1
|
Didarian R, Azar MT. Microfluidic biosensors: revolutionizing detection in DNA analysis, cellular analysis, and pathogen detection. Biomed Microdevices 2025; 27:10. [PMID: 40011268 DOI: 10.1007/s10544-025-00741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Microfluidic chips have emerged as versatile and powerful tools that enable the precise manipulation of fluids and bioparticles at the microscale. Their impact on detection applications is profound, offering advantages such as miniaturization, enhanced sensitivity, multiplexing capability, and integrated functions. These chips can be customized for specific techniques, such as DNA analysis, immunoassays, chemical sensing, and cell-based assays. With a wide range of types available, including Lab-on-a-Chip, droplet-based, paper-based, electrochemical, optical, and magnetic chips, they find applications in diverse fields such as medical diagnostics, DNA analysis, cell analysis, food safety testing, environmental monitoring, and industrial processes. This powerful technology replicates laboratory capabilities on miniature chip-scale devices, resulting in time and cost savings while enabling portability and field-use capability. Its impact spans genetic analysis, proteomic analysis, cell culture, biosensors, pathogen detection, and point-of-care diagnostics, playing a pivotal role in advancing chemical and biological analysis. The overall aim of this review is to provide an overview of the development of microfluidic biochips for biological detection and discuss their various applications.
Collapse
Affiliation(s)
- Reza Didarian
- Department of Biomedical Engineering, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
| | - Mehdi Tayybi Azar
- Department of Biophysics, Yeditepe University School of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
2
|
Pniewska S, Drozd M, Mussida A, Brambilla D, Chiari M, Rastawicki W, Malinowska E. PET Foils Functionalized with Reactive Copolymers as Adaptable Microvolume ELISA Spot Array Platforms for Multiplex Serological Analysis of SARS-CoV-2 Infections. SENSORS (BASEL, SWITZERLAND) 2024; 24:7766. [PMID: 39686303 DOI: 10.3390/s24237766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Microvolume ELISA platforms have become vital in diagnostics for their high-throughput capabilities and minimal sample requirements. High-quality substrates with advanced surface properties are essential for these applications. They enable both efficient biomolecule immobilization and antifouling properties, which are critical for assay sensitivity and specificity. This study presents PET-based microvolume ELISA spot arrays coated with amine- and DBCO-reactive copolymers MCP-2 and Copoly Azide. The platforms were designed for the sensitive and specific detection of specific antibodies such as COVID-19 biomarkers. Supporting robust attachment of the SARS-CoV-2 nucleoprotein (NP), these arrays outperform traditional approaches. It was demonstrated that covalent attachment methods proved more efficient than passive adsorption, together with the reduction of non-specific binding. Analytical performance was verified with classical ELISA and real-time Surface Plasmon Resonance (SPR) analysis. It enables sensitive detection of IgG and IgA antibodies, including IgG subclasses, in human serum. Clinically, the platform achieved 100.0% sensitivity and 92.9% specificity for anti-NP antibody detection in COVID-19-positive and negative samples. Additionally, DNA-directed immobilization extended the platform's utility to multiplex serological measurements. These findings underscore the potential of PET-based microvolume ELISA arrays as scalable, high-throughput diagnostic tools suitable for detecting multiple biomarkers in a single assay and easily integrated into microfluidic devices.
Collapse
Affiliation(s)
- Sylwia Pniewska
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00664 Warsaw, Poland
| | - Marcin Drozd
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00664 Warsaw, Poland
| | - Alessandro Mussida
- Institute of Chemical and Technological Science "Giulio Natta", National Research Council of Italy, 20131 Milan, Italy
| | - Dario Brambilla
- Institute of Chemical and Technological Science "Giulio Natta", National Research Council of Italy, 20131 Milan, Italy
| | - Marcella Chiari
- Institute of Chemical and Technological Science "Giulio Natta", National Research Council of Italy, 20131 Milan, Italy
| | - Waldemar Rastawicki
- Department of Bacteriology and Biocontamination, National Institute of Public Health NIH-National Research Institute, 00791 Warsaw, Poland
| | - Elżbieta Malinowska
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00664 Warsaw, Poland
| |
Collapse
|
3
|
Avila-Huerta M, Leyva-Hidalgo K, Cortés-Sarabia K, Estrada-Moreno AK, Vences-Velázquez A, Morales-Narváez E. Disposable Device for Bacterial Vaginosis Detection. ACS MEASUREMENT SCIENCE AU 2023; 3:355-360. [PMID: 37868361 PMCID: PMC10588930 DOI: 10.1021/acsmeasuresciau.3c00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 10/24/2023]
Abstract
Due to the increasing demand for clinical testing of infectious diseases at the point-of-care, the global market claims alternatives for rapid diagnosis tools such as disposable biosensors, avoiding the need for specialized laboratories and skilled personnel. Bacterial vaginosis (BV) is an infectious disease that commonly affects reproductive-age women and predisposes the infection of sexually transmitted diseases. Especially in asymptomatic cases, BV can lead to pelvic inflammatory conditions, postpartum endometritis, and preterm labor. Conventionally, BV diagnosis involves the microscopic analysis of vaginal swab samples; it thus requires highly trained personnel. In response, we report a novel microfluidic paper-based analytical device for BV diagnosis. Sialidase, a biomarker overexpressed in BV, was detected by exploiting an immunosensing mechanism previously discovered by our team. This technology employs a graphene oxide-coated surface as a quencher of fluorescence; the fluorescence of the immunoprobes that do not experiment immunoreactions (antibody-antigen) are deactivated by graphene oxide via non-radiative energy transfer, whereas those immunoprobes undergoing immunoreactions preserve their photoluminescence due to the distance and the low affinity between the immunocomplex and the graphene oxide-coated surface. Our paper-based test was typically carried out within 20 min, and the sample volume was 6 μL. Besides, it was tested with 14 vaginal swabs specimens to discriminate clinical samples of women with normal microbiota from those with BV. Our disposable device represents a new tool to prevent the consequences of BV.
Collapse
Affiliation(s)
- Mariana
D. Avila-Huerta
- Centro
de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León 37150, Guanajuato, Mexico
| | - Karina Leyva-Hidalgo
- Centro
de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León 37150, Guanajuato, Mexico
- Facultad
de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Karen Cortés-Sarabia
- Facultad
de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Ana K. Estrada-Moreno
- Facultad
de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Amalia Vences-Velázquez
- Facultad
de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Eden Morales-Narváez
- Centro
de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León 37150, Guanajuato, Mexico
- Biophotonic
Nanosensors Laboratory, Centro de Física Aplicada y Tecnología
Avanzada (CFATA), Universidad Nacional Autónoma
de México (UNAM), Querétaro 76230, Mexico
| |
Collapse
|
4
|
Wang J, Liu X, Li R, Fan Y. Biomimetic strategies and technologies for artificial tactile sensory systems. Trends Biotechnol 2023; 41:951-964. [PMID: 36658007 DOI: 10.1016/j.tibtech.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
The sense of touch events, achieved by artificial tactile sensory systems (ATSSs), is a milestone in the progress of human-machine interactions. However, it has been a challenge for ATSSs to serve functions comparable with the human tactile perception system (HTPS). The biomimetic strategies and technologies inspired by HTPS are considered an optimal solution to this challenge. Recent studies have reported bioinspired strategies for improving specific aspects of ATSS performance, such as feature collection, signal conversion, and information computation. Here, we present a systematic interpretation of biomechanisms for HTPSs, and correspondingly, address biomimetic strategies and technologies contributing to ATSSs as an integral system. This review will benefit the development and application of ATSSs in the future.
Collapse
Affiliation(s)
- Jinghui Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Xiaoyu Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing 100083, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China.
| | - Ruya Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing 100083, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China; School of Medical Science and Engineering Medicine, Beihang University, Beijing 100083, China.
| |
Collapse
|
5
|
Microfluidics: the propellant of CRISPR-based nucleic acid detection. Trends Biotechnol 2023; 41:557-574. [PMID: 35989112 DOI: 10.1016/j.tibtech.2022.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022]
Abstract
Since the discovery of collateral cleavage activity, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems have become the new generation of nucleic acid detection tools. However, their widespread application remains limited. A pre-amplification step is required to improve the sensitivity of CRISPR systems, complicating the operating procedure and limiting quantitative precision. In addition, nonspecific collateral cleavage activity makes it difficult to realize multiplex detection in a one-pot CRISPR reaction with a single Cas protein. Microfluidics, which can transfer nucleic acid analysis process to a chip, has the advantages of miniaturization, integration, and automation. Microfluidics coupled with CRISPR systems improves the detection ability of CRISPR, enabling fast, high-throughput, integrated, multiplex, and digital detection, which results in the further popularization of CRISPR for a range of scenarios.
Collapse
|
6
|
Kongkaew S, Meng L, Limbut W, Liu G, Kanatharana P, Thavarungkul P, Mak WC. Craft-and-Stick Xurographic Manufacturing of Integrated Microfluidic Electrochemical Sensing Platform. BIOSENSORS 2023; 13:bios13040446. [PMID: 37185521 PMCID: PMC10136003 DOI: 10.3390/bios13040446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
An innovative modular approach for facile design and construction of flexible microfluidic biosensor platforms based on a dry manufacturing "craft-and-stick" approach is developed. The design and fabrication of the flexible graphene paper electrode (GPE) unit and polyethylene tetraphthalate sheet (PET)6/adhesive fluidic unit are completed by an economic and generic xurographic craft approach. The GPE widths and the microfluidic channels can be constructed down to 300 μm and 200 μm, respectively. Both units were assembled by simple double-sided adhesive tapes into a microfluidic integrated GPE (MF-iGPE) that are flexible, thin (<0.5 mm), and lightweight (0.4 g). We further functionalized the iGPE with Prussian blue and glucose oxidase for the fabrication of MF-iGPE glucose biosensors. With a closed-channel PET fluidic pattern, the MF-iGPE glucose biosensors were packaged and sealed to protect the integrated device from moisture for storage and could easily open with scissors for sample loading. Our glucose biosensors showed 2 linear dynamic regions of 0.05-1.0 and 1.0-5.5 mmol L-1 glucose. The MF-iGPE showed good reproducibility for glucose detection (RSD < 6.1%, n = 6) and required only 10 μL of the analyte. This modular craft-and-stick manufacturing approach could potentially further develop along the concept of paper-crafted model assembly kits suitable for low-resource laboratories or classroom settings.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Lingyin Meng
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Naghdi T, Ardalan S, Asghari Adib Z, Sharifi AR, Golmohammadi H. Moving toward smart biomedical sensing. Biosens Bioelectron 2023; 223:115009. [PMID: 36565545 DOI: 10.1016/j.bios.2022.115009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Sina Ardalan
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Zeinab Asghari Adib
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Amir Reza Sharifi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
8
|
Xia S, Pan J, Dai D, Dai Z, Yang M, Yi C. Design of portable electrochemiluminescence sensing systems for point-of-care-testing applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Fedalto L, de Oliveira PR, Agustini D, Kalinke C, Banks CE, Bergamini MF, Marcolino-Junior LH. Novel and highly stable strategy for the development of microfluidic enzymatic assays based on the immobilization of horseradish peroxidase (HRP) into cotton threads. Talanta 2022; 252:123889. [DOI: 10.1016/j.talanta.2022.123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 10/15/2022]
|
10
|
Pan Y, Yang Z, Li C, Hassan SU, Shum HC. Plant-inspired TransfOrigami microfluidics. SCIENCE ADVANCES 2022; 8:eabo1719. [PMID: 35507654 PMCID: PMC9067916 DOI: 10.1126/sciadv.abo1719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The healthy functioning of the plants' vasculature depends on their ability to respond to environmental changes. In contrast, synthetic microfluidic systems have rarely demonstrated this environmental responsiveness. Plants respond to environmental stimuli through nastic movement, which inspires us to introduce transformable microfluidics: By embedding stimuli-responsive materials, the microfluidic device can respond to temperature, humidity, and light irradiance. Furthermore, by designing a foldable geometry, these responsive movements can follow the preset origami transformation. We term this device TransfOrigami microfluidics (TOM) to highlight the close connection between its transformation and the origami structure. TOM can be used as an environmentally adaptive photomicroreactor. It senses the environmental stimuli and feeds them back positively into photosynthetic conversion through morphological transformation. The principle behind this morphable microsystem can potentially be extended to applications that require responsiveness between the environment and the devices, such as dynamic artificial vascular networks and shape-adaptive flexible electronics.
Collapse
Affiliation(s)
- Yi Pan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhenyu Yang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chang Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Sammer Ul Hassan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
- Corresponding author.
| |
Collapse
|
11
|
Bonner MG, Gudapati H, Mou X, Musah S. Microfluidic systems for modeling human development. Development 2022; 149:274363. [PMID: 35156682 PMCID: PMC8918817 DOI: 10.1242/dev.199463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The proper development and patterning of organs rely on concerted signaling events emanating from intracellular and extracellular molecular and biophysical cues. The ability to model and understand how these microenvironmental factors contribute to cell fate decisions and physiological processes is crucial for uncovering the biology and mechanisms of life. Recent advances in microfluidic systems have provided novel tools and strategies for studying aspects of human tissue and organ development in ways that have previously been challenging to explore ex vivo. Here, we discuss how microfluidic systems and organs-on-chips provide new ways to understand how extracellular signals affect cell differentiation, how cells interact with each other, and how different tissues and organs are formed for specialized functions. We also highlight key advancements in the field that are contributing to a broad understanding of human embryogenesis, organogenesis and physiology. We conclude by summarizing the key advantages of using dynamic microfluidic or microphysiological platforms to study intricate developmental processes that cannot be accurately modeled by using traditional tissue culture vessels. We also suggest some exciting prospects and potential future applications of these emerging technologies.
Collapse
Affiliation(s)
- Makenzie G. Bonner
- Developmental and Stem Cell Biology Program, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
| | - Hemanth Gudapati
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Developmental and Stem Cell Biology Program, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA,Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,MEDx Investigator and Faculty Member at the Duke Regeneration Center, Duke University, Durham, NC 27710, USA,Author for correspondence ()
| |
Collapse
|
12
|
Xiao C, Eriksson J, Suska A, Filippini D, Mak WC. Print-and-stick unibody microfluidics coupled surface plasmon resonance (SPR) chip for smartphone imaging SPR (Smart-iSRP). Anal Chim Acta 2022; 1201:339606. [DOI: 10.1016/j.aca.2022.339606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/18/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022]
|
13
|
Jeerapan I, Moonla C, Thavarungkul P, Kanatharana P. Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:249-279. [PMID: 35094777 DOI: 10.1016/bs.pmbts.2021.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This chapter highlights applications of microfluidic devices toward on-body biosensors. The emerging application of microfluidics to on-body bioanalysis is a new strategy to establish systems for the continuous, real-time, and on-site determination of informative markers present in biofluids, such as sweat, interstitial fluid, blood, saliva, and tear. Electrochemical sensors are attractive to integrate with such microfluidics due to the possibility to be miniaturized. Moreover, on-body microfluidics coupled with bioelectronics enable smart integration with modern information and communication technology. This chapter discusses requirements and several challenges when developing on-body microfluidics such as difficulties in manipulating small sample volumes while maintaining mechanical flexibility, power-consumption efficiency, and simplicity of total automated systems. We describe key components, e.g., microchannels, microvalves, and electrochemical detectors, used in microfluidics. We also introduce representatives of advanced lab-on-a-body microfluidics combined with electrochemical sensors for biomedical applications. The chapter ends with a discussion of the potential trends of research in this field and opportunities. On-body microfluidics as modern total analysis devices will continue to bring several fascinating opportunities to the field of biomedical and translational research applications.
Collapse
Affiliation(s)
- Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Chochanon Moonla
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Panote Thavarungkul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Proespichaya Kanatharana
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
14
|
Mohd Asri MA, Nordin AN, Ramli N. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. BIOMICROFLUIDICS 2021; 15:061502. [PMID: 34777677 PMCID: PMC8577868 DOI: 10.1063/5.0071176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 05/18/2023]
Abstract
Integrated microfluidic biosensors enable powerful microscale analyses in biology, physics, and chemistry. However, conventional methods for fabrication of biosensors are dependent on cleanroom-based approaches requiring facilities that are expensive and are limited in access. This is especially prohibitive toward researchers in low- and middle-income countries. In this topical review, we introduce a selection of state-of-the-art, low-cost prototyping approaches of microfluidics devices and miniature sensor electronics for the fabrication of sensor devices, with focus on electrochemical biosensors. Approaches explored include xurography, cleanroom-free soft lithography, paper analytical devices, screen-printing, inkjet printing, and direct ink writing. Also reviewed are selected surface modification strategies for bio-conjugates, as well as examples of applications of low-cost microfabrication in biosensors. We also highlight several factors for consideration when selecting microfabrication methods appropriate for a project. Finally, we share our outlook on the impact of these low-cost prototyping strategies on research and development. Our goal for this review is to provide a starting point for researchers seeking to explore microfluidics and biosensors with lower entry barriers and smaller starting investment, especially ones from low resource settings.
Collapse
Affiliation(s)
- Mohd Afiq Mohd Asri
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
- Author to whom correspondence should be addressed:
| | - Nabilah Ramli
- Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| |
Collapse
|
15
|
Ding S, Zhang H, Wang X. Microfluidic-Chip-Integrated Biosensors for Lung Disease Models. BIOSENSORS 2021; 11:456. [PMID: 34821672 PMCID: PMC8615803 DOI: 10.3390/bios11110456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 05/04/2023]
Abstract
Lung diseases (e.g., infection, asthma, cancer, and pulmonary fibrosis) represent serious threats to human health all over the world. Conventional two-dimensional (2D) cell models and animal models cannot mimic the human-specific properties of the lungs. In the past decade, human organ-on-a-chip (OOC) platforms-including lung-on-a-chip (LOC)-have emerged rapidly, with the ability to reproduce the in vivo features of organs or tissues based on their three-dimensional (3D) structures. Furthermore, the integration of biosensors in the chip allows researchers to monitor various parameters related to disease development and drug efficacy. In this review, we illustrate the biosensor-based LOC modeling, further discussing the future challenges as well as perspectives in integrating biosensors in OOC platforms.
Collapse
Affiliation(s)
- Shuang Ding
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
16
|
Yang H, Peng Y, Xu M, Xu S, Zhou Y. Development of DNA Biosensors Based on DNAzymes and Nucleases. Crit Rev Anal Chem 2021; 53:161-176. [PMID: 34225516 DOI: 10.1080/10408347.2021.1944046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA biosensors play important roles in environmental, medical, industrial and agricultural analysis. Many DNA biosensors have been designed based on the enzyme catalytic reaction. Because of the importance of enzymes in biosensors, we present a review on this topic. In this review, the enzymes were divided into DNAzymes and nucleases according to their chemical nature. Firstly, we introduced the DNAzymes with different function inducing cleavage, metalation, peroxidase, ligation and allosterism. In this section, the G-quadruplex DNAzyme, as a hot topic in recent years, was described in detail. Then, the nucleases-assisted signal amplification method was also reviewed in three categories including exonucleases, endonucleases and other nucleases according to the digestion sites in DNA substrates. In exonucleases section, the Exo I and Exo III were selected as examples. Then, the DNase I, BamH I, nicking endonuclease, S1 nuclease, the duplex specific nuclease (DSN) and RNases were chosen to illustrate the application of endonucleases. In other nucleases section, DNA polymerases and DNA ligases were detailed. Last, the challenges and future perspectives in the field were discussed.
Collapse
Affiliation(s)
- Hualin Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Peng
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mingming Xu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Shuxia Xu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China.,College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
17
|
Kim B, Soepriatna AH, Park W, Moon H, Cox A, Zhao J, Gupta NS, Park CH, Kim K, Jeon Y, Jang H, Kim DR, Lee H, Lee KS, Goergen CJ, Lee CH. Rapid custom prototyping of soft poroelastic biosensor for simultaneous epicardial recording and imaging. Nat Commun 2021; 12:3710. [PMID: 34140475 PMCID: PMC8211747 DOI: 10.1038/s41467-021-23959-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
The growing need for the implementation of stretchable biosensors in the body has driven rapid prototyping schemes through the direct ink writing of multidimensional functional architectures. Recent approaches employ biocompatible inks that are dispensable through an automated nozzle injection system. However, their application in medical practices remains challenged in reliable recording due to their viscoelastic nature that yields mechanical and electrical hysteresis under periodic large strains. Herein, we report sponge-like poroelastic silicone composites adaptable for high-precision direct writing of custom-designed stretchable biosensors, which are soft and insensitive to strains. Their unique structural properties yield a robust coupling to living tissues, enabling high-fidelity recording of spatiotemporal electrophysiological activity and real-time ultrasound imaging for visual feedback. In vivo evaluations of custom-fit biosensors in a murine acute myocardial infarction model demonstrate a potential clinical utility in the simultaneous intraoperative recording and imaging on the epicardium, which may guide definitive surgical treatments.
Collapse
Affiliation(s)
- Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Haesoo Moon
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue College of Veterinary Medicine, West Lafayette, IN, USA
| | - Jianchao Zhao
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Nevin S Gupta
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chi Hoon Park
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Energy Engineering, Gyeongnam National University of Science and Technology, Jinju-Si, Republic of Korea
| | - Kyunghun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yale Jeon
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hanmin Jang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kwan-Soo Lee
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Materials Engineering, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Fei Tian
- Beijing Engineering Research Center for BioNanotechnology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing P. R. China
| | - Ziwei Han
- Beijing Engineering Research Center for BioNanotechnology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing P. R. China
| | - Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing P. R. China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing P. R. China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing P. R. China
| |
Collapse
|
19
|
Antiochia R. Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. BIOSENSORS 2021; 11:110. [PMID: 33917183 PMCID: PMC8067807 DOI: 10.3390/bios11040110] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the state of the art of paper-based biosensors (PBBs) for coronavirus disease 2019 (COVID-19) detection. Three categories of PBB are currently being been used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics, namely for viral gene, viral antigen and antibody detection. The characteristics, the analytical performance, the advantages and drawbacks of each type of biosensor are highlighted and compared with traditional methods. It is hoped that this review will be useful for scientists for the development of novel PBB platforms with enhanced performance for helping to contain the COVID-19 outbreak, by allowing early diagnosis at the point of care (POC).
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
20
|
Yoon J, Cho HY, Shin M, Choi HK, Lee T, Choi JW. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B 2021; 8:7303-7318. [PMID: 32647855 DOI: 10.1039/d0tb01325k] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the interest in wearable devices has increased recently, increasing biosensor flexibility has begun to attract considerable attention. Among the various types of biosensors, electrochemical biosensors are uniquely suited for the development of such flexible biosensors due to their many advantages, including their fast response, inherent miniaturization, convenient operation, and portability. Therefore, many studies on flexible electrochemical biosensors have been conducted in recent years to achieve non-invasive and real-time monitoring of body fluids such as tears, sweat, and saliva. To achieve this, various substrates, novel nanomaterials, and detection techniques have been utilized to develop conductive flexible platforms that can be applied to create flexible electrochemical biosensors. In this review, we discussed recently reported flexible electrochemical biosensors and divided them into specific categories including materials for flexible substrate, fabrication techniques for flexible biosensor development, and recently developed flexible electrochemical biosensors to externally monitor target molecules, thereby providing a means to noninvasively examine cells and body fluid samples. In conclusion, this review will discuss the materials, methods, recent studies, and perspectives on flexible electrochemical biosensors for healthcare monitoring and wearable biosensing systems.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Over the past decades, microfluidic devices based on many advanced techniques have aroused widespread attention in the fields of chemical, biological, and analytical applications. Integration of microdevices with a variety of chip designs will facilitate promising functionality. Notably, the combination of microfluidics with functional nanomaterials may provide creative ideas to achieve rapid and sensitive detection of various biospecies. In this review, focused on the microfluids and microdevices in terms of their fabrication, integration, and functions, we summarize the up-to-date developments in microfluidics-based analysis of biospecies, where biomarkers, small molecules, cells, and pathogens as representative biospecies have been explored in-depth. The promising applications of microfluidic biosensors including clinical diagnosis, food safety control, and environmental monitoring are also discussed. This review aims to highlight the importance of microfluidics-based biosensors in achieving high throughput, highly sensitive, and low-cost analysis and to promote microfluidics toward a wider range of applications.
Collapse
Affiliation(s)
- Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
22
|
Ghaffari M, Mollazadeh-Bajestani M, Moztarzadeh F, Uludağ H, Hardy JG, Mozafari M. An overview of the use of biomaterials, nanotechnology, and stem cells for detection and treatment of COVID-19: towards a framework to address future global pandemics. EMERGENT MATERIALS 2021; 4:19-34. [PMID: 33426467 PMCID: PMC7783485 DOI: 10.1007/s42247-020-00143-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 05/03/2023]
Abstract
A novel SARS-like coronavirus (severe acute respiratory syndrome-related coronavirus-2, SARS-CoV-2) outbreak has recently become a worldwide pandemic. Researchers from various disciplinary backgrounds (social to natural science, health and medicine, etc.) have studied different aspects of the pandemic. The current situation has revealed how the ongoing development of nanotechnology and nanomedicine can accelerate the fight against the novel viruses. A comprehensive solution to this and future pandemic outbreaks includes preventing the spread of the virus through anti-viral personal protective equipment (PPE) and anti-viral surfaces, plus efforts to encourage behavior to minimize risks. Studies of previously introduced anti-viral biomaterials and their optimization to fight against SARS-CoV-2 is the foundation of most of the recent progress. The identification of non-symptomatic patients and symptomatic patients is vital. Reviewing published research highlights the pivotal roles of nanotechnology and biomaterials in the development and efficiency of detection techniques, e.g., by applying nanotechnology and nanomedicine as part of the road map in the treatment of coronavirus disease 2019 (COVID-19) patients. In this review, we discuss efforts to deploy nanotechnology, biomaterials, and stem cells in each step of the fight against SARS-CoV-2, which may provide a framework for future efforts in combating global pandemics.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | | | - Fathollah Moztarzadeh
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Hasan Uludağ
- Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1 Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3 Canada
| | - John G. Hardy
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster, LA1 4YB UK
- Materials Science Institute, Lancaster University, Lancaster, LA1 4YB UK
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Present Address: Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Chircov C, Bîrcă AC, Grumezescu AM, Andronescu E. Biosensors-on-Chip: An Up-to-Date Review. Molecules 2020; 25:E6013. [PMID: 33353220 PMCID: PMC7765790 DOI: 10.3390/molecules25246013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, biosensors are designed to translate physical, chemical, or biological events into measurable signals, thus offering qualitative and/or quantitative information regarding the target analytes. While the biosensor field has received considerable scientific interest, integrating this technology with microfluidics could further bring significant improvements in terms of sensitivity and specificity, resolution, automation, throughput, reproducibility, reliability, and accuracy. In this manner, biosensors-on-chip (BoC) could represent the bridging gap between diagnostics in central laboratories and diagnostics at the patient bedside, bringing substantial advancements in point-of-care (PoC) diagnostic applications. In this context, the aim of this manuscript is to provide an up-to-date overview of BoC system development and their most recent application towards the diagnosis of cancer, infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| |
Collapse
|
24
|
Modification of chlorosulfonated polystyrene substrates for bioanalytical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110912. [DOI: 10.1016/j.msec.2020.110912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
|
25
|
Abstract
Coronavirus disease 2019 (COVID-19) outbreak has become a global pandemic. The deleterious effects of coronavirus have prompted the development of diagnostic tools to manage the spread of disease. While conventional technologies such as quantitative real time polymerase chain reaction (qRT-PCR) have been broadly used to detect COVID-19, they are time-consuming, labor-intensive and are unavailable in remote settings. Point-of-care (POC) biosensors, including chip-based and paper-based biosensors are typically low-cost and user-friendly, which offer tremendous potential for rapid medical diagnosis. This mini review article discusses the recent advances in POC biosensors for COVID-19. First, the development of POC biosensors which are made of polydimethylsiloxane (PDMS), papers, and other flexible materials such as textile, film, and carbon nanosheets are reviewed. The advantages of each biosensors along with the commercially available COVID-19 biosensors are highlighted. Lastly, the existing challenges and future perspectives of developing robust POC biosensors to rapidly identify and manage the spread of COVID-19 are briefly discussed.
Collapse
Affiliation(s)
- Jane Ru Choi
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
de Oliveira TR, Erbereli CR, Manzine PR, Magalhães TNC, Balthazar MLF, Cominetti MR, Faria RC. Early Diagnosis of Alzheimer's Disease in Blood Using a Disposable Electrochemical Microfluidic Platform. ACS Sens 2020; 5:1010-1019. [PMID: 32207606 DOI: 10.1021/acssensors.9b02463] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that affects a large number of elderly people worldwide and has a high social and economic impact. The diagnosis of AD in early stage can significantly improve the evolution and prognosis of the disease. We report the use of A Disintegrin And Metalloprotease 10 (ADAM10) as a blood biomarker for the early diagnosis of AD. A simple, low-cost, sensitive, and disposable microfluidic platform (DμP) was developed for ADAM10 detection in plasma and cerebrospinal fluid based on electrochemical immunosensors. The assay was designed to accurately detect ADAM10 in serum, with a limit of detection of 0.35 fg/mL. ADAM10 was detected in subjects divided into cognitively healthy subjects, subjects with mild cognitive impairment, and AD patients in different disease stages. An increase in protein levels was found throughout the disease, and good DμP accuracy in differentiating individuals was observed. The DμP provided significantly better sensitivity than the well-established enzyme-linked immunosorbent assay test. ADAM10 and its detection using the DμP were proven to be an alternative tool for the early diagnosis and monitoring of AD, bringing new exciting possibilities to improve the quality of life of AD patients.
Collapse
Affiliation(s)
- Tássia R. de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Camila R. Erbereli
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Patricia R. Manzine
- Department of Gerontology, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | | | | | - Márcia R. Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Ronaldo C. Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
27
|
Xu L, Shoaie N, Jahanpeyma F, Zhao J, Azimzadeh M, Al Jamal KT. Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: A comprehensive overview. Biosens Bioelectron 2020; 161:112222. [PMID: 32365010 DOI: 10.1016/j.bios.2020.112222] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Exosomes are small extracellular vesicles involved in many physiological activities of cells in the human body. Exosomes from cancer cells have great potential to be applied in clinical diagnosis, early cancer detection and target identification for molecular therapy. While this field is gaining increasing interests from both academia and industry, barriers such as supersensitive detection techniques and highly-efficient isolation methods remain. In the clinical settings, there is an urgent need for rapid analysis, reliable detection and point-of-care testing (POCT). With these challenges to be addressed, this article aims to review recent developments and technical breakthroughs including optical, electrochemical and electrical biosensors for exosomes detection in the field of cancer and other diseases and demonstrate how nanobiosensors could enhance the performance of conventional sensors. Working strategies, limit of detections, advantages and shortcomings of the studies are summarized. New trends, challenges and future perspectives of exosome-driven POCT in liquid biopsy have been discussed.
Collapse
Affiliation(s)
- Lizhou Xu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Nahid Shoaie
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Junjie Zhao
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran; Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran; Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, 8916188635, Yazd, Iran.
| | - Khuloud T Al Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| |
Collapse
|
28
|
Solanki S, Pandey CM, Gupta RK, Malhotra BD. Emerging Trends in Microfluidics Based Devices. Biotechnol J 2020; 15:e1900279. [PMID: 32045505 DOI: 10.1002/biot.201900279] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/28/2020] [Indexed: 01/03/2023]
Abstract
One of the major challenges for scientists and engineers today is to develop technologies for the improvement of human health in both developed and developing countries. However, the need for cost-effective, high-performance diagnostic techniques is very crucial for providing accessible, affordable, and high-quality healthcare devices. In this context, microfluidic-based devices (MFDs) offer powerful platforms for automation and integration of complex tasks onto a single chip. The distinct advantage of MFDs lies in precise control of the sample quantities and flow rate of samples and reagents that enable quantification and detection of analytes with high resolution and sensitivity. With these excellent properties, microfluidics (MFs) have been used for various applications in healthcare, along with other biological and medical areas. This review focuses on the emerging demands of MFs in different fields such as biomedical diagnostics, environmental analysis, food and agriculture research, etc., in the last three or so years. It also aims to reveal new opportunities in these areas and future prospects of commercial MFDs.
Collapse
Affiliation(s)
- Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.,Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Chandra M Pandey
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
29
|
Wang C, Cai Y, MacLACHLAN A, Chen P. Novel Nanoplasmonic-Structure-Based Integrated Microfluidic Biosensors for Label-Free in Situ Immune Functional Analysis: A review of recent progress. IEEE NANOTECHNOLOGY MAGAZINE 2020; 14:46-C3. [PMID: 34290843 DOI: 10.1109/mnano.2020.2966205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chuanyu Wang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Alabama
| | - Yuxin Cai
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Alabama
| | - Alana MacLACHLAN
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Alabama
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Alabama
| |
Collapse
|
30
|
Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Sempionatto JR, Jeerapan I, Krishnan S, Wang J. Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal Chem 2019; 92:378-396. [DOI: 10.1021/acs.analchem.9b04668] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Itthipon Jeerapan
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sadagopan Krishnan
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
32
|
Kumar S, Nehra M, Mehta J, Dilbaghi N, Marrazza G, Kaushik A. Point-of-Care Strategies for Detection of Waterborne Pathogens. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4476. [PMID: 31623064 PMCID: PMC6833035 DOI: 10.3390/s19204476] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/31/2022]
Abstract
Waterborne diseases that originated due to pathogen microorganisms are emerging as a serious global health concern. Therefore, rapid, accurate, and specific detection of these microorganisms (i.e., bacteria, viruses, protozoa, and parasitic pathogens) in water resources has become a requirement of water quality assessment. Significant research has been conducted to develop rapid, efficient, scalable, and affordable sensing techniques to detect biological contaminants. State-of-the-art technology-assisted smart sensors have improved features (high sensitivity and very low detection limit) and can perform in a real-time manner. However, there is still a need to promote this area of research, keeping global aspects and demand in mind. Keeping this view, this article was designed carefully and critically to explore sensing technologies developed for the detection of biological contaminants. Advancements using paper-based assays, microfluidic platforms, and lateral flow devices are discussed in this report. The emerging recent trends, mainly point-of-care (POC) technologies, of water safety analysis are also discussed here, along with challenges and future prospective applications of these smart sensing technologies for water health diagnostics.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Jyotsana Mehta
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Ajeet Kaushik
- Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805-8531, USA.
| |
Collapse
|
33
|
Bermudez JF, Saldarriaga JF, Osma JF. Portable and Low-Cost Respirometric Microsystem for the Static and Dynamic Respirometry Monitoring of Compost. SENSORS 2019; 19:s19194132. [PMID: 31554249 PMCID: PMC6806091 DOI: 10.3390/s19194132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 09/19/2019] [Indexed: 01/04/2023]
Abstract
Composting is considered an option for the disposal of organic waste; however, the development of portable and low-cost systems for its monitoring is of high interest. Therefore, in this study, respirometric microsystems were designed and tested including two integrated oxygen sensors for the measurement of compost samples under static and dynamic conditions with high portability and ease of use. The cost of each sensor was calculated as 2 USD, while the cost of the whole respirometric microsystem was calculated as 6 USD. The electronic system for real-time monitoring was also designed and implemented. The designed systems were tested for over 6 weeks for the determination of compost quality using real samples. The respirometric microsystem was compared to a commercial respirometry system and a standard laboratory test using hierarchical analysis which included costs, portability accuracy, analysis time, and integration of new technologies. The analysis showed a global score of 6.87 for the respirometric microsystem compared to 6.70 for the standard laboratory test and 3.26 for the commercial system.
Collapse
Affiliation(s)
- Juliette F Bermudez
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogota 1100111, Colombia.
- CMUA. Department Electrical and Electronic Engineering, Universidad de los Andes, Bogota 1100111, Colombia.
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogota 1100111, Colombia.
| | - Johann F Osma
- CMUA. Department Electrical and Electronic Engineering, Universidad de los Andes, Bogota 1100111, Colombia.
| |
Collapse
|