1
|
Antonini G, Fares M, Hauck D, Mała P, Gillon E, Belvisi L, Bernardi A, Titz A, Varrot A, Mazzotta S. Toward Dual-Target Glycomimetics against Two Bacterial Lectins to Fight Pseudomonas aeruginosa- Burkholderia cenocepacia Infections: A Biophysical Study. J Med Chem 2025. [PMID: 40279549 DOI: 10.1021/acs.jmedchem.5c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Chronic lung infections caused by Pseudomonas aeruginosa and Burkholderia cenocepacia pose a severe threat to immunocompromised patients, particularly those with cystic fibrosis. These pathogens often infect the respiratory tract, and available treatments are limited due to antibiotic resistance. Targeting bacterial lectins involved in biofilm formation and host-pathogen interactions represents a promising therapeutic strategy. In this study, we evaluate the potential of synthetic fucosylamides as inhibitors of the two lectins LecB (P. aeruginosa) and BC2L-C-Nt (B. cenocepacia). Using a suite of biophysical assays, we assessed their binding affinities, identifying three β-fucosylamides as promising dual-target ligands, while crystallography studies revealed the atomic basis of these ligands to interact with both bacterial lectins. The emerged classes of compounds represent a solid starting point for the necessary hit-to-lead optimization for future dual inhibitors aiming at the treatment of coinfections with these two bacterial pathogens.
Collapse
Affiliation(s)
- Giulia Antonini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Mario Fares
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany
| | - Dirk Hauck
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany
| | - Patrycja Mała
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany
| | - Emilie Gillon
- CERMAV, Univ. Grenoble Alpes, CNRS, 38000 Grenoble, France
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany
| | | | - Sarah Mazzotta
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
2
|
Afsharnia A, Cai Y, Nauta A, Groeneveld A, Folkerts G, Wösten MMSM, Braber S. In Vivo Evidence on the Emerging Potential of Non-Digestible Oligosaccharides as Therapeutic Agents in Bacterial and Viral Infections. Nutrients 2025; 17:1068. [PMID: 40292455 PMCID: PMC11945282 DOI: 10.3390/nu17061068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
The issue of antibiotic-resistant bacterial infections, coupled with the rise in viral pandemics and the slow development of new antibacterial and antiviral treatments, underscores the critical need for novel strategies to mitigate the spread of drug-resistant pathogens, enhance the efficacy of existing therapies, and accelerate the discovery and deployment of innovative antimicrobial and antiviral solutions. One promising approach to address these challenges is the dietary supplementation of non-digestible oligosaccharides (NDOs). NDOs, including human milk oligosaccharides (HMOs), play a vital role in shaping and sustaining a healthy gut microbiota. Beyond stimulating the growth and activity of beneficial gut bacteria, NDOs can also interact directly with pathogenic bacteria and viruses. Their antiviral and antibacterial properties arise from their unique interactions with pathogens and their ability to modulate the host's immune system. NDOs can function as decoy receptors, inhibit pathogen growth, bind to bacterial toxins, stimulate the host immune response, exhibit anti-biofilm properties, and enhance barrier protection. However, a notable gap exists in the comprehensive assessment of in vivo and clinical data on this topic. This review aims to provide an in-depth overview of the in vivo evidence related to the antiviral and antibacterial effects of various NDOs and HMOs, with a focus on discussing their possible mechanisms of action.
Collapse
Affiliation(s)
- Amirmohammad Afsharnia
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| | - Yang Cai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Arjen Nauta
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (A.N.); (A.G.)
| | - Andre Groeneveld
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (A.N.); (A.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| | - Marc M. S. M. Wösten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| |
Collapse
|
3
|
Haq SU, Ling W, Aqib AI, Danmei H, Aleem MT, Fatima M, Ahmad S, Gao F. Exploring the intricacies of antimicrobial resistance: Understanding mechanisms, overcoming challenges, and pioneering innovative solutions. Eur J Pharmacol 2025; 998:177511. [PMID: 40090539 DOI: 10.1016/j.ejphar.2025.177511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a growing global threat. This review examines AMR from diverse angles, tracing the story of antibiotic resistance from its origins to today's crisis. It explores the rise of AMR, from its historical roots to the urgent need to counter this escalating menace. The review explores antibiotic classes, mechanisms, resistance profiles, and genetics. It details bacterial resistance mechanisms with illustrative examples. Multidrug-resistant bacteria spotlight AMR's resilience. Modern AMR control offers hope through precision medicine, stewardship, combination therapy, surveillance, and international cooperation. Converging traditional and innovative treatments presents an exciting frontier as novel compounds seek to enhance antibiotic efficacy. This review calls for global unity and proactive engagement to address AMR collectively, emphasizing the quest for innovative solutions and responsible antibiotic use. It underscores the interconnectedness of science, responsibility, and action in combatting AMR. Humanity faces a choice between antibiotic efficacy and obsolescence. The call is clear: unite, innovate, and prevail against AMR.
Collapse
Affiliation(s)
- Shahbaz Ul Haq
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| | - Wang Ling
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, 730050, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Huang Danmei
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Saad Ahmad
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
4
|
Walke G, Santi C, Haydon C, Joshi P, Takebayashi Y, Rama S, Dorh J, Hotha S, Spencer J, Galan MC. C2-Linked Arabinose-Functionalized Polystyrene Microbeads Selectively Target Staphylococcus aureus. JACS AU 2024; 4:4537-4543. [PMID: 39610754 PMCID: PMC11600162 DOI: 10.1021/jacsau.4c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Carbohydrates play pivotal roles in the first stages of microbial infections and can be exploited as decoys to hijack the interactions between bacteria and the host cell. Multivalent glycan probes mimicking the natural presentation of glycans in living cells have been successfully employed to study fundamental carbohydrate/protein interactions in microbial systems; however, most pathogenic glycan receptors exhibit a shared specificity for commonly found sugars present in both healthy and pathogenic cells, posing a challenge for target selectivity. In this study, we report the synthesis of a small library of d-arabinose multivalent probes, a sugar absent in human physiology, and their evaluation in a bacteria agglutination assay using cluster analysis. Our findings reveal preferential binding to Staphylococcus aureus of C2-linked arabinose moieties over C1- or C5-linked probes, underscoring the importance of glycan presentation in targeting specificity. Furthermore, we demonstrate the selectivity of the C2-linked probe toward S. aureus across a panel of common bacterial pathogens. Additionally, these probes are able to disrupt biofilm formation in S. aureus SH1000, thereby further proving the cell surface interactions with S. aureus.
Collapse
Affiliation(s)
- Gulab Walke
- School of
Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Cristina Santi
- School of
Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Calum Haydon
- School of
Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Pooja Joshi
- Department
of Chemistry, Indian Institute of Science
Education and Research Pune, Pune 411 008, India
| | - Yuiko Takebayashi
- School of
Cellular and Molecular Medicine, University
of Bristol Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Sylvain Rama
- FluoretiQ
Ltd., Futurespace, Filton Road, Stoke Gifford, Bristol BS34 8RB, United
Kingdom
| | - Josephine Dorh
- FluoretiQ
Ltd., Futurespace, Filton Road, Stoke Gifford, Bristol BS34 8RB, United
Kingdom
| | - Srinivas Hotha
- Department
of Chemistry, Indian Institute of Science
Education and Research Pune, Pune 411 008, India
| | - James Spencer
- School of
Cellular and Molecular Medicine, University
of Bristol Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - M. Carmen Galan
- School of
Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
5
|
Ning X, Budhadev D, Pollastri S, Nehlmeier I, Kempf A, Manfield I, Turnbull WB, Pöhlmann S, Bernardi A, Li X, Guo Y, Zhou D. Polyvalent Glycomimetic-Gold Nanoparticles Revealing Critical Roles of Glycan Display on Multivalent Lectin-Glycan Interaction Biophysics and Antiviral Properties. JACS AU 2024; 4:3295-3309. [PMID: 39211605 PMCID: PMC11350578 DOI: 10.1021/jacsau.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology, making them attractive therapeutic targets. Unfortunately, the structural and biophysical mechanisms of several key MLGIs remain poorly understood, limiting our ability to design spatially matched glycoconjugates as potential therapeutics against specific MLGIs. We have recently demonstrated that natural oligomannose-coated nanoparticles are powerful probes for MLGIs. They can provide not only quantitative affinity and binding thermodynamic data but also key structural information (e.g, binding site orientation and mode) useful for designing glycoconjugate therapeutics against specific MLGIs. Despite success, how designing parameters (e.g., glycan type, density, and scaffold size) control their MLGI biophysical and antiviral properties remains to be elucidated. A synthetic pseudodimannose (psDiMan) ligand has been shown to selectively bind to a dendritic cell surface tetrameric lectin, DC-SIGN, over some other multimeric lectins sharing monovalent mannose specificity but having distinct cellular functions. Herein, we display psDiMan polyvalently onto gold nanoparticles (GNPs) of varying sizes (e.g., ∼5 and ∼13 nm, denoted as G5- and G13 psDiMan hereafter) to probe how the scaffold size and glycan display control their MLGI properties with DC-SIGN and the closely related lectin DC-SIGNR. We show that G5/13 psDiMan binds strongly to DC-SIGN, with sub-nM K ds, with affinity being enhanced with increasing scaffold size, whereas they show apparently no or only weak binding to DC-SIGNR. Interestingly, there is a minimal, GNP-size-dependent, glycan density threshold for forming strong binding with DC-SIGN. By combining temperature-dependent affinity and Van't Hoff analyses, we have developed a new GNP fluorescence quenching assay for MLGI thermodynamics, revealing that DC-SIGN-Gx-psDiMan binding is enthalpy-driven, with a standard binding ΔH 0 of ∼ -95 kJ mol-1, which is ∼4-fold that of the monovalent binding and is comparable to that measured by isothermal titration calorimetry. We further reveal that the enhanced DC-SIGN affinity with Gx-psDiMan with increasing GNP scaffold size is due to reduced binding entropy penalty and not due to enhanced favorable binding enthalpy. We further show that DC-SIGN binds tetravalently to a single Gx-psDiMan, irrespective of the GNP size, whereas DC-SIGNR binding is dependent on GNP size, with no apparent binding with G5, and weak cross-linking with G13. Finally, we show that Gx-psDiMans potently inhibit DC-SIGN-dependent augmentation of cellular entry of Ebola pseudoviruses with sub-nM EC50 values, whereas they exhibit no significant (for G5) or weak (for G13) inhibition against DC-SIGNR-augmented viral entry, consistent to their MLGI properties with DC-SIGNR in solution. These results have established Gx-psDiMan as a versatile new tool for probing MLGI affinity, selectivity, and thermodynamics, as well as GNP-glycan antiviral properties.
Collapse
Affiliation(s)
- Xinyu Ning
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sara Pollastri
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Inga Nehlmeier
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Amy Kempf
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Iain Manfield
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, University of
Göttingen, 37073 Göttingen, Germany
| | - Anna Bernardi
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Xin Li
- Building
One, Granta Centre, G ranta Park, Sphere
Fluidics Ltd, Great Abington, Cambridge CB21 6AL, United Kingdom
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
6
|
Esposito A, Rossi A, Stabile M, Pinto G, De Fino I, Melessike M, Tamanini A, Cabrini G, Lippi G, Aureli M, Loberto N, Renda M, Galietta LJV, Amoresano A, Dechecchi MC, De Gregorio E, Bragonzi A, Guaragna A. Assessing the Potential of N-Butyl-l-deoxynojirimycin (l-NBDNJ) in Models of Cystic Fibrosis as a Promising Antibacterial Agent. ACS Pharmacol Transl Sci 2024; 7:1807-1822. [PMID: 38898954 PMCID: PMC11184606 DOI: 10.1021/acsptsci.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Over the past few years, l-iminosugars have revealed attractive pharmacological properties for managing rare diseases including Cystic Fibrosis (CF). The iminosugar N-butyl-l-deoxynojirimycin (l-NBDNJ, ent-1), prepared by a carbohydrate-based route, was herein evaluated for its anti-inflammatory and anti-infective potential in models of CF lung disease infection. A significant decrease in the bacterial load in the airways was observed in the murine model of Pseudomonas aeruginosa chronic infection in the presence of l-NBDNJ, also accompanied by a modest reduction of inflammatory cells. Mechanistic insights into the observed activity revealed that l-NBDNJ interferes with the expression of proteins regulating cytoskeleton assembly and organization of the host cell, downregulates the main virulence factors of P. aeruginosa involved in the host response, and affects pathogen adhesion to human cells. These findings along with the observation of the absence of an in vitro bacteriostatic/bactericidal action of l-NBDNJ suggest the potential use of this glycomimetic as an antivirulence agent in the management of CF lung disease.
Collapse
Affiliation(s)
- Anna Esposito
- Department
of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples I-80125, Italy
| | - Alice Rossi
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Maria Stabile
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples I-80131, Italy
| | - Gabriella Pinto
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
| | - Ida De Fino
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Medede Melessike
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Anna Tamanini
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Giulio Cabrini
- Center on
Innovative Therapies for Cystic Fibrosis, Department of Life Sciences
and Biotechnology, University of Ferrara, Ferrara I-40121, Italy
| | - Giuseppe Lippi
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Massimo Aureli
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20054, Italy
| | - Nicoletta Loberto
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20054, Italy
| | - Mario Renda
- Telethon
Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples I-80078, Italy
| | - Luis J. V. Galietta
- Telethon
Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples I-80078, Italy
- Department
of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples I-80131, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
- Istituto
Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Rome I-00136, Italy
| | - Maria Cristina Dechecchi
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Eliana De Gregorio
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples I-80131, Italy
| | - Alessandra Bragonzi
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Annalisa Guaragna
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
| |
Collapse
|
7
|
Hussaini IM, Oyewole OA, Sulaiman MA, Dabban AI, Sulaiman AN, Tarek R. Microbial anti-biofilms: types and mechanism of action. Res Microbiol 2024; 175:104111. [PMID: 37844786 DOI: 10.1016/j.resmic.2023.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/18/2023]
Abstract
Biofilms have been recognized as a serious threat to public health as it protects microbes from antimicrobials, immune defence mechanisms, chemical treatments and nutritional stress. Biofilms are also a source of concern in industries and water treatment because their presence compromises the integrity of equipment. To overcome these problems, it is necessary to identify novel anti-biofilm compounds. Products of microorganisms have been identified as promising broad-spectrum anti-biofilm agents. These natural products include biosurfactants, antimicrobial peptides, enzymes and bioactive compounds. Anti-biofilm products of microbial origin are chemically diverse and possess a broad spectrum of activities against biofilms. The objective of this review is to give an overview of the different types of microbial anti-biofilm products and their mechanisms of action.
Collapse
Affiliation(s)
| | - Oluwafemi Adebayo Oyewole
- Department of Microbiology, School of Life Sciences, Federal University of Technology, Minna, Nigeria; African Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria.
| | | | | | - Asmau Nna Sulaiman
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Reham Tarek
- Department of Biotechnology, Cairo University, Egypt
| |
Collapse
|
8
|
Ji H, Yang X, Zhou H, Cui F, Zhou Q. Rapid Evaluation of Antibacterial Carbohydrates on a Microfluidic Chip Integrated with the Impedimetric Neoglycoprotein Biosensor. BIOSENSORS 2023; 13:887. [PMID: 37754121 PMCID: PMC10526297 DOI: 10.3390/bios13090887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The colonization of some bacteria to their host cell is mediated by selective adhesion between adhesin and glycan. The evaluation of antiadhesive carbohydrates in vitro has great significance in discovering new antibacterial drugs. In this paper, a microfluidic chip integrated with impedimetric neoglycoprotein biosensors was developed to evaluate the antibacterial effect of carbohydrates. Mannosylated bovine serum albumin (Man-BSA) was taken as the neoglycoprotein and immobilized on the microelectrode-modified gold nanoparticles (Au NPs) to form a bionic glycoprotein nanosensing surface (Man-BSA/Au NPs). Salmonella typhimurium (S. typhimurium) was selected as a bacteria model owing to its selective adhesion to the mannose. Electrochemical impedance spectroscopy (EIS) was used to characterize the adhesion capacity of S. typhimurium to the Man-BSA/Au NPs and evaluate the antiadhesive efficacy of nine different carbohydrates. It was illustrated that the 4-methoxyphenyl-α-D-pyran mannoside (Phenyl-Man) and mannan peptide (Mannatide) showed excellent antiadhesive efficacy, with IC50 values of 0.086 mM and 0.094 mM, respectively. The microfluidic device developed in this study can be tested in multiple channels. Compared with traditional methods for evaluating the antibacterial drug in vitro, it has the advantages of being fast, convenient, and cost-effective.
Collapse
Affiliation(s)
| | | | | | - Feiyun Cui
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (H.J.); (X.Y.); (H.Z.)
| | - Qin Zhou
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (H.J.); (X.Y.); (H.Z.)
| |
Collapse
|
9
|
Duca M, Haksar D, van Neer J, Thies-Weesie DM, Martínez-Alarcón D, de Cock H, Varrot A, Pieters RJ. Multivalent Fucosides Targeting β-Propeller Lectins from Lung Pathogens with Promising Anti-Adhesive Properties. ACS Chem Biol 2022; 17:3515-3526. [PMID: 36414265 PMCID: PMC9764287 DOI: 10.1021/acschembio.2c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fungal and bacterial pathogens causing lung infections often use lectins to mediate adhesion to glycoconjugates at the surface of host tissues. Given the rapid emergence of resistance to the treatments in current use, β-propeller lectins such as FleA from Aspergillus fumigatus, SapL1 from Scedosporium apiospermum, and BambL from Burkholderia ambifaria have become appealing targets for the design of anti-adhesive agents. In search of novel and cheap anti-infectious agents, we synthesized multivalent compounds that can display up to 20 units of fucose, the natural ligand. We obtained nanomolar inhibitors that are several orders of magnitude stronger than their monovalent analogue according to several biophysical techniques (i.e., fluorescence polarization, isothermal titration calorimetry, and bio-layer interferometry). The reason for high affinity might be attributed to a strong aggregating mechanism, which was examined by analytical ultracentrifugation. Notably, the fucosylated inhibitors reduced the adhesion of A. fumigatus spores to lung epithelial cells when administered 1 h before or after the infection of human lung epithelial cells. For this reason, we propose them as promising anti-adhesive drugs for the prevention and treatment of aspergillosis and related microbial lung infections.
Collapse
Affiliation(s)
- Margherita Duca
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands,Department
of Biology, Utrecht University, Padualaan 8, 3584 CS Utrecht, The Netherlands,Univ.
Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Diksha Haksar
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands
| | - Jacq van Neer
- Department
of Biology, Utrecht University, Padualaan 8, 3584 CS Utrecht, The Netherlands
| | - Dominique M.E. Thies-Weesie
- Debye
Institute for Nanomaterials Science, Utrecht
University, Padualaan
8, 3584 CS Utrecht, The Netherlands
| | | | - Hans de Cock
- Department
of Biology, Utrecht University, Padualaan 8, 3584 CS Utrecht, The Netherlands,
| | | | - Roland J. Pieters
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands,
| |
Collapse
|
10
|
Dendritic maleimide-thiol adducts carrying pendant glycosides as high-affinity ligands. Bioorg Chem 2022; 128:106061. [DOI: 10.1016/j.bioorg.2022.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 11/19/2022]
|
11
|
Bermeo R, Lal K, Ruggeri D, Lanaro D, Mazzotta S, Vasile F, Imberty A, Belvisi L, Varrot A, Bernardi A. Targeting a Multidrug-Resistant Pathogen: First Generation Antagonists of Burkholderia cenocepacia's BC2L-C Lectin. ACS Chem Biol 2022; 17:2899-2910. [PMID: 36174276 PMCID: PMC9594048 DOI: 10.1021/acschembio.2c00532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Multidrug-resistant pathogens such as Burkholderia cenocepacia have become a hazard in the context of healthcare-associated infections, especially for patients admitted with cystic fibrosis or immuno-compromising conditions. Like other opportunistic Gram-negative bacteria, this pathogen establishes virulence and biofilms through lectin-mediated adhesion. In particular, the superlectin BC2L-C is believed to cross-link human epithelial cells to B. cenocepacia during pulmonary infections. We aimed to obtain glycomimetic antagonists able to inhibit the interaction between the N-terminal domain of BC2L-C (BC2L-C-Nt) and its target fucosylated human oligosaccharides. In a previous study, we identified by fragment virtual screening and validated a small set of molecular fragments that bind BC2L-C-Nt in the vicinity of the fucose binding site. Here, we report the rational design and synthesis of bifunctional C- or N-fucosides, generated by connecting these fragments to a fucoside core using a panel of rationally selected linkers. A modular route starting from two key fucoside intermediates was implemented for the synthesis, followed by evaluation of the new compounds as BC2L-C-Nt ligands with a range of techniques (surface plasmon resonance, isothermal titration calorimetry, saturation transfer difference NMR, differential scanning calorimetry, and X-ray crystallography). This study resulted in a hit molecule with an order of magnitude gain over the starting methyl fucoside and in two crystal structures of antagonist/lectin complexes.
Collapse
Affiliation(s)
- Rafael Bermeo
- CNRS,
CERMAV, Univ. Grenoble Alpes, Grenoble 38000, France,Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Kanhaya Lal
- CNRS,
CERMAV, Univ. Grenoble Alpes, Grenoble 38000, France,Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Davide Ruggeri
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Daniele Lanaro
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Sarah Mazzotta
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Francesca Vasile
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Anne Imberty
- CNRS,
CERMAV, Univ. Grenoble Alpes, Grenoble 38000, France
| | - Laura Belvisi
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | | | - Anna Bernardi
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy,
| |
Collapse
|
12
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
13
|
Goti G, Colombo C, Achilli S, Vives C, Thépaut M, Luczkowiak J, Labiod N, Delgado R, Fieschi F, Bernardi A, Vivès C. Precision Glycodendrimers for DC‐SIGN Targeting. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giulio Goti
- Università degli Studi di Milano: Universita degli Studi di Milano Chemistry ITALY
| | - Cinzia Colombo
- Università degli Studi di Milano: Universita degli Studi di Milano Chemistry ITALY
| | | | | | | | - Joanna Luczkowiak
- Hospital Universitario 12 de Octubre Instituto de Investigación SPAIN
| | - Nuria Labiod
- Hospital Universitario 12 de Octubre Instituto de Investigación SPAIN
| | - Rafael Delgado
- Hospital Universitario 12 de Octubre Instituto de Investigación SPAIN
| | | | - Anna Bernardi
- Universita' di Milano Chimica via Golgi 19 20133 Milano ITALY
| | | |
Collapse
|
14
|
Li Y, Milewska M, Khine YY, Ariotti N, Stenzel MH. Trehalose coated nanocellulose to inhibit the infections by S. aureus. Polym Chem 2022. [DOI: 10.1039/d1py01422f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preventing bacterial infection by using antiadhesive compounds is one alternative to antibiotic treatment. Trehalose based polymers can serve as an antiadhesive agent that are selective to bacteria as trehalose is...
Collapse
|
15
|
Wawrzinek R, Wamhoff EC, Lefebre J, Rentzsch M, Bachem G, Domeniconi G, Schulze J, Fuchsberger FF, Zhang H, Modenutti C, Schnirch L, Marti MA, Schwardt O, Bräutigam M, Guberman M, Hauck D, Seeberger PH, Seitz O, Titz A, Ernst B, Rademacher C. A Remote Secondary Binding Pocket Promotes Heteromultivalent Targeting of DC-SIGN. J Am Chem Soc 2021; 143:18977-18988. [PMID: 34748320 PMCID: PMC8603350 DOI: 10.1021/jacs.1c07235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Dendritic cells (DC)
are antigen-presenting cells coordinating
the interplay of the innate and the adaptive immune response. The
endocytic C-type lectin receptors DC-SIGN and Langerin display expression
profiles restricted to distinct DC subtypes and have emerged as prime
targets for next-generation immunotherapies and anti-infectives. Using
heteromultivalent liposomes copresenting mannosides bearing aromatic
aglycones with natural glycan ligands, we serendipitously discovered
striking cooperativity effects for DC-SIGN+ but not for
Langerin+ cell lines. Mechanistic investigations combining
NMR spectroscopy with molecular docking and molecular dynamics simulations
led to the identification of a secondary binding pocket for the glycomimetics.
This pocket, located remotely of DC-SIGN’s carbohydrate bindings
site, can be leveraged by heteromultivalent avidity enhancement. We
further present preliminary evidence that the aglycone allosterically
activates glycan recognition and thereby contributes to DC-SIGN-specific
cell targeting. Our findings have important implications for both
translational and basic glycoscience, showcasing heteromultivalent
targeting of DCs to improve specificity and supporting potential allosteric
regulation of DC-SIGN and CLRs in general.
Collapse
Affiliation(s)
- Robert Wawrzinek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Eike-Christian Wamhoff
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Jonathan Lefebre
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Mareike Rentzsch
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Gunnar Bachem
- Department of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Gary Domeniconi
- Department of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Jessica Schulze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Felix F Fuchsberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Hengxi Zhang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Carlos Modenutti
- Departamento de Química Biológica e IQUIBICEN-CONICET, Universidad de Buenos Aires, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Lennart Schnirch
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Marcelo A Marti
- Departamento de Química Biológica e IQUIBICEN-CONICET, Universidad de Buenos Aires, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Oliver Schwardt
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Maria Bräutigam
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mónica Guberman
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,German Centre for Infection Research, Campus Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,German Centre for Infection Research, Campus Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany.,University of Vienna, Department of Pharmaceutical Sciences, Althanstrasse 14, 1090 Vienna, Austria.,University of Vienna, Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
16
|
Li Y, Ariotti N, Aghaei B, Pandzic E, Ganda S, Willcox M, Sanchez‐Felix M, Stenzel M. Inhibition of
S. aureus
Infection of Human Umbilical Vein Endothelial Cells (HUVECs) by Trehalose‐ and Glucose‐Functionalized Gold Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yimeng Li
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Nicholas Ariotti
- Electron Microscope Unit Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia
| | - Behnaz Aghaei
- Inventia Life Science Pty Ltd Sydney NSW 2015 Australia
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney NSW 2052 Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia
| | - Sylvia Ganda
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Mark Willcox
- School of Optometry and Vision Science University of New South Wales Sydney NSW 2052 Australia
| | | | - Martina Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
17
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
18
|
Li Y, Ariotti N, Aghaei B, Pandzic E, Ganda S, Willcox M, Sanchez-Felix M, Stenzel MH. Inhibition of S. aureus-Infection of HUVECs by Trehalose and Glucose-functionalized Gold Nanoparticles. Angew Chem Int Ed Engl 2021; 60:22652-22658. [PMID: 34387412 DOI: 10.1002/anie.202106544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/19/2021] [Indexed: 11/10/2022]
Abstract
Microbial adhesion to host cells represents the initial step in the infection process. Several methods have been explored to inhibit microbial adhesion including the use of glycopolymers based on mannose, galactose, sialic acid and glucose. These sugar receptors are however abundant in the body and they are not unique to bacteria. Trehalose in contrast is a unique disaccharide that is wildly expressed by microbes. This carbohydrate has not yet been explored as an anti-adhesive. Herein, gold nanoparticles (AuNPs) coated with trehalose-based polymers were prepared and compared to glucose-functionalized AuNPs and examined for their ability to prevent binding to endothelial cells. Acting as anti-adhesive, trehalose-functionalized nanoparticles decreased the binding of S. aureus to HUVEC cells, while outperforming the control nanoparticles. Microscopy revealed that trehalose coated nanoparticle bound strongly to S. aureus compared to the controls. In conclusion, nanoparticles based on trehalose could be a non-toxic alternative to inhibit S. aureus infection.
Collapse
Affiliation(s)
- Yimeng Li
- University of New South Wales - Kensington Campus: University of New South Wales, School of Chemistry, AUSTRALIA
| | - Nicholas Ariotti
- University of New South Wales - Kensington Campus: University of New South Wales, Mark Wainwright Analytical Centre, AUSTRALIA
| | - Behnaz Aghaei
- UNSW: University of New South Wales, school of Chemistry, AUSTRALIA
| | - Elvis Pandzic
- UNSW: University of New South Wales, school of chemistry, AUSTRALIA
| | - Sylvia Ganda
- UNSW: University of New South Wales, School of Chemistry, AUSTRALIA
| | - Mark Willcox
- UNSW: University of New South Wales, School of Optometry and Vision Science, AUSTRALIA
| | | | - Martina Heide Stenzel
- University of New South Wales Institute of Languages: UNSW Global Pty Limited, School of Chemical Sciences and Engineering, Applied Science Building, 2052, Sydney, AUSTRALIA
| |
Collapse
|
19
|
Biochemical and structural studies of target lectin SapL1 from the emerging opportunistic microfungus Scedosporium apiospermum. Sci Rep 2021; 11:16109. [PMID: 34373510 PMCID: PMC8352872 DOI: 10.1038/s41598-021-95008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
Scedosporium apiospermum is an emerging opportunistic fungal pathogen responsible for life-threatening infections in humans. Host-pathogen interactions often implicate lectins that have become therapeutic targets for the development of carbohydrate mimics for antiadhesive therapy. Here, we present the first report on the identification and characterization of a lectin from S. apiospermum named SapL1. SapL1 was found using bioinformatics as a homolog to the conidial surface lectin FleA from Aspergillus fumigatus known to play a role in the adhesion to host glycoconjugates present in human lung epithelium. In our strategy to obtain recombinant SapL1, we discovered the importance of osmolytes to achieve its expression in soluble form in bacteria. Analysis of glycan arrays indicates specificity for fucosylated oligosaccharides as expected. Submicromolar affinity was measured for fucose using isothermal titration calorimetry. We solved SapL1 crystal structure in complex with α-methyl-L-fucoside and analyzed its structural basis for fucose binding. We finally demonstrated that SapL1 binds to bronchial epithelial cells in a fucose-dependent manner. The information gathered here will contribute to the design and development of glycodrugs targeting SapL1.
Collapse
|
20
|
Lal K, Bermeo R, Cramer J, Vasile F, Ernst B, Imberty A, Bernardi A, Varrot A, Belvisi L. Prediction and Validation of a Druggable Site on Virulence Factor of Drug Resistant Burkholderia cenocepacia*. Chemistry 2021; 27:10341-10348. [PMID: 33769626 PMCID: PMC8360069 DOI: 10.1002/chem.202100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Burkholderia cenocepacia is an opportunistic Gram‐negative bacterium that causes infections in patients suffering from chronic granulomatous diseases and cystic fibrosis. It displays significant morbidity and mortality due to extreme resistance to almost all clinically useful antibiotics. The bacterial lectin BC2L‐C expressed in B. cenocepacia is an interesting drug target involved in bacterial adhesion and subsequent deadly infection to the host. We solved the first high resolution crystal structure of the apo form of the lectin N‐terminal domain (BC2L‐C‐nt) and compared it with the ones complexed with carbohydrate ligands. Virtual screening of a small fragment library identified potential hits predicted to bind in the vicinity of the fucose binding site. A series of biophysical techniques and X‐ray crystallographic screening were employed to validate the interaction of the hits with the protein domain. The X‐ray structure of BC2L‐C‐nt complexed with one of the identified active fragments confirmed the ability of the site computationally identified to host drug‐like fragments. The fragment affinity could be determined by titration microcalorimetry. These structure‐based strategies further provide an opportunity to elaborate the fragments into high affinity anti‐adhesive glycomimetics, as therapeutic agents against B. cenocepacia.
Collapse
Affiliation(s)
- Kanhaya Lal
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133, Milano, Italy.,Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Rafael Bermeo
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133, Milano, Italy.,Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Jonathan Cramer
- University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Francesca Vasile
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133, Milano, Italy
| | - Beat Ernst
- University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Anna Bernardi
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133, Milano, Italy
| | - Annabelle Varrot
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Laura Belvisi
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133, Milano, Italy
| |
Collapse
|
21
|
Gallego C, Patiño P, Martínez N, Iregui C. The effect of carbohydrates on the adherence of Pasteurella multocida to the nasal respiratory epithelium. AN ACAD BRAS CIENC 2021; 93:e20190989. [PMID: 34259794 DOI: 10.1590/0001-3765202120190989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
Pasteurella multocida subsp. multocida is responsible for different diseases that generate great economic losses in farm animal. The effectiveness of immunization against those bacteria are variable and the use of antibiotics is questioned; for that reason, we investigated the potential inhibitory effect of different carbohydrates on the adherence in vivo of P. multocida to the rabbit respiratory epithelium as an alternative for the prevention of respiratory infections. Rabbits were intranasally and intratracheally inoculated with a solution containing 200 µl of 1x107 CFU of P. multocida that was previously mixed with 250 µg /200 µl of N-acetylglucosamine, alphamethylglucoside, alphamethylmannoside, N-acetylgalactosamine or sialic acid. The animals that received N-acetylglucosamine, alphamethylglucoside or alphamethylmannoside individually or a mixture of these three carbohydrates plus the bacterium, showed a significant decrease (P <0.05) of the clinical symptoms, microscopic and macroscopic lesions in the nasal septa and in the lungs; also, the number of adhered bacteria to the nasal epithelium were also significantly reduced. This research demonstrates for the first time that such an approach could convert into a method for prevention of P. multocida infection in rabbits that is ecologically and economically safe and effective.
Collapse
Affiliation(s)
- Carolina Gallego
- Laboratory of Veterinary Pathology, Universidad de Ciencias Aplicadas y Ambientales, Calle 222, n 55-37, 111 Bogotá, Colombia
| | - Pilar Patiño
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, National University of Colombia, Carrera 30 n 45-03, 111321 Bogotá, Colombia
| | - Nhora Martínez
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, National University of Colombia, Carrera 30 n 45-03, 111321 Bogotá, Colombia
| | - Carlos Iregui
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, National University of Colombia, Carrera 30 n 45-03, 111321 Bogotá, Colombia
| |
Collapse
|
22
|
Martin H, Goyard D, Margalit A, Doherty K, Renaudet O, Kavanagh K, Velasco-Torrijos T. Multivalent Presentations of Glycomimetic Inhibitor of the Adhesion of Fungal Pathogen Candida albicans to Human Buccal Epithelial Cells. Bioconjug Chem 2021; 32:971-982. [PMID: 33887134 PMCID: PMC8154258 DOI: 10.1021/acs.bioconjchem.1c00115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Candida albicans causes some of the most prevalent hospital-acquired fungal infections, particularly threatening for immunocompromised patients. C. albicans strongly adheres to the surface of epithelial cells so that subsequent colonization and biofilm formation can take place. Divalent galactoside glycomimetic 1 was found to be a potent inhibitor of the adhesion of C. albicans to buccal epithelial cells. In this work, we explore the effect of multivalent presentations of glycomimetic 1 on its ability to inhibit yeast adhesion and biofilm formation. Tetra-, hexa-, and hexadecavalent displays of compound 1 were built on RAFT cyclopeptide- and polylysine-based scaffolds with a highly efficient and modular synthesis. Biological evaluation revealed that the scaffold choice significantly influences the activity of the lower valency conjugates, with compound 16, constructed on a tetravalent polylysine scaffold, found to inhibit the adhesion of C. albicans to human buccal epithelial cells more effectively than the glycomimetic 1; however, the latter performed better in the biofilm reduction assays. Interestingly, the higher valency glycoconjugates did not outperform the anti-adhesion activity of the original compound 1, and no significant effect of the core scaffold could be appreciated. SEM images of C. albicans cells treated with compounds 1, 14, and 16 revealed significant differences in the aggregation patterns of the yeast cells.
Collapse
Affiliation(s)
- Harlei Martin
- Department
of Chemistry, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
| | - David Goyard
- DCM,
UMR 5250, Université Grenoble Alpes,
CNRS, 38000 Grenoble, France
| | - Anatte Margalit
- Department
of Biology, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
| | - Kyle Doherty
- Department
of Chemistry, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
| | - Olivier Renaudet
- DCM,
UMR 5250, Université Grenoble Alpes,
CNRS, 38000 Grenoble, France
| | - Kevin Kavanagh
- Department
of Biology, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
- The
Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23VP22, Co.
Kildare, Ireland
| | - Trinidad Velasco-Torrijos
- Department
of Chemistry, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
- The
Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23VP22, Co.
Kildare, Ireland
| |
Collapse
|
23
|
Hoyos P, Perona A, Juanes O, Rumbero Á, Hernáiz MJ. Synthesis of Glycodendrimers with Antiviral and Antibacterial Activity. Chemistry 2021; 27:7593-7624. [PMID: 33533096 DOI: 10.1002/chem.202005065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Glycodendrimers are an important class of synthetic macromolecules that can be used to mimic many structural and functional features of cell-surface glycoconjugates. Their carbohydrate moieties perform key important functions in bacterial and viral infections, often regulated by carbohydrate-protein interactions. Several studies have shown that the molecular structure, valency and spatial organisation of carbohydrate epitopes in glycoconjugates are key factors in the specificity and avidity of carbohydrate-protein interactions. Choosing the right glycodendrimers almost always helps to interfere with such interactions and blocks bacterial or viral adhesion and entry into host cells as an effective strategy to inhibit bacterial or viral infections. Herein, the state of the art in the design and synthesis of glycodendrimers employed for the development of anti-adhesion therapy against bacterial and viral infections is described.
Collapse
Affiliation(s)
- Pilar Hoyos
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Almudena Perona
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Olga Juanes
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Ángel Rumbero
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - María J Hernáiz
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
24
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
25
|
Palmioli A, Sperandeo P, Bertuzzi S, Polissi A, Airoldi C. On-cell saturation transfer difference NMR for the identification of FimH ligands and inhibitors. Bioorg Chem 2021; 112:104876. [PMID: 33845337 DOI: 10.1016/j.bioorg.2021.104876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
We describe the development of an on-cell NMR method for the rapid screening of FimH ligands and the structural identification of ligand binding epitopes. FimH is a mannose-binding bacterial adhesin expressed at the apical end of type 1 pili of uropathogenic bacterial strains and responsible for their d-mannose sensitive adhesion to host mammalian epithelial cells. Because of these properties, FimH is a key virulence factor and an attractive therapeutic target for urinary tract infection. We prepared synthetic d-mannose decorated dendrimers, we tested their ability to prevent the FimH-mediated yeast agglutination, and thus we used the compounds showing the best inhibitory activity as models of FimH multivalent ligands to set up our NMR methodology. Our experimental protocol, based on on-cell STD NMR techniques, is a suitable tool for the screening and the epitope mapping of FimH ligands aimed at the development of new antiadhesive and diagnostic tools against urinary tract infection pathogens. Notably, the study is carried out in a physiological environment, i.e. at the surface of living pathogen cells expressing FimH.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Sara Bertuzzi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Spain
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Cristina Airoldi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| |
Collapse
|
26
|
Bhatt P, Verma A, Gangola S, Bhandari G, Chen S. Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications. Microb Cell Fact 2021; 20:72. [PMID: 33736647 PMCID: PMC7977309 DOI: 10.1186/s12934-021-01556-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The large-scale application of organic pollutants (OPs) has contaminated the air, soil, and water. Persistent OPs enter the food supply chain and create several hazardous effects on living systems. Thus, there is a need to manage the environmental levels of these toxicants. Microbial glycoconjugates pave the way for the enhanced degradation of these toxic pollutants from the environment. Microbial glycoconjugates increase the bioavailability of these OPs by reducing surface tension and creating a solvent interface. To date, very little emphasis has been given to the scope of glycoconjugates in the biodegradation of OPs. Glycoconjugates create a bridge between microbes and OPs, which helps to accelerate degradation through microbial metabolism. This review provides an in-depth overview of glycoconjugates, their role in biofilm formation, and their applications in the bioremediation of OP-contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Amit Verma
- Department of Biochemistry, College of Basic Science and Humanities, SD Agricultural University, Gujarat, 385506, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, Dehradun, Uttarakhand, 248002, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, 248161, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
27
|
Petrie LE, Leonard AC, Murphy J, Cox G. Development and validation of a high-throughput whole cell assay to investigate Staphylococcus aureus adhesion to host ligands. J Biol Chem 2020; 295:16700-16712. [PMID: 32978256 PMCID: PMC7864066 DOI: 10.1074/jbc.ra120.015360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus adhesion to the host's skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of S. aureus adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined S. aureus transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a S. aureus Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach.
Collapse
Affiliation(s)
- Laurenne E Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Julia Murphy
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
28
|
Sarshar M, Behzadi P, Ambrosi C, Zagaglia C, Palamara AT, Scribano D. FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens. Antibiotics (Basel) 2020; 9:E397. [PMID: 32664222 PMCID: PMC7400442 DOI: 10.3390/antibiotics9070397] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chaperone-usher fimbrial adhesins are powerful weapons against the uropathogens that allow the establishment of urinary tract infections (UTIs). As the antibiotic therapeutic strategy has become less effective in the treatment of uropathogen-related UTIs, the anti-adhesive molecules active against fimbrial adhesins, key determinants of urovirulence, are attractive alternatives. The best-characterized bacterial adhesin is FimH, produced by uropathogenic Escherichia coli (UPEC). Hence, a number of high-affinity mono- and polyvalent mannose-based FimH antagonists, characterized by different bioavailabilities, have been reported. Given that antagonist affinities are firmly associated with the functional heterogeneities of different FimH variants, several FimH inhibitors have been developed using ligand-drug discovery strategies to generate high-affinity molecules for successful anti-adhesion therapy. As clinical trials have shown d-mannose's efficacy in UTIs prevention, it is supposed that mannosides could be a first-in-class strategy not only for UTIs, but also to combat other Gram-negative bacterial infections. Therefore, the current review discusses valuable and effective FimH anti-adhesive molecules active against UTIs, from design and synthesis to in vitro and in vivo evaluations.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| | - Cecilia Ambrosi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| |
Collapse
|
29
|
Kern MK, Pohl NLB. Automated Solution-Phase Synthesis of S-Glycosides for the Production of Oligomannopyranoside Derivatives. Org Lett 2020; 22:4156-4159. [PMID: 32432478 PMCID: PMC7493207 DOI: 10.1021/acs.orglett.0c01236] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioglycosides are more resistant to enzymatic hydrolysis than their O-linked counterparts, thereby becoming attractive targets for carbohydrate-based therapeutic development. We report the first development of methods for the site-selective incorporation of S-linkages into automated solution-phase oligosaccharide protocols. The protocols were shown to be compatible with the formation of S- or O-glycosides for the synthesis of mannopyranoside trimmers that incorporate both S- and O-linkages to allow the selective incorporation of an S-glycoside in various stages in an automated program.
Collapse
Affiliation(s)
- Mallory K Kern
- Department of Chemistry, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| |
Collapse
|
30
|
García‐Oliva C, Cabanillas AH, Perona A, Hoyos P, Rumbero Á, Hernáiz MJ. Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry 2020; 26:1588-1596. [DOI: 10.1002/chem.201903788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Cecilia García‐Oliva
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | | | - Almudena Perona
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Pilar Hoyos
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Ángel Rumbero
- Departamento de Química OrgánicaUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - María J. Hernáiz
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
31
|
BC2L-C N-Terminal Lectin Domain Complexed with Histo Blood Group Oligosaccharides Provides New Structural Information. Molecules 2020; 25:molecules25020248. [PMID: 31936166 PMCID: PMC7024360 DOI: 10.3390/molecules25020248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
Lectins mediate adhesion of pathogens to host tissues, filling in a key role in the first steps of infection. Belonging to the opportunistic pathogen Burkholderia cenocepacia, BC2L-C is a superlectin with dual carbohydrate specificity, believed to mediate cross-linking between bacteria and host cells. Its C-terminal domain binds to bacterial mannosides while its N-terminal domain (BCL2-CN) recognizes fucosylated human epitopes. BC2L-CN presents a tumor necrosis factor alpha (TNF-) fold previously unseen in lectins with a novel fucose binding mode. We report, here, the production of a novel recombinant form of BC2L-CN (rBC2L-CN2), which allowed better protein stability and unprecedented co-crystallization with oligosaccharides. Isothermal calorimetry measurements showed no detrimental effect on ligand binding and data were obtained on the binding of Globo H hexasaccharide and l-galactose. Crystal structures of rBC2L-CN2 were solved in complex with two blood group antigens: H-type 1 and H-type 3 (Globo H) by X-ray crystallography. They provide new structural information on the binding site, of importance for the structural-based design of glycodrugs as new antimicrobials with antiadhesive properties.
Collapse
|
32
|
Zelli R, Dumy P, Marra A. Metal-free synthesis of imino-disaccharides and calix-iminosugars by photoinduced radical thiol–ene coupling (TEC). Org Biomol Chem 2020; 18:2392-2397. [DOI: 10.1039/d0ob00198h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deprotected iminosugar alkenes were subjected to thiol–ene coupling with deprotected sugar thiols to afford new imino-disaccharides. Two thiol–ene couplings converted these alkenes into iminosugar thiols and then multivalent iminosugars.
Collapse
Affiliation(s)
- Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
33
|
Leonard AC, Petrie LE, Cox G. Bacterial Anti-adhesives: Inhibition of Staphylococcus aureus Nasal Colonization. ACS Infect Dis 2019; 5:1668-1681. [PMID: 31374164 DOI: 10.1021/acsinfecdis.9b00193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial adhesion to the skin and mucosa is often a fundamental and early step in host colonization, the establishment of bacterial infections, and pathology. This process is facilitated by adhesins on the surface of the bacterial cell that recognize host cell molecules. Interfering with bacterial host cell adhesion, so-called anti-adhesive therapeutics, offers promise for the development of novel approaches to control bacterial infections. In this review, we focus on the discovery of anti-adhesives targeting the high priority pathogen Staphylococcus aureus. This organism remains a major clinical burden, and S. aureus nasal colonization is associated with poor clinical outcomes. We describe the molecular basis of nasal colonization and highlight potentially efficacious targets for the development of novel nasal decolonization strategies.
Collapse
Affiliation(s)
- Allison C. Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Laurenne E. Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
34
|
Yu G, Vicini AC, Pieters RJ. Assembly of Divalent Ligands and Their Effect on Divalent Binding to Pseudomonas aeruginosa Lectin LecA. J Org Chem 2019; 84:2470-2488. [PMID: 30681333 PMCID: PMC6399674 DOI: 10.1021/acs.joc.8b02727] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Divalent
ligands were prepared as inhibitors for the adhesion protein
of the problematic Pseudomonas aeruginosa pathogen.
Bridging two binding sites enables simultaneous binding of two galactose
moieties, which strongly enhances binding. An alternating motif of
glucose and triazole and aryl groups was shown to have the right mix
of rigidity, solubility, and ease of synthesis. Spacers were varied
with respect to the core unit as well as the aglycon portions in an
attempt to optimize dynamics and enhance interactions with the protein.
Affinities of the divalent ligands were measured by ITC, and Kd’s as low as 12 nM were determined,
notably for a compounds with either a rigid (phenyl) or flexible (butyl)
unit at the core. Introducing a phenyl aglycon moiety next to the
galactoside ligands on both termini did indeed lead to a higher enthalpy
of binding, which was more than compensated by entropic costs. The
results are discussed in terms of thermodynamics and theoretical calculations
of the expected and observed multivalency effects.
Collapse
Affiliation(s)
- Guangyun Yu
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , P.O. Box 80082, 3508 TB Utrecht , The Netherlands
| | - Anna Chiara Vicini
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , P.O. Box 80082, 3508 TB Utrecht , The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , P.O. Box 80082, 3508 TB Utrecht , The Netherlands
| |
Collapse
|
35
|
Asadi A, Razavi S, Talebi M, Gholami M. A review on anti-adhesion therapies of bacterial diseases. Infection 2019; 47:13-23. [PMID: 30276540 DOI: 10.1007/s15010-018-1222-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Infections caused by bacteria are a foremost cause of morbidity and mortality in the world. The common strategy of treating bacterial infections is by local or systemic administration of antimicrobial agents. Currently, the increasing antibiotic resistance is a serious and global problem. Since the most important agent for infection is bacteria attaching to host cells, hence, new techniques and attractive approaches that interfere with the ability of the bacteria to adhere to tissues of the host or detach them from the tissues at the early stages of infection are good therapeutic strategies. METHODS All available national and international databanks were searched using the search keywords. Here, we review various approaches to anti-adhesion therapy, including use of receptor and adhesion analogs, dietary constituents, sublethal concentrations of antibiotics, and adhesion-based vaccines. RESULTS Altogether, the findings suggest that interference with bacterial adhesion serves as a new means to fight infectious diseases. CONCLUSION Anti-adhesion-based therapies can be effective in prevention and treatment of bacterial infections, but further work is needed to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
36
|
Zhao Y, Guo Q, Dai X, Wei X, Yu Y, Chen X, Li C, Cao Z, Zhang X. A Biomimetic Non-Antibiotic Approach to Eradicate Drug-Resistant Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806024. [PMID: 30589118 PMCID: PMC6634980 DOI: 10.1002/adma.201806024] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/26/2018] [Indexed: 05/19/2023]
Abstract
The chronic infections by pathogenic Pseudomonas aeruginosa (P. aeruginosa) remain to be properly addressed. In particular, for drug-resistant strains, limited medication is available. An in vivo pneumonia model induced by a clinically isolated aminoglycoside resistant strain of P. aeruginosa is developed. Tobramycin clinically treating P. aeruginosa infections is found to be ineffective to inhibit or eliminate this drug-resistant strain. Here, a newly developed non-antibiotics based nanoformulation plus near-infrared (NIR) photothermal treatment shows a remarkable antibacterial efficacy in treating this drug-resistant pneumonia. The novel formulation contains 50-100 nm long nanorods decorated with two types of glycomimetic polymers to specifically block bacterial LecA and LecB lectins, respectively, which are essential for bacterial biofilm development. Such a 3D display of heteromultivalent glycomimetics on a large scale is inspired by the natural strengthening mechanism for the carbohydrate-lectin interaction that occurs when bacteria initially infects the host. This novel formulation shows the most efficient bacteria inhabitation and killing against P. aeruginosa infection, through lectin blocking and the near-infrared-light-induced photothermal effect of gold nanorods, respectively. Collectively, the novel biomimetic design combined with the photothermal killing capability is expected to be an alternative treatment strategy against the ever-threatening drug-resistant infectious diseases when known antibiotics have failed.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuelei Chen
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
37
|
Inhibition of adherence of the yeast Candida albicans to buccal epithelial cells by synthetic aromatic glycoconjugates. Eur J Med Chem 2018; 160:82-93. [PMID: 30321803 DOI: 10.1016/j.ejmech.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
The yeast Candida albicans is an opportunistic fungal pathogen which induces superficial and systemic infections in immunocompromised patients. Adherence to host tissue is critical to its ability to colonise and infect the host. The work presented here describes the synthesis of a small library of aromatic glycoconjugates (AGCs) and their evaluation as inhibitors of C. albicans adherence to exfoliated buccal epithelial cells (BECs). We identified a divalent galactoside, ligand 2a, capable of displacing over 50% of yeast cells already attached to the BECs. Fluorescence imaging indicates that 2a may bind to structural components of the fungal cell wall.
Collapse
|
38
|
Kalograiaki I, Abellán-Flos M, Fernández LÁ, Menéndez M, Vincent SP, Solís D. Direct Evaluation of Live Uropathogenic Escherichia coli Adhesion and Efficiency of Antiadhesive Compounds Using a Simple Microarray Approach. Anal Chem 2018; 90:12314-12321. [DOI: 10.1021/acs.analchem.8b04235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ioanna Kalograiaki
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Marta Abellán-Flos
- Département de Chimie, Laboratoire de Chimie Bio-Organique, University of Namur (UNamur), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Luis Ángel Fernández
- Centro Nacional de Biotecnología (CNB), CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Stéphane P. Vincent
- Département de Chimie, Laboratoire de Chimie Bio-Organique, University of Namur (UNamur), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Dolores Solís
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
39
|
Dingjan T, Gillon É, Imberty A, Pérez S, Titz A, Ramsland PA, Yuriev E. Virtual Screening Against Carbohydrate-Binding Proteins: Evaluation and Application to Bacterial Burkholderia ambifaria Lectin. J Chem Inf Model 2018; 58:1976-1989. [DOI: 10.1021/acs.jcim.8b00185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tamir Dingjan
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Émilie Gillon
- University Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Serge Pérez
- University Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
- Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Paul A. Ramsland
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
- Department of Surgery Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
- Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
40
|
Bertolotti B, Sutkeviciute I, Ambrosini M, Ribeiro-Viana R, Rojo J, Fieschi F, Dvořáková H, Kašáková M, Parkan K, Hlaváčková M, Nováková K, Moravcová J. Polyvalent C-glycomimetics based on l-fucose or d-mannose as potent DC-SIGN antagonists. Org Biomol Chem 2018; 15:3995-4004. [PMID: 28443908 DOI: 10.1039/c7ob00322f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The C-type lectin DC-SIGN expressed on immature dendritic cells is a promising target for antiviral drug development. Previously, we have demonstrated that mono- and divalent C-glycosides based on d-manno and l-fuco configurations are promising DC-SIGN ligands. Here, we described the convergent synthesis of C-glycoside dendrimers decorated with 4, 6, 9, and 12 α-l-fucopyranosyl units and with 9 and 12 α-d-mannopyranosyl units. Their affinity against DC-SIGN was assessed by surface plasmon resonance (SPR) assays. For comparison, parent O-glycosidic dendrimers were synthesized and tested, as well. A clear increase of both affinity and multivalency effect was observed for C-glycomimetics of both types (mannose and fucose). However, when dodecavalent C-glycosidic dendrimers were compared, there was no difference in affinity regarding the sugar unit (l-fuco, IC50 17 μM; d-manno, IC50 12 μM). For the rest of glycodendrimers with l-fucose or d-mannose attached by the O- or C-glycosidic linkage, C-glycosidic dendrimers were significantly more active. These results show that in addition to the expected physiological stability, the biological activity of C-glycoside mimetics is higher in comparison to the corresponding O-glycosides and therefore these glycomimetic multivalent systems represent potentially promising candidates for targeting DC-SIGN.
Collapse
Affiliation(s)
- Benedetta Bertolotti
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Porkolab V, Chabrol E, Varga N, Ordanini S, Sutkevičiu̅tė I, Thépaut M, García-Jiménez MJ, Girard E, Nieto PM, Bernardi A, Fieschi F. Rational-Differential Design of Highly Specific Glycomimetic Ligands: Targeting DC-SIGN and Excluding Langerin Recognition. ACS Chem Biol 2018; 13:600-608. [PMID: 29272097 DOI: 10.1021/acschembio.7b00958] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
At the surface of dendritic cells, C-type lectin receptors (CLRs) allow the recognition of carbohydrate-based PAMPS or DAMPS (pathogen- or danger-associated molecular patterns, respectively) and promote immune response regulation. However, some CLRs are hijacked by viral and bacterial pathogens. Thus, the design of ligands able to target specifically one CLR, to either modulate an immune response or to inhibit a given infection mechanism, has great potential value in therapeutic design. A case study is the selective blocking of DC-SIGN, involved notably in HIV trans-infection of T lymphocytes, without interfering with langerin-mediated HIV clearance. This is a challenging task due to their overlapping carbohydrate specificity. Toward the rational design of DC-SIGN selective ligands, we performed a comparative affinity study between DC-SIGN and langerin with natural ligands. We found that GlcNAc is recognized by both CLRs; however, selective sulfation are shown to increase the selectivity in favor of langerin. With the combination of site-directed mutagenesis and X-ray structural analysis of the langerin/GlcNS6S complex, we highlighted that 6-sulfation of the carbohydrate ligand induced langerin specificity. Additionally, the K313 residue from langerin was identified as a critical feature of its binding site. Using a rational and a differential approach in the study of CLR binding sites, we designed, synthesized, and characterized a new glycomimetic, which is highly specific for DC-SIGN vs langerin. STD NMR, SPR, and ITC characterizations show that compound 7 conserved the overall binding mode of the natural disaccharide while possessing an improved affinity and a strict specificity for DC-SIGN.
Collapse
Affiliation(s)
- Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Eric Chabrol
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Norbert Varga
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy
| | - Stefania Ordanini
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy
| | - Ieva Sutkevičiu̅tė
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Maria José García-Jiménez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Pedro M. Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Anna Bernardi
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
42
|
Piqué N, Gómez-Guillén MDC, Montero MP. Xyloglucan, a Plant Polymer with Barrier Protective Properties over the Mucous Membranes: An Overview. Int J Mol Sci 2018; 19:E673. [PMID: 29495535 PMCID: PMC5877534 DOI: 10.3390/ijms19030673] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Disruption of the epithelial barrier function has been recently associated with a variety of diseases, mainly at intestinal level, but also affecting the respiratory epithelium and other mucosal barriers. Non-pharmacological approaches such as xyloglucan, with demonstrated protective barrier properties, are proposed as new alternatives for the management of a wide range of diseases, for which mucosal disruption and, particularly, tight junction alterations, is a common characteristic. Xyloglucan, a natural polysaccharide derived from tamarind seeds, possesses a "mucin-like" molecular structure that confers mucoadhesive properties, allowing xyloglucan formulations to act as a barrier capable of reducing bacterial adherence and invasion and to preserve tight junctions and paracellular flux, as observed in different in vitro and in vivo studies. In clinical trials, xyloglucan has been seen to reduce symptoms of gastroenteritis in adults and children, nasal disorders and dry eye syndrome. Similar mucosal protectors containing reticulated proteins have also been useful for the treatment of irritable bowel syndrome and urinary tract infections. The role of xyloglucan in other disorders with mucosal disruption, such as dermatological or other infectious diseases, deserves further research. In conclusion, xyloglucan, endowed with film-forming protective barrier properties, is a safe non-pharmacological alternative for the management of different diseases, such as gastrointestinal and nasal disorders.
Collapse
Affiliation(s)
- Núria Piqué
- Department of Microbiology and Parasitology, Pharmacy Faculty, Universitat de Barcelona (UB), Diagonal Sud, Facultat de Farmàcia, Edifici A, Av Joan XXIII, 27-31, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Universitat de Barcelona, 08921 Barcelona, Spain.
| | | | - María Pilar Montero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain.
| |
Collapse
|
43
|
Baier M, Giesler M, Hartmann L. Split-and-Combine Approach Towards Branched Precision Glycomacromolecules and Their Lectin Binding Behavior. Chemistry 2018; 24:1619-1630. [DOI: 10.1002/chem.201704179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Mischa Baier
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Duesseldorf; Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Markus Giesler
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Duesseldorf; Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Duesseldorf; Universitaetsstraße 1 40225 Duesseldorf Germany
| |
Collapse
|
44
|
Jiménez Blanco JL, Benito JM, Ortiz Mellet C, García Fernández JM. Molecular nanoparticle-based gene delivery systems. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Facile access to pseudo-thio-1,2-dimannoside, a new glycomimetic DC-SIGN antagonist. Bioorg Med Chem 2017; 25:5142-5147. [DOI: 10.1016/j.bmc.2017.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/16/2023]
|
46
|
Ordanini S, Goti G, Bernardi A. From optimized monovalent ligands to size-controlled dendrimers: an efficient strategy towards high-activity DC-SIGN antagonists. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This short review describes our work on the development of dendrimeric antagonists of DC-SIGN, a dendritic cells (DCs) receptor recognizing highly mannosylated structures and primarily involved in the recognition of viruses such as HIV. The structure of pseudo-di-mannoside and pseudo-tri-mannoside compounds was first finely modified to obtain DC-SIGN ligands that were more stable and selective than mannose. Their DC-SIGN affinity differences were amplified once presented on multivalent dendrimer-like scaffolds, including poly-alkyne terminated and phenylene-ethynylene rod-like ones. Libraries of mannosylated dendrimers were synthesized, improving their stability and maximizing their monodispersity. The effect of the dendrimers valency, structure, and size on DC-SIGN affinity and antiviral potency was investigated. Both the valency and the topology of the architectures were revealed as key parameters for activity optimization, together with the intrinsic affinity of the monovalent ligand. The stability, rigidity, and length of the scaffolds were also tuned. The design of geometrically adapted scaffolds afforded one of the most potent inhibitors of DC-SIGN mediated HIV infections to date. This monodispersed, not cytotoxic, and highly active compound was also tested with DCs; its internalization into endolysosomal compartments and its ability to induce the overexpression of signaling molecules makes it a good precursor to produce pathogen-entry inhibitors with immunomodulant properties.
Collapse
Affiliation(s)
- Stefania Ordanini
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| | - Giulio Goti
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| | - Anna Bernardi
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| |
Collapse
|
47
|
Mydock-McGrane LK, Hannan TJ, Janetka JW. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opin Drug Discov 2017; 12:711-731. [PMID: 28506090 DOI: 10.1080/17460441.2017.1331216] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The bacterial adhesin FimH is a virulence factor and an attractive therapeutic target for urinary tract infection (UTI) and Crohn's Disease (CD). Located on type 1 pili of uropathogenic E. coli (UPEC), the FimH adhesin plays an integral role in the pathogenesis of UPEC. Recent efforts have culminated in the development of small-molecule mannoside FimH antagonists that target the mannose-binding lectin domain of FimH, inhibiting its function and preventing UPEC from binding mannosylated host cells in the bladder, thereby circumventing infection. Areas covered: The authors describe the structure-guided design of mannoside ligands, and review the structural biology of the FimH lectin domain. Additionally, they discuss the lead optimization of mannosides for therapeutic application in UTI and CD, and describe various assays used to measure mannoside potency in vitro and mouse models used to determine efficacy in vivo. Expert opinion: To date, mannoside optimization has led to a diverse set of small-molecule FimH antagonists with oral bioavailability. With clinical trials already initiated in CD and on the horizon for UTI, it is the authors, opinion that mannosides will be a 'first-in-class' treatment strategy for UTI and CD, and will pave the way for treatment of other Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - James W Janetka
- b Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , Saint Louis , MO , USA
| |
Collapse
|
48
|
Ortiz Mellet C, Nierengarten JF, García Fernández JM. Multivalency as an action principle in multimodal lectin recognition and glycosidase inhibition: a paradigm shift driven by carbon-based glyconanomaterials. J Mater Chem B 2017; 5:6428-6436. [PMID: 32264409 DOI: 10.1039/c7tb00860k] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The last decade has witnessed a series of discoveries that question the traditional paradigm of multivalency as a "safe" strategy to enhance the binding affinity of a lectin receptor to its cognate carbohydrate ligand. Upon following the initial reports on the supplementary effects operating in the presence of a third carbohydrate species (heteromultivalent effect), the observation of functional promiscuity of glyco(mimetic)ligands elicited by (hetero)multivalency, spreading from lectins to glycoprocessing enzymes (inhibitory multivalent effect), has raised concerns about the potential consequences of glyconanomaterials binding to non-cognate proteins and creating messiness or noise in the processes they participate in. Carbon-based glycomaterials, specifically glyconanodiamonds and glycofullerenes, have been instrumental in increasing our awareness of the frequency of these lectin-enzyme crosstalk behaviours elicited by multivalency, driving a reformulation of the rules and concepts in glycoscience towards a "generalized multivalency" scenario.
Collapse
Affiliation(s)
- Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41011 Sevilla, Spain.
| | | | | |
Collapse
|
49
|
Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017; 128:69-83. [PMID: 28292726 PMCID: PMC5417338 DOI: 10.1016/j.biomaterials.2017.02.041] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
The continued evolution of biomedical nanotechnology has enabled clinicians to better detect, prevent, manage, and treat human disease. In order to further push the limits of nanoparticle performance and functionality, there has recently been a paradigm shift towards biomimetic design strategies. By taking inspiration from nature, the goal is to create next-generation nanoparticle platforms that can more effectively navigate and interact with the incredibly complex biological systems that exist within the body. Of great interest are cellular membranes, which play essential roles in biointerfacing, self-identification, signal transduction, and compartmentalization. In this review, we explore the major ways in which researchers have directly leveraged cell membrane-derived biomaterials for the fabrication of novel nanotherapeutics and nanodiagnostics. Such emerging technologies have the potential to significantly advance the field of nanomedicine, helping to improve upon traditional modalities while also enabling novel applications.
Collapse
Affiliation(s)
- Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yao Jiang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean C Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
50
|
Moonens K, Remaut H. Evolution and structural dynamics of bacterial glycan binding adhesins. Curr Opin Struct Biol 2017; 44:48-58. [DOI: 10.1016/j.sbi.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/25/2023]
|