1
|
Li X, Wang S, Li Q, Li X, Lin S, Zhao W, Liu Y, Wu B, Huang Y, Jia B, Hu Z. A Rapid and Reversible Molecular "Switch" Regulating Protein Expression in Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2025; 48:3913-3924. [PMID: 39838873 DOI: 10.1111/pce.15360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/28/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
Chlamydomonas reinhardtii, a prominent chassis in synthetic biology, faces limitations in regulating the expression of exogenous genes. A destabilization domain (DD)/Shield-1 system, originally derived from mammals, offers a ligand-dependent control of stability, making it a valuable tool. This system utilises the destabilization domain to induce rapid degradation of target protein unless stabilised by Shield-1, a synthetic ligand. Upon the addition of Shield-1,the degradation is halted, leading to the accumulation and stabilisation of the target protein. This system has demonstrated successful regulation of foreign protein expression in mammals, parasites, and plants. In this study, the DD/Shield-1 system was harnessed to regulate the expression of the paromomycin resistance gene and luciferase encoding gene in Chlamydomonas, revealing its capability for rapid, stable, and reversible protein expression regulation in microalgae, serving as a molecular switch. Furthermore, this regulation exhibits reagent dependency, enhancing its applicability in practical production. A strain with induced expression of the gene-editing protein, LbCas12a, was successfully constructed and then tested for gene editing. The findings not only enrich the toolkit for Chlamydomonas molecular studies but offer a promising technique for regulating the expression and validating the functionality of exogenous proteins in microalgae.
Collapse
Affiliation(s)
- Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Song Wang
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Qianyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiangyu Li
- Bamboo Industry Institute, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Sirao Lin
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wenyu Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yingqi Liu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Bowen Wu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ying Huang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Bin Jia
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Longhua Innovation Institute for Biotechnology, Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Gallego I, Medic N, Pedersen JS, Ramasamy PK, Robbens J, Vereecke E, Romeis J. The microalgal sector in Europe: Towards a sustainable bioeconomy. N Biotechnol 2025; 86:1-13. [PMID: 39778767 DOI: 10.1016/j.nbt.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Microalgae are a diverse group of photosynthetic microorganisms that can be exploited to produce sustainable food and feed products, alleviate environmental pollution, or sequester CO2 to mitigate climate change, among other uses. To optimize resource use and integrate industrial waste streams, it is essential to consider factors such as the biology and cultivation parameters of the microalgal strains, as well as the cultivation system and processing technologies employed. This paper reviews the main commercial applications of microalgae (including cyanobacteria) and examines the biological and biotechnological aspects critical to the sustainable processing of microalgal biomass and its derived compounds. We also provide an up-to-date overview of the microalgal sector in Europe considering the strain, cultivation system and commercial application. We have identified 146 different microalgal-derived products from 66 European microalgae producers, and 49 additional companies that provide services and technologies, such as optimization and scalability of the microalgal production. The most widely cultivated microalga is 'spirulina' (Limnospira spp.), followed by Chlorella spp. and Nannochloropsis spp., mainly for human consumption and cosmetics. The preferred cultivation system in Europe is the photobioreactor. Finally, we discuss the logistic and regulatory challenges of producing microalgae at industrial scale, particularly in the European Union, and explore the potential of new genomic techniques and bioprocessing to foster a sustainable bioeconomy in the microalgal sector.
Collapse
Affiliation(s)
- Irene Gallego
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland.
| | - Nikola Medic
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | - Jakob Skov Pedersen
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | | | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Elke Vereecke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| |
Collapse
|
3
|
Ha GS, Sim MG, Jeon BH, Baek G. Bioremediation of perfluorooctanoic acid using microalgae with a transcriptomic approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137508. [PMID: 39923375 DOI: 10.1016/j.jhazmat.2025.137508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Microalgal-mediated bioremediation technologies offer sustainable strategies for removal of emerging contaminants in aquatic environments. However, the molecular mechanisms and bioremediation pathways in microalgal species involved in the degradation of persistent organic pollutant perfluorooctanoic acid (PFOA) remain largely unexplored and poorly characterized. This study explored the potential of four microalgal strains for PFOA treatment and examined the expression of key functional genes through transcriptomic analysis. Scenedesmus quadricauda emerged as the most promising candidate for PFOA removal, exhibiting a high removal efficiency of 58.2 % (1.22 mg-PFOA/g-microalgae) at an initial PFOA concentration of 5 ppm. The mass balance analysis of PFOA removal by S. quadricauda revealed that 44.8 % of the PFOA was removed through bioaccumulation, and 12.8 % through biosorption. The chromatographic analysis confirmed that a portion of the bioaccumulated PFOA (0.58 %, 22.7 μg/L) was biodegraded by the biological removal mechanism in microalgae and identified by-products of PFOA. When S. quadricauda was exposed to PFOA, the fatty acid methyl ester yield increased by 178 % through transesterification. The transcriptome analysis revealed key functional genes involved in defense, energy production, and degradation in response to PFOA exposure. These results underscore the need to develop microalgae-mediated bioremediation technology for effectively removing PFOA from polluted aquatic environments.
Collapse
Affiliation(s)
- Geon-Soo Ha
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea; Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Min-Gu Sim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Gahyun Baek
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Kieffer JRN, Kandemir H, Stegemüller L, Hiemstra I, Eppink MHM, Wijffels RH, Boboescu IZ. Numerical analysis of a multiproduct biorefinery on a chip: Exploiting acoustic waves to process the microalgae Tisochrysis lutea. ULTRASONICS SONOCHEMISTRY 2025; 114:107280. [PMID: 39985823 PMCID: PMC11904573 DOI: 10.1016/j.ultsonch.2025.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Microalgae can provide a more sustainable alternative to traditional food systems which are dominated by terrestrial crops. The main economic challenges, however, relate to the downstream processing of microalgae and the valorization of their side streams. The present work explores the scientific principles and data required to develop an integrated biorefinery-on-a-chip, which replaces many of the common downstream processing unit operations by employing acoustic fields. The acoustic parameters of Tisochrysis lutea microalgal cells and their cell components are determined using the neutrally buoyant state method. Culture conditions which result in a high carbohydrate or high protein to lipid ratio led to a higher acoustic contrast factor than culture conditions favoring a high composition of lipids. The collected acoustic data is used as input in a numerical model which studies the harvesting of microalgal cells and the fractionation of microalgal cell components. High separation levels are achieved based on the size and composition of microalgal cells and the type of cell component. Subsequent studies are envisioned to determine the practical feasibility of applying these concepts and even scaling them out. Nevertheless, this study represents a steppingstone towards a novel, label-free approach to processing microalgal cells of different biomass compositions.
Collapse
Affiliation(s)
- Jacques R N Kieffer
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Hakan Kandemir
- Department of Electrical Engineering and Automation, Aalto University, Helsinki, Finland
| | - Lars Stegemüller
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Isa Hiemstra
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Iulian Z Boboescu
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Esteves AF, Gonçalves AL, Vilar VJP, Pires JCM. Is it possible to shape the microalgal biomass composition with operational parameters for target compound accumulation? Biotechnol Adv 2025; 79:108493. [PMID: 39645210 DOI: 10.1016/j.biotechadv.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microalgae, as photosynthetic microorganisms, offer a sustainable source of proteins, lipids, carbohydrates, pigments, vitamins, and antioxidants. Leveraging their advantages, such as fast growth, CO2 fixation, cultivation without arable land, and wastewater utilisation, microalgae can produce a diverse range of compounds. The extracted products find applications in bioenergy, animal feed, pharmaceuticals, nutraceuticals, cosmetics, and food industries. The selection of microalgal species is crucial, and their biochemical composition varies during growth phases influenced by environmental factors like light, salinity, temperature, and nutrients. Manipulating growth conditions shapes biomass composition, optimising the production of target compounds. This review synthesises research from 2019 onwards, focusing on stress induction and two-stage cultivation in microalgal strategies. This review takes a broader approach, addressing the effects of various operating conditions on a range of biochemical compounds. It explores the impact of operational parameters (light, nutrient availability, salinity, temperature) on biomass composition, elucidating microalgal mechanisms. Challenges include species-specific responses, maintaining stable conditions, and scale-up complexities. A two-stage approach balances biomass productivity and compound yield. Overcoming challenges involves improving upstream and downstream processes, developing sophisticated monitoring systems, and conducting further modelling work. Future efforts should concentrate on strain engineering and refined monitoring, facilitating real-time adjustments for optimal compound accumulation. Moreover, conducting large-scale experiments is essential to evaluate the feasibility and sustainability of the process through techno-economic analysis and life cycle assessments.
Collapse
Affiliation(s)
- Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITEVE - Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Vítor J P Vilar
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
6
|
Kleiner FH, Oh JJ, Aubin-Tam ME. Solving Challenges in Microalgae-Based Living Materials. ACS Synth Biol 2025; 14:307-315. [PMID: 39980378 PMCID: PMC11852197 DOI: 10.1021/acssynbio.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 02/22/2025]
Abstract
Engineered living materials (ELMs) integrate aspects of material science and biology into a unique platform, leading to materials and devices with features of life. Among those, ELMs containing microalgae have received increased attention due to the many benefits photosynthetic organisms provide. Due to their relatively recent occurrence, photosynthetic ELMs still face many challenges related to reliability, lifetime, scalability, and more, often based on the complicated crosstalk of cellular, material-based, and environmental variables in time. This Viewpoint aims to summarize potential avenues for improving ELMs, beginning with an emphasis on understanding the cell's perspective and the potential stresses imposed on them due to recurring flaws in many current ELMs. Potential solutions and their ease of implementation will be discussed, ranging from choice of organism, adjustments to the ELM design, to various genetic modification tools, so as to achieve ELMs with longer lifetime and improved functionality.
Collapse
Affiliation(s)
- Friedrich Hans Kleiner
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Jeong-Joo Oh
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
7
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
8
|
Abrha GT, Makaranga A, Jutur PP. Enhanced lipid accumulation in microalgae Scenedesmus sp. under nitrogen limitation. Enzyme Microb Technol 2024; 182:110546. [PMID: 39531895 DOI: 10.1016/j.enzmictec.2024.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Microalgae-based biofuel production is cost-effective only in a biorefinery, where valuable co-products offset high costs. Fatty acids produced by photosynthetic microalgae can serve as raw materials for bioenergy and pharmaceuticals. This study aims to understand the metabolic imprints of Scenedesmus sp. CABeR52, to decipher the physiological mechanisms behind lipid accumulation under nitrogen deprivation. Metabolomics profiles were generated using gas chromatography-mass spectrometry (GC-MS) of Scenedesmus sp. CABeR52 subjected to nutrient deprivation. Our initial data sets indicate that deprived cells have an increased accumulation of lipids (278.31 mg.g-1 dcw), 2.0 times higher than the control. The metabolomic profiling unveils a metabolic reprogramming, highlighting the upregulation of key metabolites involved in fatty acid biosynthesis, such as citric acid, succinic acid, and 2-ketoglutaric acid. The accumulation of trehalose, a stress-responsive metabolite, further underscores the microalga's adaptability. Interestingly, we found that a new fatty acid, nervonic acid, was identified in the complex, which has a significant role in brain development. These findings provide valuable insights into the metabolic pathways governing lipid accumulation in Scenedesmus sp., paving the way for its exploitation as a sustainable biofuel feedstock.
Collapse
Affiliation(s)
- Getachew Tafere Abrha
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA; Department of Biotechnology, CoDANR, Mekelle University, Mekelle, Ethiopia
| | - Abdalah Makaranga
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA.
| |
Collapse
|
9
|
Imbimbo P, Ferrara A, Giustino E, Liberti D, Monti DM. Microalgae Flocculation: Assessment of Extraction Yields and Biological Activity. Int J Mol Sci 2024; 25:10238. [PMID: 39408567 PMCID: PMC11477090 DOI: 10.3390/ijms251910238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Downstream costs represent one of the main obstacles to enabling microalgae to become widespread. The development of an economical, easily scaled-up strategy could reduce the overall process costs. Here, different flocculants were tested on different microalgae strains and a cyanobacterium. The results indicate that flocculation could be an alternative to centrifugation, as CaCl2 induced a complete flocculation of green and red marine strains (96 ± 4% and 87.0 ± 0.5%, respectively), whereas Chitosan was the only agent able to induce flocculation on the cyanobacterium (46 ± 1%). As for the thermoacidophilic red microalga, 100% flocculation was achieved only by increasing the pH. Carotenoids were extracted from the flocculated biomass, and the strategy improved with the use of the wet biomass. The results indicate that flocculation does not affect carotenoid yield, which is at least the same than that obtained upon centrifugation and extraction from the wet biomass. Then, for the first time, the biological activity of the extracts obtained from the flocculated biomasses was evaluated. The results indicate that only the green microalga extract shows increased antioxidant activity. In conclusion, this work highlights that a general downstream procedure cannot be developed for microalgae strains but should be rationally tailored.
Collapse
Affiliation(s)
- Paola Imbimbo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy; (P.I.); (A.F.); (E.G.)
| | - Alfonso Ferrara
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy; (P.I.); (A.F.); (E.G.)
| | - Enrica Giustino
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy; (P.I.); (A.F.); (E.G.)
| | - Davide Liberti
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy; (P.I.); (A.F.); (E.G.)
| |
Collapse
|
10
|
Rawindran H, Khoo KS, Raksasat R, Liew CS, Leong WH, Devendran M, Ravindran B, Tong WY, Sin JC, Lam SM, Naushad M, Lim JW. Bio-refinery of palm kernel expeller waste into attached microalgal biodiesel, the life cycle analysis of waste biomass-to-energy. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2024; 189:134-145. [DOI: 10.1016/j.psep.2024.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
11
|
Ritu JR, Khan S, Uddin MH, Poly JA, Hossain MS, Haque MM. Exploring the nutritional potential of Monoraphidium littorale and enriched copepods as first feeds for rearing Nile tilapia ( Oreochromis niloticus) larvae. Heliyon 2024; 10:e35877. [PMID: 39220938 PMCID: PMC11365437 DOI: 10.1016/j.heliyon.2024.e35877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
One of the challenges in the aquaculture industry is providing nutritionally balanced and environmentally sustainable live food for fish larvae. Therefore, the rearing techniques of fish larvae with preferred starter food should be given importance for obtaining optimal hatchery production. Nile tilapia, Oreochromis niloticus larvae just after yolk absorption (body length 0.950 ± 0.004 mm; body weight 6.00 ± 0.02 mg) were reared in laboratory conditions for 16 days, feeding with 6 different diets to know their effect on survival and growth. The diets were live Monoraphidium littorale (T1), live enriched copepods with M. littorale (T2), powdered M. littorale (T3), powdered enriched copepods (T4), live M. littorale + live enriched copepods (T5), and powdered M. littorale + powdered enriched copepods (T6). The proximate composition, amino acid profile and fatty acid content of both M. littorale and copepods were analyzed. The biochemical analysis of the dried powder of enriched copepods and M. littorale revealed that both of them are excellent sources of protein, amino acids, and lipids, especially with monounsaturated and polyunsaturated fatty acids. The O. niloticus larvae fed the T2 diet exhibited the most favourable outcomes, with significantly higher larval gain in weight and percent weight gain, in comparison to the larvae fed other diets (p < 0.001 for all comparisons). The LG% and SGR of the larvae were also significantly higher in T2 in comparison to the T1, T3, T4, and T6 (p < 0.001 for all comparisons) except T5. In addition, the highest percent survival rate of the larvae was observed in T2 (95 %) followed by T4 (93 %), T6 (93 %), T3 (82 %), T5 (73 %) and then T1 (43 %). Based on the present findings, it is recommended that live copepods enriched with M. littorale can be utilized as a starter food for the rearing of Nile tilapia, O. niloticus larvae in hatcheries because of its enriched nutritional profile.
Collapse
Affiliation(s)
- Jinnath Rehana Ritu
- Laboratory of Plankton Research, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Saleha Khan
- Laboratory of Plankton Research, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Helal Uddin
- Laboratory of Plankton Research, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jasmin Akter Poly
- Laboratory of Plankton Research, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Sakhawat Hossain
- Department of Aquaculture, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Mahfuzul Haque
- Laboratory of Plankton Research, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
12
|
Muhammad G, Xu J, Li Z, Zhao L, Zhang X. Current progress and future perspective of microalgae biomass pretreatment using deep eutectic solvents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171547. [PMID: 38458467 DOI: 10.1016/j.scitotenv.2024.171547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Pretreatment process is considered as the most important step for effective microalgae biomass refining and has gained more interest since last decades. However, the main obstacles to commercialize microalgae products are recalcitrant cell wall and lack of cost-effective, green, and sustainable pretreatment approaches. Till now, various microalgae pretreatment approaches have been applied prior to extraction steps to enhance the accessibility of solvent inside the cells. However, high energy consumption and the hazardousness of solvents are considerable problem for these pretreatment methods. In this regard, deep eutectic solvents are recognized as sustainable and green solvents possessing great potential for microalgae biomass processing due to their low toxicity, low cost, biodegradability, easy recycling, and reuse. This article provides the fundamentals of DES composition, synthesis, properties, and the current advances in the application of microalgae biomass process.
Collapse
Affiliation(s)
- Gul Muhammad
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Jingliang Xu
- School of Chemical Engineering Zhengzhou, University, Zhengzhou 450001, Henan, China
| | - Zhenglong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China; National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhao
- College of Engineering, Shenyang Agricultural University, Shenyang 110161, China.
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China; National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Gaur S, Kaur M, Kalra R, Rene ER, Goel M. Application of microbial resources in biorefineries: Current trend and future prospects. Heliyon 2024; 10:e28615. [PMID: 38628756 PMCID: PMC11019186 DOI: 10.1016/j.heliyon.2024.e28615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
The recent growing interest in sustainable and alternative sources of energy and bio-based products has driven the paradigm shift to an integrated model termed "biorefinery." Biorefinery framework implements the concepts of novel eco-technologies and eco-efficient processes for the sustainable production of energy and value-added biomolecules. The utilization of microbial resources for the production of various value-added products has been documented in the literatures. However, the appointment of these microbial resources in integrated resource management requires a better understanding of their status. The main of aim of this review is to provide an overview on the defined positioning and overall contribution of the microbial resources, i.e., algae, fungi and bacteria, for various bioprocesses and generation of multiple products from a single biorefinery. By utilizing waste material as a feedstock, biofuels can be generated by microalgae while sequestering environmental carbon and producing value added compounds as by-products. In parallel, fungal biorefineries are prolific producers of lignocellulose degrading enzymes along with pharmaceutically important novel products. Conversely, bacterial biorefineries emerge as a preferred platform for the transformation of standard cells into proficient bio-factories, developing chassis and turbo cells for enhanced target compound production. This comprehensive review is poised to offer an intricate exploration of the current trends, obstacles, and prospective pathways of microbial biorefineries, for the development of future biorefineries.
Collapse
Affiliation(s)
- Suchitra Gaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Mehak Kaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Eldon R. Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft, 2601DA, the Netherlands
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| |
Collapse
|
14
|
Zhao Y, Wang Q, Gu D, Huang F, Liu J, Yu L, Yu X. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges. BIORESOURCE TECHNOLOGY 2024; 393:130093. [PMID: 38000641 DOI: 10.1016/j.biortech.2023.130093] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
High-value metabolites, such as carotenoids, lipids, and proteins, are synthesized by microalgae and find applications in various fields, including food, health supplements, and cosmetics. However, the potential of the microalgal industry to serve these sectors is constrained by low productivity and high energy consumption. Environmental stressors can not only stimulate the accumulation of secondary metabolites in microalgae but also induce oxidative stress, suppressing cell growth and activity, thereby resulting in a decrease in overall productivity. Using melatonin (MT) under stressful conditions is an effective approach to enhance the productivity of microalgal metabolites. This review underscores the role of MT in promoting the accumulation of high-value metabolites and enhancing stress resistance in microalgae under stressful and wastewater conditions. It discusses the underlying mechanisms whereby MT enhances metabolite synthesis and improves stress resistance. The review also offers new perspectives on utilizing MT to improve microalgal productivity and stress resistance in challenging environments.
Collapse
Affiliation(s)
- Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Qingwei Wang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyan Huang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Jiani Liu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Lei Yu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
15
|
Kadri MS, Singhania RR, Anisha GS, Gohil N, Singh V, Patel AK, Patel AK. Microalgal lutein: Advancements in production, extraction, market potential, and applications. BIORESOURCE TECHNOLOGY 2023; 389:129808. [PMID: 37806362 DOI: 10.1016/j.biortech.2023.129808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Lutein, a bioactive xanthophyll, has recently attracted significant attention for numerous health benefits, e.g., protection of eye health, macular degeneration, and acute and chronic syndromes etc. Microalgae have emerged as the best platform for high-value lutein production with high productivity, lutein content, and scale-up potential. Algal lutein possesses numerous bioactivities, hence widely used in pharmaceuticals, nutraceuticals, aquaculture, cosmetics, etc. This review highlights advances in upstream lutein production enhancement and feasible downstream extraction and cell disruption techniques for a large-scale lutein biorefinery. Besides bioprocess-related advances, possible solutions for existing production challenges in microalgae-based lutein biorefinery, market potential, and emerging commercial scopes of lutein and its potential health applications are also discussed. The key enzymes involved in the lutein biosynthesizing Methyl-Erythritol-phosphate (MEP) pathway have been briefly described. This review provides a comprehensive updates on lutein research advancements covering scalable upstream and downstream production strategies and potential applications for researchers and industrialists.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Education and Human Potential Development, National Dong Hwa University, Hualien, 974301, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Alok Kumar Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
16
|
Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Karimi K, Madadi M, Chisti Y, Peng W, Liu D, Tabatabaei M, Aghbashlo M. Production of chemicals and utilities in-house improves the environmental sustainability of phytoplankton-based biorefinery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165751. [PMID: 37499830 DOI: 10.1016/j.scitotenv.2023.165751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Life cycle assessment was used to evaluate the environmental impacts of phytoplanktonic biofuels as possible sustainable alternatives to fossil fuels. Three scenarios were examined for converting planktonic biomass into higher-value commodities and energy streams using the alga Scenedesmus sp. and the cyanobacterium Arthrospira sp. as the species of interest. The first scenario (Sc-1) involved the production of biodiesel and glycerol from the planktonic biomass. In the second scenario (Sc-2), biodiesel and glycerol were generated from the planktonic biomass, and biogas was produced from the residual biomass. The process also involved using a catalyst derived from snail shells for biodiesel production. The third scenario (Sc-3) was similar to Sc-2 but converted CO2 from the biogas upgrading to methanol, which was then used in synthesizing biodiesel. The results indicated that Sc-2 and Sc-3 had a reduced potential (up to 60 % less) for damaging human health compared to Sc-1. Sc-2 and Sc-3 had up to 61 % less environmental impact than Sc-1. Sc-2 and Sc-3 reduced the total cumulative exergy demand by up to 44 % compared to Sc-1. In conclusion, producing chemicals and utilities within the biorefinery could significantly improve environmental sustainability, reduce waste, and diversify revenue streams.
Collapse
Affiliation(s)
- Mohammadali Kiehbadroudinezhad
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China; Division of Engineering, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| | | | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yusuf Chisti
- Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
17
|
Cheirsilp B, Maneechote W, Srinuanpan S, Angelidaki I. Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. BIORESOURCE TECHNOLOGY 2023; 387:129620. [PMID: 37544540 DOI: 10.1016/j.biortech.2023.129620] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Microalgae are promising organisms that are rapidly gaining much attention due to their numerous advantages and applications, especially in biorefineries for various bioenergy and biochemicals. This review focuses on the microalgae contributions to Bio-Circular-Green (BCG) economy, in which zero-waste approaches for sustainable production and biorefineries of microalgal biomass are introduced and their possible integration is discussed. Firstly, overviews of wastewater upcycling and greenhouse gas capture by microalgae are given. Then, a variety of valuable products from microalgal biomass, e.g., pigments, vitamins, proteins/peptides, carbohydrates, lipids, polyunsaturated fatty acids, and exopolysaccharides, are summarized to emphasize their biorefinery potential. Techno-economic and environmental analyses have been used to evaluate sustainability of microalgal biomass production systems. Finally, key issues, future perspectives, and challenges for zero-waste microalgal biorefineries, e.g., cost-effective techniques and innovative integrations with other viable processes, are discussed. These strategies not only make microalgae-based industries commercially feasible and sustainable but also reduce environmental impacts.
Collapse
Affiliation(s)
- Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Chiang Mai Research Group for Carbon Capture and Storage, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Irini Angelidaki
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
| |
Collapse
|
18
|
Kashyap M, Chakraborty S, Kumari A, Rai A, Varjani S, Vinayak V. Strategies and challenges to enhance commercial viability of algal biorefineries for biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129551. [PMID: 37506948 DOI: 10.1016/j.biortech.2023.129551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The rise in energy consumption would quadruple in the coming century and the, existing energy resources might be insufficient to meet the demand of the growing population. An alternative and sustainable energy resource is therefore needed to address the fossil fuel deficiency. The utility of microalgae strains in the aspect of biorefinery has been in research for quite some time. Algal biorefinery is an alternate way of renewable energy however even after decades of research it still suffers from commercialization bottlenecks. The current manuscript reviews the scenarios where the innovation needs an ignition for its commercialization. This review discusses the prospects of up-scale cultivation, and harvesting algal biomass for biorefineries. It narrates algal biorefinery hurdles that can be solved using integrated technology approach, life cycle assessment and applications of nanotechnology. The review also sheds light upon the ties of algal biorefineries with its economic viability.
Collapse
Affiliation(s)
- Mrinal Kashyap
- Porter School of Earth and Environment Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sukanya Chakraborty
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Anamika Kumari
- Porter School of Earth and Environment Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Anshuman Rai
- Department of Biotechnology, School of Engineering, Maharishi Markandeshwar University, Ambala, Haryana 133203, India; State Forensic Science Laboratory, Haryana, Madhuban 132037, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
19
|
Rollin S, Gupta A, Franco CMM, Singh S, Puri M. Development of sustainable downstream processing for nutritional oil production. Front Bioeng Biotechnol 2023; 11:1227889. [PMID: 37885455 PMCID: PMC10598382 DOI: 10.3389/fbioe.2023.1227889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Nutritional oils (mainly omega-3 fatty acids) are receiving increased attention as critical supplementary compounds for the improvement and maintenance of human health and wellbeing. However, the predominant sources of these oils have historically shown numerous limitations relating to desirability and sustainability; hence the crucial focus is now on developing smarter, greener, and more environmentally favourable alternatives. This study was undertaken to consider and assess the numerous prevailing and emerging techniques implicated across the stages of fatty acid downstream processing. A structured and critical comparison of the major classes of disruption methodology (physical, chemical, thermal, and biological) is presented, with discussion and consideration of the viability of new extraction techniques. Owing to a greater desire for sustainable industrial practices, and a desperate need to make nutritional oils more available; great emphasis has been placed on the discovery and adoption of highly sought-after 'green' alternatives, which demonstrate improved efficiency and reduced toxicity compared to conventional practices. Based on these findings, this review also advocates new forays into application of novel nanomaterials in fatty acid separation to improve the sustainability of nutritional oil downstream processing. In summary, this review provides a detailed overview of the current and developing landscape of nutritional oil; and concludes that adoption and refinement of these sustainable alternatives could promptly allow for development of a more complete 'green' process for nutritional oil extraction; allowing us to better meet worldwide needs without costing the environment.
Collapse
Affiliation(s)
- Samuel Rollin
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adarsha Gupta
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Christopher M. M. Franco
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
20
|
Zhuang G, Ye Y, Zhao J, Zhou C, Zhu J, Li Y, Zhang J, Yan X. Valorization of Phaeodactylum tricornutum for integrated preparation of diadinoxanthin and fucoxanthin. BIORESOURCE TECHNOLOGY 2023:129412. [PMID: 37390934 DOI: 10.1016/j.biortech.2023.129412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Integrated preparation of high-purity carotenoids from marine microalgae using green and efficient methods still faces enormous challenges. In this study, valorization of the economic Phaeodactylum tricornutum using integrated preparation of diadinoxanthin (Ddx) and fucoxanthin (Fx) was explored containing four steps including algae cultivation, solvent extraction, ODS open-column chromatography, and ethanol precipitation for the first time. Several essential key factors were optimized for simultaneously extracting Ddx and Fx from P. tricornutum. ODS open-column chromatography was used to isolate Ddx and Fx. Purification of Ddx and Fx was accomplished using ethanol precipitation. After optimization, the purity of Ddx and Fx was more than 95%, and the total recovery rates of Ddx and Fx were approximately 55% and 85%, respectively. The purified Ddx and Fx were identified as all-trans-diadinoxanthin and all-trans-fucoxanthin, respectively. The antioxidant capacity of the purified Ddx and Fx was assessed using two tests in vitro: DPPH and ABTS radical assays.
Collapse
Affiliation(s)
- GengJie Zhuang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yuemei Ye
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Junling Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Junwang Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yanrong Li
- Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China
| | - Jinrong Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| |
Collapse
|
21
|
Fu J, Peng H, Huang Y, Xia A, Zhu X, Zhu X, Liao Q. Integrating wind-driven agitating blade into a floating photobioreactor to enhance fluid mixing and microalgae growth. BIORESOURCE TECHNOLOGY 2023; 372:128660. [PMID: 36693503 DOI: 10.1016/j.biortech.2023.128660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Aiming at optimizing the poor fluid mixing state in the traditional horizontal floating photobioreactors and reducing the high energy consumption and operational cost induced by electric-driven mixing, a novel floating photobioreactor with an embedded wind-driven agitating blade (WDAB-FPBR) was proposed in this study, which can effectively utilize both wind and wave energy for fluid mixing. The results show that the selected wind-driven agitating blade contributed to a decrement of 75.3% in mixing time and an increment of 87.5% in mass transfer coefficient, and meanwhile strengthened the fluid velocity along the light gradient. Owing to the enhanced fluid flow and mixing properties, an even distribution of algae cells was achieved in the WDAB floating photobioreactor, which resulted in an improvement of 140% in the photosynthesis efficiency of microalgae. From this, the biomass yield and carbon removal ratio showed an increment of 88.9% and 73.9%, respectively.
Collapse
Affiliation(s)
- Jingwei Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Hongyan Peng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
22
|
Bader AN, Sanchez Rizza L, Consolo VF, Curatti L. Bioprospecting for fungal enzymes for applications in microalgal biomass biorefineries. Appl Microbiol Biotechnol 2023; 107:591-607. [PMID: 36527478 DOI: 10.1007/s00253-022-12328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Microalgal biomass is a promising feedstock for biofuels, feed/food, and biomaterials. However, while production and commercialization of single-product commodities are still not economically viable, obtaining multiple products in a biomass biorefinery faces several techno-economic challenges. The aim of this study was to identify a suitable source of hydrolytic enzymes for algal biomass saccharification. Screening of twenty-six fungal isolates for secreted enzymes activity on Chlamydomonas reinhardtii biomass resulted in the identification of Aspergillus niger IB-34 as a candidate strain. Solid-state fermentation on wheat bran produced the most active enzyme preparations. From sixty-five proteins identified by liquid chromatography coupled to mass spectrometry (LC-MS) (ProteomeXchange, identifier PXD034998) from A. niger IB-34, the majority corresponded to predicted secreted proteins belonging to the Gene Ontology categories of catalytic activity/hydrolase activity on glycosyl and O-glycosyl compounds. Skimmed biomass of biotechnologically relevant strains towards the production of commodities, Chlorella sorokiniana and Scenedesmus obliquus, was fully saccharified after a mild pretreatment at 80 °C for 10 min, at a high biomass load of 10% (w/v). The soluble liquid stream, after skimming and saccharification of biomass of both strains, was further converted into ethanol by fermentation with Saccharomyces cerevisiae at a theoretical maximum efficiency, in a separated saccharification and fermentation assays. The resulting insoluble protein, after biomass skimming with an organic solvent and enzymatic saccharification, was highly digestible in an in vitro digestion assay. Proof of concept is presented for an enzyme-assisted biomass biorefinery recovering 81% of the main biomass fractions in a likely suitable form for the conversion of lipids and carbohydrates into biofuels and proteins into feed/food. KEY POINTS: • Twenty-six fungal extracts were analyzed for saccharification of microalgal biomass. • Skimmed biomass was fully enzymatically saccharified and fermented into ethanol. • Up to 81% recovery of biomass fractions suitable for biofuels and feed/food.
Collapse
Affiliation(s)
- Araceli Natalia Bader
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Lara Sanchez Rizza
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Verónica Fabiana Consolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Leonardo Curatti
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina.
| |
Collapse
|
23
|
Masi A, Leonelli F, Scognamiglio V, Gasperuzzo G, Antonacci A, Terzidis MA. Chlamydomonas reinhardtii: A Factory of Nutraceutical and Food Supplements for Human Health. Molecules 2023; 28:molecules28031185. [PMID: 36770853 PMCID: PMC9921279 DOI: 10.3390/molecules28031185] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Chlamydomonas reinhardtii (C. reinhardtii) is one of the most well-studied microalgae organisms that revealed important information for the photosynthetic and metabolic processes of plants and eukaryotes. Numerous extensive studies have also underpinned its great potential as a biochemical factory, capable of producing various highly desired molecules with a direct impact on human health and longevity. Polysaccharides, lipids, functional proteins, pigments, hormones, vaccines, and antibodies are among the valuable biomolecules that are produced spontaneously or under well-defined conditions by C. reinhardtii and can be directly linked to human nutrition and diet. The aim of this review is to highlight the recent advances in the field focusing on the most relevant applications related to the production of important biomolecules for human health that are also linked with human nutrition and diet. The limitations and challenges are critically discussed along with the potential future applications of C. reinhardtii biomass and processed products in the field of nutraceuticals and food supplements. The increasing need for high-value and low-cost biomolecules produced in an environmentally and economy sustainable manner also underline the important role of C. reinhardtii.
Collapse
Affiliation(s)
- Annalisa Masi
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Francesca Leonelli
- Department of Chemistry, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Giulia Gasperuzzo
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| |
Collapse
|
24
|
Wang X, Wang T, Zhang T, Winter LR, Di J, Tu Q, Hu H, Hertwich E, Zimmerman JB, Elimelech M. Microalgae Commercialization Using Renewable Lignocellulose Is Economically and Environmentally Viable. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1144-1156. [PMID: 36599031 DOI: 10.1021/acs.est.2c04607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Conventional phototrophic cultivation for microalgae production suffers from low and unstable biomass productivity due to limited and unreliable light transmission outdoors. Alternatively, the use of a renewable lignocellulose-derived carbon source, cellulosic hydrolysate, offers a cost-effective and sustainable pathway to cultivate microalgae heterotrophically with high algal growth rate and terminal density. In this study, we evaluate the feasibility of cellulosic hydrolysate-mediated heterotrophic cultivation (Cel-HC) for microalgae production by performing economic and environmental comparisons with phototrophic cultivation through techno-economic analysis and life cycle assessment. We estimate a minimum selling price (MSP) of 4722 USD/t for producing high-purity microalgae through Cel-HC considering annual biomass productivity of 300 t (dry weight), which is competitive with the conventional phototrophic raceway pond system. Revenues from the lignocellulose-derived co-products, xylose and fulvic acid fertilizer, could further reduce the MSP to 2976 USD/t, highlighting the advantages of simultaneously producing high-value products and biofuels in an integrated biorefinery scheme. Further, Cel-HC exhibits lower environmental impacts, such as cumulative energy demand and greenhouse gas emissions, than phototrophic systems, revealing its potential to reduce the carbon intensity of algae-derived commodities. Our results demonstrate the economic and environmental competitiveness of heterotrophic microalgae production based on renewable bio-feedstock of lignocellulose.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Tong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Center for Industrial Ecology, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyuan Zhang
- Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215163, China
- Suzhou Polynovo Biotech Co., Ltd., Suzhou 215129, China
| | - Lea R Winter
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jinghan Di
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Qingshi Tu
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Hongying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Edgar Hertwich
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7495 Trondheim, Norway
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Yale School of the Environment, Yale University, New Haven, Connecticut 06520, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
25
|
Soto-Sánchez O, Hidalgo P, González A, Oliveira PE, Hernández Arias AJ, Dantagnan P. Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production. AQUACULTURE NUTRITION 2023; 2023:5110281. [PMID: 36860971 PMCID: PMC9973195 DOI: 10.1155/2023/5110281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Studies have shown that ancient cultures used microalgae as food for centuries. Currently, scientific reports highlight the value of nutritional composition of microalgae and their ability to accumulate polyunsaturated fatty acids at certain operational conditions. These characteristics are gaining increasing interest for the aquaculture industry which is searching for cost-effective replacements for fish meal and oil because these commodities are one of the most significant operational expenses and their dependency has become a bottleneck for their sustainable development of the aquaculture industry. This review is aimed at highlighting the use of microalgae as polyunsaturated fatty acid source in aquaculture feed formulations, despite their scarce production at industrial scale. Moreover, this document includes several approaches to improve microalgae production and to increase the content of polyunsaturated fatty acids with emphasis in the accumulation of DHA, EPA, and ARA. Furthermore, the document compiles several studies which prove microalgae-based aquafeeds for marine and freshwater species. Finally, the study explores the aspects that intervene in production kinetics and improvement strategies with possibilities for upscaling and facing main challenges of using microalgae in the commercial production of aquafeeds.
Collapse
Affiliation(s)
- Oscar Soto-Sánchez
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Pamela Hidalgo
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Aixa González
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia E. Oliveira
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Adrián J. Hernández Arias
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
26
|
Wang F, Yang R, Guo Y, Zhang C. Isolation, Characterization and Immunomodulatory Activity Evaluation of Chrysolaminarin from the Filamentous Microalga Tribonema aequale. Mar Drugs 2022; 21:md21010013. [PMID: 36662186 PMCID: PMC9861882 DOI: 10.3390/md21010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The aim of this study is to investigate the differences in the accumulation capacity of chrysolaminarin among six Tribonema species and to isolate this polysaccharide for immunomodulatory activity evaluation. The results showed that T. aequale was the most productive strain with the highest content and productivity of chrysolaminarin, which were 17.20% (% of dry weight) and 50.91 mg/L/d, respectively. Chrysolaminarin was then extracted and isolated from this alga, and its monosaccharide composition was mainly composed of a glucose (61.39%), linked by β-D-(1→3) (main chain) and β-D-(1→6) (branch chain) glycosidic bonds, with a molecular weight of less than 6 kDa. In vitro immunomodulatory assays showed that it could activate RAW264.7 cells at a certain concentration (1000 μg/mL), as evidenced by the increased phagocytic activity and upregulated mRNA expression levels of IL-1β, IL6, TNF-α and Nos2. Moreover, Western blot revealed that this polysaccharide stimulated the phosphorylation of p-65, p-38 and JNK in NF-κB and MAPK signaling pathways. Overall, these findings provide a reference for the further development and utilization of algae-based chrysolaminarin, while also offering an in-depth understanding of the immunoregulatory mechanism.
Collapse
Affiliation(s)
- Feifei Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Rundong Yang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuhao Guo
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chengwu Zhang
- Department of Ecology and Research Center for Hydrobiology, Jinan University, Guangzhou 510632, China
- Correspondence: ; Tel./Fax: +86-20-8522-4366
| |
Collapse
|
27
|
Zhu C, Ji Y, Du X, Kong F, Chi Z, Zhao Y. A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158515. [PMID: 36063957 DOI: 10.1016/j.scitotenv.2022.158515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Microalgae biotechnology is a great candidate for carbon neutralization, wastewater treatment and the sustainable production of biofuels and food. Efficient and cost-effective microalgae production depends on highly coordinating the resources used for algal growth. However, dynamic natural disturbances such as culture temperature and sunlight can lead to the poor coordination and waste of resources. Open ponds are the most commonly used commercial microalgal production systems, and enhanced mixing can significantly increase their productivity, but mixing energy can be seriously wasted due to dynamic disturbances, presenting a hindrance to further reducing production costs. Herein, a smart and precise mixing strategy was developed for open ponds in which a paddle wheel's stirring speed for an open pond was smartly and precisely controlled in real time based on dynamic variations in light intensity and culture temperature. The proposed technology achieved the same biomass productivity of Spirulina platensis (8.37 g m-2 day-1) as a control with a constant high mixing rate under dynamic disturbances while reducing mixing energy inputs by approximately 30 % compared to the control. This study provides a promising method to address serious resource waste and poor coordination due to dynamic natural disturbances, holding great potential for efficient and cost-effective microalgae production.
Collapse
Affiliation(s)
- Chenba Zhu
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361005, China; Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China, 361005.
| | - Yu Ji
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Xiang Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Yunpeng Zhao
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo 315016, China.
| |
Collapse
|
28
|
Chen J, Dai L, Mataya D, Cobb K, Chen P, Ruan R. Enhanced sustainable integration of CO 2 utilization and wastewater treatment using microalgae in circular economy concept. BIORESOURCE TECHNOLOGY 2022; 366:128188. [PMID: 36309175 DOI: 10.1016/j.biortech.2022.128188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Microalgae have been shown to have a promising potential for CO2 utilization and wastewater treatment which still faces the challenges of high resource and energy requirements. The implementation of the circular economy concept is able to address the issues that limit the application of microalgae-based technologies. In this review, a comprehensive discussion on microalgae-based CO2 utilization and wastewater treatment was provided, and the integration of this technology with the circular economy concept, for long-term economic and environmental benefits, was described. Furthermore, technological challenges and feasible strategies towards the improvement of microalgae cultivation were discussed. Finally, necessary regulations and effective policies favoring the implementation of microalgae cultivation into the circular economy were proposed. These are discussed to support sustainable development of microalgae-based bioremediation and bioproduction. This work provides new insights into the implementation of the circular economy concept into microalgae-based CO2 utilization and wastewater treatment to enhance sustainable production.
Collapse
Affiliation(s)
- Junhui Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Dmitri Mataya
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
29
|
Kumar L, Mohan L, Anand R, Joshi V, Chugh M, Bharadvaja N. A review on unit operations, challenges, opportunities, and strategies to improve algal based biodiesel and biorefinery. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.998289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Globally, the demand for energy is increasing with an emphasis on green fuels for a sustainable future. As the urge for alternative fuels is accelerating, microalgae have emerged as a promising source that can not only produce high lipid but many other platform chemicals. Moreover, it is a better alternative in comparison to conventional feedstock due to yearlong easy and mass cultivation, carbon fixation, and value-added products extraction. To date, numerous studies have been done to elucidate these organisms for large-scale fuel production. However, enhancing the lipid synthesis rate and reducing the production cost still remain a major bottleneck for its economic viability. Therefore, this study compiles information on algae-based biodiesel production with an emphasis on its unit operations from strain selection to biofuel production. Additionally, strategies to enhance lipid accumulation by incorporating genetic, and metabolic engineering and the use of leftover biomass for harnessing bio-products have been discussed. Besides, implementing a biorefinery for extracting oil followed by utilizing leftover biomass to generate value-added products such as nanoparticles, biofertilizers, biochar, and biopharmaceuticals has also been discussed.
Collapse
|
30
|
The Biorefinery of the Marine Microalga Crypthecodinium cohnii as a Strategy to Valorize Microalgal Oil Fractions. FERMENTATION 2022. [DOI: 10.3390/fermentation8100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chrypthecodinium cohnii lipids have been almost exclusively used as a source of Docosahexaenoic acid (DHA). Such an approach wastes the remaining microalgal lipid fraction. The present work presents a novel process to produce C. cohnii biomass, using low-cost industrial by-products (raw glycerol and corn steep liquor), in a 7L-bioreactor, under fed-batch regime. At the end of the fermentation, the biomass concentration reached 9.2 g/L and the lipid content and lipid average productivity attained 28.0% (w/w dry cell weight) and 13.6 mg/L h, respectively. Afterwards the microalgal biomass underwent a saponification reaction to produce fatty acid (FA) soaps, which were further converted into FA ethyl ester (FA EE). C. cohnii FA EE mixture was then fractionated, using the urea complexation method at different temperatures, in order to obtain a polyunsaturated fatty acid ethyl ester (PUFA EE) rich fraction, that could be used for food/pharmaceutical/cosmetic purposes, and a saturated fatty acid ethyl ester (SAT EE) rich fraction, which could be used as biodiesel. The temperature that promoted the best separation between PUFA and SAT EE, was −18 °C, resulting in a liquid fraction with 91.6% (w/w) DHA, and a solid phase with 88.2% of SAT and monounsaturated fatty acid ethyl ester (MONOUNSAT), which could be used for biodiesel purposes after a hydrogenation step.
Collapse
|
31
|
Optimization of CO2 Supply for the Intensive Cultivation of Chlorella sorokiniana IPPAS C-1 in the Laboratory and Pilot-Scale Flat-Panel Photobioreactors. Life (Basel) 2022; 12:life12101469. [PMID: 36294904 PMCID: PMC9605657 DOI: 10.3390/life12101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Microalgae are increasingly being used for capturing carbon dioxide and converting it into valuable metabolites and biologically active compounds on an industrial scale. The efficient production of microalgae biomass requires the optimization of resources, including CO2. Here, we estimated the productivity of Chlorella sorokiniana IPPAS C-1 depending on CO2 concentrations and the ventilation coefficient of the gas-air mixture (GAM) in flat-panel photobioreactors (FP-PBRs) at laboratory (5 L) and pilot (18 L) scales. For the laboratory scale, the PBRs operated at 900 µmol quanta m−2 s−1 and 35.5 ± 0.5 °C; the optimal CO2 flow rate was estimated at 3 mL CO2 per 1 L of suspension per minute, which corresponds to 1.5% CO2 in the GAM and an aeration rate of 0.2 vvm. These parameters, being scaled up within the pilot PBRs, resulted in a high specific growth rate (µ ≈ 0.1 h−1) and high specific productivity (Psp ≈ 1 g dw L−1 d−1). The principles of increasing the efficiency of the intensive cultivation of C. sorokiniana IPPAS C-1 are discussed. These principles are relevant for the development of technological regimes for the industrial production of Chlorella in flat-panel PBRs of various sizes.
Collapse
|
32
|
Zoltan Boboescu I, Kazbar A, Stegemüller L, Lazeroms P, Triantafyllou T, Gao F, Lo C, Barbosa MJ, Eppink MHM, Wijffels RH. Mild acoustic processing of Tisochrysis lutea for multiproduct biorefineries. BIORESOURCE TECHNOLOGY 2022; 360:127582. [PMID: 35798166 DOI: 10.1016/j.biortech.2022.127582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Cellular agriculture could represent a more sustainable alternative to current food and nutraceutical production processes. Tisochrysis lutea microalgae represents a rich source of antioxidants and omega-3 fatty acids essential for human health. However, current downstream technologies are limiting its use. The present work investigates mild targeted acoustic treatment of Tisochrysis lutea biomass at different growth stages and acoustic frequencies, intensities and treatment times. Significant differences have been observed in terms of the impact of these variables on the cell disruption and energy requirements. Lower frequencies of 20 kHz required a minimum of 4500 J to disrupt 90% of the cells, while only 1000 J at 1146 kHz. Comparing these results with current industry standards such as bead milling, up to six times less energy use has been identified. These mild biomass processing approaches offer a certain tunability which could suit a wide range of microorganisms with only minor adjustments.
Collapse
Affiliation(s)
| | - Antoinette Kazbar
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Lars Stegemüller
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Piet Lazeroms
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Fengzheng Gao
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Calvin Lo
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Maria J Barbosa
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Michel H M Eppink
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
33
|
Vyas S, Patel A, Nabil Risse E, Krikigianni E, Rova U, Christakopoulos P, Matsakas L. Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation. BIORESOURCE TECHNOLOGY 2022; 359:127494. [PMID: 35724910 DOI: 10.1016/j.biortech.2022.127494] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Biorefineries enable the circular, sustainable, and economic use of waste resources if value-added products can be recovered from all the generated fractions at a large-scale. In the present studies the comparison and assessment for the production of value-added compounds (e.g., proteins, lutein, and lipids) by the microalga Chlorella sorokiniana grown under photoautotrophic or heterotrophic conditions was performed. Photoautotrophic cultivation generated little biomass and lipids, but abundant proteins (416.66 mg/gCDW) and lutein (6.40 mg/gCDW). Heterotrophic conditions using spruce hydrolysate as a carbon source favored biomass (8.71 g/L at C/N 20 and 8.28 g/L at C/N 60) and lipid synthesis (2.79 g/L at C/N 20 and 3.61 g/L at C/N 60) after 72 h of cultivation. Therefore, heterotrophic cultivation of microalgae using spruce hydrolysate instead of glucose offers a suitable biorefinery concept at large-scale for biodiesel-grade lipids production, whereas photoautotrophic bioreactors are recommended for sustainable protein and lutein biosynthesis.
Collapse
Affiliation(s)
- Sachin Vyas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Eric Nabil Risse
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Eleni Krikigianni
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
34
|
Ubando AT, Anderson S Ng E, Chen WH, Culaba AB, Kwon EE. Life cycle assessment of microalgal biorefinery: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2022; 360:127615. [PMID: 35840032 DOI: 10.1016/j.biortech.2022.127615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Microalgal biorefineries represent an opportunity to economically and environmentally justify the production of bioproducts. The generation of bioproducts within a biorefinery system must quantitatively demonstrate its viability in displacing traditional fossil-based refineries. To this end, several works have conducted life cycle analyses on microalgal biorefineries and have shown technological bottlenecks due to energy-intensive processes. This state-of-the-art review covers different studies that examined microalgal biorefineries through life cycle assessments and has identified strategic technologies for the sustainable production of microalgal biofuels through biorefineries. Different metrics were introduced to supplement life cycle assessment studies for the sustainable production of microalgal biofuel. Challenges in the comparison of various life cycle assessment studies were identified, and the future design choices for microalgal biorefineries were established.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines
| | - Earle Anderson S Ng
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Alvin B Culaba
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
35
|
Venugopal V, Sasidharan A. Functional proteins through green refining of seafood side streams. Front Nutr 2022; 9:974447. [PMID: 36091241 PMCID: PMC9454818 DOI: 10.3389/fnut.2022.974447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Scarcity of nutritive protein is a major global problem, the severity of which is bound to increase with the rising population. The situation demands finding additional sources of proteins that can be both safe as well as acceptable to the consumer. Food waste, particularly from seafood is a plausible feedstock of proteins in this respect. Fishing operations result in appreciable amounts of bycatch having poor food value. In addition, commercial processing results in 50 to 60% of seafood as discards, which consist of shell, head, fileting frames, bones, viscera, fin, skin, roe, and others. Furthermore, voluminous amounts of protein-rich effluents are released during commercial seafood processing. While meat from the bycatch can be raw material for proteinous edible products, proteins from the process discards and effluents can be recovered through biorefining employing upcoming, environmental-friendly, low-cost green processes. Microbial or enzyme treatments release proteins bound to the seafood matrices. Physico-chemical processes such as ultrasound, pulse electric field, high hydrostatic pressure, green solvent extractions and others are available to recover proteins from the by-products. Cultivation of photosynthetic microalgae in nutrient media consisting of seafood side streams generates algal cell mass, a rich source of functional proteins. A zero-waste marine bio-refinery approach can help almost total recovery of proteins and other ingredients from the seafood side streams. The recovered proteins can have high nutritive value and valuable applications as nutraceuticals and food additives.
Collapse
|
36
|
High-Purity Fucoxanthin Can Be Efficiently Prepared from Isochrysis zhangjiangensis by Ethanol-Based Green Method Coupled with Octadecylsilyl (ODS) Column Chromatography. Mar Drugs 2022; 20:md20080510. [PMID: 36005513 PMCID: PMC9410198 DOI: 10.3390/md20080510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The exploitation of new economically valuable microalgae as a sustainable source of minor high-value products can effectively promote the full utilization of microalgae. The efficient preparation of minor products from microalgae remains the challenge, owing to the coexistence of various components with a similar polarity in the microalgae biomass. In this study, a novel approach based on the sustainable-oriented strategy for fucoxanthin (FX) production was proposed, which consisted of four steps, including the culture of microalga, ethanol extraction, ODS column chromatography, and ethanol precipitation. The high-purity FX (around 95%) was efficiently obtained in a total recovery efficiency of 84.28 ± 2.56%. This study reveals that I. zhangjiangensis is a potentially promising feedstock for FX production and firstly provides a potentially eco-friendly method for the scale-up preparation of FX from the microalga I. zhangjiangensis.
Collapse
|
37
|
Dvoretsky DS, Temnov MS, Markin IV, Ustinskaya YV, Es’kova MA. Problems in the Development of Efficient Biotechnology for the Synthesis of Valuable Components from Microalgae Biomass. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2022. [DOI: 10.1134/s0040579522040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Nishshanka GKSH, Anthonio RADP, Nimarshana PHV, Ariyadasa TU, Chang JS. Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
39
|
Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants (Basel) 2022; 11:antiox11071320. [PMID: 35883811 PMCID: PMC9311600 DOI: 10.3390/antiox11071320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
There has been growing interest in microalgal biomolecules for health and cosmetics, as well as in the use of microalgae as aquaculture feed due to the need to replace fishmeal and fish oil with sustainable yet equally nutritious alternatives. Aim of this study is to evaluate the potential of five marine microalgal species, namely Chlorella minutissima, Dunaliella salina, Isochrysis galbana, Nannochloropsis oculata and Tisochrysis lutea, for the co-production of antioxidants and aquaculture feed. Batch cultivation was performed under saturating light intensity and continuous aeration. Freeze-dried biomass was extracted sequentially with water and methanol and evaluated for phenolic content and antioxidant activity, as well as proximate composition and fatty acid profile. Methanolic extracts of C. minutissima presented the highest phenolic content, measured with the Folin–Ciocalteu assay, and antioxidant activity. However, HPLC and LC-MS showed the presence of non-pigment compounds only in T. lutea. Total phenolic content and antioxidant activity were correlated to chlorophyll content. N. oculata and T. lutea were rich in eicosapentaenoic acid and docosahexaenoic acid, respectively, as well as in protein. In conclusion, N. oculata and T. lutea are suitable candidates for further optimization, while the data presented suggest that pigment effects on the Folin–Ciocalteu method require reconsideration.
Collapse
|
40
|
Microalgal carotenoids: A promising alternative to synthetic dyes. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Brown B, Wilkins M, Saha R. Rhodopseudomonas palustris: A biotechnology chassis. Biotechnol Adv 2022; 60:108001. [PMID: 35680002 DOI: 10.1016/j.biotechadv.2022.108001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Rhodopseudomonas palustris is an attractive option for biotechnical applications and industrial engineering due to its metabolic versatility and its ability to catabolize a wide variety of feedstocks and convert them to several high-value products. Given its adaptable metabolism, R. palustris has been studied and applied in an extensive variety of applications such as examining metabolic tradeoffs for environmental perturbations, biodegradation of aromatic compounds, environmental remediation, biofuel production, agricultural biostimulation, and bioelectricity production. This review provides a holistic summary of the commercial applications for R. palustris as a biotechnology chassis and suggests future perspectives for research and engineering.
Collapse
Affiliation(s)
- Brandi Brown
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
42
|
Hoeniges J, Welch W, Pruvost J, Pilon L. A novel external reflecting raceway pond design for improved biomass productivity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Hosseinkhani N, McCauley JI, Ralph PJ. Key challenges for the commercial expansion of ingredients from algae into human food products. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
P. Silva T, M. Paixão S, S. Fernandes A, C. Roseiro J, Alves L. New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gordonia alkanivorans strain 1B is a desulfurizing bacterium and a hyper-pigment producer. Most carotenoid optimization studies have been performed with light, but little is still known on how carbon/sulfur-source concentrations influence carotenoid production under darkness. In this work, a surface response methodology based on a two-factor Doehlert distribution (% glucose in a glucose/fructose 10 g/L mixture; sulfate concentration) was used to study carotenoid and biomass production without light. These responses were then compared to those previously obtained under light. Moreover, carbon consumption was also monitored, and different metabolic parameters were further calculated. The results indicate that both light and glucose promote slower growth rates, but stimulate carotenoid production and carbon conversion to carotenoids and biomass. Fructose induces higher growth rates, and greater biomass production at 72 h; however, its presence seems to inhibit carotenoid production. Moreover, although at a much lower yield than under light, results demonstrate that under darkness the highest carotenoid production can be achieved with 100% glucose (10 g/L), ≥27 mg/L sulfate, and high growth time (>216 h). These results give a novel insight into the metabolism of strain 1B, highlighting the importance of culture conditions optimization to increase the process efficiency for carotenoid and/or biomass production.
Collapse
|
45
|
Cheng P, Li Y, Wang C, Guo J, Zhou C, Zhang R, Ma Y, Ma X, Wang L, Cheng Y, Yan X, Ruan R. Integrated marine microalgae biorefineries for improved bioactive compounds: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152895. [PMID: 34998757 DOI: 10.1016/j.scitotenv.2021.152895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Marine microalgae offer a promising feedstock for biofuels and other valuable compounds for biorefining and carry immense potential to contribute to a clean energy and environment future. However, it is currently not economically feasible to use marine algae to produce biofuels, and the potential bioactive chemicals account for only a small market share. The production of algal biomass with multiple valuable chemicals is closely related to the algal species, cultivation conditions, culture systems, and production modes. Thus, higher requirements for screening of dominant algal strains, developing integrated technologies with the optimum culture conditions, efficient cultivation systems, and production modes to exploit algal biomass for biorefinery applications, are all needed. This review summarizes the screening of dominant microalgae, discusses the environmental conditions that may affect the growth, as well as the culture systems and production modes, and further emphasizes the valorization options of the algal biomass, which should help to offer a sustainable approach to run a profitable marine algae production system.
Collapse
Affiliation(s)
- Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MD, USA
| | - Chun Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiameng Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Renchuan Zhang
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yiwei Ma
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Xiaochen Ma
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Lu Wang
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yanling Cheng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
46
|
Prabha S, Vijay AK, Paul RR, George B. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152795. [PMID: 34979226 DOI: 10.1016/j.scitotenv.2021.152795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are well known for their plethora of applications in the fields of food industry, pharmaceuticals and bioenergy. Their simple growth requirements, remarkable growth rate and the ability to produce a wide range of bio-active compounds enable them to act as an efficient biorefinery for the production of valuable metabolites. Most of the cyanobacteria based biorefineries are targeting single products and thus fails to meet the efficient valorization of biomass. On the other hand, multiple products recovering cyanobacterial biorefineries can efficiently valorize the biomass with minimum to zero waste generation. But there are plenty of bottlenecks and challenges allied with cyanobacterial biorefineries. Most of them are being associated with the production processes and downstream strategies, which are difficult to manage economically. There is a need to propose new solutions to eliminate these tailbacks so on to elevate the cyanobacterial biorefinery to be an economically feasible, minimum waste generating multiproduct biorefinery. Cost-effective approaches implemented from production to downstream processing without affecting the quality of products will be beneficial for attaining economic viability. The integrated approaches in cultivation systems as well as downstream processing, by simplifying individual processes to unit operation systems can obviously increase the economic feasibility to a certain extent. Low cost approaches for biomass production, multiparameter optimization and successive sequential retrieval of multiple value-added products according to their high to low market value from a biorefinery is possible. The nanotechnological approaches in cyanobacterial biorefineries make it one step closer to the goal. The current review gives an overview of strategies used for constructing self-sustainable- economically feasible- minimum waste generating; multiple products based cyanobacterial biorefineries by the efficient valorization of biomass. Also the possibility of uplifting new cyanobacterial strains for biorefineries is discussed.
Collapse
Affiliation(s)
- Syama Prabha
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Aravind K Vijay
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Rony Rajan Paul
- Department of Chemistry, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Basil George
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India.
| |
Collapse
|
47
|
Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int J Mol Sci 2022; 23:ijms23052623. [PMID: 35269768 PMCID: PMC8910654 DOI: 10.3390/ijms23052623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Microalgae have received much interest as a biofuel feedstock. However, the economic feasibility of biofuel production from microalgae does not satisfy capital investors. Apart from the biofuels, it is necessary to produce high-value co-products from microalgae fraction to satisfy the economic aspects of microalgae biorefinery. In addition, microalgae-based wastewater treatment is considered as an alternative for the conventional wastewater treatment in terms of energy consumption, which is suitable for microalgae biorefinery approaches. The energy consumption of a microalgae wastewater treatment system (0.2 kW/h/m3) was reduced 10 times when compared to the conventional wastewater treatment system (to 2 kW/h/m3). Microalgae are rich in various biomolecules such as carbohydrates, proteins, lipids, pigments, vitamins, and antioxidants; all these valuable products can be utilized by nutritional, pharmaceutical, and cosmetic industries. There are several bottlenecks associated with microalgae biorefinery. Hence, it is essential to promote the sustainability of microalgal biorefinery with innovative ideas to produce biofuel with high-value products. This review attempted to bring out the trends and promising solutions to realize microalgal production of multiple products at an industrial scale. New perspectives and current challenges are discussed for the development of algal biorefinery concepts.
Collapse
|
48
|
Biodegradable Solvents: A Promising Tool to Recover Proteins from Microalgae. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The world will face a significant protein demand in the next few decades, and due to the environmental concerns linked to animal protein, new sustainable protein sources must be found. In this regard, microalgae stand as an outstanding high-quality protein source. However, different steps are needed to separate the proteins from the microalgae biomass and other biocompounds. The protein recovery from the disrupted biomass is usually the bottleneck of the process, and it typically employs organic solvents or harsh conditions, which are both detrimental to protein stability and planet health. Different techniques and methods are applied for protein recovery from various matrices, such as precipitation, filtration, chromatography, electrophoresis, and solvent extraction. Those methods will be reviewed in this work, discussing their advantages, drawbacks, and applicability to the microalgae biorefinery process. Special attention will be paid to solvent extraction performed with ionic liquids (ILs) and deep eutectic solvents (DESs), which stand as promising solvents to perform efficient protein separations with reduced environmental costs compared to classical alternatives. Finally, several solvent recovery options will be analyzed to reuse the solvent employed and isolate the proteins from the solvent phase.
Collapse
|
49
|
Kang NK, Baek K, Koh HG, Atkinson CA, Ort DR, Jin YS. Microalgal metabolic engineering strategies for the production of fuels and chemicals. BIORESOURCE TECHNOLOGY 2022; 345:126529. [PMID: 34896527 DOI: 10.1016/j.biortech.2021.126529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Microalgae are promising sustainable resources because of their ability to convert CO2 into biofuels and chemicals directly. However, the industrial production and economic feasibility of microalgal bioproducts are still limited. As such, metabolic engineering approaches have been undertaken to enhance the productivities of microalgal bioproducts. In the last decade, impressive advances in microalgae metabolic engineering have been made by developing genetic engineering tools and multi-omics analysis. This review presents comprehensive microalgal metabolic pathways and metabolic engineering strategies for producing lipids, long chain-polyunsaturated fatty acids, terpenoids, and carotenoids. Additionally, promising metabolic engineering approaches specific to target products are summarized. Finally, this review discusses current challenges and provides future perspectives for the effective production of chemicals and fuels via microalgal metabolic engineering.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kwangryul Baek
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christine Anne Atkinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, IL, USA; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
50
|
Udayan A, Pandey AK, Sirohi R, Sreekumar N, Sang BI, Sim SJ, Kim SH, Pandey A. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-28. [PMID: 35095355 PMCID: PMC8783767 DOI: 10.1007/s11101-021-09784-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
In the current global scenario, the world is under a serious dilemma due to the increasing human population, industrialization, and urbanization. The ever-increasing need for fuels and increasing nutritional problems have made a serious concern on the demand for nutrients and renewable and eco-friendly fuel sources. Currently, the use of fossil fuels is creating ecological and economic problems. Microalgae have been considered as a promising candidate for high-value metabolites and alternative renewable energy sources. Microalgae offer several advantages such as rapid growth rate, efficient land utilization, carbon dioxide sequestration, ability to cultivate in wastewater, and most importantly, they do not participate in the food crop versus energy crop dilemma or debate. An efficient microalgal biorefinery system for the production of lipids and subsequent byproduct for nutraceutical applications could well satisfy the need. But, the current microalgal cultivation systems for the production of lipids and nutraceuticals do not offer techno-economic feasibility together with energy and environmental sustainability. This review article has its main focus on the production of lipids and nutraceuticals from microalgae, covering the current strategies used for lipid production and the major high-value metabolites from microalgae and their nutraceutical importance. This review also provides insights on the future strategies for enhanced microalgal lipid production and subsequent utilization of microalgal biomass. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram, Kerala 695 004 India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sung Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sang Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226 001 India
| |
Collapse
|