1
|
Cui H, Xin X, Su J, Song S. Research Progress of Electrochemical Biosensors for Diseases Detection in China: A Review. BIOSENSORS 2025; 15:231. [PMID: 40277545 PMCID: PMC12024860 DOI: 10.3390/bios15040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
Disease diagnosis is not only related to individual health but is also a crucial part of public health prevention. Electrochemical biosensors combine the high sensitivity of electrochemical methods with the inherent high selectivity of biological components, offering advantages such as excellent sensitivity, fast response time, and low cost. The generated electrical signals have a linear relationship with the target analyte, allowing for identification and concentration detection. This has become a very attractive technology. This review offers a summary of recent advancements in electrochemical biosensor research for disease diagnosis in China. It systematically categorizes and summarizes biosensors developed in China for detecting cancer, infectious diseases, inflammation, and neurodegenerative disorders. Additionally, the review delves into the fundamental working principles, classifications, materials, preparation techniques, and other critical aspects of electrochemical biosensors. Finally, it addresses the key challenges impeding the advancement of electrochemical biosensors in China and examines promising future directions for their development.
Collapse
Affiliation(s)
- Haoran Cui
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China; (H.C.); (X.X.)
| | - Xianglin Xin
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China; (H.C.); (X.X.)
| | - Jing Su
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Shiping Song
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China; (H.C.); (X.X.)
| |
Collapse
|
2
|
Fdez-Sanromán A, Bernárdez-Rodas N, Rosales E, Pazos M, González-Romero E, Sanromán MÁ. Biosensor Technologies for Water Quality: Detection of Emerging Contaminants and Pathogens. BIOSENSORS 2025; 15:189. [PMID: 40136986 PMCID: PMC11940157 DOI: 10.3390/bios15030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
This review explores the development, technological foundations, and applications of biosensor technologies across various fields, such as medicine for disease diagnosis and monitoring, and the food industry. However, the primary focus is on their use in detecting contaminants and pathogens, as well as in environmental monitoring for water quality assessment. The review classifies different types of biosensors based on their bioreceptor and transducer, highlighting how they are specifically designed for the detection of emerging contaminants (ECs) and pathogens in water. Key innovations in this technology are critically examined, including advanced techniques such as systematic evolution of ligands by exponential enrichment (SELEX), molecularly imprinted polymers (MIPs), and self-assembled monolayers (SAMs), which enable the fabrication of sensors with improved sensitivity and selectivity. Additionally, the integration of microfluidic systems into biosensors is analyzed, demonstrating significant enhancements in performance and detection speed. Through these advancements, this work emphasizes the fundamental role of biosensors as key tools for safeguarding public health and preserving environmental integrity.
Collapse
Affiliation(s)
- Antía Fdez-Sanromán
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Nuria Bernárdez-Rodas
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Marta Pazos
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Elisa González-Romero
- Department of Analytical and Food Chemistry, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain;
| | - Maria Ángeles Sanromán
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| |
Collapse
|
3
|
Ye Z, Qin H, Wei X, Tao T, Li Q, Mao S. Antibiotic residue detection by novel photoelectrochemical extended-gate field-effect transistor sensor. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136897. [PMID: 39719801 DOI: 10.1016/j.jhazmat.2024.136897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Residual antibiotics in the environment may pose threats to both ecological system and public health, necessitating the development of efficient analytical strategy for monitoring and control. This study proposes a photoelectrochemical extended-gate field-effect transistor (PEGFET) sensor for specific and sensitive detection of kanamycin. The sensor utilizes ITO glass as the extended gate electrode (photoelectrode) and titanium dioxide as the photosensitive material. It leverages the interaction between kanamycin and its corresponding aptamer to influence the ability of gold nanocluster to catalyze the oxidation of 3,3'-diaminobenzidine (DAB). This interaction results in different amounts of DAB precipitate on the photoelectrode surface, leading to gate voltage shift and source-drain current response. This sensing platform achieves trace detection of kanamycin with a limit of detection (LOD) at nM level and a wide linear detection range from 10 nM to 100 μM. The results demonstrate that the PEGFET with incorporated photoelectrochemical process can significantly enhance the sensitivity of traditional EGFET sensor, and the photoelectric signal originates from the change in electron transfer ability of the photoelectrode. The reported PEGFET with photo-responsive extended gate presents a new and promising structure in FET sensor design for enhanced detection performances in chemical and biological sensing.
Collapse
Affiliation(s)
- Ziwei Ye
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hehe Qin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaojie Wei
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tian Tao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
López JG, Muñoz M, Arias V, García V, Calvo PC, Ondo-Méndez AO, Rodríguez-Burbano DC, Fonthal F. Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection. MICROMACHINES 2025; 16:139. [PMID: 40047624 PMCID: PMC11857277 DOI: 10.3390/mi16020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/09/2025]
Abstract
Cancer remains one of the leading causes of mortality worldwide, making early detection a critical factor in improving patient outcomes and survival rates. Developing advanced biosensors is essential for achieving early detection and accurate cancer diagnosis. This review offers a comprehensive overview of the development and application of carbon dots (CDs) and glassy carbon (GC) biosensors for early cancer detection. It covers the synthesis of CDs and GC, electrode fabrication methods, and electrochemical and optical transduction principles. This review explores various biosensors, including enzymatic and non-enzymatic, and discusses key biomarkers relevant to cancer detection. It also examines characterization techniques for electrochemical and optical biosensors, such as electrochemical impedance spectroscopy, cyclic voltammetry, UV-VIS, and confocal microscopy. The findings highlight the advancements in biosensor performance, emphasizing improvements in sensitivity, selectivity, and stability, as well as underscoring the potential of integrating different transduction methods and characterization approaches to enhance early cancer detection.
Collapse
Affiliation(s)
- Juana G. López
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Mariana Muñoz
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Valentina Arias
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Valentina García
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Paulo C. Calvo
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Alejandro O. Ondo-Méndez
- Clinical Investigation Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Diana C. Rodríguez-Burbano
- Givia Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Faruk Fonthal
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| |
Collapse
|
5
|
P S A, Thadathil DA, George L, Varghese A. Food Additives and Evolved Methods of Detection: A Review. Crit Rev Anal Chem 2024:1-20. [PMID: 39015954 DOI: 10.1080/10408347.2024.2372501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Food additives are essential constituents of food products in the modern world. The necessity of food processing went up rapidly as to meet requirements including, imparting desirable properties like preservation, enhancement and regulation of color and taste. The methods of identification and analysis of such substances are crucial. With the advancement of technology, a variety of techniques are emerging for this purpose which have many advantages over the existing conventional ways. This review is on different kinds of additives used in the food industry and few prominent methods for their determination ranging from conventional chromatographic techniques to the recently evolved nano-sensor techniques.
Collapse
Affiliation(s)
- Aiswarya P S
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | | | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
6
|
Szelenberger R, Cichoń N, Zajaczkowski W, Bijak M. Application of Biosensors for the Detection of Mycotoxins for the Improvement of Food Safety. Toxins (Basel) 2024; 16:249. [PMID: 38922144 PMCID: PMC11209361 DOI: 10.3390/toxins16060249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Mycotoxins, secondary metabolites synthesized by various filamentous fungi genera such as Aspergillus, Penicillium, Fusarium, Claviceps, and Alternaria, are potent toxic compounds. Their production is contingent upon specific environmental conditions during fungal growth. Arising as byproducts of fungal metabolic processes, mycotoxins exhibit significant toxicity, posing risks of acute or chronic health complications. Recognized as highly hazardous food contaminants, mycotoxins present a pervasive threat throughout the agricultural and food processing continuum, from plant cultivation to post-harvest stages. The imperative to adhere to principles of good agricultural and industrial practice is underscored to mitigate the risk of mycotoxin contamination in food production. In the domain of food safety, the rapid and efficient detection of mycotoxins holds paramount significance. This paper delineates conventional and commercial methodologies for mycotoxin detection in ensuring food safety, encompassing techniques like liquid chromatography, immunoassays, and test strips, with a significant emphasis on the role of electrochemiluminescence (ECL) biosensors, which are known for their high sensitivity and specificity. These are categorized into antibody-, and aptamer-based, as well as molecular imprinting methods. This paper examines the latest advancements in biosensors for mycotoxin testing, with a particular focus on their amplification strategies and operating mechanisms.
Collapse
Affiliation(s)
- Rafał Szelenberger
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (N.C.); (W.Z.); (M.B.)
| | | | | | | |
Collapse
|
7
|
Khalifa HO, Shikoray L, Mohamed MYI, Habib I, Matsumoto T. Veterinary Drug Residues in the Food Chain as an Emerging Public Health Threat: Sources, Analytical Methods, Health Impacts, and Preventive Measures. Foods 2024; 13:1629. [PMID: 38890858 PMCID: PMC11172309 DOI: 10.3390/foods13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Veterinary medications are necessary for both contemporary animal husbandry and food production, but their residues can linger in foods obtained from animals and pose a dangerous human risk. In this review, we aim to highlight the sources, occurrence, human exposure pathways, and human health effects of drug residues in food-animal products. Following the usage of veterinary medications, pharmacologically active compounds known as drug residues can be found in food, the environment, or animals. They can cause major health concerns to people, including antibiotic resistance development, the development of cancer, teratogenic effects, hypersensitivity, and disruption of normal intestinal flora. Drug residues in animal products can originate from variety of sources, including water or food contamination, extra-label drug use, and ignoring drug withdrawal periods. This review also examines how humans can be exposed to drug residues through drinking water, food, air, and dust, and discusses various analytical techniques for identifying these residues in food. Furthermore, we suggest some potential solutions to prevent or reduce drug residues in animal products and human exposure pathways, such as implementing withdrawal periods, monitoring programs, education campaigns, and new technologies that are crucial for safeguarding public health. This review underscores the urgency of addressing veterinary drug residues as a significant and emerging public health threat, calling for collaborative efforts from researchers, policymakers, and industry stakeholders to develop sustainable solutions that ensure the safety of the global food supply chain.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 3351, Egypt
| | - Lamek Shikoray
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
| |
Collapse
|
8
|
Mansouri S. Recent Advancements in Molecularly Imprinted Polymers Based Aptasensors: Critical Role of Nanomaterials for the Efficient Food Safety Analysis. Crit Rev Anal Chem 2024:1-16. [PMID: 38754013 DOI: 10.1080/10408347.2024.2351826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Biosensors are being studied extensively for their ability to detect and analyze molecules. There has been a growing interest in combining molecular imprinted polymers (MIPs) and aptamers to create hybrid recognition elements that offer advantages such as target binding, sensitivity, selectivity, and stability. These hybrid elements have been successfully used in identifying a wide range of analytes in food samples. However, the application of MIP-based aptasensors in different sensing approaches is still challenging due to the low conductivity of MIPs-aptamers and limited adsorption capacity of MIPs. To address these limitations, researchers have been exploring the use of nanomaterials (NMs) to design efficient multiple-recognition systems that exploit the synergies between aptamers and MIPs. These hybrid systems can enhance the sensitivity and selectivity of MIP-based aptasensors in quantifying analytical samples. This review provides a comprehensive overview of recent advancements in the field of MIP-based aptasensors. It also introduces technologies that combine MIPs and aptamers to achieve higher sensitivity and selectivity in quantifying analytical samples. The review also highlights potential future trends and practical approaches that can be employed to address the limitations of MIP-based aptasensors, including the use of new NMs, the development of new fabrication techniques, and the integration of MIP-based aptasensors with other analytical tools.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabiain
- Laboratory of Biophysics and Medical Technologies, University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Tunis, Tunisia
| |
Collapse
|
9
|
Zeeshan, Bahrami S, Park S, Cho S. Antibody functionalized capacitance sensor for label-free and real-time detection of bacteria and antibiotic susceptibility. Talanta 2024; 272:125831. [PMID: 38428133 DOI: 10.1016/j.talanta.2024.125831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The effective management of infectious diseases and the growing concern of antibiotic resistance necessitates accurate and targeted therapies, highlighting the importance of antibiotic susceptibility testing. This study aimed to develop a real-time impedimetric biosensor for identifying and monitoring bacterial growth and antibiotic susceptibility. The biosensor employed a gold 8-channel disk-shaped microelectrode array with specific antibodies as bio-recognition elements. This setup was allowed for the analysis of bacterial samples, including Staphylococcus aureus, Bacillus cereus, and Micrococcus luteus. These microorganisms were successfully cultured and detected within 1 h of incubation even with a minimal bacterial concentration of 10 CFU/ml. Overall, the developed biosensor array exhibits promising capabilities for monitoring S. aureus, B. cereus and M. luteus, showcasing an excellent linear response ranging from 10 to 104 CFU/ml with a detection limit of 0.95, 1.22 and 1.04 CFU/mL respectively. Moreover, real-time monitoring of antibiotic susceptibility was facilitated by changes in capacitance, which dropped when bacteria were exposed to antibiotic doses higher than their minimum inhibitory concentration (MIC), indicating suppressed bacterial growth. The capacitance measurements enabled determination of half-maximal cytotoxic concentrations (CC50) values for each bacteria-antibiotic pair. As a proof-of-concept application, the developed sensor array was employed as a sensing platform for the real time detection of bacteria in milk samples, which ensured the reliability of the sensor for in-field detection of foodborne pathogens and rapid antimicrobial susceptibility tests (ASTs).
Collapse
Affiliation(s)
- Zeeshan
- Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| | - Sadra Bahrami
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, South Korea.
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, South Korea.
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si, Gyeonggi-do, 13120, South Korea; Department of Health Science and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
10
|
Yang W, Wang F, Wang H, Ding D, Jiang S, Zhang G. Platform for the Immobilizing of Ultrasmall Pd Clusters for Carbonylation: In Situ Self-Templating Fabrication of ZIF-8 on ZnO. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306794. [PMID: 38072816 DOI: 10.1002/smll.202306794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Incorporating metal clusters into the confined cavities of metal-organic frameworks (MOFs) to form MOF-supported catalysts has attracted considerable research interest with regard to carbonylation reactions. Herein, a self-templating method is used to prepare the zinc oxide (ZnO)-supported core-shell catalyst ZnO@Pd/ZIF-8. This facile strategy controls the growth of metal sources on the ZIF-8 shell layer and avoids the metal diffusion or aggregation problems of the conventional synthesis method. The characteristics of the catalysts show that the palladium (Pd) clusters are highly dispersed with an average particle size of ≈1.2 nm, making them excellent candidates as a catalyst for carbonylation under mild conditions. The optimal catalyst (1.25-ZnO@Pd/ZIF-8) exhibits excellent activity in synthesizing α, β-alkynyl ketones under 1 atm of carbon monooxide (CO), and the conversion rate of 1, 3-diphenylprop-2-yn-1-one is 3.09 and 3.87 times more than those of Pd/ZIF-8 and Pd2+, respectively, for the first 2 h. Moreover, the 1.25-ZnO@Pd/ZIF-8 is recyclable, showing negligible metal leaching, and, under the conditions used in this investigation, can be reused at least five times without considerable loss in its catalytic efficiency. This protocol can also be applied with other nucleophile reagents to synthesize esters, amides, and acid products.
Collapse
Affiliation(s)
- Wei Yang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Fangchao Wang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - He Wang
- The third Military Representative Office in Taiyuan, Taiyuan, Shanxi, 030001, P. R. China
| | - Ding Ding
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Guoying Zhang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| |
Collapse
|
11
|
Wang B, Liu L, Zhang H, Wang Z, Chen K, Wu B, Hu L, Zhou X, Liu L. A group-targeting biosensor for sensitive and rapid detection of quinolones in water samples. Anal Chim Acta 2024; 1301:342475. [PMID: 38553128 DOI: 10.1016/j.aca.2024.342475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Quinolones (QNs) widely exist in the environment due to their wide range of applications and poor metabolic properties, resulting in the generation and spread of resistance genes, posing a potential threat to human health. Traditional analytical methods cannot detect all broad ranges of QNs simultaneously. The development of facile, efficient and reliable method for quantification and assessment of the total QNs is a long-lasting challenge. RESULTS We hereby provide a simple, sensitive and instantaneous group-targeting biosensor for the detection of total QNs in environmental water samples. The biosensor is based on a group-specific antibodies with high affinity against QNs. Fluorescent labeled antibodies bound to the coated antigen modified on the surface of the transducer, and excited by the evanescent waves. The detected fluorescent signal is inversely proportional to the QNs concentration. This biosensor exhibited excellent performance with detection limits lower than 0.15 μg L-1 for all five QNs variants, and even lower than 0.075 μg L-1 for ciprofloxacin (CIP) and ofloxacin (OFL). Environmental water samples can be detected after simple pretreatment, and all detection steps can be completed in 10 min. The transducer has a high regenerative capacity and shows no significant signal degradation after two hundred detection cycles. The recoveries of QNs in a variety of wastewater range from 105 to 119%, confirming its application potential in the measurement of total QNs in reality. SIGNIFICANCE The biosensor can realize rapid and sensitive detection of total QNs in water samples by simple pretreatment, which overcomes the disadvantage of the traditional methods that require complex pretreatment and time-consuming, and pave the groundwork for expansive development centered around this technology.
Collapse
Affiliation(s)
- Bohan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Lanhua Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Haopeng Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhiqiang Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Kang Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Bo Wu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Limin Hu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lanlan Liu
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
12
|
Sajwan RK, Kumar Himanshu J, Solanki PR. Polyvinyl alcohol-derived-carbon quantum dots based fluorometric "On-Off" probe for moxifloxacin detection in milk and egg samples. Food Chem 2024; 439:138038. [PMID: 38041884 DOI: 10.1016/j.foodchem.2023.138038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
Unconditional use of antibiotics triggered the process of bacterial resistance and causes major health problems. Nowadays, antibiotics majorly used in animals not only for infection treatment but also as mass promotor. The excess amount of antibiotics residue in animal derived foods which accelerate antibiotic resistance (ABR). So, here, a simple and quick carbon quantum dots(CQDs) based fluorometric "On-Off" probe was developed for detection of moxifloxacin (MOXI) in milk and egg samples. The CQDs emits blue emission and are uniformly distributed with average particle size 5.9 ± 0.22 nm. With MOXI, fluorescence intensity of CQDs at 372 nm decreased due to inner filter effect (IFE) and a new peak appeared at 508 nm correspondence to MOXI. The probe shows linear response with MOXI concentration varies as 0.025 µM - 15.0 µM with lower detection limit (LOD) of 6.34 nM. The real sample applicability test proved that the sensors have excellent efficacy for food applications.
Collapse
Affiliation(s)
- Reena K Sajwan
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jayendra Kumar Himanshu
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Pratima R Solanki
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
13
|
Moulahoum H. Dual Chromatic Laser-Printed Microfluidic Paper-Based Analytical Device (μPAD) for the Detection of Atrazine in Water. ACS OMEGA 2023; 8:41194-41203. [PMID: 37970019 PMCID: PMC10633824 DOI: 10.1021/acsomega.3c04387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 11/17/2023]
Abstract
Water pollution caused by pesticides is a significant threat to the environment and human health. Silver and gold nanoparticle (AgNPs, AuNPs)-based biosensors are affordable tools, ideal for environmental monitoring. Microfluidic paper-based devices (μPADs) are a promising approach for on-site testing, but few studies have explored the use of laser printing (LP) for μPAD-based biosensors. This study investigates the feasibility of using laser printing to fabricate paper-based biosensors for pesticide detection in water samples. The μPAD was designed and optimized by using different filter paper porosities, patterns, and channel thicknesses. The developed LP-μPAD was used to sense the pesticide atrazine in water through colorimetric assessments using a smartphone-assisted image analysis. The analytical assessment showed a limit of detection (LOD) of 3.5 and 10.9 μM for AgNPs and AuNPs, respectively. The sensor had high repeatability and reproducibility. The LP-μPAD also demonstrated good recovery and functionality in simulated contaminated water. Furthermore, the detection of pesticides was found to be specific under the influence of interferents, such as NaCl and pH levels. By combining laser printing and nanoparticles, the proposed sensor could contribute to developing effective and low-cost solutions for monitoring water quality that are widely accessible.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department,
Faculty of Science, Ege University, Bornova, Izmir 35040, Turkey
| |
Collapse
|
14
|
Hakiem AFA, Urriza-Arsuaga I, Urraca JL. Development of a Screening Method for Fluoroquinolones in Meat Samples Using Molecularly Imprinted Carbon Dots. BIOSENSORS 2023; 13:972. [PMID: 37998147 PMCID: PMC10669409 DOI: 10.3390/bios13110972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
An accurate and simple screening method has been developed for the determination of fluoroquinolone antibiotics. Carbon dots were synthesized by simple hydrothermal treatment as highly fluorescent nano-sensors. They were subsequently used in the synthesis of organic-based molecularly imprinted polymers to develop fluorescence-based polymeric composites using enoxacin as a representative dummy template molecule of fluoroquinolones. The method was optimized concerning the pH of the medium and composite concentration. The normalized fluorescence intensity showed efficient quenching under optimized conditions upon successive addition of the template, with an excellent correlation coefficient. The proposed method was applied to eight other fluoroquinolones, exhibiting, in all cases, good correlation coefficients (0.65-0.992) within the same linearity range (0.03-2.60 mg mL-1). Excellent detection and quantification limits were been obtained for the target analytes down to 0.062 and 0.186 mg L-1, respectively. All studied analytes showed no interference with enrofloxacin, the most commonly used veterinary fluoroquinolone, with a percentage of cross-reactivity varying from 89.00 to 540.00%. This method was applied successfully for the determination of enrofloxacin in three different types of meat samples: beef, pork, and chicken, with good recoveries varying from 70 to 100% at three levels. This new procedure is an easy analytical method that can be useful as a screening method for monitoring the environmental hazard of fluoroquinolones in quality control laboratories.
Collapse
Affiliation(s)
- Ahmed Faried Abdel Hakiem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Javier L. Urraca
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
15
|
Zhang J, Wang J, Ouyang F, Zheng Z, Huang X, Zhang H, He D, He S, Wei H, Yu CY. A smartphone-integrated portable platform based on polychromatic ratiometric fluorescent paper sensors for visual quantitative determination of norfloxacin. Anal Chim Acta 2023; 1279:341837. [PMID: 37827652 DOI: 10.1016/j.aca.2023.341837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
The emergence of "superbugs" due to antibiotics overuse poses a significant threat to human health and security. The development of sensitive and effective antibiotics detection is undoubtedly a prerequisite for addressing antibiotics overuse-associated issues. However, current techniques for monitoring antibiotics typically require costly equipment and well-trained professionals. Hence, we developed herein a rapid, instrument-free, and on-site detection method for antibiotic residues such as norfloxacin (NOR) based on a ratiometric sensing platform utilizing "on-off-on" response properties of polychromatic fluorescence for direct visual quantitative NOR analysis. Specifically, this platform integrated iron ions (Fe3+)-chelated blue carbon dots (BCDs) for signal sensing and red carbon dots (RCDs) as an internal reference. The sensor mechanism is selective quenching of BCDs' blue fluorescence by Fe3+ via an inner filter effect with unaffected RCDs' red fluorescence. Further NOR addition led to competitive binding with BCDs due to Fe3+ shedding from the BCDs' surface for a recovered blue fluorescence signal. Notably, the ratiometric fluorescence sensor demonstrated rapid and highly sensitive NOR detection in a concentration range of 1-70 μM with an impressive detection limit of 6.84 nM. The ratiometric fluorescence sensing platform was constructed by integrating smartphone and paper-based strategies, which exhibited exceptional sensitivity, selectivity, and rapid response for portable, instrument-free, visual quantification of NOR in real samples.
Collapse
Affiliation(s)
- Jiaheng Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaowan Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dongxiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
16
|
Azhdary P, Janfaza S, Fardindoost S, Tasnim N, Hoorfar M. Highly selective molecularly imprinted polymer nanoparticles (MIP NPs)-based microfluidic gas sensor for tetrahydrocannabinol (THC) detection. Anal Chim Acta 2023; 1278:341749. [PMID: 37709477 DOI: 10.1016/j.aca.2023.341749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
A highly selective microfluidic integrated metal oxide gas sensor for THC detection is reported based on MIP nanoparticles (MIP NPs). We synthesized MIP NPs with THC recognition sites and coated them on a 3D-printed microfluidic channel surface. The sensitivity and selectivity of coated microfluidic integrated gas sensors were evaluated by exposure to THC, cannabidiol (CBD), methanol, and ethanol analytes in 300-700 ppm at 300 °C. For comparison, reference signals were obtained from a microfluidic channel coated with nonimprinted polymers (NIP NPs). The MIP and NIP NPs were characterized using scanning electron microscopy (SEM) and Raman spectroscopy. MIP and NIP NPs channels response data were combined and classified with 96.3% accuracy using the Fine KNN classification model in MATLAB R2021b Classification Learner App. Compared to the MIP NPs coated channel, the NIP NPs channel had poor selectivity towards THC, demonstrating that the THC recognition sites in the MIP structure enabled selective detection of THC. The findings demonstrated that the recognition sites of MIP NPs properly captured THC molecules, enabling the selective detection of THC compared to CBD, methanol, and ethanol.
Collapse
Affiliation(s)
- Peyman Azhdary
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Somayeh Fardindoost
- School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
17
|
Sánchez-Ponce L, Casanueva-Marenco MJ, Díaz-de-Alba M, Galindo-Riaño MD, Granado-Castro MD. A Novel Polymer Inclusion Membrane-Based Green Optical Sensor for Selective Determination of Iron: Design, Characterization, and Analytical Applications. Polymers (Basel) 2023; 15:4082. [PMID: 37896326 PMCID: PMC10610280 DOI: 10.3390/polym15204082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The design, characterization, and analytical application of a green optical sensor for the selective determination of Fe(II) ions is proposed. The sensor is based on the immobilization of the chromogenic reagent picolinaldehyde salicyloylhydrazone (SHPA) within a polymer inclusion membrane. To reduce solvent usage, the reagent was synthesized using a green mechanochemical procedure. The components for sensor preparation were optimized with a sequential simplex method and the optimal composition was found to be 0.59 g cellulose triacetate (base polymer), 0.04 g SHPA (chemosensor reagent), 4.9 mL dibutyl phthalate (plasticizer), and 38 mL dichloromethane (solvent). The conditions of iron analysis were also optimized resulting in pH 6 for aqueous solution, 90 min exposure time and 10 min short-term stability. The optical sensor showed a linear range from the limit of detection (0.48 µmol L-1) to 54 µmol L-1 Fe(II). The precision of the method was found to be 1.44% and 1.19% for 17.9 and 45 µmol L-1 Fe(II), respectively. The characteristics of the sensor allowed the design of a Fe(II)/Fe(III) speciation scheme. The methodology was successfully applied to the determination of iron in food preservatives, food additives, and dietary supplement. Additionally, the Fe speciation scheme was successfully applied to an agricultural fertilizer.
Collapse
Affiliation(s)
| | | | - Margarita Díaz-de-Alba
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, International Campus of Excellence of the Sea (CEI-MAR), University of Cadiz, Campus Rio San Pedro, Puerto Real, 11510 Cadiz, Spain; (L.S.-P.); (M.J.C.-M.); (M.D.G.-R.); (M.D.G.-C.)
| | | | | |
Collapse
|
18
|
Guo X, Wang M. Recent progress in optical and electrochemical aptasensor technologies for detection of aflatoxin B1. Crit Rev Food Sci Nutr 2023; 64:13093-13111. [PMID: 37778392 DOI: 10.1080/10408398.2023.2260508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
AFB1 (Aflatoxin B1) contamination is becoming a global concern issue due to its extraordinary occurrence, severe toxicity, as well as the great influence on the economic losses, food safety and environment. Therefore, it is desirable to develop novel analytical techniques for simple, rapid, accurate, and even point-of-care testing of AFB1. Fortunately, aptamer, considered as a new generation bioreceptor and even superior to classic antibody and enzyme, has been emerged remarkable application in food hazards detection. Correspondingly, aptasensors have been well-established toward AFB1 determination with outstanding performance. In this article, we first discuss and summarize the recent progress in optical and electrochemical aptasensors to monitor AFB1 over the past three years. In particular, the embedding of advanced nanomaterials for their improved analytical performance is highlighted. Furthermore, the critical analysis on various signal transduction strategies for aptasensors construction is discussed. Finally, we reveal the challenges and provide our opinion in future opportunities for aptasensor development.
Collapse
Affiliation(s)
- Xiaodong Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Magnano San Lio R, Barchitta M, Maugeri A, La Rosa MC, Favara G, Agodi A. Updates on developing and applying biosensors for the detection of microorganisms, antimicrobial resistance genes and antibiotics: a scoping review. Front Public Health 2023; 11:1240584. [PMID: 37744478 PMCID: PMC10512422 DOI: 10.3389/fpubh.2023.1240584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background The inappropriate use of antibiotics in clinical and non-clinical settings contributes to the increasing prevalence of multidrug-resistant microorganisms. Contemporary endeavours are focused on exploring novel technological methodologies, striving to create cost-effective and valuable alternatives for detecting microorganisms, antimicrobial resistance genes (ARGs), and/or antibiotics across diverse matrices. Within this context, there exists an increasingly pressing demand to consolidate insights into potential biosensors and their implications for public health in the battle against antimicrobial resistance (AMR). Methods A scoping review was carried out to map the research conducted on biosensors for the detection of microorganisms, ARGs and/or antibiotics in clinical and environmental samples. The Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist was used. Articles published from 1999 to November 2022 and indexed in the following databases were included: MEDLINE, EMBASE, Web of Science, BIOSIS Citation index, Derwent Innovations index, and KCI-Korean Journal. Results The 48 studies included in the scoping review described the development and/or validation of biosensors for the detection of microorganisms, ARGs and/or antibiotics. At its current stage, the detection of microorganisms and/or ARGs has focused primarily on the development and validation of biosensors in clinical and bacterial samples. By contrast, the detection of antibiotics has focused primarily on the development and validation of biosensors in environmental samples. Asides from target and samples, the intrinsic characteristics of biosensors described in the scoping review were heterogenous. Nonetheless, the number of studies assessing the efficacy and validation of the aforementioned biosensor remained limited, and there was also a lack of comparative analyses against conventional molecular techniques. Conclusion Promoting high-quality research is essential to facilitate the integration of biosensors as innovative technologies within the realm of public health challenges, such as antimicrobial resistance AMR. Adopting a One-Health approach, it becomes imperative to delve deeper into these promising and feasible technologies, exploring their potential across diverse sample sets and matrices.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Lu N, Chen J, Rao Z, Guo B, Xu Y. Recent Advances of Biosensors for Detection of Multiple Antibiotics. BIOSENSORS 2023; 13:850. [PMID: 37754084 PMCID: PMC10526323 DOI: 10.3390/bios13090850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
The abuse of antibiotics has caused a serious threat to human life and health. It is urgent to develop sensors that can detect multiple antibiotics quickly and efficiently. Biosensors are widely used in the field of antibiotic detection because of their high specificity. Advanced artificial intelligence/machine learning algorithms have allowed for remarkable achievements in image analysis and face recognition, but have not yet been widely used in the field of biosensors. Herein, this paper reviews the biosensors that have been widely used in the simultaneous detection of multiple antibiotics based on different detection mechanisms and biorecognition elements in recent years, and compares and analyzes their characteristics and specific applications. In particular, this review summarizes some AI/ML algorithms with excellent performance in the field of antibiotic detection, and which provide a platform for the intelligence of sensors and terminal apps portability. Furthermore, this review gives a short review of biosensors for the detection of multiple antibiotics.
Collapse
Affiliation(s)
| | | | | | | | - Ying Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
21
|
Imran M, Ahmed S, Abdullah AZ, Hakami J, Chaudhary AA, Rudayni HA, Khan SUD, Khan A, Basher NS. Nanostructured material-based optical and electrochemical detection of amoxicillin antibiotic. LUMINESCENCE 2023; 38:1064-1086. [PMID: 36378274 DOI: 10.1002/bio.4408] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 11/13/2022] [Indexed: 07/22/2023]
Abstract
The penicillin derivative amoxicillin (AMX) plays an important role in treating various types of infections caused by bacteria. However, excessive use of AMX may have negative health effects. Therefore, it is of utmost importance to detect and quantify the AMX in pharmaceutical drugs, biological fluids, and environmental samples with high sensitivity. Therefore, this review article provides valuable and up-to-date information on nanostructured material-based optical and electrochemical sensors to detect AMX in various biological and chemical samples. The role of using different nanostructured materials on the performance of important optical sensors such as colorimetric sensors, fluorescence sensors, surface-enhanced Raman scattering sensors, chemiluminescence/electroluminescence sensors, optical immunosensors, optical fibre-based sensors, and several important electrochemical sensors based on different electrode types have been discussed. Moreover, nanocomposites, polymer, and MXenes-based electrochemical sensors have also been discussed, in which such materials are being used to further enhance the sensitivity of these sensors. Furthermore, nanocomposite-based photo-electrochemical sensors and the market availability of biosensors including AMX have also been discussed briefly. Finally, the conclusion, challenges, and future perspectives of the above-mentioned sensing techniques for AMX detection are presented.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Chemical Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, Saudi Arabia
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, Malaysia
| | - Shahzad Ahmed
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, Malaysia
| | - Jabir Hakami
- Department of Physics, College of Science, Jazan University, P.O. Box. 114, Jazan, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Afzal Khan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Oladipo AA, Derakhshan Oskouei S, Gazi M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:631-673. [PMID: 37284550 PMCID: PMC10241095 DOI: 10.3762/bjnano.14.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Saba Derakhshan Oskouei
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| |
Collapse
|
23
|
Tieu MV, Le HTN, Cho S. Using Nanomaterials for SARS-CoV-2 Sensing via Electrochemical Techniques. MICROMACHINES 2023; 14:933. [PMID: 37241556 PMCID: PMC10221901 DOI: 10.3390/mi14050933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
Advancing low-cost and user-friendly innovations to benefit public health is an important task of scientific and engineering research. According to the World Health Organization (WHO), electrochemical sensors are being developed for low-cost SARS-CoV-2 diagnosis, particularly in resource-limited settings. Nanostructures with sizes ranging from 10 nm to a few micrometers could deliver optimum electrochemical behavior (e.g., quick response, compact size, sensitivity and selectivity, and portability), providing an excellent alternative to the existing techniques. Therefore, nanostructures, such as metal, 1D, and 2D materials, have been successfully applied in in vitro and in vivo detection of a wide range of infectious diseases, particularly SARS-CoV-2. Electrochemical detection methods reduce the cost of electrodes, provide analytical ability to detect targets with a wide variety of nanomaterials, and are an essential strategy in biomarker sensing as they can rapidly, sensitively, and selectively detect SARS-CoV-2. The current studies in this area provide fundamental knowledge of electrochemical techniques for future applications.
Collapse
Affiliation(s)
- My-Van Tieu
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hien T. Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
24
|
Yan Y, Zhou F, Wang Q, Huang Y. A sensitive electrochemical biosensor for quinolones detection based on Cu2+-modulated signal amplification. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
25
|
Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, Tabish M, Khan AU. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:867. [PMID: 36903746 PMCID: PMC10005622 DOI: 10.3390/nano13050867] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ali Darraj
- Department of Medicine, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226025, India
| | - Abdulaziz Alalwan
- University Family Medicine Center, Department of Family and Community Medicine, College of Medicine, King Saud University Medical City, Riyadh 2925, Saudi Arabia
| | - Osamah Alamri
- Consultant of Family Medicine, Ministry of Health, Second Health Cluster, Riyadh 2925, Saudi Arabia
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Anwar Ulla Khan
- Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
26
|
Chen X, Sun H, Huang W, Jin J, Su M, Yang H. The Development of a Novel Headspace O 2 Concentration Measurement Sensor for Vials. SENSORS (BASEL, SWITZERLAND) 2023; 23:2438. [PMID: 36904640 PMCID: PMC10007330 DOI: 10.3390/s23052438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In the process of manufacture and transportation, vials are prone to breakage and cracks. Oxygen (O2) in the air entering vials can lead to the deterioration of medicine and a reduction in pesticide effects, threatening the life of patients. Therefore, accurate measurement of the headspace O2 concentration for vials is crucial to ensure pharmaceutical quality. In this invited paper, a novel headspace oxygen concentration measurement (HOCM) sensor for vials was developed based on tunable diode laser absorption spectroscopy (TDLAS). First, a long-optical-path multi-pass cell was designed by optimizing the original system. Moreover, vials with different O2 concentrations (0%, 5%, 10%, 15%, 20%, and 25%) were measured with this optimized system in order to study the relationship between the leakage coefficient and O2 concentration; the root mean square error of the fitting was 0.13. Moreover, the measurement accuracy indicates that the novel HOCM sensor achieved an average percentage error of 1.9%. Sealed vials with different leakage holes (4, 6, 8, and 10 mm) were prepared to investigate the variation in the headspace O2 concentration with time. The results show that the novel HOCM sensor is non-invasive and has a fast response and high accuracy, with prospects in applications for online quality supervision and management of production lines.
Collapse
|
27
|
Shi Z, Zhang J, Tian L, Xin L, Liang C, Ren X, Li M. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules 2023; 28:1762. [PMID: 36838752 PMCID: PMC9962477 DOI: 10.3390/molecules28041762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Due to the overuse of antibiotics, bacterial resistance has markedly increased to become a global problem and a major threat to human health. Fortunately, in recent years, various new antibiotics have been developed through both improvements to traditional antibiotics and the discovery of antibiotics with novel mechanisms with the aim of addressing the decrease in the efficacy of traditional antibiotics. This manuscript reviews the antibiotics that have been approved for marketing in the last 20 years with an emphasis on the antibacterial properties, mechanisms, structure-activity relationships (SARs), and clinical safety of these antibiotics. Furthermore, the current deficiencies, opportunities for improvement, and prospects of antibiotics are thoroughly discussed to provide new insights for the design and development of safer and more potent antibiotics.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, Xinjiang Uyghur People’s Hospital, Urumqi 830002, China
| | - Jie Zhang
- Department of Urology Surgery Center, Xinjiang Uyghur People’s Hospital, Urumqi 830002, China
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Lei Tian
- Department of Urology Surgery Center, Xinjiang Uyghur People’s Hospital, Urumqi 830002, China
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Liang Xin
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, China
| | - Min Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
28
|
Lei X, Guo L, Xu L, Kuang H, Xu C, Liu L. Fluorescent strip sensor for rapid and ultrasensitive determination of fluoroquinolones in fish and milk. Analyst 2023; 148:381-390. [PMID: 36537261 DOI: 10.1039/d2an01757a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthetic antibiotics fluoroquinolones are popular due to their good antibacterial performance and low price, but the risk to human health caused by their residues has attracted great attention. In this study, an ultra-sensitive mAb, 4D7, was prepared with an IC50 of 0.027 ng mL-1 to norfloxacin (NOR) and cross-reactivity of 19.7-47.7% to lomefloxacin (LOM), pefloxacin (PEF), ofloxacin (OFL), enrofloxacin (ENR), ciprofloxacin (CIP), and danofloxacin (DAN). Based on mAb 4D7 and Eu-fluorescent microspheres, a rapid and sensitive immunochromatographic strip was developed for the detection of fluoroquinolone residues in fish and milk. The detection ranges (IC20-IC80) of the strip for the detection of NOR, PEF, LOM, OFL, ENR, CIP and DAN were 0.19-1.1 μg kg-1, 0.39-2.1 μg kg-1, 0.5-2.6 μg kg-1, 0.43-3.3 μg kg-1, 0.61-3.5 μg kg-1, 0.69-5.5 μg kg-1, 0.52-3.4 μg kg-1 in fish, and 0.027-0.19 μg kg-1, 0.049-0.34 μg kg-1, 0.069-0.39 μg kg-1, 0.06-0.41 μg kg-1, 0.089-0.65 μg kg-1, 0.12-0.81 μg kg-1, 0.091-0.52 μg kg-1 in milk, respectively. The recovery rates in spiked sample tests were 88.6-113.6% with a coefficient of variation less than 8.4%. Thus the newly-developed strip was sensitive and reliable for rapid on-site detection of fluoroquinolone residues in fish and milk.
Collapse
Affiliation(s)
- Xianlu Lei
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Lingling Guo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liguang Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
29
|
γ-Cyclodextrin-graphene quantum dots-chitosan modified screen-printed electrode for sensing of fluoroquinolones. Mikrochim Acta 2023; 190:60. [PMID: 36656431 PMCID: PMC9852125 DOI: 10.1007/s00604-023-05646-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
An innovative electrochemical approach based on screen-printed carbon electrodes (SPCEs) modified with graphene quantum dots (GQDs) functionalized with γ-cyclodextrin (γ-CD) and assembled to chitosan (CHI) is designed for the assessment of the total content of fluoroquinolones (FQs) in animal source products. For the design of the bionanocomposite, carboxylated graphene quantum dots synthesized from uric acid as precursor were functionalized with γ-CD using succinic acid as a linker. Physic-chemical and nanostructural characterization of the ensuing nanoparticles was performed by high-resolution transmission scanning microscopy, dynamic light scattering, Z potential measurement, Fourier transformed infrared spectroscopy and X-ray diffraction. Electrochemical properties of assembled bionanocomposite like potential difference, kinetic electronic transfer constant and electroactive area among other parameters were assessed by cyclic voltammetry and differential pulse voltammetry using potassium ferricyanide as redox probe. The oxidation behaviour of four representative quinolones with distinctive structures was studied, obtaining in all cases the same number of involved e- (2) and H+ (2) in their oxidation. These results led us to propose a single and consistent oxidation mechanism for all the checked analytes. The γ-CD-GQDs-CHI/SPCE sensor displayed a boosted electroanalytical performance in terms of linear range (4-250 µM), sensibility (LOD = 1.2 µM) and selectivity. This electrochemical strategy allowed the determination of FQs total amount in complex processed food like broths, bouillon cubes and milkshakes at three concentration levels (150, 75 and 37.5 µM) for both equimolar and different ratio FQs mixtures with recovery values ranging from 90 to 106%.
Collapse
|
30
|
Pan Y, Yang H, Wen K, Ke Y, Shen J, Wang Z. Current advances in immunoassays for quinolones in food and environmental samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Wang M, Cetó X, del Valle M. A Sensor Array Based on Molecularly Imprinted Polymers and Machine Learning for the Analysis of Fluoroquinolone Antibiotics. ACS Sens 2022; 7:3318-3325. [PMID: 36281963 PMCID: PMC9706806 DOI: 10.1021/acssensors.2c01260] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluoroquinolones (FQs) are one of the most important types of antibiotics in the clinical, poultry, and aquaculture industries, and their monitoring is required as the abuse has led to severe issues, such as antibiotic residues and antimicrobial resistance. In this study, we report a voltammetric electronic tongue (ET) for the simultaneous determination of ciprofloxacin, levofloxacin, and moxifloxacin in both pharmaceutical and biological samples. The ET comprises four sensors modified with three different customized molecularly imprinted polymers (MIPs) and a nonimprinted polymer integrated with Au nanoparticle-decorated multiwall carbon nanotubes (Au-fMWCNTs). MWCNTs were first functionalized to serve as a supporting substrate, while the anchored Au nanoparticles acted as a catalyst. Subsequently, MIP films were obtained by electropolymerization of pyrrole in the presence of the different target FQs. The sensors' morphology was characterized by scanning electron microscopy and transmission electron microscopy, while the modification process was followed electrochemically step by step employing [Fe(CN)6]3-/4- as the redox probe. Under the optimal conditions, the MIP(FQs)@Au-fMWCNT sensors exhibited different responses, limits of detection of ca. 1 μM, and a wide detection range up to 300 μM for the three FQs. Lastly, the developed ET presents satisfactory agreement between the expected and obtained values when used for the simultaneous determination of mixtures of the three FQs (R2 ≥0.960, testing subset), which was also applied to the analysis of FQs in commercial pharmaceuticals and spiked human urine samples.
Collapse
|
32
|
Aihaiti A, Li Z, Qin Y, Meng F, Li X, Huangfu Z, Chen K, Zhang M. Construction of Electrochemical Sensors for Antibiotic Detection Based on Carbon Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2789. [PMID: 36014654 PMCID: PMC9414981 DOI: 10.3390/nano12162789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Excessive antibiotic residues in food can cause detrimental effects on human health. The establishment of rapid, sensitive, selective, and reliable methods for the detection of antibiotics is highly in demand. With the inherent advantages of high sensitivity, rapid analysis time, and facile miniaturization, the electrochemical sensors have great potential in the detection of antibiotics. The electrochemical platforms comprising carbon nanomaterials (CNMs) have been proposed to detect antibiotic residues. Notably, with the introduction of functional CNMs, the performance of electrochemical sensors can be bolstered. This review first presents the significance of functional CNMs in the detection of antibiotics. Subsequently, we provide an overview of the applications for detection by enhancing the electrochemical behaviour of the antibiotic, as well as a brief overview of the application of recognition elements to detect antibiotics. Finally, the trend and the current challenges of electrochemical sensors based on CNMs in the detection of antibiotics is outlined.
Collapse
Affiliation(s)
- Aihemaitijiang Aihaiti
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Zongda Li
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Fanxing Meng
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Xinbo Li
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Zekun Huangfu
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Keping Chen
- Xinjiang Huize Foodstuff Co., Ltd., Wujiaqu City 830073, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| |
Collapse
|
33
|
Saravanakumar K, SivaSantosh S, Sathiyaseelan A, Naveen KV, AfaanAhamed MA, Zhang X, Priya VV, MubarakAli D, Wang MH. Unraveling the hazardous impact of diverse contaminants in the marine environment: Detection and remedial approach through nanomaterials and nano-biosensors. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128720. [PMID: 35366447 DOI: 10.1016/j.jhazmat.2022.128720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Marine pollution is one of the most underlooked forms of pollution as it affects most aquatic lives and public health in the coastal area. The diverse form of the hazardous pollutant in the marine ecosystem leads the serious genetic level disorders and diseases which include cancer, diabetes, arthritis, reproductive, and neurological diseases such as Parkinson's, Alzheimer's, and several microbial infections. Therefore, a recent alarming study on these pollutants, the microplastics have been voiced out in many countries worldwide, it was even found to be in the human placenta. In recent times, nanomaterials have demonstrated their potential in the detection and remediation of sensitive contaminants. In this review, we presented a comprehensive overview of the source, and distribution of diverse marine pollution on both aquatic and human health by summarizing the concentration of diverse pollutions (heavy metals, pesticides, microbial toxins, and micro/nano plastics) in marine samples such as soil, water, and seafood. Followed by emphasizing its ecotoxicological impact on aquatic animal life and coastal public health. Also discussed are the applicability and advancements of nanomaterials and nano-based biosensors in the detection, prevention, and remediation of diverse pollution in the marine ecosystem.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | | | - Anbazhagan Sathiyaseelan
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Kumar Vishven Naveen
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Mohamed Ali AfaanAhamed
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India.
| | - Xin Zhang
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India.
| | - Myeong-Hyeon Wang
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
34
|
Dong Y, Chen R, Wu L, Wang X, Jiang F, Fan Z, Huang C, Chen Y. Magnetic relaxation switching biosensor via polydopamine nanoparticle mediated click chemistry for detection of chlorpyrifos. Biosens Bioelectron 2022; 207:114127. [DOI: 10.1016/j.bios.2022.114127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
|
35
|
Jiwanti PK, Wardhana BY, Sutanto LG, Chanif MF. A Review on Carbon‐based Electrodes for Electrochemical Sensor of Quinolone Antibiotics. ChemistrySelect 2022. [DOI: 10.1002/slct.202103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Muchammad F. Chanif
- Nanotechnology Engineering Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| |
Collapse
|
36
|
Dao AQ, Thi Thanh Nhi L, Mai Nguyen D, Thanh Tam Toan T. A REVIEW ON DETERMINATION OF THE VETERINARY DRUG RESIDUES IN FOOD PRODUCTS. Biomed Chromatogr 2022; 36:e5364. [PMID: 35274322 DOI: 10.1002/bmc.5364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
In this paper, we discuss veterinary medicine and its applications in the food field as well as its risk to the health of humans and animals by the residues. We review how the veterinary residues enter and cause some detrimental effects. We also mention two techniques to determine the residue of veterinary medication that existed in food originating from animals, including classic and advanced techniques. Finally, we discuss the potential of various developed methods compared to some traditional techniques.
Collapse
Affiliation(s)
- Anh Quang Dao
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Le Thi Thanh Nhi
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Vietnam
| | - Do Mai Nguyen
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Tran Thanh Tam Toan
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| |
Collapse
|
37
|
Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151997. [PMID: 34848263 DOI: 10.1016/j.scitotenv.2021.151997] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/18/2023]
Abstract
Residual antibiotics in food products originated from administration of the antibiotics to animals may be accumulated through food metabolism in the human body and endanger safety and health. Thus, developing a prompt and accurate way for detection of antibiotics is a crucial issue. The zero-dimensional fluorescent probes including metals based, carbon and graphene quantum dots (QDs), are highly sensitive materials to use for the detection of a wide range of antibiotics in natural products. These QDs demonstrate unique optical properties like tunable photoluminescence (PL) and excitation-wavelength dependent emission. This study investigates the trends related to carbon and metal based QDs preparation and modification, and their diverse detection application. We discuss the performance of QDs based sensors application in various detection systems such as photoluminescence, photoelectrochemical, chemiluminescence, electrochemiluminescence, colorimetric, as well as describing their working principles in several samples. The detecting mechanism of a QDs-based sensor is dependent on its properties and specific interactions with particular antibiotics. This review also tries to describe environmental application and future perspective of QDs for antibiotics detection.
Collapse
Affiliation(s)
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Tehran 14155-477, Iran.
| |
Collapse
|
38
|
Sheng K, Jiang H, Fang Y, Wang L, Jiang D. Emerging electrochemical biosensing approaches for detection of allergen in food samples: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214305] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Electrochemical Sensors for Antibiotic Susceptibility Testing: Strategies and Applications. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increasing awareness of the impacts of infectious diseases has driven the development of advanced techniques for detecting pathogens in clinical and environmental settings. However, this process is hindered by the complexity and variability inherent in antibiotic-resistant species. A great deal of effort has been put into the development of antibiotic-resistance/susceptibility testing (AST) sensors and systems to administer proper drugs for patient-tailored therapy. Electrochemical sensors have garnered increasing attention due to their powerful potential to allow rapid, sensitive, and real-time monitoring, alongside the low-cost production, feasibility of minimization, and easy integration with other techniques. This review focuses on the recent advances in electrochemical sensing strategies that have been used to determine the level of antibiotic resistance/susceptibility of pathogenic bacteria. The recent examples of the current electrochemical AST sensors discussed here are classified into four categories according to what is detected and quantitated: the presence of antibiotic-resistant genes, changes in impedance caused by cell lysis, current response caused by changes in cellular membrane properties, and changes in the redox state of redox molecules. It also discusses potential strategies for the development of electrochemical AST sensors, with the goal of broadening their practical applications across various scientific and technological fields.
Collapse
|
41
|
Singh S, Numan A, Cinti S. Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem 2022; 94:26-40. [PMID: 34802244 PMCID: PMC8756393 DOI: 10.1021/acs.analchem.1c03856] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sima Singh
- IES
Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| | - Arshid Numan
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano 49, 80131 Naples, Italy
- BAT
Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Napoli Federico
II, 80055 Naples, Italy
| |
Collapse
|
42
|
Wang Y, Ma B, Liu M, Chen E, Xu Y, Zhang M. Europium Fluorescent Nanoparticles-Based Multiplex Lateral Flow Immunoassay for Simultaneous Detection of Three Antibiotic Families Residue. Front Chem 2022; 9:793355. [PMID: 34988061 PMCID: PMC8722402 DOI: 10.3389/fchem.2021.793355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/29/2021] [Indexed: 02/04/2023] Open
Abstract
A fluorescent immunoassay based on europium nanoparticles (EuNPs-FIA) was developed for the simultaneous detection of antibiotic residues, solving the problems of single target detection and low sensitivity of traditional immunoassay methods. In the EuNPs-FIA, EuNPs were used as indictive probes by binding to anti-tetracyclines monoclonal antibodies (anti-TCs mAb), anti-sulphonamides monoclonal antibodies (anti-SAs mAb) and anti-fluoroquinolones monoclonal antibodies (anti-FQs mAb), respectively. Different artificial antigens were assigned to different regions of the nitrocellulose membrane as capture reagents. The EuNPs-FIA allowed for the simultaneous detection of three classes of antibiotics (tetracyclines, fluoroquinolones and sulphonamides) within 15 min. It enabled both the qualitative determination with the naked eye under UV light and the quantitative detection of target antibiotics by scanning the fluorescence intensity of the detection probes on the corresponding detection lines. For qualitative analysis, the cut-off values for tetracyclines (TCs), fluoroquinolones (FQs) and sulphonamides (SAs) were 3.2 ng/ml, 2.4 ng/ml and 4.0 ng/ml, respectively, which were much lower than the maximum residue limit in food. For quantitative analysis, these ranged from 0.06 to 6.85 ng/ml for TCs, 0.03–5.14 ng/ml for FQs, and 0.04–4.40 ng/ml for SAs. The linear correlation coefficients were higher than 0.97. The mean spiked recoveries ranged from 92.1 to 106.2% with relative standard deviations less than 8.75%. Among them, the three monoclonal antibodies could recognize four types of TCs, seven types of FQs and 13 types of SAs, respectively, and the detection range could cover 24 antibiotic residues with different structural formulations. The results of the detection of antibiotic residues in real samples using this method were highly correlated with those of high performance liquid chromatography (R2 > 0.98). The accuracy and precision of the EuNPs-FIA also met the requirements for quantitative analysis. These results suggested that this multiplex immunoassay method was a promising method for rapid screening of three families of antibiotic residues.
Collapse
Affiliation(s)
- Yaping Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Miaomiao Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Erjing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Ying Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
43
|
Das J, Mishra HN. Recent advances in sensors for detecting food pathogens, contaminants, and toxins: a review. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03951-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
KAKIMOVA Z, ZHARYKBASOVA K, KAKIMOV A, MIRASHEVA G, TOLEUBEKOVA S, ZHARYKBASOV Y, TULKEBAYEVA G, MURATBAYEV A, UTEGENOVA A. Study on the detection of antibiotics in food based on enzyme - free labelless aptamer sensor. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Nath D, Das S, Ghangrekar MM. High throughput techniques for the rapid identification of electroactive microorganisms. CHEMOSPHERE 2021; 285:131489. [PMID: 34265713 DOI: 10.1016/j.chemosphere.2021.131489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023]
Abstract
Electroactive microorganisms (EAM), capable of executing extracellular electron transfer (EET) in/out of a cell, are employed in microbial electrochemical technologies (MET) and bioelectronics for harnessing electricity from wastewater, bioremediation and as biosensors. Thus, investigation on EAM is becoming a topic of interest for multidisciplinary areas, such as environmental science, energy and health sectors. Though, EAM are widespread in three domains of life, nevertheless, only a few hundred EAM have been identified so far and hence, the rapid identification of EAM is imperative. In this review, the techniques that are developed for the direct identification of EAM, such as azo dye and WO3 based techniques, dielectrophoresis, potentiostatic/galvanometric techniques, and other indirect methods, such as spectroscopy and molecular biology techniques, are highlighted with a special focus on time required for the detection of these EAM. The bottlenecks for identifying EAM and the knowledge gaps based on the present investigations are also discussed. Thus, this review is intended to encourage researchers for devolving high-throughput techniques for identifying EAM with more accuracy, while consuming less time.
Collapse
Affiliation(s)
- Dibyojyoty Nath
- School of Environmental Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - M M Ghangrekar
- School of Environmental Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
46
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
47
|
Jiang S, Wang F, Li Q, Sun H, Wang H, Yao Z. Environment and food safety: a novel integrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54511-54530. [PMID: 34431060 PMCID: PMC8384557 DOI: 10.1007/s11356-021-16069-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 04/12/2023]
Abstract
Environment protection and food safety are two critical issues in the world. In this review, a novel approach which integrates statistical study and subjective discussion was adopted to review recent advances on environment and food safety. Firstly, a scientometric-based statistical study was conducted based on 4904 publications collected from the Web of Science Core Collection database. It was found that the research on environment and food safety was growing steadily from 2001 to 2020. Interestingly, the statistical analysis of most-cited papers, titles, abstracts, keywords, and research areas revealed that the research on environment and food safety was diverse and multidisciplinary. In addition to the scientometric study, strategies to protect environment and ensure food safety were critically discussed, followed by a discussion on the emerging research topics, including emerging contaminates (e.g., microplastics), rapid detection of contaminants (e.g., biosensors), and environment friendly food packaging materials (e.g., biodegradable polymers). Finally, current challenges and future research directions were proposed.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
48
|
Dias A, Silva I, Pinto IM, Maia LF. Timely and Blood-Based Multiplex Molecular Profiling of Acute Stroke. Life (Basel) 2021; 11:816. [PMID: 34440560 PMCID: PMC8398526 DOI: 10.3390/life11080816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of death and disability in the world. To address such a problem, early diagnosis and tailored acute treatment represent one of the major priorities in acute stroke care. Since the efficacy of reperfusion treatments is highly time-dependent, there is a critical need to optimize procedures for faster and more precise diagnosis. We provide a concise review of the most relevant and well-documented blood-protein biomarkers that exhibit greater potential for translational to clinical practice in stroke differential diagnosis and to differentiate ischemic stroke from hemorrhagic stroke, followed by an overview of the most recent point-of-care technological approaches to address this problem. The integration of fluid-based biomarker profiling, using point-of-care biosensors with demographic, clinical, and neuroimaging parameters in multi-dimensional clinical decision-making algorithms, will be the next step in personalized stroke care.
Collapse
Affiliation(s)
- Alexandre Dias
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel Silva
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Molecular Neurobiology, IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Luís F. Maia
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Molecular Neurobiology, IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
49
|
Jiang D, Sheng K, Jiang H, Wang L. A biomimetic "intestinal microvillus" cell sensor based on 3D bioprinting for the detection of wheat allergen gliadin. Bioelectrochemistry 2021; 142:107919. [PMID: 34371348 DOI: 10.1016/j.bioelechem.2021.107919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
A biomimetic "intestinal microvillus" electrochemical cell sensor based on three-dimensional (3D) bioprinting was developed, which can specifically and accurately detect wheat gliadin. Self-assembled flower-like copper oxide nanoparticles (FCONp) and hydrazide-functionalized multiwalled carbon nanotubes (MWCNT-CDH) were innovatively synthesized to improve the sensor performance. A conductive biocomposite hydrogel (bioink) was prepared by mixing FCONp and MWCNT-CDH based on GelMA gel. The cluster-shaped microvillus structure of small intestine was accurately printed on the screen printing electrode with the prepared bioink using stereolithography 3D-bioprinting technology, and then the Rat Basophilic Leukemia cells were immobilized on the gel skeleton. Next, the developed cell sensor was used to effectively detect wheat allergen gliadin. The experimental results show that the bioprinted cell sensor sensitively detects wheat gliadin when the optimized cell numbers and immobilized time are 1 × 106 cells/mL and 10 min, respectively. The linear detection range is 0.1-0.8 ng/mL, and the detection limit is 0.036 ng/mL. The electrochemical cell sensor based on 3D printing technology has excellent stability and reproducibility. Thus, a simple and novel electrochemical detection approach for food allergens was established in this study with potential application in food safety detection and evaluation.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Kaikai Sheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
50
|
CHAI P, SONG Z, LIU W, XUE J, WANG S, LIU J, LI J. [Application of carbon dots in analysis and detection of antibiotics]. Se Pu 2021; 39:816-826. [PMID: 34212582 PMCID: PMC9404157 DOI: 10.3724/sp.j.1123.2021.04022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/25/2022] Open
Abstract
Antibiotics have been overused in recent years because of their remarkable curative effect, but this has led to considerable environmental pollution. Therefore, the development of approaches aimed at the effective detection and control of the antibiotics is vital for protecting the environment and human health. Many conventional strategies (such as high-performance liquid chromatography (HPLC), gas chromatography (GC), high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)) are currently in use for the detection of antibiotics. These strategies have aroused a great deal of interest because of their outstanding features of high efficiency and speed, good reproducibility, automation, etc. However, various problems such as tedious sample pretreatment, low detection sensitivity, and high cost must be overcome for the effective detection of antibiotics in environmental samples. Consequently, it is of great significance to improve the detection sensitivity of antibiotics. The development of new materials combined with the existing detection technology has great potential to improve the detection results for antibiotics. Carbon dots (CDs) are a new class of nanomaterials with particle sizes in the range of 0-10 nm. In addition, CDs have desirable properties such as small particle effect, excellent electrical properties, unique optical properties, and good biocompatibility. Hence, they have been widely utilized for the detection of antibiotics in environmental samples. In this review, the application of CDs combined with sensors and chromatographic technology for the detection of antibiotics in the last five years are summarized. The development prospects of CD-based materials and their application to the analysis and detection of antibiotics are presented. In this review, many new sensors (CDs combined with molecularly imprinted polymer sensors, aptamer sensors, electrochemiluminescence sensors, fluorescence sensors, and electrochemical sensors) combined with CD-based materials and their use in the detection of antibiotics are summarized. Furthermore, advanced analysis methods such as ratiometric sensor and array sensor methods are reviewed. The novel analysis methods provide a new direction toward the detection of antibiotics by CDs combined with a sensor. Moreover, CD-based chromatographic stationary phases for the separation of antibiotics are also summarized in this manuscript. It is reported that the detection sensitivity for antibiotics can be greatly improved by the combination of CDs and a sensor. Nevertheless, a literature survey reveals that the detection of antibiotics in complex environmental samples is confronted with numerous challenges, including the fabrication of highly sensitive sensors in combination with CDs. Furthermore, the development of novel high-performance materials is of imperative. In addition, it is important to develop new methods for effective data processing. The separation of antibiotics with CDs as the chromatographic stationary phases is in the preliminary stage, and the separation mechanism remains to be clarified. In conclusion, there are still many problems to be overcome when using CDs as novel materials for the detection of antibiotics in environmental samples. Nowadays, CD-based materials are being intensively studied, and various analytical detection technologies are being rapidly developed. In the future, CD-based materials are expected to play an important role in the detection of antibiotics and other environmental pollutants.
Collapse
|