1
|
Syed Altaf RR, Mohan A, Palani N, Mendonce KC, Monisha P, Rajadesingu S. A review of innovative design strategies: Artificial antigen presenting cells in cancer immunotherapy. Int J Pharm 2025; 669:125053. [PMID: 39667594 DOI: 10.1016/j.ijpharm.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Developing nanocarriers that can carry medications directly to tumors is an exciting development in cancer nanomedicine. The efficacy of this intriguing therapeutic approach is, however, compromised by intricate and immunosuppressive circumstances that arise concurrently with the onset of cancer. The artificial antigen presenting cell (aAPC), a micro or nanoparticle based device that mimics an antigen presenting cell by providing crucial signal proteins to T lymphocytes to activate them against cancer, is one cutting-edge method for cancer immunotherapy. This review delves into the critical design considerations for aAPCs, particularly focusing on particle size, shape, and the non-uniform distribution of T cell activating proteins on their surfaces. Adequate surface contact between T cells and aAPCs is essential for activation, prompting engineers to develop nano-aAPCs with microscale contact areas through techniques such as shape modification and nanoparticle clustering. Additionally, we explore recommendations for future advancements in this field.
Collapse
Affiliation(s)
- Rabiya Riffath Syed Altaf
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Agilandeswari Mohan
- Department of BioChemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Keren Celestina Mendonce
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem - 636016, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Marinho A, Reis S, Nunes C. On the design of cell membrane-coated nanoparticles to treat inflammatory conditions. NANOSCALE HORIZONS 2024; 10:38-55. [PMID: 39499543 DOI: 10.1039/d4nh00457d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Biomimetic-based drug delivery systems (DDS) attempt to recreate the complex interactions that occur naturally between cells. Cell membrane-coated nanoparticles (CMCNPs) have been one of the main strategies in this area to prevent opsonization and clearance. Moreover, coating nanoparticles with cell membranes allows them to acquire functions and properties inherent to the mother cells. In particular, cells from bloodstream show to have specific advantages depending on the cell type to be used for that application, specifically in cases of chronic inflammation. Thus, this review focuses on the biomimetic strategies that use membranes from blood cells to target and treat inflammatory conditions.
Collapse
Affiliation(s)
- Andreia Marinho
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
- LAQV, REQUIMTE, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
| | - Cláudia Nunes
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal
| |
Collapse
|
3
|
Peng H, Zhao M, Liu X, Tong T, Zhang W, Gong C, Chowdhury R, Wang Q. Biomimetic Materials to Fabricate Artificial Cells. Chem Rev 2024; 124:13178-13215. [PMID: 39591535 PMCID: PMC11671219 DOI: 10.1021/acs.chemrev.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As the foundation of life, a cell is generally considered an advanced microreactor with a complicated structure and function. Undeniably, this fascinating complexity motivates scientists to try to extricate themselves from natural living matter and work toward rebuilding artificial cells in vitro. Driven by synthetic biology and bionic technology, the research of artificial cells has gradually become a subclass. It is not only held import in many disciplines but also of great interest in its synthesis. Therefore, in this review, we have reviewed the development of cell and bionic strategies and focused on the efforts of bottom-up strategies in artificial cell construction. Different from starting with existing living organisms, we have also discussed the construction of artificial cells based on biomimetic materials, from simple cell scaffolds to multiple compartment systems, from the construction of functional modules to the simulation of crucial metabolism behaviors, or even to the biomimetic of communication networks. All of them could represent an exciting advance in the field. In addition, we will make a rough analysis of the bottlenecks in this field. Meanwhile, the future development of this field has been prospecting. This review may bridge the gap between materials engineering and life sciences, forming a theoretical basis for developing various life-inspired assembly materials.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College of Shaoxing University, 508 Huancheng Western Road, Shaoxing 312099, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyuan Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Chen Gong
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Mohammadi Dargah M, Pedram P, Cabrera-Barjas G, Delattre C, Nesic A, Santagata G, Cerruti P, Moeini A. Biomimetic synthesis of nanoparticles: A comprehensive review on green synthesis of nanoparticles with a focus on Prosopis farcta plant extracts and biomedical applications. Adv Colloid Interface Sci 2024; 332:103277. [PMID: 39173272 DOI: 10.1016/j.cis.2024.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
The synthesis of nanoparticles (NPs) using environmentally friendly methods has garnered significant attention in response to concerns about the environmental impact of various nanomaterial manufacturing techniques. To address this issue, natural resources like extracts from plants, fungi, and bacteria are employed as a green alternative for nanoparticle synthesis. Plant extracts, which contain active components such as terpenoids, alkaloids, phenols, tannins, and vitamins, operate as coating and reducing agents. Bacteria and fungi, on the other hand, rely on internal enzymes, sugar molecules, membrane proteins, nicotinamide adenine dinucleotide (NADH), and nicotinamide adenine dinucleotide phosphate (NADPH) dependent enzymes to play critical roles as reducing agents. This review collects recent advancements in biomimetic methods for nanoparticle synthesis, critically discussing the preparation approaches, the type of particles obtained, and their envisaged applications. A specific focus is given on using Prosopis fractal plant extracts to synthesize nanoparticles tailored for biomedical applications. The applications of this plant and its role in the biomimetic manufacturing of nanoparticles have not been reported yet, making this review a pioneering and valuable contribution to the field.
Collapse
Affiliation(s)
- Maryam Mohammadi Dargah
- Department of Pharmaceutical Chemistry, Faculty of Medicinal Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parisa Pedram
- Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastian, Campus Las Tres Pascualas, Lientur 1457, 4080871 Concepción, Chile
| | - Cedric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Aleksandra Nesic
- University of Belgrade, Vinca Institute for Nuclear Sciences, National Institute of Republic of Serbia, Mike Petrovica Alasa 12-14, Belgrade 11000, Serbia
| | - Gabriella Santagata
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Pierfrancesco Cerruti
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Arash Moeini
- Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
5
|
Metzloff AE, Padilla MS, Gong N, Billingsley MM, Han X, Merolle M, Mai D, Figueroa-Espada CG, Thatte AS, Haley RM, Mukalel AJ, Hamilton AG, Alameh MG, Weissman D, Sheppard NC, June CH, Mitchell MJ. Antigen Presenting Cell Mimetic Lipid Nanoparticles for Rapid mRNA CAR T Cell Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313226. [PMID: 38419362 PMCID: PMC11209815 DOI: 10.1002/adma.202313226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable clinical success in the treatment of hematological malignancies. However, producing these bespoke cancer-killing cells is a complicated ex vivo process involving leukapheresis, artificial T cell activation, and CAR construct introduction. The activation step requires the engagement of CD3/TCR and CD28 and is vital for T cell transfection and differentiation. Though antigen-presenting cells (APCs) facilitate activation in vivo, ex vivo activation relies on antibodies against CD3 and CD28 conjugated to magnetic beads. While effective, this artificial activation adds to the complexity of CAR T cell production as the beads must be removed prior to clinical implementation. To overcome this challenge, this work develops activating lipid nanoparticles (aLNPs) that mimic APCs to combine the activation of magnetic beads and the transfection capabilities of LNPs. It is shown that aLNPs enable one-step activation and transfection of primary human T cells with the resulting mRNA CAR T cells reducing tumor burden in a murine xenograft model, validating aLNPs as a promising platform for the rapid production of mRNA CAR T cells.
Collapse
Affiliation(s)
- Ann E Metzloff
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marshall S Padilla
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ningqiang Gong
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret M Billingsley
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xuexiang Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Merolle
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Mai
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christian G Figueroa-Espada
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ajay S Thatte
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca M Haley
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alvin J Mukalel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alex G Hamilton
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Neil C Sheppard
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carl H June
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Gharatape A, Sadeghi-Abandansari H, Seifalian A, Faridi-Majidi R, Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J Mater Chem B 2024; 12:3356-3375. [PMID: 38505950 DOI: 10.1039/d3tb02279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
7
|
Tan Y, Wang X, Gu Y, Bao X, Lu H, Sun X, Kang L, Xu B. Neutrophil and endothelial cell membranes coassembled roflumilast nanoparticles attenuate myocardial ischemia/reperfusion injury. Nanomedicine (Lond) 2024; 19:779-797. [PMID: 38426485 DOI: 10.2217/nnm-2023-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Aim: This study aimed to develop biomimetic nanoparticles (NPs) of roflumilast (ROF) for attenuating myocardial ischemia/reperfusion (MI/R) injury. Materials & methods: We synthesized biomimetic ROF NPs and assembled ROF NPs in neutrophil and endothelial cell membranes (NE/ROF NPs). The physical properties of NE/ROF NPs were characterized and biological functions of NE/ROF NPs were tested in vitro. Targeting characteristics, therapeutic efficacy and safety of NE/ROF NPs were examined in mice model of MI/R. Results: NE/ROF NPs exhibited significant anti-inflammatory and antiadhesion effects. Meanwhile, they was effective in reducing MI/R injury in mice. Furthermore, NE/ROF NPs exhibited stronger targeting capabilities and demonstrated good safety. Conclusion: NE/ROF NPs may be a versatile biomimetic drug-delivery system for attenuating MI/R injury.
Collapse
Affiliation(s)
- Ying Tan
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Xun Wang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Yu Gu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Xue Bao
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - He Lu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| |
Collapse
|
8
|
Silli EK, Li M, Shao Y, Zhang Y, Hou G, Du J, Liang J, Wang Y. Liposomal nanostructures for Gemcitabine and Paclitaxel delivery in pancreatic cancer. Eur J Pharm Biopharm 2023; 192:13-24. [PMID: 37758121 DOI: 10.1016/j.ejpb.2023.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Pancreatic cancer (PC) is an incurable disease with a high death rate in the world nowadays. Gemcitabine (GEM) and Paclitaxel (PTX) are considered as references of chemotherapeutic treatments and are commonly used in clinical applications. Factors related to the tumor microenvironment such as insufficient tumor penetration, toxicity, and drug resistance can limit the effectiveness of these therapeutic anticancer drugs. The use of different liposomal nanostructures is a way that can optimize the drug's effectiveness and reduce toxicity. Given the development of PC therapy, this review focuses on advances in Nano-formulation, characterization, and delivery systems of loaded GEM and PTX liposomes using chemotherapy, nucleic acid delivery, and stroma remodeling therapy. As a result, the review covers the literature dealing with the applications of liposomes in PC therapy.
Collapse
Affiliation(s)
- Epiphane K Silli
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Mengfei Li
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Yuting Shao
- College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yiran Zhang
- College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Guilin Hou
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jiaqian Du
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jingdan Liang
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Ying Wang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
9
|
Singh H, Desimone MF, Pandya S, Jasani S, George N, Adnan M, Aldarhami A, Bazaid AS, Alderhami SA. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int J Nanomedicine 2023; 18:4727-4750. [PMID: 37621852 PMCID: PMC10444627 DOI: 10.2147/ijn.s419369] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Background Conventional nanoparticle synthesis methods involve harsh conditions, high costs, and environmental pollution. In this context, researchers are actively searching for sustainable, eco-friendly alternatives to conventional chemical synthesis methods. This has led to the development of green synthesis procedures among which the exploration of the plant-mediated synthesis of nanoparticles experienced a great development. Especially, because plant extracts can work as reducing and stabilizing agents. This opens up new possibilities for cost-effective, environmentally-friendly nanoparticle synthesis with enhanced size uniformity and stability. Moreover, bio-inspired nanoparticles derived from plants exhibit intriguing pharmacological properties, making them highly promising for use in medical applications due to their biocompatibility and nano-dimension. Objective This study investigates the role of specific phytochemicals, such as phenolic compounds, terpenoids, and proteins, in plant-mediated nanoparticle synthesis together with their influence on particle size, stability, and properties. Additionally, we highlight the potential applications of these bio-derived nanoparticles, particularly with regard to drug delivery, disease management, agriculture, bioremediation, and application in other industries. Methodology Extensive research on scientific databases identified green synthesis methods, specifically plant-mediated synthesis, with a focus on understanding the contributions of phytochemicals like phenolic compounds, terpenoids, and proteins. The database search covered the field's development over the past 15 years. Results Insights gained from this exploration highlight plant-mediated green synthesis for cost-effective nanoparticle production with significant pharmacological properties. Utilizing renewable biological resources and controlling nanoparticle characteristics through biomolecule interactions offer promising avenues for future research and applications. Conclusion This review delves into the scientific intricacies of plant-mediated synthesis of nanoparticles, highlighting the advantages of this approach over the traditional chemical synthesis methods. The study showcases the immense potential of green synthesis for medical and other applications, aiming to inspire further research in this exciting area and promote a more sustainable future.
Collapse
Affiliation(s)
- Harjeet Singh
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shivani Pandya
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Srushti Jasani
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Noble George
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, 28814, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Suliman A Alderhami
- Chemistry Department, Faculty of Science and Arts in Almakhwah, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
10
|
Neshat SY, Bauer SJ, Rhodes KR, Quiroz VM, Wong VW, Lowmaster SM, Tzeng SY, Green JJ, Doloff JC. Improvement of Islet Engrafts via Treg Induction Using Immunomodulating Polymeric Tolerogenic Microparticles. ACS Biomater Sci Eng 2023; 9:3522-3534. [PMID: 37233985 DOI: 10.1021/acsbiomaterials.3c00329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Type 1 diabetes (T1D) is a life-threatening condition for which islet transplantation offers a way to extend longevity and vastly improve quality of life, but the degree and duration of success can vary greatly due to the patient's protective immunity against foreign material. The field is in need of cellular engineering modalities to promote a localized, tolerogenic environment to protect transplanted islet tissue. Artificial antigen-presenting cells (aAPCs) can be designed exogenously to mimic immune cells, such as dendritic cells, and administered to patients, allowing greater control over T cell differentiation. As regulatory T cell (Treg) modulation can reduce the activity of cytotoxic T-effector populations, this strategy can be used to promote immune acceptance of both biomaterials and cellular transplants, such as islets. A new class of poly(lactic-co-glycolic acid) (PLGA) and PLGA/PBAE-blend aAPCs containing transforming growth factor beta and conjugated with anti-CD3 and anti-CD28 antibodies, called tolerogenic aAPCs (TolAPCs), are specifically designed to generate a tolerogenic response by inducing Tregs. We characterized TolAPCs' physical and chemical properties via advanced particle imaging and sizing modalities and investigated their impact on the local and systemic immune system across BALB/c and C57BL/6 mouse strains as well as healthy male and female mice via histologic, gene expression, and immunofluorescence staining methods. Strain-specific differences were observed, whereas sex made no difference in the TolAPC response. TolAPCs stimulated the expansion of FOXP3+ Tregs and provided islet cell protection, maintaining improved glucose-stimulated insulin secretion in vitro when co-cultured with cytotoxic CD8+ T cells. We also explored the ability of this TolAPC platform to promote tolerance in a streptozotocin-induced murine T1D C57BL/6 mouse model. We achieved partial islet protection over the first few days following co-injection with PLGA/PBAE TolAPCs; however, grafts failed soon thereafter. Analysis of the local injection site demonstrated that other immune cell types, including APCs and cytotoxic natural killer cells, increased in the islet injection site. While we aimed to promote a localized tolerogenic microenvironment in vivo using biodegradable TolAPCs to induce Tregs and extend islet transplant durability, further TolAPC improvements will be required to both elongate efficacy and control additional immune cell responders.
Collapse
Affiliation(s)
- Sarah Y Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Stuart J Bauer
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kelly R Rhodes
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Victor M Quiroz
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Valerie W Wong
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Shirley M Lowmaster
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Departments of Ophthalmology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Joshua C Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
11
|
Quijia CR, Navegante G, Sábio RM, Valente V, Ocaña A, Alonso-Moreno C, Frem RCG, Chorilli M. Macrophage Cell Membrane Coating on Piperine-Loaded MIL-100(Fe) Nanoparticles for Breast Cancer Treatment. J Funct Biomater 2023; 14:319. [PMID: 37367283 DOI: 10.3390/jfb14060319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Piperine (PIP), a compound found in Piper longum, has shown promise as a potential chemotherapeutic agent for breast cancer. However, its inherent toxicity has limited its application. To overcome this challenge, researchers have developed PIP@MIL-100(Fe), an organic metal-organic framework (MOF) that encapsulates PIP for breast cancer treatment. Nanotechnology offers further treatment options, including the modification of nanostructures with macrophage membranes (MM) to enhance the evasion of the immune system. In this study, the researchers aimed to evaluate the potential of MM-coated MOFs encapsulated with PIP for breast cancer treatment. They successfully synthesized MM@PIP@MIL-100(Fe) through impregnation synthesis. The presence of MM coating on the MOF surface was confirmed through SDS-PAGE analysis, which revealed distinct protein bands. Transmission electron microscopy (TEM) images demonstrated the existence of a PIP@MIL-100(Fe) core with a diameter of around 50 nm, surrounded by an outer lipid bilayer layer measuring approximately 10 nm in thickness. Furthermore, the researchers evaluated the cytotoxicity indices of the nanoparticles against various breast cancer cell lines, including MCF-7, BT-549, SKBR-3, and MDA. The results demonstrated that the MOFs exhibited between 4 and 17 times higher cytotoxicity (IC50) in all four cell lines compared to free PIP (IC50 = 193.67 ± 0.30 µM). These findings suggest that MM@PIP@MIL-100(Fe) holds potential as an effective treatment for breast cancer. The study's outcomes highlight the potential of utilizing MM-coated MOFs encapsulated with PIP as an innovative approach for breast cancer therapy, offering improved cytotoxicity compared to free PIP alone. Further research and development are warranted to explore the clinical translation and optimize the efficacy and safety of this treatment strategy.
Collapse
Affiliation(s)
- Christian Rafael Quijia
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jau, Km 01-s/n-Campos Ville, Araraquara 14800-903, Brazil
| | - Geovana Navegante
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jau, Km 01-s/n-Campos Ville, Araraquara 14800-903, Brazil
| | - Rafael Miguel Sábio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jau, Km 01-s/n-Campos Ville, Araraquara 14800-903, Brazil
| | - Valeria Valente
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jau, Km 01-s/n-Campos Ville, Araraquara 14800-903, Brazil
| | - Alberto Ocaña
- Department of Medical Oncology, Hospital Clinico San Carlos and Health Research Institute of the Hospital Clinico San Carlos, 28040 Madrid, Spain
| | - Carlos Alonso-Moreno
- Unidad NanoDrug, Facultad de Farmacia, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Regina Célia Galvão Frem
- Institute of Chemistry, São Paulo State University (UNESP), Prof. Francisco Degni 55, Araraquara 14800-060, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jau, Km 01-s/n-Campos Ville, Araraquara 14800-903, Brazil
| |
Collapse
|
12
|
Avancini G, Menilli L, Visentin A, Milani C, Mastrotto F, Moret F. Mesenchymal Stem Cell Membrane-Coated TPCS 2a-Loaded Nanoparticles for Breast Cancer Photodynamic Therapy. Pharmaceutics 2023; 15:1654. [PMID: 37376102 PMCID: PMC10302938 DOI: 10.3390/pharmaceutics15061654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Despite substantial improvements in breast cancer (BC) treatment there is still an urgent need to find alternative treatment options to improve the outcomes for patients with advanced-stage disease. Photodynamic therapy (PDT) is gaining a lot of attention as a BC therapeutic option because of its selectivity and low off-target effects. However, the hydrophobicity of photosensitizers (PSs) impairs their solubility and limits the circulation in the bloodstream, thus representing a major challenge. The use of polymeric nanoparticles (NPs) to encapsulate the PS may represent a valuable strategy to overcome these issues. Herein, we developed a novel biomimetic PDT nanoplatform (NPs) based on a polymeric core of poly(lactic-co-glycolic)acid (PLGA) loaded with the PS meso-tetraphenylchlorin disulfonate (TPCS2a). TPCS2a@NPs of 98.89 ± 18.56 nm with an encapsulation efficiency percentage (EE%) of 81.9 ± 7.92% were obtained and coated with mesenchymal stem cells-derived plasma membranes (mMSCs) (mMSC-TPCS2a@NPs, size of 139.31 ± 12.94 nm). The mMSC coating armed NPs with biomimetic features to impart long circulation times and tumor-homing capabilities. In vitro, biomimetic mMSC-TPCS2a@NPs showed a decrease in macrophage uptake of 54% to 70%, depending on the conditions applied, as compared to uncoated TPCS2a@NPs. Both NP formulations efficiently accumulated in MCF7 and MDA-MB-231 BC cells, while the uptake was significantly lower in normal breast epithelial MCF10A cells with respect to tumor cells. Moreover, encapsulation of TPCS2a in mMSC-TPCS2a@NPs effectively prevents its aggregation, ensuring efficient singlet oxygen (1O2) production after red light irradiation, which resulted in a considerable in vitro anticancer effect in both BC cell monolayers (IC50 < 0.15 µM) and three-dimensional spheroids.
Collapse
Affiliation(s)
- Greta Avancini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| | - Luca Menilli
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| | - Adele Visentin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Celeste Milani
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Francesca Moret
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| |
Collapse
|
13
|
Priyadarshini R, Abdullah AS, Karthikeyan KV, Vinoth M, Martin B, Geerthik S, Wilfred F, Alyami NM, Sundaram RS. Utilization of Bioinorganic Nanodrugs and Nanomaterials for the Control of Infectious Diseases Using Deep Learning. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7464159. [PMID: 37124928 PMCID: PMC10147522 DOI: 10.1155/2023/7464159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 05/02/2023]
Abstract
As one of the main causes of morbidity and mortality, viral infections have a major impact on the well-being and economics of every nation in the globe. The ability to predictably diagnose viral infections improves the provision of good healthcare as well as the control and prevention of these conditions. Nanomaterials have gained widespread usage in the medical industry recently due to the rapid advancement of nanotechnology and their exceptional chemical and physical qualities, such as their small size and synthesized surface properties. The utilization of nanoparticles for illness detection, surveillance, control, preventive, and therapy, such as the treatment of bacterial infections, is referred to as nanomedicine. Nanomedicine is a comprehensive discipline that is founded on the usage of nanotechnology for clinical objectives. Nanoparticles, which have a nanoscale dimension and exhibit highly controllable optical and physical characteristics as well as the ability to bind to a large variety of chemicals, are among the most popular nanomaterials in nanomedicine. A deep learning framework of autoencoder for categorization study on viral infections is built based on actual hospital patient history of viral infections from August 2015 to August 2020. The information comprises of 10,950 cases, comprising outpatients and inpatients, encompassing the infectious diseases. Of such 10,950 instances, training set made up 70% or 7665 instances, and testing data made up 30% or 3285 instances. The data processing was done using the presented recurrent neural network-artificial bee colony (RNN-ABC) method. Sparse data densifying processes are done through the autoencoder to enhance the system learning outcome. The suggested autoencoder system was also evaluated to other widely used models, including support vector machine, logistic regression, random forest, and Naïve Bayes. In comparison to other approaches, the study's findings demonstrate how well the suggested autoencoder model can predict viral diseases. The methods used for this research can aid in removing reported lags in current monitoring systems, hence reducing society's expenses.
Collapse
Affiliation(s)
- R. Priyadarshini
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - A. Sheik Abdullah
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - K. V. Karthikeyan
- Department of Electronics and Communication Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamil Nadu, India
| | - M. Vinoth
- Department of Electronics and Communication Engineering, K. Ramakrishnan College of Engineering, Trichy, 621112 Tamil Nadu, India
| | - Betty Martin
- Department of Electronics and Communication Engineering, SASTRA Deemed to be University, Thirumalaisamuthiram, Thanjavur, 613401 Tamil Nadu, India
| | - S. Geerthik
- Department of Information Technology, Agni College of Technology, Chennai, 600130 Tamil Nadu, India
| | - Florin Wilfred
- Department of Electrical, Electronics and Communication Engineering, St. Joseph College of Engineering and Technology, St. Joseph University in Tanzania, Dar es Salaam, Tanzania
| | - Nour M. Alyami
- Department of Zoology, C. Abdul Hakeem College of Engineering, Vellore, 632509 Tamil Nadu, India
| | - R. S. Sundaram
- Department of Health Sciences, University of Texas, Austin, TX, USA
| |
Collapse
|
14
|
Wang Y, Liu L, Zheng X, Liu X. Membrane-camouflaged biomimetic nanoparticles as potential immunomodulatory solutions for sepsis: An overview. Front Bioeng Biotechnol 2023; 11:1111963. [PMID: 36970623 PMCID: PMC10036601 DOI: 10.3389/fbioe.2023.1111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction due to dysregulated host responses induced by infection. The presence of immune disturbance is key to the onset and development of sepsis but has remarkably limited therapeutic options. Advances in biomedical nanotechnology have provided innovative approaches to rebalancing the host immunity. In particular, the technique of membrane-coating has demonstrated remarkable improvements to therapeutic nanoparticles (NPs) in terms of tolerance and stability while also improving their biomimetic performance for immunomodulatory purposes. This development has led to the emergence of using cell-membrane-based biomimetic NPs in treating sepsis-associated immunologic derangements. In this minireview, we present an overview of the recent advances in membrane-camouflaged biomimetic NPs, highlighting their multifaceted immunomodulatory effects in sepsis such as anti-infection, vaccination, inflammation control, reversing of immunosuppression, and targeted delivery of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanbei Wang
- School of Culture and Tourism, Chongqing City Management College, Chongqing, China
| | - Liping Liu
- School of Culture and Tourism, Chongqing City Management College, Chongqing, China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Xinchuan Zheng, ; Xin Liu,
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
- *Correspondence: Xinchuan Zheng, ; Xin Liu,
| |
Collapse
|
15
|
Altaf S, Alkheraije KA. Cell membrane-coated nanoparticles: An emerging antibacterial platform for pathogens of food animals. Front Vet Sci 2023; 10:1148964. [PMID: 36950535 PMCID: PMC10025400 DOI: 10.3389/fvets.2023.1148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial pathogens of animals impact food production and human health globally. Food animals act as the major host reservoirs for pathogenic bacteria and thus are highly prone to suffer from several endemic infections such as pneumonia, sepsis, mastitis, and diarrhea, imposing a major health and economical loss. Moreover, the consumption of food products of infected animals is the main route by which human beings are exposed to zoonotic bacteria. Thus, there is excessive and undue administration of antibiotics to fight these virulent causative agents of food-borne illness, leading to emergence of resistant strains. Thus, highprevalence antibiotic-resistant resistant food-borne bacterial infections motivated the researchers to discover new alternative therapeutic strategies to eradicate resistant bacterial strains. One of the successful therapeutic approach for the treatment of animal infections, is the application of cell membrane-coated nanoparticles. Cell membranes of several different types of cells including platelets, red blood cells, neutrophils, cancer cells, and bacteria are being wrapped over the nanoparticles to prepare biocompatible nanoformulations. This diversity of cell membrane selection and together with the possibility of combining with an extensive range of nanoparticles, has opened a new opportunistic window for the development of more potentially effective, safe, and immune evading nanoformulations, as compared to conventionally used bare nanoparticle. This article will elaborately discuss the discovery and development of novel bioinspired cell membrane-coated nanoformulations against several pathogenic bacteria of food animals such as Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Salmonella enteritidis, Campylobacter jejuni, Helicobacter pylori, and Group A Streptococcus and Group B Streptococcus.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
16
|
Vishwanath K, Wilson B, Geetha KM, Murugan V. Polysorbate 80-coated albumin nanoparticles to deliver paclitaxel into the brain to treat glioma. Ther Deliv 2023; 14:193-206. [PMID: 37291872 DOI: 10.4155/tde-2022-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Aim: To develop stable paclitaxel (PTX)-loaded bovine serum albumin (BSA) nanoparticles (BSA-NPs-PTX) as drug-delivery vehicles for delivering paclitaxel into the brain to treat glioma. Methods: This study used PTX-loaded BSA NPs coated with polysorbate 80 (Ps 80) to enhance PTX concentration in the brain. Results: The low IC50 indicated that the fabricated BSA-NPs-PTX and BSA-NPs-PTX-Ps 80 showed significantly enhanced cytotoxicity. The pharmacokinetic and biodistribution analysis of BSA-NPs-PTX and BSA-NPs-PTX 80 showed comparable pharmacokinetic profiles but were significantly different compared with free PTX. Conclusion: BSA-NPs-PTX-Ps 80 exhibited higher plasma concentration-time curves, as compared with BSA-NPs-PTX and PTX. BSA-NPs-PTX and BSA-NPs-PTX-Ps 80 showed significantly improved PTX distribution in the frontal cortex, posterior brain and cerebellum.
Collapse
Affiliation(s)
- Kurawattimath Vishwanath
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka, 560078, India
| | - Barnabas Wilson
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka, 560078, India
| | - Kannoth Mukundan Geetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka, 560078, India
| | - Vedigounder Murugan
- Department of Pharmaceutical Chemistry, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka, 560078, India
| |
Collapse
|
17
|
Jan N, Madni A, Khan S, Shah H, Akram F, Khan A, Ertas D, Bostanudin MF, Contag CH, Ashammakhi N, Ertas YN. Biomimetic cell membrane-coated poly(lactic- co-glycolic acid) nanoparticles for biomedical applications. Bioeng Transl Med 2023; 8:e10441. [PMID: 36925703 PMCID: PMC10013795 DOI: 10.1002/btm2.10441] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are commonly used for drug delivery because of their favored biocompatibility and suitability for sustained and controlled drug release. To prolong NP circulation time, enable target-specific drug delivery and overcome physiological barriers, NPs camouflaged in cell membranes have been developed and evaluated to improve drug delivery. Here, we discuss recent advances in cell membrane-coated PLGA NPs, their preparation methods, and their application to cancer therapy, management of inflammation, treatment of cardiovascular disease and control of infection. We address the current challenges and highlight future research directions needed for effective use of cell membrane-camouflaged NPs.
Collapse
Affiliation(s)
- Nasrullah Jan
- Akson College of PharmacyMirpur University of Science and Technology (MUST)MirpurPakistan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Faizan Akram
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Derya Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
| | - Mohammad F. Bostanudin
- College of PharmacyAl Ain UniversityAbu DhabiUnited Arab Emirates
- AAU Health and Biomedical Research CenterAl Ain UniversityAbu DhabiUnited Arab Emirates
| | - Christopher H. Contag
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM–Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM–National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
18
|
Luo Z, Sun L, Bian F, Wang Y, Yu Y, Gu Z, Zhao Y. Erythrocyte-Inspired Functional Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206150. [PMID: 36581585 PMCID: PMC9951328 DOI: 10.1002/advs.202206150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Indexed: 05/30/2023]
Abstract
Erythrocytes are the most abundant cells in the blood. As the results of long-term natural selection, their specific biconcave discoid morphology and cellular composition are responsible for gaining excellent biological performance. Inspired by the intrinsic features of erythrocytes, various artificial biomaterials emerge and find broad prospects in biomedical applications such as therapeutic delivery, bioimaging, and tissue engineering. Here, a comprehensive review from the fabrication to the applications of erythrocyte-inspired functional materials is given. After summarizing the biomaterials mimicking the biological functions of erythrocytes, the synthesis strategies of particles with erythrocyte-inspired morphologies are presented. The emphasis is on practical biomedical applications of these bioinspired functional materials. The perspectives for the future possibilities of the advanced erythrocyte-inspired biomaterials are also discussed. It is hoped that the summary of existing studies can inspire researchers to develop novel biomaterials; thus, accelerating the progress of these biomaterials toward clinical biomedical applications.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyu Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Feika Bian
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Zhuxiao Gu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
19
|
Raza F, Evans L, Motallebi M, Zafar H, Pereira-Silva M, Saleem K, Peixoto D, Rahdar A, Sharifi E, Veiga F, Hoskins C, Paiva-Santos AC. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater 2023; 157:1-23. [PMID: 36521673 DOI: 10.1016/j.actbio.2022.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is one of the harshest and most challenging cancers to treat, often labeled as incurable. Chemotherapy continues to be the most popular treatment yet yields a very poor prognosis. The main barriers such as inefficient drug penetration and drug resistance, have led to the development of drug carrier systems. The benefits, ease of fabrication and modification of liposomes render them as ideal future drug delivery systems. This review delves into the versatility of liposomes to achieve various mechanisms of treatment for pancreatic cancer. Not only are there benefits of loading chemotherapy drugs and targeting agents onto liposomes, as well as mRNA combined therapy, but liposomes have also been exploited for immunotherapy and can be programmed to respond to photothermal therapy. Multifunctional liposomal formulations have demonstrated significant pre-clinical success. Functionalising drug-encapsulated liposomes has resulted in triggered drug release, specific targeting, and remodeling of the tumor environment. Suppressing tumor progression has been achieved, due to their ability to more efficiently and precisely deliver chemotherapy. Currently, no multifunctional surface-modified liposomes are clinically approved for pancreatic cancer thus we aim to shed light on the trials and tribulations and progress so far, with the hope for liposomal therapy in the future and improved patient outcomes. STATEMENT OF SIGNIFICANCE: Considering that conventional treatments for pancreatic cancer are highly associated with sub-optimal performance and systemic toxicity, the development of novel therapeutic strategies holds outmost relevance for pancreatic cancer management. Liposomes are being increasingly considered as promising nanocarriers for providing not only an early diagnosis but also effective, highly specific, and safer treatment, improving overall patient outcome. This manuscript is the first in the last 10 years that revises the advances in the application of liposome-based formulations in bioimaging, chemotherapy, phototherapy, immunotherapy, combination therapies, and emergent therapies for pancreatic cancer management. Prospective insights are provided regarding several advantages resulting from the use of liposome technology in precision strategies, fostering new ideas for next-generation diagnosis and targeted therapies of pancreatic cancer.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lauren Evans
- Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Mahzad Motallebi
- Immunology Board for Transplantation And Cell-based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Kalsoom Saleem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Clare Hoskins
- Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
20
|
Beena Sreekumar M, Annadurai N, Jayaram S, Sarojini S. Industrial Applications of Hybrid Nanocatalysts and Their Green Synthesis. Top Catal 2022. [DOI: 10.1007/s11244-022-01712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Research Progress Based on Regulation of Tumor Microenvironment Redox and Drug-Loaded Metal-Organic Frameworks. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7302883. [PMID: 35910842 PMCID: PMC9337949 DOI: 10.1155/2022/7302883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
The process of tumor growth and deterioration is accompanied by increased oxygen free radicals, high glutathione concentration, hypoxia, and poor drug targeting during treatment, limiting the treatment of tumors. Metal-organic framework (MOF) preparations are continuously being developed and applied in tumor therapy. In this paper, the design and application of reactive oxygen species (ROS) and redox drug-loaded MOF preparations are reviewed. Moreover, the research challenges and application prospects of MOFs in tumor therapy are also discussed.
Collapse
|
22
|
Chen Y, Wu X, Li J, Jiang Y, Xu K, Su J. Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease. Front Pharmacol 2022; 13:909408. [PMID: 35712701 PMCID: PMC9195145 DOI: 10.3389/fphar.2022.909408] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022] Open
Abstract
Targeted delivery by either systemic or local targeting of therapeutics to the bone is an attractive treatment for various bone metabolism diseases such as osteoporosis, osteoarthritis, osteosarcoma, osteomyelitis, etc. To overcome the limitations of direct drug delivery, the combination of bone-targeted agents with nanotechnology has the opportunity to provide a more effective therapeutic approach, where engineered nanoparticles cause the drug to accumulate in the bone, thereby improving efficacy and minimizing side effects. Here, we summarize the current advances in systemic or local bone-targeting approaches and nanosystem applications in bone diseases, which may provide new insights into nanocarrier-delivered drugs for the targeted treatment of bone diseases. We envision that novel drug delivery carriers developed based on nanotechnology will be a potential vehicle for the treatment of currently incurable bone diseases and are expected to be translated into clinical applications.
Collapse
Affiliation(s)
- Yulin Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xianmin Wu
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
23
|
Meng J, Zhang P, Chen Q, Wang Z, Gu Y, Ma J, Li W, Yang C, Qiao Y, Hou Y, Jing L, Wang Y, Gu Z, Zhu L, Xu H, Lu X, Gao M. Two-Pronged Intracellular Co-Delivery of Antigen and Adjuvant for Synergistic Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202168. [PMID: 35362203 DOI: 10.1002/adma.202202168] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/22/2022] [Indexed: 05/27/2023]
Abstract
Nanovaccines have emerged as promising alternatives or complements to conventional cancer treatments. Despite the progresses, specific co-delivery of antigen and adjuvant to their corresponding intracellular destinations for maximizing the activation of antitumor immune responses remains a challenge. Herein, a lipid-coated iron oxide nanoparticle is delivered as nanovaccine (IONP-C/O@LP) that can co-deliver peptide antigen and adjuvant (CpG DNA) into cytosol and lysosomes of dendritic cells (DCs) through both membrane fusion and endosome-mediated endocytosis. Such two-pronged cellular uptake pattern enables IONP-C/O@LP to synergistically activate immature DCs. Iron oxide nanoparticle also exhibits adjuvant effects by generating intracellular reactive oxygen species, which further promotes DC maturation. IONP-C/O@LP accumulated in the DCs of draining lymph nodes effectively increases the antigen-specific T cells in both tumor and spleen, inhibits tumor growth, and improves animal survival. Moreover, it is demonstrated that this nanovaccine is a general platform of delivering clinically relevant peptide antigens derived from human papilloma virus 16 to trigger antigen-specific immune responses in vivo.
Collapse
Affiliation(s)
- Junli Meng
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qizhe Chen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zihua Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuan Gu
- Center for Molecular Imaging and Nuclear Medicine School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Jie Ma
- Center for Molecular Imaging and Nuclear Medicine School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Wang Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Yang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Qiao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Hou
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Wang
- Center for Molecular Imaging and Nuclear Medicine School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lichong Zhu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haozhen Xu
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287-1804, USA
| | - Xueguang Lu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingyuan Gao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center for Molecular Imaging and Nuclear Medicine School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| |
Collapse
|
24
|
Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, Fernandes G, Soman S, Kulkarni S, Seetharam RN, Tiwari R, Wairkar S, Pardeshi C, Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022; 346:71-97. [PMID: 35439581 DOI: 10.1016/j.jconrel.2022.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
The idea of employing natural cell membranes as a coating medium for nanoparticles (NPs) endows man-made vectors with natural capabilities and benefits. In addition to retaining the physicochemical characteristics of the NPs, the biomimetic NPs also have the functionality of source cell membranes. It has emerged as a promising approach to enhancing the properties of NPs for drug delivery, immune evasion, imaging, cancer-targeting, and phototherapy sensitivity. Several studies have been reported with a multitude of approaches to reengineering the surface of NPs using biological membranes. Owing to their low immunogenicity and intriguing biomimetic properties, cell-membrane-based biohybrid delivery systems have recently gained a lot of interest as therapeutic delivery systems. This review summarises different kinds of biomimetic NPs reported so far, their fabrication aspects, and their application in the biomedical field. Finally, it briefs on the latest advances available in this biohybrid concept.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, 400056, India
| | - Chandrakantsing Pardeshi
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
25
|
Johnson AP, Sabu C, Nivitha K, Sankar R, Shirin VA, Henna T, Raphey V, Gangadharappa H, Kotta S, Pramod K. Bioinspired and biomimetic micro- and nanostructures in biomedicine. J Control Release 2022; 343:724-754. [DOI: 10.1016/j.jconrel.2022.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
26
|
Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103790. [PMID: 34651344 DOI: 10.1002/adma.202103790] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cancer vaccines aim at eliciting tumor-specific responses for the immune system to identify and eradicate malignant tumor cells while sparing the normal tissues. Furthermore, cancer vaccines can potentially induce long-term immunological memory for antitumor responses, preventing metastasis and cancer recurrence, thus presenting an attractive treatment option in cancer immunotherapy. However, clinical efficacy of cancer vaccines has remained low due to longstanding challenges, such as poor immunogenicity, immunosuppressive tumor microenvironment, tumor heterogeneity, inappropriate immune tolerance, and systemic toxicity. Recently, bioinspired materials and biomimetic technologies have emerged to play a part in reshaping the field of cancer nanomedicine. By mimicking desirable chemical and biological properties in nature, bioinspired engineering of cancer vaccine delivery platforms can effectively transport therapeutic cargos to tumor sites, amplify antigen and adjuvant bioactivities, and enable spatiotemporal control and on-demand immunoactivation. As such, integration of biomimetic designs into delivery platforms for cancer vaccines can enhance efficacy while retaining good safety profiles, which contributes to expediting the clinical translation of cancer vaccines. Recent advances in bioinspired delivery platforms for cancer vaccines, existing obstacles faced, as well as insights and future directions for the field are discussed here.
Collapse
Affiliation(s)
- Jing Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Si Si Liew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
27
|
Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101304] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Artificial cells for the treatment of liver diseases. Acta Biomater 2021; 130:98-114. [PMID: 34126265 DOI: 10.1016/j.actbio.2021.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Liver diseases have become an increasing health burden and account for over 2 million deaths every year globally. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they also suffer limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. Artificial cells have demonstrated advantages in long-term storage, targeting capability, and tuneable features. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment. First, the design of artificial cells and their biomimicking functions are summarized. Then, systems that mimic cell surface properties are introduced with two concepts highlighted: cell membrane-coated artificial cells and synthetic lipid-based artificial cells. Next, cell microencapsulation strategy is summarized and discussed. Finally, challenges and future perspectives of artificial cells are outlined. STATEMENT OF SIGNIFICANCE: Liver diseases have become an increasing health burden. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they have limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment, including the design of artificial cells and their biomimicking functions, two systems that mimic cell surface properties (cell membrane-coated artificial cells and synthetic lipid-based artificial cells), and cell microencapsulation strategy. We also outline the challenges and future perspectives of artificial cells.
Collapse
|
29
|
Villarreal-Leal RA, Cooke JP, Corradetti B. Biomimetic and immunomodulatory therapeutics as an alternative to natural exosomes for vascular and cardiac applications. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 35:102385. [PMID: 33774130 PMCID: PMC8238887 DOI: 10.1016/j.nano.2021.102385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Inflammation is a central mechanism in cardiovascular diseases (CVD), where sustained oxidative stress and immune responses contribute to cardiac remodeling and impairment. Exosomes are extracellular vesicles released by cells to communicate with their surroundings and to modulate the tissue microenvironment. Recent evidence indicates their potential as cell-free immunomodulatory therapeutics for CVD, preventing cell death and fibrosis while inducing wound healing and angiogenesis. Biomimetic exosomes are semi-synthetic particles engineered using essential moieties present in natural exosomes (lipids, RNA, proteins) to reproduce their therapeutic effects while improving on scalability and standardization due to the ample range of moieties available to produce them. In this review, we provide an up-to-date description of the use of exosomes for CVD and offer our vision on the areas of opportunity for the development of biomimetic strategies. We also discuss the current limitations to overcome in the process towards their translation into clinic.
Collapse
Affiliation(s)
- Ramiro A Villarreal-Leal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - John P Cooke
- RNA Therapeutics Program, Department of Cardiovascular Sciences (R.S., J.P.C.), Houston Methodist Research Institute, TX, USA; Houston Methodist DeBakey Heart and Vascular Center (J.P.C.), Houston Methodist Hospital, TX, USA
| | - Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Center of NanoHealth, Swansea University Medical School, Swansea, UK.
| |
Collapse
|
30
|
Zhou J, Ma S, Zhang Y, He Y, Mao H, Yang J, Zhang H, Luo K, Gong Q, Gu Z. Bacterium-mimicking sequentially targeted therapeutic nanocomplexes based on O-carboxymethyl chitosan and their cooperative therapy by dual-modality light manipulation. Carbohydr Polym 2021; 264:118030. [PMID: 33910720 DOI: 10.1016/j.carbpol.2021.118030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
An integrated gene nanovector capable of overcoming complicated physiological barriers in one vector is desirable to circumvent the challenges imposed by the intricate tumor microenvironment. Herein, a nuclear localization signals (NLS)-decorated element and an iRGD-functionalized element based on O-carboxymethyl chitosan were synthesized, mixed, and coated onto PEI/DNA to fabricate bacterium-mimicking sequentially targeted therapeutic nanocomplexes (STNPs) which were internalized through receptor-mediated endocytosis and other pathways and achieved nuclear translocation of DNA. The endo/lysosomal membrane disruption triggered by reactive oxygen species (ROS) after short-time illumination, together with the DNA nuclear translocation, evoked an enhanced gene expression. Alternatively, the excessive ROS from long-time irradiation induced apoptosis in tumor cells, bringing about greater anti-tumor efficacy owing to the integration of gene and photodynamic therapy. Overall, these results demonstrated bacterium-mimicking STNPs could be a potential candidate for tumor treatments.
Collapse
Affiliation(s)
- Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Shengnan Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Yuxin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Yiyan He
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, PR China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China.
| |
Collapse
|
31
|
Jha A, Nikam AN, Kulkarni S, Mutalik SP, Pandey A, Hegde M, Rao BSS, Mutalik S. Biomimetic nanoarchitecturing: A disguised attack on cancer cells. J Control Release 2020; 329:413-433. [PMID: 33301837 DOI: 10.1016/j.jconrel.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
With the changing face of healthcare, there is a demand for drug delivery systems that have increased efficacy and biocompatibility. Nanotechnology derived drug carrier systems were found to be ideal candidates to meet these demands. Among the vast number of nanosized delivery systems, biomimetic nanoparticles have been researched at length. These nanoparticles mimic cellular functions and are highly biocompatible. They are also able to avoid clearance by the reticuloendothelial system which increases the time spent by them in the systemic circulation. Additionally, their low immunogenicity and targeting ability increase their significance as drug carriers. Based on their core material we have summarized them as biomimetic inorganic nanoparticles, biomimetic polymeric nanoparticles, and biomimetic lipid nanoparticles. The core then may be coated using membranes derived from erythrocytes, cancer cells, leukocytes, stem cells, and other membranes to endow them with biomimetic properties. They can be used for personalized therapy and diagnosis of a large number of diseases, primarily cancer. This review summarizes the various therapeutic approaches using biomimetic nanoparticles along with their applications in the field of cancer imaging, nucleic acid therapy and theranostic properties. A brief overview about toxicity concerns related to these nanoconstructs has been added to provide knowledge about biocompatibility of such nanoparticles.
Collapse
Affiliation(s)
- Adrija Jha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Manasa Hegde
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | | | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India.
| |
Collapse
|
32
|
Im J, Jang EK, Yim D, Kim JH, Cho KY. One-pot fabrication of uniform half-moon-shaped biodegradable microparticles via microfluidic approach. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
34
|
SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci 2020; 16:136-146. [PMID: 32905011 PMCID: PMC7462629 DOI: 10.1016/j.ajps.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
The development of a massively producible vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, is essential for stopping the current coronavirus disease (COVID-19) pandemic. A vaccine must stimulate effective antibody and T cell responses in vivo to induce long-term protection. Scientific researchers have been developing vaccine candidates for the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) since the outbreaks of these diseases. The prevalence of new biotechnologies such as genetic engineering has shed light on the generation of vaccines against novel viruses. In this review, we present the status of the development of coronavirus vaccines, focusing particularly on the biomimetic nanoparticle technology platform, which is likely to have a major role in future developments of personalized medicine.
Collapse
|
35
|
Guo J, Agola JO, Serda R, Franco S, Lei Q, Wang L, Minster J, Croissant JG, Butler KS, Zhu W, Brinker CJ. Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components. ACS NANO 2020; 14:7847-7859. [PMID: 32391687 DOI: 10.1021/acsnano.9b08714] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synthetic rebuilt red blood cells (RRBCs) that fully mimic the broad properties of native RBCs: size, biconcave shape, deformability, oxygen-carrying capacity, and long circulation time. Four successive nanoscale processing steps (RBC bioreplication, layer-by-layer polymer deposition, and precision silica etching, followed by RBC ghost membrane vesicle fusion) are employed for RRBC construction. A panel of physicochemical analyses including zeta-potential measurement, fluorescence microscopy, and antibody-mediated agglutination assay proved the recapitulation of RBC shape, size, and membrane structure. Flow-based deformation studies carried out in a microfluidic blood capillary model confirmed the ability of RRBCs to deform and pass through small slits and reconstitute themselves in a manner comparable to native RBCs. Circulation studies of RRBCs conducted ex ovo in a chick embryo and in vivo in a mouse model demonstrated the requirement of both deformability and native cell membrane surface to achieve long-term circulation. To confer additional non-native functionalities to RRBCs, we developed modular procedures with which to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors within the RRBC interior to enable various functions, including oxygen delivery, therapeutic drug delivery, magnetic manipulation, and toxin biosensing and detection. Taken together, RRBCs represent a class of long-circulating RBC-inspired artificial hybrid materials with a broad range of potential applications.
Collapse
Affiliation(s)
- Jimin Guo
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Internal Medicine, Molecular Medicine, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jacob Ongudi Agola
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Rita Serda
- Department of Internal Medicine, Molecular Medicine, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stefan Franco
- Department of Internal Medicine, Molecular Medicine, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Qi Lei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Joshua Minster
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jonas G Croissant
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Kimberly S Butler
- Nanobiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Wei Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
36
|
Yin WM, Li YW, Gu YQ, Luo M. Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:902-910. [PMID: 32398683 PMCID: PMC7470800 DOI: 10.1038/s41401-020-0417-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/12/2020] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy is rapidly changing the paradigm of cancer care and treatment by evoking host immunity to kill cancer cells. As clinical approval of checkpoint inhibitors (e.g., ipilimumab and pembrolizumab) has been accelerated by a dramatic improvement of long-term survival in a small subset of patients compared to conventional chemotherapy, growing interesting research has focused on immunotherapy. However, majority of patients have not benefited from checkpoint therapies that only partially remove the inhibition of T cell functions. Insufficient systemic T cell responses, low immunogenicity and the immunosuppressive environment of tumors, create great challenges on therapeutic efficiency. Nanotechnology can integrate multiple functions within controlled size and shape, and has been explored as a unique avenue for the development of cancer immunotherapy. In this review, we mainly address how nanoengineered vaccines can induce robust T cell responses against tumors, as well as how nanomedicine can remodel the tumor immunosuppressive microenvironment to boost antitumor immune responses.
Collapse
|
37
|
Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. SMART MATERIALS IN MEDICINE 2020; 1:10-19. [PMID: 34553138 PMCID: PMC8455119 DOI: 10.1016/j.smaim.2020.04.001] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticle-based drug delivery system (DDS) is considered promising for cancer treatment. Compared with traditional DDS, the nanoparticle-based DDS shows improved efficacy by: 1) increasing half-life of vulnerable drugs and proteins, 2) improving the solubility of hydrophobic drugs, and 3) allowing controlled and targeted release of drugs in diseased site. This review mainly focuses on nanoparticle-based DDS fabricated from chitosan, silica, and poly (lactic-co-glycolic acid). Their fabrication methods and applications in cancer treatment are introduced. The current limitations and future perspectives of the nanoparticle-based DDS are discussed.
Collapse
Affiliation(s)
- Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
38
|
Erythrocyte membrane vesicles coated biomimetic and targeted doxorubicin nanocarrier: Development, characterization and in vitro studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Ben-Akiva E, Meyer RA, Yu H, Smith JT, Pardoll DM, Green JJ. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. SCIENCE ADVANCES 2020; 6:eaay9035. [PMID: 32490199 PMCID: PMC7239698 DOI: 10.1126/sciadv.aay9035] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/22/2020] [Indexed: 05/17/2023]
Abstract
The design of next-generation nanobiomaterials requires precise engineering of both physical properties of the core material and chemical properties of the material's surface to meet a biological function. A bio-inspired modular and versatile technology was developed to allow biodegradable polymeric nanoparticles to circulate through the blood for extended periods of time while also acting as a detoxification device. To mimic red blood cells, physical and chemical biomimicry are combined to enhance the biological function of nanomaterials in vitro and in vivo. The anisotropic shape and membrane coating synergize to resist cellular uptake and reduce clearance from the blood. This approach enhances the detoxification properties of nanoparticles, markedly improving survival in a mouse model of sepsis. The anisotropic membrane-coated nanoparticles have enhanced biodistribution and therapeutic efficacy. These biomimetic biodegradable nanodevices and their derivatives have promise for applications ranging from detoxification agents, to drug delivery vehicles, and to biological sensors.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Departments of Biomedical Engineering, Materials Science and Engineering, Chemical and Biomolecular Engineering, and Oncology, Translational Tissue Engineering Center, Institute for Nanobiotechnology, Johns Hopkins School of Medicine, 400 N Broadway, Smith Building 5017, Baltimore, MD 21231, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Randall A. Meyer
- Departments of Biomedical Engineering, Materials Science and Engineering, Chemical and Biomolecular Engineering, and Oncology, Translational Tissue Engineering Center, Institute for Nanobiotechnology, Johns Hopkins School of Medicine, 400 N Broadway, Smith Building 5017, Baltimore, MD 21231, USA
| | - Hongzhe Yu
- Departments of Biomedical Engineering, Materials Science and Engineering, Chemical and Biomolecular Engineering, and Oncology, Translational Tissue Engineering Center, Institute for Nanobiotechnology, Johns Hopkins School of Medicine, 400 N Broadway, Smith Building 5017, Baltimore, MD 21231, USA
| | - Jonathan T. Smith
- Departments of Biomedical Engineering, Materials Science and Engineering, Chemical and Biomolecular Engineering, and Oncology, Translational Tissue Engineering Center, Institute for Nanobiotechnology, Johns Hopkins School of Medicine, 400 N Broadway, Smith Building 5017, Baltimore, MD 21231, USA
| | - Drew M. Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Departments of Oncology, Medicine, Pathology and Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Materials Science and Engineering, Chemical and Biomolecular Engineering, and Oncology, Translational Tissue Engineering Center, Institute for Nanobiotechnology, Johns Hopkins School of Medicine, 400 N Broadway, Smith Building 5017, Baltimore, MD 21231, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Corresponding author.
| |
Collapse
|
40
|
Zou S, Wang B, Wang C, Wang Q, Zhang L. Cell membrane-coated nanoparticles: research advances. Nanomedicine (Lond) 2020; 15:625-641. [PMID: 32098564 DOI: 10.2217/nnm-2019-0388] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell membranes have been continuously imitated and used for the modification of nanoparticles (NPs) to improve NP biological properties. Cell membrane-coated NPs, where core NPs are wrapped with plasma membrane vesicles, show high biocompatibility, targeting specificity and low side effects. Compared with conventional strategies, this novel approach directly leverages intact and natural functions of cell membranes, instead of replicating these features via synthetic techniques. This top-down technique bestows NPs with enhanced biointerfacing capabilities with potential in the diagnosis and treatment of cancer, infection and other diseases. Herein, we report on the advances in cell membrane-coated NPs, including the preparation process, source cell membranes for wrapping and potential applications of these cell membrane-coated NPs.
Collapse
Affiliation(s)
- Shuaijun Zou
- Marine Bio-pharmaceutical Institute, Naval Medical University, Shanghai, 200433, PR China
| | - Beilei Wang
- Marine Bio-pharmaceutical Institute, Naval Medical University, Shanghai, 200433, PR China
| | - Chao Wang
- Marine Bio-pharmaceutical Institute, Naval Medical University, Shanghai, 200433, PR China
| | - Qianqian Wang
- Marine Bio-pharmaceutical Institute, Naval Medical University, Shanghai, 200433, PR China
| | - Liming Zhang
- Marine Bio-pharmaceutical Institute, Naval Medical University, Shanghai, 200433, PR China
| |
Collapse
|
41
|
Jin J, Bhujwalla ZM. Biomimetic Nanoparticles Camouflaged in Cancer Cell Membranes and Their Applications in Cancer Theranostics. Front Oncol 2020; 9:1560. [PMID: 32039028 PMCID: PMC6985278 DOI: 10.3389/fonc.2019.01560] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023] Open
Abstract
Nanoparticles (NPs) camouflaged in cell membranes represent novel biomimetic platforms that can mimic some of the membrane functions of the cells from which these membranes are derived, in biological systems. Studies using cell membrane coated NPs cover a large repertoire of membranes derived from cells such as red blood cells, immune cells, macrophages, and cancer cells. Cancer cell membrane coated nanoparticles (CCMCNPs) typically consist of a NP core with a cancer cell plasma membrane coat that can carry tumor-specific receptors and antigens for cancer targeting. The NP core can serve as a vehicle to carry imaging and therapeutic moieties. As a result, these CCMCNPs are being investigated for multiple purposes including cancer theranostics. Here we have discussed the key steps and major issues in the synthesis and characterization of CCMCNPs. We have highlighted the homologous binding mechanisms of CCMCNPs that are being investigated for cancer targeting, and have presented our data that identify BT474 CCMCNPs as binding to multiple cancer cell lines. Current preclinical applications of CCMCNPs for cancer theranostics and their advantages and limitations are discussed.
Collapse
Affiliation(s)
- Jiefu Jin
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, United States
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
42
|
Shahzad KA, Naeem M, Zhang L, Wan X, Song S, Pei W, Zhao C, Jin X, Shen C. Design and Optimization of PLGA Particles to Deliver Immunomodulatory Drugs for the Prevention of Skin Allograft Rejection. Immunol Invest 2019; 49:840-857. [PMID: 31809611 DOI: 10.1080/08820139.2019.1695134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: Recent advancements in therapeutic strategies have attracted considerable attention to control the acute organs and tissues rejection, which is the main cause of mortality in transplant recipients. The long-term usage of immunosuppressive drugs compromises the body immunity against simple infections and decrease the patients' quality of life. Tolerance of allograft in recipients without harming the rest of host immune system is the basic idea to develop the therapeutic approaches after induction of donor-specific transplant. Methods: Controlled and targeted delivery system by using biomimetic micro and nanoparticles as carriers is an effective strategy to deplete the immune cells in response to allograft in an antigen-specific manner. Polylactic-co-glycolic acid (PLGA) is a biocompatible and biodegradable polymer, which has frequently being used as drug delivery vehicle. Results: This review focuses on the biomedical applications of PLGA based biomimetic micro and nano-sized particles in drug delivery systems to prolong the survival of alloskin graft. Conclusion: We will discuss the mediating factors for rejection of alloskin graft, selective depletion of immune cells, controlled release mechanism, physiochemical properties, size-based body distribution of PLGA particles and their effect on overall host immune system.
Collapse
Affiliation(s)
- Khawar Ali Shahzad
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China.,School of Pharmacy, Taizhou Polytechnic College , Taizhou, Jiangsu, China
| | - Muhammad Naeem
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University , Multan, Pakistan
| | - Lei Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China.,Department of Clinical Laboratory, Lishui District People's Hospital of Nanjing , Nanjing, Jiangsu, China
| | - Xin Wan
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Shilong Song
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Weiya Pei
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chen Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Liu Y, Luo J, Chen X, Liu W, Chen T. Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. NANO-MICRO LETTERS 2019; 11:100. [PMID: 34138027 PMCID: PMC7770915 DOI: 10.1007/s40820-019-0330-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 05/02/2023]
Abstract
Cell membrane coating technology is an approach to the biomimetic replication of cell membrane properties, and is an active area of ongoing research readily applicable to nanoscale biomedicine. Nanoparticles (NPs) coated with cell membranes offer an opportunity to unite natural cell membrane properties with those of the artificial inner core material. The coated NPs not only increase their biocompatibility but also achieve effective and extended circulation in vivo, allowing for the execution of targeted functions. Although cell membrane-coated NPs offer clear advantages, much work remains before they can be applied in clinical practice. In this review, we first provide a comprehensive overview of the theory of cell membrane coating technology, followed by a summary of the existing preparation and characterization techniques. Next, we focus on the functions and applications of various cell membrane types. In addition, we collate model drugs used in cell membrane coating technology, and review the patent applications related to this technology from the past 10 years. Finally, we survey future challenges and trends pertaining to this technology in an effort to provide a comprehensive overview of the future development of cell membrane coating technology.
Collapse
Affiliation(s)
- Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
44
|
Chen YX, Wei CX, Lyu YQ, Chen HZ, Jiang G, Gao XL. Biomimetic drug-delivery systems for the management of brain diseases. Biomater Sci 2019; 8:1073-1088. [PMID: 31728485 DOI: 10.1039/c9bm01395d] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acting as a double-edged sword, the blood-brain barrier (BBB) is essential for maintaining brain homeostasis by restricting the entry of small molecules and most macromolecules from blood. However, it also largely limits the brain delivery of most drugs. Even if a drug can penetrate the BBB, its accumulation in the intracerebral pathological regions is relatively low. Thus, an optimal drug-delivery system (DDS) for the management of brain diseases needs to display BBB permeability, lesion-targeting capability, and acceptable safety. Biomimetic DDSs, developed by directly utilizing or mimicking the biological structures and processes, provide promising approaches for overcoming the barriers to brain drug delivery. The present review summarizes the biological properties and biomedical applications of the biomimetic DDSs including the cell membrane-based DDS, lipoprotein-based DDS, exosome-based DDS, virus-based DDS, protein template-based DDS and peptide template-based DDS for the management of brain diseases.
Collapse
Affiliation(s)
- Yao-Xing Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Chen-Xuan Wei
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Ying-Qi Lyu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China. and Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xiao-Ling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
45
|
Yang G, Chen S, Zhang J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front Pharmacol 2019; 10:751. [PMID: 31333467 PMCID: PMC6624236 DOI: 10.3389/fphar.2019.00751] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
There are still great challenges for the effective treatment of infectious diseases, although considerable achievement has been made by using antiviral and antimicrobial agents varying from small-molecule drugs, peptides/proteins, to nucleic acids. The nanomedicine approach is emerging as a new strategy capable of overcoming disadvantages of molecular therapeutics and amplifying their anti-infective activities, by localized delivery to infection sites, reducing off-target effects, and/or attenuating resistance development. Nanotechnology, in combination with bioinspired and biomimetic approaches, affords additional functions to nanoparticles derived from synthetic materials. Herein, we aim to provide a state-of-the-art review on recent progress in biomimetic and bioengineered nanotherapies for the treatment of infectious disease. Different biomimetic nanoparticles, derived from viruses, bacteria, and mammalian cells, are first described, with respect to their construction and biophysicochemical properties. Then, the applications of diverse biomimetic nanoparticles in anti-infective therapy are introduced, either by their intrinsic activity or by loading and site-specifically delivering various molecular drugs. Bioinspired and biomimetic nanovaccines for prevention and/or therapy of infectious diseases are also highlighted. At the end, major translation issues and future directions of this field are discussed.
Collapse
Affiliation(s)
- Guoyu Yang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Gribko A, Künzel J, Wünsch D, Lu Q, Nagel SM, Knauer SK, Stauber RH, Ding GB. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives. Int J Nanomedicine 2019; 14:4187-4209. [PMID: 31289440 PMCID: PMC6560927 DOI: 10.2147/ijn.s198319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are disseminated cancer cells. The occurrence and circulation of CTCs seem key for metastasis, still the major cause of cancer-associated deaths. As such, CTCs are investigated as predictive biomarkers. However, due to their rarity and heterogeneous biology, CTCs’ practical use has not made it into the clinical routine. Clearly, methods for the effective isolation and reliable detection of CTCs are urgently needed. With the development of nanotechnology, various nanosystems for CTC isolation and enrichment and CTC-targeted cancer therapy have been designed. Here, we summarize the relationship between CTCs and tumor metastasis, and describe CTCs’ unique properties hampering their effective enrichment. We comment on nanotechnology-based systems for CTC isolation and recent achievements in microfluidics and lab-on-a-chip technologies. We discuss recent advances in CTC-targeted cancer therapy exploiting the unique properties of nanomaterials. We conclude by introducing developments in CTC-directed nanosystems and other advanced technologies currently in (pre)clinical research.
Collapse
Affiliation(s)
- Alena Gribko
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Julian Künzel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Désirée Wünsch
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Qiang Lu
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Sophie Madeleine Nagel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen 45117, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Guo-Bin Ding
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ; .,Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China,
| |
Collapse
|
47
|
Song S, Jin X, Zhang L, Zhao C, Ding Y, Ang Q, Khaidav O, Shen C. PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses. Int J Nanomedicine 2019; 14:2465-2483. [PMID: 31040669 PMCID: PMC6459144 DOI: 10.2147/ijn.s195828] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Antigen-presenting cells (APCs) are powerful tools to expand antigen-specific T cells ex vivo and in vivo for tumor immunotherapy, but suffer from time-consuming generation and biosafety concerns raised by live cells. Alternatively, the cell-free artificial antigen-presenting cells (aAPCs) have been rapidly developed. Nanoscale aAPCs are recently proposed owing to their superior biodistribution and reduced embolism than conventional cell-sized aAPCs, but pose the challenges: easier cellular uptake and smaller contact surface area with T cells than the cell-sized counterparts. This study aimed to fabricate a new “stealth” nano-aAPCs with microscale contact surface area to minimize cellular uptake and activate antigen-specific T cells by combination uses of ellipsoidal stretch, PEGylation, and self-marker CD47-Fc conjugation. Methods The spherical polylactic-co-glycolic acid nanoparticles were fabricated using a double-emulsion method, and then stretched twofold using film-stretching procedure followed by PEGylation and co-coupling with CD47-Fc, H-2Kb/TRP2180-188-Ig dimers, and anti-CD28. The resulting PEGylated and CD47-conjugated nanoellipsoidal aAPCs (EaAPCPEG/CD47) were co-cultured with macrophages or spleen lymphocytes and also infused into melanoma-bearing mice. The in vitro and in vivo effects were evaluated and compared with the nanospherical aAPCs (SaAPC), nanoellipsoidal aAPCs (EaAPC), or PEGylated nanoellipsoidal aAPC (EaAPCPEG). Results EaAPCPEG/CD47 markedly reduced cellular uptake in vitro and in vivo, as compared with EaAPCPEG, EaAPC, SaAPC, and Blank-NPs and expanded naïve TRP2180-188-specific CD8+ T cells in the co-cultures with spleen lymphocytes. After three infusions, the EaAPCPEG/CD47 showed much stronger effects on facilitating TRP2180-188-specific CD8+ T-cell proliferation, local infiltration, and tumor necrosis in the melanoma-bearing mice and on inhibiting tumor growth than the control aAPCs. Conclusion The superimposed or synergistic effects of ellipsoidal stretch, PEGylation, and CD47-Fc conjugation minimized cellular uptake of nano-aAPCs and enhanced their functionality to expand antigen-specific T cells and inhibit tumor growth, thus suggesting a more valuable strategy to design “stealth” nanoscale aAPCs suitable for tumor active immunotherapy.
Collapse
Affiliation(s)
- Shilong Song
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China,
| | - Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China,
| | - Lei Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China,
| | - Chen Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China,
| | - Yan Ding
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China,
| | - Qianqian Ang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China,
| | - Odontuya Khaidav
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China,
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China,
| |
Collapse
|
48
|
Shao J, Pijpers IAB, Cao S, Williams DS, Yan X, Li J, Abdelmohsen LKEA, van Hest JCM. Biomorphic Engineering of Multifunctional Polylactide Stomatocytes toward Therapeutic Nano-Red Blood Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801678. [PMID: 30886797 PMCID: PMC6402394 DOI: 10.1002/advs.201801678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/20/2018] [Indexed: 05/03/2023]
Abstract
Morphologically discrete nanoarchitectures, which mimic the structural complexity of biological systems, are an increasingly popular design paradigm in the development of new nanomedical technologies. Herein, engineered polymeric stomatocytes are presented as a structural and functional mimic of red blood cells (RBCs) with multifunctional therapeutic features. Stomatocytes, comprising biodegradable poly(ethylene glycol)-block-poly(D,L-lactide), possess an oblate-like morphology reminiscent of RBCs. This unique dual-compartmentalized structure is augmented via encapsulation of multifunctional cargo (oxygen-binding hemoglobin and the photosensitizer chlorin e6). Furthermore, stomatocytes are decorated with a cell membrane isolated from erythrocytes to ensure that the surface characteristics matched those of RBCs. In vivo biodistribution data reveal that both the uncoated and coated nano-RBCs have long circulation times in mice, with the membrane-coated ones outperforming the uncoated stomatoctyes. The capacity of nano-RBCs to transport oxygen and create oxygen radicals upon exposure to light is effectively explored toward photodynamic therapy, using 2D and 3D tumor models; addressing the challenge presented by cancer-induced hypoxia. The morphological and functional control demonstrated by this synthetic nanosystem, coupled with indications of therapeutic efficacy, constitutes a highly promising platform for future clinical application.
Collapse
Affiliation(s)
- Jingxin Shao
- Bio‐Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyHelix, het Kranenveld (STO 3.41), P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Imke A. B. Pijpers
- Bio‐Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyHelix, het Kranenveld (STO 3.41), P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Shoupeng Cao
- Bio‐Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyHelix, het Kranenveld (STO 3.41), P. O. Box 5135600 MBEindhovenThe Netherlands
| | - David S. Williams
- Department of ChemistryCollege of ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190P. R. China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMs)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Loai K. E. A. Abdelmohsen
- Bio‐Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyHelix, het Kranenveld (STO 3.41), P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio‐Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyHelix, het Kranenveld (STO 3.41), P. O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
49
|
Jin J, Krishnamachary B, Barnett JD, Chatterjee S, Chang D, Mironchik Y, Wildes F, Jaffee EM, Nimmagadda S, Bhujwalla ZM. Human Cancer Cell Membrane-Coated Biomimetic Nanoparticles Reduce Fibroblast-Mediated Invasion and Metastasis and Induce T-Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7850-7861. [PMID: 30707559 PMCID: PMC6628902 DOI: 10.1021/acsami.8b22309] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Biomimetic nanoparticles (NPs) combine the flexibility and reproducibility of synthetic materials with the functionality of biological materials. Here, we developed and characterized biomimetic poly(lactic- co-glycolic acid) (PLGA) NPs coated with human cancer cell membrane fractions (CCMFs) to form CCMF-coated PLGA (CCMF-PLGA) NPs. We evaluated the ability of these CCMF-PLGA NPs to disrupt cancer cell-stromal cell interactions and to induce an immune response. Western blot analysis verified the plasma membrane purity of CCMFs. Confocal fluorescence microscopy and flow cytometry confirmed the presence of intact membrane-associated proteins including CXCR4 and CD44 following membrane derivation and coating. CCMFs and CCMF-PLGA NPs were capable of inhibiting cancer cell migration toward human mammary fibroblasts. Intravenous injection of CCMF-PLGA NPs significantly reduced experimental metastasis in vivo. Following immunization of Balb/c mice, near-infrared fluorescence imaging confirmed the migration of NPs to proximal draining lymph nodes (LNs). A higher percentage of CD8+ and CD4+ cytotoxic T-lymphocyte populations was observed in spleens and LNs of CCMF-PLGA NP-immunized mice. Splenocytes isolated from CCMF-PLGA NP-immunized mice had the highest number of interferon gamma-producing T-cells as detected by the ELISpot assay. CCMF-PLGA NPs hold promise for disrupting cancer cell-stromal cell interactions and for priming the immune system in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiefu Jin
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Correspondence should be addressed to: (ZMB); (JJ)
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James D. Barnett
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samit Chatterjee
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Di Chang
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M. Jaffee
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sridhar Nimmagadda
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Correspondence should be addressed to: (ZMB); (JJ)
| |
Collapse
|
50
|
Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties. Adv Drug Deliv Rev 2019; 138:247-258. [PMID: 30553953 DOI: 10.1016/j.addr.2018.12.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Emerging advances in extracellular vesicle (EV) research brings along new promises for tailoring clinical treatments in order to meet specific disease features of each patient in a personalized medicine concept. EVs may act as regenerative effectors conveying endogenous therapeutic factors from parent cells or constitute a bio-camouflaged delivery system for exogenous therapeutic agents. Physical stimulation may be an important tool in the field of EVs for personalized therapy by powering EV production, loading and therapeutic properties. Physically-triggered EV production is inspired by naturally occurring EV release by shear stress in blood vessels. Bioinspired physically-triggered EV production technologies may bring along high yield advantages combined to scalability assets. Physical stimulation may also provide new prospects for high-efficient EV loading. Additionally, physically-triggered EV theranostic properties brings new hopes for spatio-temporal controlled therapy combined to tracking. Technological considerations related to EV-based personalized medicine and the input of physical stimulation on EV production, loading and theranostic properties will be overviewed herein.
Collapse
|