular Breeding, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
38
|
Austin RS, Hiu S, Waese J, Ierullo M, Pasha A, Wang TT, Fan J, Foong C, Breit R, Desveaux D, Moses A, Provart NJ. New BAR tools for mining expression data and exploring Cis-elements in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:490-504. [PMID: 27401965 DOI: 10.1111/tpj.13261] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/23/2016] [Accepted: 07/01/2016] [Indexed: 05/21/2023]
Abstract
Identifying sets of genes that are specifically expressed in certain tissues or in response to an environmental stimulus is useful for designing reporter constructs, generating gene expression markers, or for understanding gene regulatory networks. We have developed an easy-to-use online tool for defining a desired expression profile (a modification of our Expression Angler program), which can then be used to identify genes exhibiting patterns of expression that match this profile as closely as possible. Further, we have developed another online tool, Cistome, for predicting or exploring cis-elements in the promoters of sets of co-expressed genes identified by such a method, or by other methods. We present two use cases for these tools, which are freely available on the Bio-Analytic Resource at http://BAR.utoronto.ca.
Collapse
Affiliation(s)
- Ryan S Austin
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Shu Hiu
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jamie Waese
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Matthew Ierullo
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Ting Ting Wang
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jim Fan
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Curtis Foong
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Robert Breit
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Alan Moses
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
39
|
Chen W, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, Zhao Y, Deising HB, Kumlehn J, Schweizer P. Host-induced silencing of Fusarium culmorum genes protects wheat from infection. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4979-91. [PMID: 27540093 PMCID: PMC5014151 DOI: 10.1093/jxb/erw263] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants producing antisense or double-stranded RNA molecules that target specific genes of eukaryotic pests or pathogens can become protected from their attack. This beneficial effect was also reported for plant-fungus interactions and is believed to reflect uptake of the RNAs by the fungus via an as yet unknown mechanism, followed by target gene silencing. Here we report that wheat plants pre-infected with Barley stripe mosaic virus (BSMV) strains containing antisense sequences against target genes of the Fusarium head blight (FHB) fungus F. culmorum caused a reduction of corresponding transcript levels in the pathogen and reduced disease symptoms. Stable transgenic wheat plants carrying an RNAi hairpin construct against the β-1, 3-glucan synthase gene FcGls1 of F. culmorum or a triple combination of FcGls1 with two additional, pre-tested target genes also showed enhanced FHB resistance in leaf and spike inoculation assays under greenhouse and near-field conditions, respectively. Microscopic evaluation of F. culmorum development in plants transiently or stably expressing FcGls1 silencing constructs revealed aberrant, swollen fungal hyphae, indicating severe hyphal cell wall defects. The results lead us to propose host-induced gene silencing (HIGS) as a plant protection approach that may also be applicable to highly FHB-susceptible wheat genotypes.
Collapse
Affiliation(s)
- Wanxin Chen
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Christine Kastner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Daniela Nowara
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Ely Oliveira-Garcia
- Martin-Luther Universität Halle-Wittenberg, Phytopathologie und Pflanzenschutz, Betty Heimann Straße 3, D-06120 Halle, Germany
| | - Twan Rutten
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Yusheng Zhao
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Holger B Deising
- Martin-Luther Universität Halle-Wittenberg, Phytopathologie und Pflanzenschutz, Betty Heimann Straße 3, D-06120 Halle, Germany
| | - Jochen Kumlehn
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Patrick Schweizer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| |
Collapse
|
40
|
Cao MY, Kuang XX, Li HQ, Lei XJ, Xiao WF, Dong ZQ, Zhang J, Hu N, Chen TT, Lu C, Pan MH. Screening and optimization of an efficient Bombyx mori nucleopolyhedrovirus inducible promoter. J Biotechnol 2016; 231:72-80. [PMID: 27245143 DOI: 10.1016/j.jbiotec.2016.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/25/2022]
Abstract
Pathogen-inducible promoters have been studied extensively and widely used in resistance breeding and gene therapy. However, few reports have been published that explore the efficacy of Bombyx mori nucleopolyhedrovirus (BmNPV)-inducible promoters in antiviral research in the Bombyx mori (Lepidoptera). Here, we screened BmNPV promoters (VP1054, P33, Bm21, Bm122, 39K, P143, and P6.9) and found that the 39K promoter had the highest BmNPV-induced transcriptional activity by dual-luciferase reporter assays system. By 5' truncation analysis, two regions of 39K promoter were critical for optimal virus-inducible activity, indicated that they could serve as a candidate to produce synthetic pathogen-induced promoters. Furthermore, we enhanced the virus-inducible activity of BmNPV 39K promoter using a hybrid enhancer comprising hr3 and polh-up (designated as HP39K). Finally, we showed that RNAi regulated by HP39K promoter could significantly inhibit the proliferation of BmNPV in silkworm cells. Taken together, our results have practical value in antiviral research of silkworm and baculovirus expression system.
Collapse
Affiliation(s)
- Ming-Ya Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xiu-Xiu Kuang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hai-Qing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xue-Jiao Lei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jun Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Institute of Life Sciences, Chongqing Medical University, Chongqing 400716, China
| | - Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ting-Ting Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
41
|
Hou J, Jiang P, Qi S, Zhang K, He Q, Xu C, Ding Z, Zhang K, Li K. Isolation and Functional Validation of Salinity and Osmotic Stress Inducible Promoter from the Maize Type-II H+-Pyrophosphatase Gene by Deletion Analysis in Transgenic Tobacco Plants. PLoS One 2016; 11:e0154041. [PMID: 27101137 PMCID: PMC4839719 DOI: 10.1371/journal.pone.0154041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
Salinity and drought severely affect both plant growth and productivity, making the isolation and characterization of salinity- or drought-inducible promoters suitable for genetic improvement of crop resistance highly desirable. In this study, a 1468-bp sequence upstream of the translation initiation codon ATG of the promoter for ZmGAPP (maize Type-II H+-pyrophosphatase gene) was cloned. Nine 5´ deletion fragments (D1-D9) of different lengths of the ZmGAPP promoter were fused with the GUS reporter and translocated into tobacco. The deletion analysis showed that fragments D1-D8 responded well to NaCl and PEG stresses, whereas fragment D9 and CaMV 35S did not. The D8 segment (219 bp; -219 to -1 bp) exhibited the highest promoter activity of all tissues, with the exception of petals among the D1-D9 transgenic tobacco, which corresponds to about 10% and 25% of CaMV 35S under normal and NaCl or PEG stress conditions, respectively. As such, the D8 segment may confer strong gene expression in a salinity and osmotic stress inducible manner. A 71-bp segment (-219 to -148 bp) was considered as the key region regulating ZmGAPP response to NaCl or PEG stress, as transient transformation assays demonstrated that the 71-bp sequence was sufficient for the salinity or osmotic stress response. These results enhance our understanding of the molecular mechanisms regulating ZmGAPP expression, and that the D8 promoter would be an ideal candidate for moderating expression of drought and salinity response genes in transgenic plants.
Collapse
Affiliation(s)
- Jiajia Hou
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Pingping Jiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Shoumei Qi
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Ke Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Qiuxia He
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong, China
| | - Changzheng Xu
- RCBB, College of Resources and Environment, Southwest University, Tiansheng Road 2, Beibei Dist., 400716, Chongqing, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Kewei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Kunpeng Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| |
Collapse
|
42
|
Hernandez-Garcia CM, Finer JJ. A novel cis-acting element in the GmERF3 promoter contributes to inducible gene expression in soybean and tobacco after wounding. PLANT CELL REPORTS 2016; 35:303-16. [PMID: 26518427 DOI: 10.1007/s00299-015-1885-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Using in silico and functional analyses, we cloned and validated the expression profile of an inducible soybean promoter (GmERF3) along with its novel wound-induced and delayed expression (WIDE) element. Promoters and their contributing promoter elements are the main regulators of gene expression at the transcriptional level. Although the Ethylene Response Factor (ERF) gene family is one of the most well-studied stress-responsive gene families in plants, their promoter regions have received little attention. In this study, we investigated the expression patterns driven by the soybean (Glycine max) GmERF3 promoter and its cis-acting elements in soybean and tobacco. Transcriptomic data revealed that the native GmERF3 gene was differentially expressed in organs and tissues of plants. In transgenic soybeans containing a 1.3 kb GmERF3 promoter fused to the green fluorescent protein (gfp) gene, organ- and tissue-specificity was observed in untreated plants while mechanical wounding led to induction of GFP expression. Further in silico and in planta analyses of the GmERF3 promoter sequence in soybean revealed different cis-acting elements, including a novel cis-acting element, which contributed to increased expression, 1-2 days after mechanical wounding. We have named this DNA motif the wound-induced and delayed expression element (GGATTCAAGTTTAACC). A synthetic promoter containing a tetrameric repeat of this element showed high but late wound-induced GFP expression in leaves of transgenic tobacco. Our study expands the toolbox of inducible promoters and promoter elements for potential use in basic and applied research.
Collapse
Affiliation(s)
- Carlos M Hernandez-Garcia
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Epicrop Technologies, Inc., 5701 N 58th St, Suite 1, Lincoln, NE, 68507, USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA.
| |
Collapse
|
43
|
Lehmeyer M, Hanko EKR, Roling L, Gonzalez L, Wehrs M, Hehl R. A cis-regulatory sequence from a short intergenic region gives rise to a strong microbe-associated molecular pattern-responsive synthetic promoter. Mol Genet Genomics 2016; 291:1155-65. [PMID: 26833485 DOI: 10.1007/s00438-016-1173-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/20/2016] [Indexed: 01/28/2023]
Abstract
The high gene density in Arabidopsis thaliana leaves only relatively short intergenic regions for potential cis-regulatory sequences. To learn more about the regulation of genes harbouring only very short upstream intergenic regions, this study investigates a recently identified novel microbe-associated molecular pattern (MAMP)-responsive cis-sequence located within the 101 bp long intergenic region upstream of the At1g13990 gene. It is shown that the cis-regulatory sequence is sufficient for MAMP-responsive reporter gene activity in the context of its native promoter. The 3' UTR of the upstream gene has a quantitative effect on gene expression. In context of a synthetic promoter, the cis-sequence is shown to achieve a strong increase in reporter gene activity as a monomer, dimer and tetramer. Mutation analysis of the cis-sequence determined the specific nucleotides required for gene expression activation. In transgenic A. thaliana the synthetic promoter harbouring a tetramer of the cis-sequence not only drives strong pathogen-responsive reporter gene expression but also shows a high background activity. The results of this study contribute to our understanding how genes with very short upstream intergenic regions are regulated and how these regions can serve as a source for MAMP-responsive cis-sequences for synthetic promoter design.
Collapse
Affiliation(s)
- Mona Lehmeyer
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Erik K R Hanko
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Lena Roling
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Lilian Gonzalez
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Maren Wehrs
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
44
|
Abstract
The molecular components of transcriptional regulation are modular. Transcription factors have domains for specific functions such as DNA binding, dimerization, and protein-protein interactions associated with transcriptional activation and repression. Similarly, promoters are modular. They consist of combinations of cis-acting elements that are the binding sites for transcription factors. It is this promoter architecture that largely determines the expression pattern of a gene. The modular nature of promoters is supported by the observation that many cis-acting elements retain their activities when they are taken out of their native promoter context and used as building blocks in synthetic promoters. We therefore have a large collection of cis-acting elements to use in building synthetic promoters and many minimal promoters upon which to build them. This review discusses what we have learned concerning how to use these building blocks to make synthetic promoters. It has become clear that we can increase the strength of a promoter by adding increasing numbers of cis-acting elements. However, it appears that there may be a sweet spot with regard to inducibility as promoters with increasing numbers of copies of an element often show increased background expression. Spacing between elements appears important because if elements are placed too close together activity is lost, presumably due to reduced transcription factor binding due to steric hindrance. In many cases, promoters that contain combinations of cis-acting elements show better expression characteristics than promoters that contain a single type of element. This may be because multiple transcription factor binding sites in the promoter places it at the end of multiple signal transduction pathways. Finally, some cis-acting elements form functional units with other elements and are inactive on their own. In such cases, the complete unit is required for function in a synthetic promoter. Taken together, we have learned much about how to construct synthetic promoters and this knowledge will be crucial in both designing promoters to drive transgenes and also as components of defined regulatory networks in synthetic biology.
Collapse
|
45
|
Lehmeyer M, Kanofsky K, Hanko EKR, Ahrendt S, Wehrs M, Machens F, Hehl R. Functional dissection of a strong and specific microbe-associated molecular pattern-responsive synthetic promoter. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:61-71. [PMID: 25819608 PMCID: PMC11388824 DOI: 10.1111/pbi.12357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Synthetic promoters are important for temporal and spatial gene expression in transgenic plants. To identify novel microbe-associated molecular pattern (MAMP)-responsive cis-regulatory sequences for synthetic promoter design, a combination of bioinformatics and experimental approaches was employed. One cis-sequence was identified which confers strong MAMP-responsive reporter gene activity with low background activity. The 35-bp-long cis-sequence was identified in the promoter of the Arabidopsis thaliana DJ1E gene, a homologue of the human oncogene DJ1. In this study, this cis-sequence is shown to be a tripartite cis-regulatory module (CRM). A synthetic promoter with four copies of the CRM linked to a minimal promoter increases MAMP-responsive reporter gene expression compared to the wild-type DJ1E promoter. The CRM consists of two WT-boxes (GGACTTTT and GGACTTTG) and a variant of the GCC-box (GCCACC), all required for MAMP and salicylic acid (SA) responsivity. Yeast one-hybrid screenings using a transcription factor (TF)-only prey library identified two AP2/ERFs, ORA59 and ERF10, interacting antagonistically with the CRM. ORA59 activates reporter gene activity and requires the consensus core sequence GCCNCC for gene expression activation. ERF10 down-regulates MAMP-responsive gene expression. No TFs interacting with the WT-boxes GGACTTTT and GGACTTTG were selected in yeast one-hybrid screenings with the TF-only prey library. In transgenic Arabidopsis, the synthetic promoter confers strong and specific reporter gene activity in response to biotrophs and necrotrophs as well as SA.
Collapse
Affiliation(s)
- Mona Lehmeyer
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Erik K R Hanko
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sarah Ahrendt
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Wehrs
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Fabian Machens
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
46
|
Kanofsky K, Lehmeyer M, Schulze J, Hehl R. Analysis of Microbe-Associated Molecular Pattern-Responsive Synthetic Promoters with the Parsley Protoplast System. Methods Mol Biol 2016; 1482:163-74. [PMID: 27557767 DOI: 10.1007/978-1-4939-6396-6_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Plants recognize pathogens by microbe-associated molecular patterns (MAMPs) and subsequently induce an immune response. The regulation of gene expression during the immune response depends largely on cis-sequences conserved in promoters of MAMP-responsive genes. These cis-sequences can be analyzed by constructing synthetic promoters linked to a reporter gene and by testing these constructs in transient expression systems. Here, the use of the parsley (Petroselinum crispum) protoplast system for analyzing MAMP-responsive synthetic promoters is described. The synthetic promoter consists of four copies of a potential MAMP-responsive cis-sequence cloned upstream of a minimal promoter and the uidA reporter gene. The reporter plasmid contains a second reporter gene, which is constitutively expressed and hence eliminates the requirement of a second plasmid used as a transformation control. The reporter plasmid is transformed into parsley protoplasts that are elicited by the MAMP Pep25. The MAMP responsiveness is validated by comparing the reporter gene activity from MAMP-treated and untreated cells and by normalizing reporter gene activity using the constitutively expressed reporter gene.
Collapse
Affiliation(s)
- Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| | - Mona Lehmeyer
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Jutta Schulze
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstr. 1, 38106, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| |
Collapse
|
47
|
Abstract
The methods described in this chapter were developed in order to produce transgenic plants expressing pathogen-specific single-chain variable fragment (scFv) antibodies fused to antifungal peptides (AFPs), conferring resistance against fungal pathogens. We describe the selection from a phage display library of avian scFv antibodies that recognize cell surface proteins on fungi from the genus Fusarium, and the construction of scFv-AFP fusion protein constructs followed by their transient expression in tobacco (Nicotiana spp.) plants and stable expression in Arabidopsis thaliana plants. Using these techniques, the antibody fusion with the most promising in vitro activity can be used to generate transgenic plants that are resistant to pathogens such as Fusarium oxysporum f. sp. matthiolae.
Collapse
Affiliation(s)
- Dieter Peschen
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstraße 6, 52074, Aachen, Germany.
| |
Collapse
|
48
|
Zhu Z, Gao J, Yang JX, Wang XY, Ren GD, Ding YL, Kuai BK. Synthetic promoters consisting of defined cis-acting elements link multiple signaling pathways to probenazole-inducible system. J Zhejiang Univ Sci B 2015; 16:253-63. [PMID: 25845359 DOI: 10.1631/jzus.b1400203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Probenazole (3-allyloxy-1,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the β-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ's action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca(2+) influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study.
Collapse
Affiliation(s)
- Zheng Zhu
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Rajput NA, Zhang M, Shen D, Liu T, Zhang Q, Ru Y, Sun P, Dou D. Overexpression of a Phytophthora Cytoplasmic CRN Effector Confers Resistance to Disease, Salinity and Drought in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2015; 56:2423-35. [PMID: 26546319 DOI: 10.1093/pcp/pcv164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
The Crinkler (CRN) effector family is produced by oomycete pathogens and may manipulate host physiological and biochemical events inside host cells. Here, PsCRN161 was identified from Phytophthora sojae based on its broad and strong cell death suppression activities. The effector protein contains two predicted nuclear localization signals and localized to nuclei of plant cells, indicating that it may target plant nuclei to modify host cell physiology and function. The chimeric gene GFP:PsCRN161 driven by the Cauliflower mosaic virus (CaMV) 35S promoter was introduced into Nicotiana benthamiana. The four independent PsCRN161-transgenic lines exhibited increased resistance to two oomycete pathogens (P. parasitica and P. capsici) and showed enhanced tolerance to salinity and drought stresses. Digital gene expression profiling analysis showed that defense-related genes, including ABC transporters, Cyt P450 and receptor-like kinases (RLKs), were significantly up-regulated in PsCRN161-transgenic plants compared with GFP (green fluorescent protein) lines, implying that PsCRN161 expression may protect plants from biotic and abiotic stresses by up-regulation of many defense-related genes. The results reveal previously unknown functions of the oomycete effectors, suggesting that the pathogen effectors could be directly used as functional genes for plant molecular breeding for enhancement of tolerance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Nasir Ahmed Rajput
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan These authors contributed equally to this work
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China These authors contributed equally to this work
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Tingli Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Qimeng Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yanyan Ru
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Peng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Dey N, Sarkar S, Acharya S, Maiti IB. Synthetic promoters in planta. PLANTA 2015; 242:1077-94. [PMID: 26250538 DOI: 10.1007/s00425-015-2377-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/22/2015] [Indexed: 05/03/2023]
Abstract
This paper reviews the importance, prospective and development of synthetic promoters reported in planta. A review of the synthetic promoters developed in planta would help researchers utilize the available resources and design new promoters to benefit fundamental research and agricultural applications. The demand for promoters for the improvement and application of transgenic techniques in research and agricultural production is increasing. Native/naturally occurring promoters have some limitations in terms of their induction conditions, transcription efficiency and size. The strength and specificity of native promoter can be tailored by manipulating its 'cis-architecture' by the use of several recombinant DNA technologies. Newly derived chimeric promoters with specific attributes are emerging as an efficient tool for plant molecular biology. In the last three decades, synthetic promoters have been used to regulate plant gene expression. To better understand synthetic promoters, in this article, we reviewed promoter structure, the scope of cis-engineering, strategies for their development, their importance in plant biology and the total number of such promoters (188) developed in planta to date; we then categorized them under different functional regimes as biotic stress-inducible, abiotic stress-inducible, light-responsive, chemical-inducible, hormone-inducible, constitutive and tissue-specific. Furthermore, we identified a set of 36 synthetic promoters that control multiple types of expression in planta. Additionally, we illustrated the differences between native and synthetic promoters and among different synthetic promoter in each group, especially in terms of efficiency and induction conditions. As a prospective of this review, the use of ideal synthetic promoters is one of the prime requirements for generating transgenic plants suitable for promoting sustainable agriculture and plant molecular farming.
Collapse
Affiliation(s)
- Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India.
| | - Shayan Sarkar
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Sefali Acharya
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Indu B Maiti
- KTRDC, College of Agriculture-Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|